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ABSTRACT Users’ privacy is vulnerable at all stages of the deep learning process. Sensitive information
of users may be disclosed during data collection, during training, or even after releasing the trained learning
model. Differential privacy (DP) is one of the main approaches proven to ensure strong privacy protection in
data analysis. DP protects the users’ privacy by adding noise to the original dataset or the learning parameters.
Thus, an attacker could not retrieve the sensitive information of an individual involved in the training dataset.
In this survey paper, we analyze and present the main ideas based on DP to guarantee users’ privacy in deep
and federated learning. In addition, we illustrate all types of probability distributions that satisfy the DP
mechanism, with their properties and use cases. Furthermore, we bridge the gap in the literature by providing
a comprehensive overview of the different variants of DP, highlighting their advantages and limitations. Our
study reveals the gap between theory and application, accuracy, and robustness of DP. Finally, we provide
several open problems and future research directions.

INDEX TERMS Deep learning, federated learning, privacy protection, differential privacy, probability
distribution.

I. INTRODUCTION
In recent years, deep learning (DL) demonstrates a big suc-
cess in many fields such as Healthcare, Marketing, Trans-
portation, etc. For example, DL is used for early disease
detection [1]–[3], predicting the future and adapting to the
market needs [4], [5], helping people with disabilities [6],
facilitating our daily activities [7]. To produce models with
high accuracy, DL requires big datasets for training the
model. However, datasets may contain sensitive informa-
tion [8] that should not be disclosed to any third party,
which raises concerns about the privacy protection in DL.
In fact, users’ privacy is threatened even when attackers do
not have direct access to the dataset. Attackers may query
the trained learning model to recover the original training
dataset [9]– this type of attack is called model inversion
attacks. There is another type of attack called membership
inference attacks [10] where attackers’ aim is to distinguish
whether an individual was part of the training dataset or
not. We refer the reader to [11] for a well-presented review
of research work for different privacy attack types facing
DL. Therefore, ensuring users’ privacy in DL is of great
importance.
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In this paper, we present the different techniques proposed
to tackle the privacy issues in deep and federated learn-
ing (FL). Particularly, we focus on differential privacy (DP)
which became a de facto standard for protecting users’ pri-
vacy in statistical computations. These techniques can be
divided into three categories:

• Techniques protecting users’ privacy before publishing a
dataset such as k-anonymity, l-diversity, and t-closeness.
These techniques produce a new dataset, called a
privacy-preserving (PP) dataset, protecting users’ sen-
sitive information. Attackers could not learn any critical
information even if they have full access to the dataset.

• Techniques protecting users’ privacy during the training.
These techniques allow collaboratively training a model
between many clients (i.e., parties) while keeping the
dataset of each client private.

• DP-based techniques. DP may protect users’ privacy
in the three stages of training a DL model namely:
1) Before the training by producing PP datasets. 2) Dur-
ing the training by protecting the gradients sent from
clients to the server in the case of collaborative training.
3) After the training by producing DL models resistant
to model inference and model inversion attacks. DP is
also used for protecting users’ privacy while interrogat-
ing a database. This is because an attacker with some
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background knowledge can perform some count and
sum queries on a database and hence conclude the sen-
sitive information of the victim.

In the rest of this section, we provide an overview of the
approaches proposed in each category. Then, we present the
different review works done on privacy protection in DL.
Afterward, we outline the contributions of this paper com-
pared to the recent literature in the field of DP applied to DL.

1) TECHNIQUES PRODUCING PRIVACY-PRESERVING
DATASETS
k−anonymity [12], [13] is a mechanism for ensuring privacy
before releasing a dataset. k−anonymity consists of general-
izing quasi-identifier attributes and redacting some others so
a record cannot be distinguished from the least k − 1 other
records in the dataset, in other words, the probability of
re-identification is 1

k . Nevertheless, k−anonymization per-
forms poorly on the anonymization of a high-dimensional
dataset and does not provide strong protection against
attribute disclosure [14], [15]. An attacker with some back-
ground knowledge of victims could infer critical information
about them.
l−diversity [16] has been proposed to overcome the

k−anonymity shortcomings. It is based on the k−anonymity
principle, i.e., generalizing quasi-identifier attributes and
redacting some others so we cannot distinguish a tuple from
at least k − 1 other tuples. Then divides the dataset into
q-block, where each block contains k tuples with the
same values of the quasi-identifier attributes. In addition,
l−diversity ensures that each block has l distinct values for
the sensitive attribute. Hence, l−diversity provides strong
privacy against background knowledge and homogeneity
attacks. The larger the value of l is, the stronger the privacy
is guaranteed.
t−closeness [17] which covers some drawbacks of

l−diversity especially when the values of the sensitive
attributes could take only two values (i.e., when l = 2). The
t−closeness mechanism is also based on the k−anonymity
principle to create t−closeness classes (blocks) for sensitive
attributes. A class is said to have t−closeness for a sensitive
attribute A if the earth mover distance [18]) between the dis-
tribution ofA in the class and in the dataset is not higher than a
threshold t . A dataset is said to have t−closeness if all classes
satisfy t−closeness. By limiting the distance between classes
and the whole dataset, the amount of useful information that
an adversary can learn from the quasi-identifier values of an
individual and the distribution of the class is limited and does
not reveal precious information. Since it limits disclosure
about the correlation between quasi-identifier attributes and
the sensitive attribute.

2) TECHNIQUES PROTECTING USERS’ PRIVACY DURING THE
TRAINING
Securemultiparty computing (SMC) [19], [20] is a subfield
of cryptography that allows creating methods to jointly com-
pute a function using inputs from different parties without

FIGURE 1. Secure multiparty computing.

revealing those inputs neither to each other nor to the central
server. Thus, SMC does not require a trusted third party.
Figure 1 illustrates an example of calculating the average
salary of 3 clients without revealing the salary neither to
the central server nor to other clients. In the first step, each
client splits his/her salary into three pieces. In step 2, each
client keeps one piece and shares the remaining two pieces
with other clients. For example in Figure 1, client 1 divides
his/her salary to−30, 50, 60, keeps−30 locally, and shares 50
with the second client and 60 with the third client. In step 3,
each client aggregates the received pieces with his/her local
piece and calculates the sum. In our example, the first client
aggregates the pieces receive from the second and third client
to calculate the sum as 60 = 50 + 40 + (−30). In step 4,
clients send the calculated sum to the central server. Finally,
in step 5, the server calculates the average of the received
values, which is in this example 60+130+90

3 = 93.33. Thus,
We get the same average as if we calculated the average using
the true values of the salary. An SMC protocol is said to be
secure if it satisfies the following properties:
• Privacy: A client should not be able to learn any infor-
mation about any other client in the network, except the
information that can be derived from his/her own input
and output.

• Correctness: The output received by each participant
should be correct.

• Independence of input: The inputs of malicious clients
must be independent of the inputs of the honest clients.

• Guarantee of output: Malicious clients should not be
able to prevent legitimate clients from receiving their
outputs.

• Fairness: Malicious clients receive their outputs if and
only if honest participants receive their outputs.

There are some recent works using SMC in federated
learning (FL) to protect the privacy of clients [21]–[23]. How-
ever, SMC is costly in terms of computational complexity
and communication overhead. Thus, SMC is unsuitable for
training complex models over big datasets implicating many
clients.
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Homomorphic encryption (HE) [24] provides strong pri-
vacy protection as it allows training a model on an encrypted
dataset. HE achieves the same accuracy as if the training
was performed on the unencrypted version (i.e., original
dataset) of the dataset [25], [26]. However, using HE in DL
is inefficient in practice due to its computational complexity,
especially when the training dataset is too large to fit in
the computer memory. HE is more suited for MLaaS [27],
[28] when the model is already trained and ready to use.
In this case, users send their input encrypted to the cloud that
makes the prediction. Then the cloud sends back the results
encrypted to the users.

3) DIFFERENTIAL PRIVACY
Recently, DP [29], [30] has attracted a great deal of attention
in DL, especially in guaranteeing users’ privacy. DP allows
analyzing a dataset without revealing a single individual
private information. In other words, analyzing the dataset
and computing statistics about it (such as mode, median,
mean, etc.) does not allow revealing the information that an
individual’s information was included in the original dataset
or not.

Although the first definition of DP back in 2006, it does not
receive attention in practical use only in the last few years.
The main reason that may prevent using DP in practice is
the accuracy. In fact, the accuracy decreases by increasing
the level of privacy protection. To overcome this problem,
researchers either try to find a trade-off between accuracy
and privacy [31], [32] or combine DP with another technique
(e.g., memorization, adding a proxy server) for strengthen-
ing the privacy protection [33], [34]. There are many appli-
cations of DP in practice. For example, Google proposed
RAPPORT [35], an approach based on DP for privately
collecting statistics from devices of clients (e.g., Software
hangs and time of utilization). Microsoft [33] applies DPwith
the memorization technique for privately collecting statistics
periodically from their clients’ devices. Apple [36] also used
DP to collect statistics from their clients’ devices to enhance
their quality of experience. DP is also adopted by the US
census bureau to protect the publications of the 2018 End-
to-End Census Test. DP applications can be divided into two
categories:

1) Central differential privacy (CDP), as defined in [29],
requires that users trust the database holder (i.e., the
data curator) to keep their privacy. CDP consists of
adding random noise after collecting the data from
individuals. The random noise is added to the original
dataset or to the results of queries launched on the
original dataset.

2) Local differential privacy (LDP) [37], [38] overcomes
CDP shortcomings and ensures privacy when indi-
viduals do not trust the data curator. During data
collection, individuals perturb and/or encode their
responses before submitting them to the central server.
LDP mechanisms should be carefully implemented,
as each individual perturbs his response individually,

the estimated frequencies on the dataset may not be
inaccurate [39].

All DP schemes have the same principle which is adding
noise to protect the sensitive information of individuals. Cer-
tainly, adding more noise guarantees perfect protection of
privacy. On the other hand, adding less noise allows attackers
to reveal sensitive information about individuals. Recently,
Ren et al. [9] succeeded to recover the original dataset when
a small noise is added to the gradient. Thus, based on what
we will discuss in section II, one has to evaluate the privacy
leakage for a given privacy budget ε before publishing a
dataset, a learning model, or responding to a query function.

A. RELATED WORKS
Fatemehsadat et al. [40] present a summary of information
disclosure attacks to better situate the need for privacy pro-
tection in DL. The authors divide PP methods into three
categories: 1) methods for PP datasets that protect the privacy
of clients in a dataset, 2) methods protecting the privacy of
clients during the training phase, 3) methods for PP models
that protect the privacy of clients after deploying the trained
model. However, the authors do not detail DP and PP meth-
ods for FL models, they only provide a brief introduction
to FL and split learning (SL) without detailing the state-
of-art PP methods proposed in FL. Ha et al. [41] detail the
inference attacks and present methods for producing PP DL
models. They categorize these methods into three groups:
1) gradient-level methods that consist of adding noise to the
gradient, 2) function-level methods that consist of adding
noise to the loss function, and 3) label-level methods that
consist of adding noise to the label set during the training.
Amine et al. [42] provide a review of 45 papers handling the
problem of PP in DL. The authors present different works that
are based on different techniques such as DP andHE on top of
the strongest approaches, in addition to model splitting [43],
mimic learning [44], and partial parameters sharing [45]. All
presented works are dated before July 2019, nevertheless,
the period after 2019 till now, had recognized the emer-
gence of many works especially for preserving privacy in FL.
Xue et al. [46] provide a detailed explanation of the different
attacks that may threaten a DLmodel. More specifically, they
categorize these attacks into five types: 1) data poisoning
attacks, 2) backdoor attacks, 3) adversarial examples attacks,
4) model stealing attacks, 5) recovery of sensitive train-
ing data which includes model inversion attacks and mem-
bership inference attacks. Accordingly, the authors present
some approaches to deal with the different attacks, includ-
ing approaches for producing PP models. Chang et al. [47]
present a summary of privacy issues in DL. The authors
divide these problems into two types: issues during training
and issues during prediction, i.e., after deploying the trained
model. Accordingly, The authors present some countermea-
sures approaches to deal with these issues. Zhang et al. [48]
discuss PP approaches proposed to deal with attacks threat-
ening collaborative learning. The authors categorize these
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approaches into two categories: 1) PP during the training
phase, and 2) PP after deploying the trained model.

All survey works on privacy in DL focus on detailing
possible attacks against DL and presenting the different PP
methods to protect the users’ privacy. Yet, we didn’t find any
paper detailing DP in DL as well as presenting the different
variants of DP proposed so far. The main differences between
the contributions of the present survey and the above state-of-
the-art works are summarized in Table 1.

B. CONTRIBUTIONS
This paper presents a detailed survey of DP mechanisms
designed for PP in DL and FL, we bridge the gap of the
existing literature by providing:
• A comprehensive description of the probability distribu-
tions that satisfy the ε-DP definition with their use cases.

• A detailed description of ε-DP variants, namely (ε, δ)-
DP, (α, ε)-rényi DP, and f -DP, comparing the privacy
leakage due to composition.

• A review of the different works based on DP for pro-
tecting users’ privacy in DL and FL. We divide these
approaches into three categories based on their type of
application: 1) PP queries, 2) PP datasets, 3) PP models.

• An analysis of the main ideas and recent approaches
based on DP regarding the computational complexity,
communication cost, and accuracy. This analysis illus-
trates the gap between theory, application, accuracy, and
robustness of DP and brings forth many future research
directions.

II. DIFFERENTIAL PRIVACY AND ITS VARIANTS
A. ε-DP
The main objective of DP is to allow studying the properties
of a dataset (about a population) as a whole without revealing
one’s individual information. In other words, DP consists
of adding noise to either statistical queries or the original
dataset so that an adversary cannot know whether a particular
individual is included in the dataset or not. DP as defined
first in [29] requires that users trust the data curator since
users send their correct data without any modification to
the data curator. The data is stored in the central server as
received from users. Nevertheless, the data curator does not
trust the third party or the data analyst. Hence, the data curator
uses DP to perturb the original dataset before responding to
statistical queries of third parties for analysis. This type of
implementation of DP is called Central DP. The name central
DP comes from the fact that the perturbation is done centrally
at the data curator, unlike the local DPwhichwill be discussed
in the next section.

We refer to a mechanism that satisfies DP by ε-DP [29],
where ε denotes the privacy loss or privacy leakage. Before
providing the definition of an ε-DPmechanism, we define the
meaning of two neighboring datasets and the sensitivity of a
given query function f .
Definition 1 (Neighboring datasets): Let Dn be the domain

of all datasets, also known as dataset universe. D,D′ ∈ Dn

are called neighboring if D and D′ differ in one entry, i.e. one
entry is added or removed from D to get D′.
Definition 2 (Sensitivity of a query function f ): Given two

neighboring datasets D and D′, and a query function f :
Dn → Rd mapping databases to real numbers. The sensi-
tivity of the function f is defined as the maximum value by
which f changes if a single individual is added or removed
from a dataset, this is formulated as

1f = max
D,D′
||f (D)− f (D′)||1. (1)

where || · || denotes the `1 norm. 1

Definition 3 (ε-differential privacy): A mechanism or an
algorithm M is called ε-differentially private if for all neigh-
boring datasets D,D′ ∈ Dn, and for all S ⊆ Y , where Y is
the set of all possible outputs, we have:

Pr[M (D) ∈ S] ≤ eεPr[M (D′) ∈ S] (2)

that is to say the output when the mechanism M is applied
to D is similar to the output when M is applied to D′. The
smallest ε is the perfect the privacy is guaranteed

It is worth mentioning that the combination, known in the
literature by composition, of two DPmechanisms is also a DP
mechanism (see proof in [49]). The composition theorem is
defined as follows.
Theorem 1 (Composition): LetM1 is an ε1-DPmechanism

and M2 is an ε2-DP mechanism. Then, the composition of
M1 and M2 defined by M1,2 = (M1,M2) is an (ε1 + ε2)-DP.
The composition theorem allows using DP in practical use

cases such as guaranteeing the privacy of gradient in FL. For
example, if a client in FL applies an ε−DP mechanism to the
gradient before sending it to the central server. After k epochs,
the ε−DP mechanism results in (due to the composition
theorem) (k × ε)−DP mechanism. That is to say, the privacy
leakage at the first epoch was ε, and after k epochs, the
privacy leakage becomes k × ε.

B. (ε, δ)-DP
The first definition of ε-DP was introduced by
Dwork et al. [29] as stated earlier in Definition 3. Afterward,
the same authors proposed another relaxation of ε-DP called
(ε, δ)-DP [50], [51] by adding δ as an additive term to
the original definition. δ was added to capture the privacy
protection of the Gaussian distribution (see Definition 6),
as detailed in the previous subsection.
Definition 4 ((ε, δ)-DP [50], [51]): A mechanism M is

called (ε, δ)-differentially private if for all neighboring
datasets D,D′ ∈ Dn. We have, for all S ⊆ Y , where Y is
the set of all possible outputs:

Pr[M (D) ∈ S] ≤ eεPr[M (D′) ∈ S]+ δ (3)
The interpretation of a mechanism M satisfies (ε, δ)-DP

is this mechanism is ε-DP except with probability δ. That
is to say, the mechanism M is ε-DP with probability 1 − δ.

1The `1 norm of a vector v, denoted by ||v||, is the sum of the absolute
values of the vector v.
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TABLE 1. Comparison Between the Present Survey and the Existing State-of-the-art.

(ε, δ)-DP is proposed to mitigate the privacy leakage of
ε-DP under composition, as ε-DP is closed under composi-
tion [52]. (ε, δ)-DP provides smaller cumulative loss under
composition. 2 (ε, δ)-DP is not appropriate in the scenario
where S is a singleton set. It is worth mentioning that δ should
be negligible compared to the size of the set S (i.e. δ �
1/|S|), to avoid the worst-case scenario of always violating
the privacy of a δ fraction of the dataset.

C. PROBABILITY DISTRIBUTIONS SATISFYING DP (ε-DP
OR (ε, δ)-DP)
In this subsection, we present the different probability dis-
tributions proposed in the literature and satisfy either ε-DP
or (ε, δ)-DP. We point out the type of noise generated, the
condition of applications, and the use cases as well.

1) Laplacemechanism [29]: is the most used approach in
literature as it can be used for any type of data [53]. The
Laplace mechanism consists of adding a noise drawn
from the continuous Laplace distribution Lap(0, 1f

ε
).

Definition 5: Given a function f : Dn→ Y , where Y is
the set of all possible outputs, and ε > 0. The Laplace
mechanism is defined as

M (D) = f (D)+ Lap(0,
1f

ε
). (4)

2) Gaussian mechanism [54]: satisfies the principle of
the new variant of ε-DP which is f -DP (see subsec-
tion II-E for more details), and support tractability of
the privacy budget under composition.
Definition 6: Given two neighboring datasets D and
D′ in the dataset universe Dn, a query function f :
Dn → Y , where Y is the set of all possible outputs,
and ε > 0. The ε-Gaussian DP (ε-GDP) mechanism is
defined as:

M (D) = f (D)+N (0,
12
f

ε2
), (5)

where N (0,
12
f

ε2
) stands for the normal distribution.

2Composition means the sequential application of DP. For example, if we
apply DP on the result of a query function f , thus calling the query function
f one time is ε-DP, and calling the query function f sequentially k times is
at least (k × ε)-DP.

3) Geometricmechanism [55]: used to add discrete noise
to the result of a query function for integer-valued data
type [56].
Definition 7: Given a dataset D, a query function f :
Dn → Y , and ε > 0. The two-sided geometric mecha-
nism adds independent noise to the query function f :

M (D) = f (D)+1, (6)

where 1 is a random variable with a two-sided geo-
metric distribution:

P(1 = δ) =
1− e−ε

1+ e−ε
e−ε|δ|

for every integer δ.
The probability P(1 = δ) can be interpreted as the
probability of adding discrete noise δ to the result of
the query function f . The Geometric mechanism is a
discretized version of the Laplace mechanism [57].

4) Exponential mechanism [58]: is most suited when we
have to select a noisy (i.e., random) response from the
set of all possible outputs, instead of adding noise to
the result of the query function [53].
Definition 8: Given a dataset universe Dn, a set of all
possible outputs Y , and a scoring function u : Dn ×
Y → R which defines a score for each element D ∈ Dn

to each element y ∈ Y . That is to say, u assigns a real
valued score to any pair (D, y) from Dn × Y with the
understanding that higher scores correspond to most
suited outputs.
The exponential mechanism consists of selecting an
output y ∈ Y with probability proportional to e(

εu(D,y)
21u ).

This means that the exponential mechanism returns
an element from Y that has the highest score with
probability e(

εu(D,y)
21u ). Hence, the exponential mechanism

sometimes returns y ∈ Y which does not have the
highest score.
The Laplace mechanism can be captured from the
exponential mechanism by taking u(D, y) = −|f (D)−
y|, where f is the function defined in Definition 5.
u(D, y) takes the maximal value when the query func-
tion result f (D) is equal to the exact output value y.

5) Binomial mechanism [59]: used to add discrete noise
to the result of the query function. However, the
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FIGURE 2. The learning model architecture.

Binomial mechanism satisfies (ε, δ)-DP ((ε, δ)-DP is
a variant of ε-DP as defined in the next subsection)
under constraints [59] as illustrated in the following
definition.
Definition 9: Given two neighboring datasets D and
D′ in the dataset universe Dn, and a query function f :
Dn→ Y , the Binomial mechanism is defined as:

M (D) = f (D)+ (Z − Np)s (7)

where Z ∼ Bin(N , p), and s = 1
t is the quantization

scale for some t ∈ N. s helps to normalize the noise
correctly. The parameters δ,N , p, and s should satisfy
the following condition:

Np(1− p) ≥ max(23 log(10d/δ), 21∞/s), (8)

where d is the dimension of the output of the query
function f , and1∞ is the infinity norm of the sensitivity
of the query function f .

D. ε-DP VERSUS (ε, δ)-DP
In this subsection, we compare themost usedDP distributions
in the literature, namely the Laplace (i.e., ε-DP) and the
Gaussian distribution (i.e., (ε, δ)-DP), in terms of privacy pro-
tection and accuracy. For this purpose, we develop and train
a learning model using three different scenarios according to
the dataset used in the training:

• Scenario 1: In the first scenario, we train the learning
model on the original MNIST dataset [60] without any
noise. This is our reference scenario to evaluate the
impact of privacy protection (i.e., noise) on accuracy.

• Scenario 2: In the second scenario, we train the learning
model on the privacy-preserving MNIST dataset gener-
ated by adding Laplace noise.

• Scenario 3: In the third scenario, we train the learning
model on the privacy-preserving MNIST dataset gener-
ated by adding Gaussian noise.

The learning model, see Figure 2, is composed of two
convolutional layers. Each layer is associatedwith ReLu as an
activation function. The second convolutional layer is asso-
ciated with Dropout Regularization to prevent overfitting.
Then, we add three fully connected linear layers with the
dimension of the output of the last linear layer is 10, which
corresponds to the number of classes that we have in our
training dataset.

FIGURE 3. The accuracy of the learning model during the training for the
three scenarios varing the privacy leakage ε.

FIGURE 4. Sample of the digit 4 from the original and the
privacy-preserving datasets with different privacy leakage ε.

Figure 3 illustrates the accuracy of the learning model for
the three scenarios during 20 epochs of training. We notice
that the highest accuracy is achieved for the first scenario
(i.e., the blue curve), compared to the other two scenarios
(scenarios 2, and 3). On the other hand, for scenarios 2 and
3 where we train the model on privacy-preserving datasets,
we notice that the Gaussian distribution gives higher accu-
racy compared to the Laplace distribution. This endorses
the theoretical analysis; As the Laplace distribution is ε-DP,
and the Gaussian distribution is (ε)-DP with probability δ
(i.e., (ε, δ)-DP).
This difference is illustrated in Figure 4, which shows sam-

ples from the privacy-preserving MNIST datasets generated
using the Laplace and the Gaussian distributions. Images of
the Laplace distribution are noisy compared to the Gaussian
distribution, especially, when the privacy leakage ε decreases.
For example, in the case of ε = 2, we can still notice
some white pixels for the Gaussian distribution (see sub-
figure 4-d). On the contrary, for the Laplace distribution
(see subfigure 4-h), the image is totally noisy to the extent that
we can’t extract any useful information. Thus, the Laplace
distribution guarantees strong privacy protection compared to
the Gaussian distribution, but at the expense of accuracy.

22364 VOLUME 10, 2022



A. E. Ouadrhiri, A. Abdelhadi: Differential Privacy for Deep and Federated Learning: Survey

TABLE 2. Summary of Probability Distributions Satisfying ε-DP/(ε, δ)-DP With Their use Cases.

FIGURE 5. Impact of the privacy leakage ε on the accuracy.

Figure 5 illustrates the impact of privacy leakage ε on accu-
racy. In this figure, we plot the accuracy of the learning model
using the testing dataset. The model is trained on different
versions of the MNIST dataset, varying the privacy leakage.
Overall, the accuracy decreases by decreasing the privacy
leakage for the two distributions. In addition, the Gaussian
distribution gives higher accuracy compared to the Laplace
distribution; the difference increases by decreasing the pri-
vacy leakage. For example, in the case of ε = 5, the Gaussian
distribution gives an accuracy of 98.24 compared to 97.99 for
the Laplace distribution. Whilst, in the case of ε = 2, the
Gaussian distribution gives an accuracy of 96.43 compared
to 93.70 for the Laplace distribution.

E. VARIANTS OF DIFFERENTIAL PRIVACY
In this subsection, we present the pertinent variants of DP,
namely (α, ε)-Rényi DP ((α, ε)-RDP), and f-DP. We state the
main differences between these new definitions of privacy
protection, as well as the advantages and disadvantages of
each variant.

The most challenging problem of the DP mechanism
is that the privacy leakage increases due to composition
(see Theorem 1). In fact, the privacy leakage increases by
increasing k , the number of compositions. Thus, determin-
ing a tighter bound of the privacy leakage due to composi-
tion allows learning more features (e.g., producing accurate
learning models) from a dataset while protecting individuals’
sensitive information.

Dwork et al. [61] determine a bound of the privacy budget

after k composition defined by (
√
2 k ln( 1

δ′
) × ε + k ×

ε(eε − 1), kδ + δ′)-DP for any ε, δ, δ′ ∈]0,∞[. Afterward,
Kairouz et al. [62] define a procedure that allows achieving
the optimal bound of the privacy budget after k queries.
The authors prove that for any i ∈ {0, 1, . . . , bk/2c}, the
composition of k queries satisfies

((k − 2i)ε, 1− (1− δ)k (1− δi))− DP, (9)

where δi =
∑i−1
`=0 (

k
`)(e

(k−`)ε
−e(k−2i+`)ε )

(1+eε )k .
Thus, in practice, we may use Eq. (9) to determine the

optimal values of εi and δi for each query q to do not exceed a
predefined privacy leakage (ε, δ) after k queries. Thereafter,
Mironov [52] determine a tighter bound of privacy leakage
due to composition using Rényi divergence-based DP, which
is the subject of the next subsection.

1) (α, ε)−RÉNYI DIFFERENTIAL PRIVACY ((α, ε)−RDP)
Although the original definition of ε-DP provides strong
privacy protection of data privacy, it still does not tightly
handle the privacy leakage due to composition. The problem
of composition appears also while training a federated learn-
ing model, as the privacy leakage increases by increasing the
number of training epochs. For example, if we apply a mech-
anismM with a privacy loss ε at each epoch, consequently at
the end of the training, we will result in a privacy loss of kε,
where k is the total number of epochs during the training.
This problem is of great importance, as the privacy leakage
increases by increasing the number of training epochs.
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Mironov [52] introduces a new relaxation of ε-DP based
on the concept of Rényi divergence. This new variant of
ε-DP allows accurate tracking of the privacy leakage due to
composition. (α, ε)−RDP is defined as a generalization of
the notion of differential privacy based on the concept of
Rényi divergence [63]. (α, ε)−RDP provides a quantitatively
accurate way of tracking cumulative privacy leakage under
composition. Before defining (α, ε)-RDP, we will define the
Rényi divergence [63]:
Definition 10 (Rényi divergence): Given two probability

distributions P and Q defined over R, the Rényi divergence
of order α > 1 is

Dα(P||Q) =
1

α − 1
logEx∼Q

(
P(x)
Q(x)

)α
, (10)

with P(x) is the density of P at x. The logarithm here is
natural, and x ∼ Q means that x follows the distribution Q.
Definition 11 ((α, ε)-RDP): A mechanismM : Dn→ Y is

said to satisfy (α, ε)-RDP of order α, if for any neighboring
datasets D,D′, and for all S ⊆ Y , it holds that

Dα(M (D)||M (D′)) ≤ ε. (11)
We also have the following inequality holds for

(α, ε)-RDP:

Pr[M (D) ∈ S] ≤ (eεPr[M (D′) ∈ S])
α−1
α . (12)

(α, ε)-RDP allows achieving a tighter bound, of pri-
vacy leakage due to composition, compared to the bound
determined by [61], [62]. Using the (α, ε)-RDP definition,
Mironov demonstrates the following corollary.
Corollary 1: Let 0 < δ < 1 such that log(1/δ) ≥ ε2k. The

composition of k queries, each satisfies ε-DP, is (ε′, δ)-DP
where ε′ = 4ε

√
2k log(1/δ).

Thus, we may use this result to track the privacy leak-
age due to composition. For example, in federated learning,
we may use this corollary to determine the scale of the
Laplace distribution (i.e., λ = 1/εi, where εi is the privacy
leakage of each training epoch i calculated from corollary 1)
in order to do not exceed a predefined privacy leakage (ε, δ).

The strong property of RDP is that the optimal privacy
bound of k RDP is easily calculated using the addition,
i.e., the composition of k , (α, ε)-RDP mechanism is (α, kε)-
RDP [52], [64]. Therefore, we can use RDP to calculate an
optimal bound of the privacy leakage due to composition,
and then convert the resulting RDP to (ε, δ)-DP using the
following proposition 1:
Proposition 1: Given a mechanism M satisfies

(α, ε)-RDP, then it also satisfies (ε(α)+ log(1/δ)
α−1 , δ)-DP where

0 < δ < 1 and ε(α) = max{Dα(M (D)||M (D′))}.
Since this holds for all α > 1, thus, the optimal privacy

bound ε′ can be determined by optimizing over α the follow-
ing expression:

ε′ = inf
α>1
{k × ε(α)+

log(1/δ)
α − 1

}. (13)

Developing this expression for the case whenM is a Gaus-
sian mechanism, we get:

ε′ = inf
α>1
{k ×

α

2σ 2 +
log(1/δ)
α − 1

}, (14)

where σ 2 is the variance of the Gaussian distribution.
For the case whenM is a Laplace mechanism, we get:

ε′ = inf
α>1
{k

1
α − 1

log{
α

2α − 1
e(
α−1
λ

)

+
α − 1
2α − 1

e(
−α
λ
)
+

log(1/δ)
α − 1

}, (15)

where λ is the scale of the Laplace distribution.
Ultimately, the RDP allows determining a tighter bound,

of the privacy leakage due to composition, compared to the
start-of-the-art privacy bounds calculated using the original
definition of (ε, δ)-DP [49], [61], [62].

2) f -DP
Dong et al. [54] propose f -DP, a new relaxation of ε-DP
based on hypothesis testing interpretation. f -DP is parame-
terized by a function rather than parameters (e.g., ε, δ), which
offers a complete characterization of privacy.

In fact, f -DP is based on the following simple idea of ε-
DP: By interrogating two neighboring datasets D and D′,
an attacker can not conclude if an individual belongs to D
or to D′. Thus, this problem can be formulated using the
following two hypothesis testing:
• H0: the underlying dataset is D,
• H1: the underlying dataset is D′.

with the objective of making these two hypotheses indistin-
guishable. This is equivalent to find the optimal trade-off
between the achievable type I error3 and type II error. 4 More
precisely, consider a rejection rule φ ∈ [0, 1], the type I
error rate and the type II error rate are respectively defined
as follows:

αφ = EM (D)[φ], βφ = 1− EM (D′)[φ], (16)

where M (D) and M (D′) are the probability distributions of
the mechanism M applied to the two datasets D and D′,
respectively. The two error rates satisfy the constraint of the
total variation distance:

αφ + βφ ≥ 1− TV (M (D),M (D′)), (17)

where the total variance distance TV (M (D),M (D′)) is the
largest possible difference between the probabilities that the
two probability distributions M (D) and M (D′) can assign to
the same event.

Therefore, the f -DP main objective is to characterize the
fine-grained trade-off between type I and type II errors. That
is to say, fixing type I error at any level and finding the

3Type I error, also known as false positive, represents the rejection of a
null hypothesis H0 given that it is true.

4Type II error, also known as false negative, represents the false alarm or
the non-rejection of a null hypothesis H0 given that it is false.
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minimal achievable type II error. Before defining the f -DP,
we define the trade-off function.
Definition 12 (Trade-off function): For any two probabil-

ity distributions P and Q on the same space, the trade-off
function T (P,Q) : [0, 1]→ [0, 1] is

T (P,Q)(α) = inf {βφ : αφ ≤ α}, (18)

where the infimum is taken over all (measurable) rejection
rules.

The similarity of P andQ increases by increasing the value
of the function T (P,Q)(α).
In practice, it is difficult to satisfy this definition. Thus,

the following proposition presents a necessary and sufficient
condition to determine a trade-off function.
Proposition 2: A function f : [0, 1]→ [0, 1] is a trade-off

function if and only if f is convex, continuous, non-increasing,
and f (x) ≤ 1− x for x ∈ [0, 1].
f -DP is built on top of trade-off functions:
Definition 13 (f -DP): Let f be a trade-off function.

A mechanism M is said to be f -DP if

T (M (D),M (D′)) ≥ f , (19)

for all neighboring datasets D and D′.
This definition is explained as follows. Given two distribu-

tions P and Q such that f = (P,G), a mechanismM satisfies
f -DP means that distinguishing M (D) and M (D′) is at least
as difficult as distinguishing P and Q.
The Gaussian probability distribution function is an exam-

ple of the functions that satisfy the f -DP Definition, where
f is the trade-off function of two normal distributions. To be
more specific, let ε > 0, and

Gε := T (N (0, 1),N (µ, 1)) . (20)

An explicit expression of the trade-off function Gε is:

Gµ(α) = 8(8−1(1− α)− µ), (21)

where 8 is the Gaussian standard cumulative distribution
function, and 8−1 is its inverse function. Hence, the GDP
is defined as follows:
Definition 14: Given two neighboring datasets D and D′

in the dataset universe Dn. A mechanism M satisfies the
µ-Gaussian DP (µ-GDP) if it is Gµ − DP, i.e.,

T (M (S),M (S ′)) ≥ Gµ
This definition gives a necessary and sufficient condi-

tion for a mechanism M to satisfy µ-GDP. The Gaussian
distribution satisfies µ-GDP and it is the tightest possible
privacy bound of the Gaussian mechanism, see Section II-E,
Definition 6.
Using this new definition based on a function (i.e., f -DP)

allows determining a tighter bound of the privacy leakage due
to composition. For the case of the Gaussian mechanism, the
authors in [54] proved that:
Corollary 2: The composition of k queries, each satisfies

µ-GDP, is (
√
k µ)-GDP.

FIGURE 6. The privacy leakage ε′G of M Gaussian mechanism, and the
privacy leakage ε′ of M RDP. We assume σ = 20 and δ = 10−5.

In [52], the authors prove that RDP guarantees a tighter
bound compared to [64]. In the rest of this subsection,
we compare the bound of RDP and f -DP. For that purpose,
we have first to respond to the following question: What is
the privacy leakage ε for a mechanismM satisfying µ-GDP.

Starting from [50], we conclude:

σ 2
=

2 log(2/δ)
ε2

. (22)

Thus, we can calculate the privacy leakage ε for a mecha-
nism M satisfying µ-GDP using the following expression:

ε =

√
2 log(2/δ)µ2, (23)

From this equation, we can calculate the privacy leakage
ε′ due to the composition ofM mechanism each one of them
satisfies µ-GDP:

ε′G =

√
2 log(2/δ) k µ2, (24)

In Figure 6, we compare the privacy leakage ε′

(i.e., Eq. (14)) ofM RDP mechanism and the privacy leakage
ε′G (i.e., Eq. (24) ) of M GDP mechanism. We use the same
parameters as [52], i.e., σ = 20, δ = 10−5. According to this
figure, f -DP allows us to achieve smaller privacy bound by
up to 1.025 of difference. This result has an important impact
on private DL algorithms especially FL, as it allows for more
training epochs for the same privacy budget ε, e.g., 141 more
training epochs for any ε larger than 7.

Thus, in practice (e.g., training an FL model), given a
predefined privacy budget ε′ to do not exceed, we may use
Eq. (24) to determine the optimal privacy budget ε of each
training epoch. Then, using Eq. (22) we calculate the variance
σ 2 of the Gaussian distribution from which we generate the
noise to add.

In summary, RDP and f -DP are two new different defini-
tions of DP, where RDP is based on Rényi divergence (param-
eterized by (α, ε)) and f -DP is based on hypotheses testing
(parameterized by a trade-off function f ). Comparing RDP
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with f -DP in terms of privacy leakage due to composition,
f -DP allows determining a tighter bound compared to RDP.
Thus, in FL and for the same privacy budget ε, f -DP allows
for more training epochs compared to RDP. We refer the
reader to [65] for more details about the relationship between
RDP, f -DP, and (ε, δ)-DP.

III. CENTRAL DIFFERENTIAL PRIVACY FOR DEEP
LEARNING
In this section, we present the recent research works based on
CDP for protecting the users’ privacy in DL. We divide these
works into three categories:
A. PP learning models. The main idea of these

approaches is to add static or dynamic noise to the
coefficients of the objective function.

B. PP query results. These approaches can be divided
into two types: i) The works that add noise to the query
result after running the query on the original dataset.
ii) The works that partition the dataset, run the query
on each part of the dataset, and then add noise to sub-
queries results.

C. PP datasets. These approaches add noise to the origi-
nal dataset for producing a new PP dataset.

Table 3 summarizes the presented works in this section.
This table illustrates the main idea and the final objective of
the contribution, along with the type of probability distribu-
tion used in the DP mechanism.

A. PRIVACY-PRESERVING LEARNING MODEL
DL models are threatened by inversion attacks [81], [82].
An attacker can reveal some sensitive information about an
individual by interrogating the learning model and using
background information about this individual. Information
disclosure is done by linking the target features with the
model outcomes. In the rest of this subsection, we present
the recent research work that handles the problem of privacy
in DL. These works apply DP during the training to produce
PP models.

Pan et al. [66] present adaptive differentially private
regression (ADPR) mechanism, a dynamic privacy noise
allocation mechanism that takes into account the relevance
of the input attributes to the outputs. The mechanism con-
sists of adding Laplace noise drawn from Lap(1f

εj
) into

the polynomial coefficients of the objective function. 1f is
the sensitivity, and εj (the amount of privacy) is calculated
according to the input’s features relevance Rj(D). Thus, less
noise is added to attributes that highly impact the learning
model and vice versa. Although this approach gives better
accuracy compared to [67]–[69], [83], it is costly in terms of
computation as it has to run a pre-processing learning step
to determine the relevance of each attribute. The approaches
of [66] and [67] are the same, except that [67] adds noise
with the same privacy budget whichmay decrease themodel’s
accuracy.

Fang et al. [69] decompose the objective function into
monomial terms and add noise to each monomial term

according to its sensitivity 1(fi) and the privacy budget εi.
The privacy budget εi is dynamic and updated at each iteration
and should satisfy ε1 + . . . + εd = ε where ε is the total
privacy budget and d stands for the number of terms of the
polynomial objective function.

Katrina et al. [70] propose a noise reduction framework for
learning models based on empirical risk minimization (ERM)
algorithms as a loss function. The framework consists of
applying a privacy budget depending on a predefined accu-
racy. The framework adds noise to the model parameter (i.e.,
gradient) to generate a sequence of parameters, where each
parameter corresponds to a privacy budget. Afterward, the
framework selects the privacy budget that gives an accuracy
higher than the given predefined threshold. This approach is
costly in terms of computational complexity because it has to
sequentially go over all noisy optimal parameters until find-
ing the privacy budget ε that gives the predefined accuracy.
Ultimately, as illustrated by our simulation results

(see Figure 5), the accuracy decreases by decreasing the
privacy leakage ε (i.e., introducingmore noise). That is to say,
the accuracy decreases by increasing the privacy protection.
Thus, determining the amount of privacy leakage ε that guar-
antees both a perfect privacy protection and acceptable accu-
racy is challenging and depends on the application scenario.
There are three categories of works in the literature: The first
category consists of predefining an acceptable accuracy c and
then determines the optimal privacy leakage ε that guarantees
the highest privacy protection and an accuracy greater than
the predefined accuracy c [53], [70]. The second category
consists of predefining the privacy leakage that should be
guaranteed and then determining the learning model param-
eters the maximize the accuracy [84]. The third category
consists of adding noise based on the relevance of each input
feature to the outputs [66], [67].

B. PRIVACY-PRESERVING QUERY RESULTS
Privacy leakage may occur even if an adversary does not have
direct access to the dataset but he/she can perform some count
or summation queries on the dataset [85], [86]. Figure 7 illus-
trates how DP is used at the data curator to protect the clients’
privacy. Specifically, the process involves three main steps.
In Step 1, users send their personal information to the data
curator. In step 2, users’ data is protected and aggregated in
a database. In Step 3, data analysts interact with the database
via queries or request the whole dataset for a training purpose.
Before responding to the data analyst queries, the data curator
guarantees the users’ privacy by adding random noise either
to the query results or to the values of the attributes of the
dataset.

Earlier, Hay et al. [75] propose to add Laplace noise
Lap( 1

ε
) to the set of results of queries q, and send the

noisy results q̃ to the data analyst. The resulting outputs are
evaluated according to a set of constraints to guarantee the
consistency of the results. When the noisy results are incon-
sistent, a post-processing step called constrained inference
is added to calculate q, the new consistent results of the

22368 VOLUME 10, 2022



A. E. Ouadrhiri, A. Abdelhadi: Differential Privacy for Deep and Federated Learning: Survey

TABLE 3. Summary of Contributions in Central Differential Privacy.

results of queries. q is the minimum l2-norm solution which
is the closest set to q̃ that satisfies the predefined constraints.
Xiao et al. [76] propose two algorithms: 1) Cell-based
algorithm, and 2) K-d tree-based Algorithm for partitioning
the dataset into partitions and then adding Laplace noise to the
result of the query on each partition before aggregating these

results and responding to the main query. Cormode et al. [87]
generalize the approach proposed by [75], [76] and propose
to add non-uniform noise to the results of queries. That is to
say, instead of adding noise with the same privacy budget ε to
each partition, the authors propose to define a specific privacy
budget for each partition. The privacy budget of each partition
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FIGURE 7. Central differential privacy for releasing privacy-preserving
(noisy) datasets/queries.

is determined by minimizing the error Err(Q), where Err(Q)
is equal to the variance of the noisy results of the queries.

There are many other works [77], [78], [88]–[90] that
handle the problem of privacy for responding to a batch
of queries. They use ε-DP to introduce Laplace noise and
perturb the query results for protecting the user’s privacy. For
example, Huang et al. [78] decompose the original query set
Q into orthogonal query subsets to construct another query
set Q̃, such that each query from Q can be represented by
elementary queries q̃i from Q̃. The Laplace noise is added to
the query set Q̃ instead ofQwhich reduces the noise variance
and then leads to better efficiency. Li et al. [77] represent the
main query as a set of linear base queries on the dataset’s
attributes. These linear queries are represented as a matrix
where each row contains the coefficients of the linear query.
Then, the authors apply DP on the matrix to get PP result of
the main query.

C. PRIVACY-PRESERVING DATASETS
Nowadays, many organizations release their clients’ datasets
to third parties for training DL models that help in making
decisions [91]–[93]. However, providing dataset to a third
partymay violate users’ privacy and breach privacy laws [94],
[95]. Therefore, there is a great need for mechanisms that
allows releasing datasets for analysis without revealing users’
privacy or any sensitive information. DP proved to provide
strong privacy protection while allowing datasets analysis.
This is a hot research topic where research work can be
divided into two categories: 1) The first category is the
works producing pre-processing datasets balancing between
accuracy and privacy for a specific learning model, such as
frequent itemset mining models [71], [96], [97], and classi-
fication and clustering models [53], [72], [98], [99]. 2) The
second category is the works producing a PP dataset of the
original dataset [56], [73], [100], [101]. Next, we will present
the relevant research work based on DP to protect users’
privacy before publishing a dataset.

Wang et al. [53] propose a differentially private approach
for heterogeneous dataset 5 for cluster analysis. The original
dataset D is pre-processed using a clustering algorithm to
get an initial cluster structure D∗. Then, the authors apply
DP to the new dataset D∗ to get the anonymized dataset D′.
Sun et al. [72] normalize the dataset rows which makes

5A heterogeneous dataset is a dataset composed of relational data and
set-valued data, such as information of patients: gender (relational), age
(relational), medical history (set-valued), etc.

the dataset distribution more concentrated. Afterward, the
authors use classification and regression tree (CART) [102] to
apply DP in function of the relevance/impact of each attribute
on the classification results.

Lee et el. [71] propose an approach to release noisy dataset
for frequent itemset learning; first, the algorithm takes an
integer k and distinguish the top k most frequent items by
running frequent itemset mining algorithm [103], after that,
the algorithm builds an ε-differentially private FP-tree [104]
that is released to the analyzer. The privacy allocation is based
on two phases: 1) perturbing the threshold τ of the support
itemset σk to be τ̂ = σk + Lap(.), and 2) adding a Laplace
noise to the originally calculated support σ (X ).

Fioretto et al. [56] handle the problem of releasing a
dataset of a large population without leaking sensitive infor-
mation about individuals. The original dataset is restructured
into a tree T of levels and groups (e.g., level 1 may design
the country and level 2 may design the state and so on, and
a group may be the households owning three cars), the DP
consists of adding noise that should satisfy three conditions.
i) Consistency: The sum of the groups’ sizes of a specific
level r and group s after adding the noise should be equal
to the sum before. ii) Validity: The size of a specific level r
and a group s after adding the noise should be non-negative
integers. iii) Faithfulness: The group sizes at each level l of
the hierarchy should be equal to the total count of groups G.
The problem is solved using three approaches: 1) Direct
optimization-based mechanism, 2) dynamic programming
3) polynomial-time mechanism by exploiting the structure
of the cost tables. Tang et al. [73] present a stronger privacy
protection approach called differentially private latent tree
(DPLT). It consists of generating a new synthetic dataset
from vertically partitioned data (i.e., the dataset is shared
between many data curators where each one holds some
attributes of the dataset. Data curators share a common iden-
tifier attribute). The approach is based on the latent tree
model (LTM) [100] and contains three main steps: 1) gen-
erating latent attributes by condensing original attributes and
adding Laplace noise to guarantee ε-DP, 2) quantifying the
correlation (i.e., mutual information) between any two latent
attributes, and finally, 3) constructing the latent tree T based
on the previously calculated correlations. The authors assume
that each data curator uses the same privacy budget ε, which
may contribute to decreasing the accuracy and/or leaking
data privacy. In fact, the privacy budget may depend on
the attributes, hence determining the best privacy budget for
each curator is still yet to explore. Mohammed et al. [101]
handle the same problem, however, the proposed approach is
heavy in terms of computation and communication and only
applicable to two data curators.

There are many works that specifically handle the case
of sequential datasets6 [74], [105], [106]. The most relevant
one is [74] which handles the problem of releasing and

6A sequential dataset contains records placed one after another, so, reading
the dataset is done one by one starting from the first record.
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guarantying privacy for sequential datasets. It produces a
new sequential dataset D̃ based on n-gram model which pro-
vides a good trade-off between storage and accuracy; n-gram
models are based on the property of Markov independence
assumption to estimate the probability of the new node in
the leaf. The privacy is guaranteed by adding adaptable (with
regards to privacy budget and the length of a root-to-leaf
path) Laplace noise to each node in the tree. Fan et al. [79]
propose FAST, a framework to collect time-series statistics.
First, the time-series data is sent from clients (i.e., end-users)
to a trusted server and then the trusted server sends the
collected data to third parties. The trusted server guarantees
data privacy before sharing it with third parties. The FAST
framework is based on a filtering component method that
consists of adding Laplace noise to data points received from
end-users (i.e., real-time data points received from end-users,
these points are called sampling points), or predicting the data
points in the case when the data points are not received from
end-users (i.e., these points are called non-sampling points).
This framework is not efficient when the response time is
crucial. In addition, the privacy of users is not fully protected
as the server access to users’ information. Huang et al. [80]
propose an approach to generate a PP dataset. The authors
handle the special case of social networks where the dataset
is represented by a graphG(V ,E). They apply a classification
algorithm based on K-means clustering to classify the graph
into T groups. Afterward, the authors apply four different pri-
vacy protection algorithms to protect nodes, edges, degrees,
and structure of the graph: 1) The first algorithm protects the
graph’s structure by adding noise to the original graph after
the clustering to get a new PP graph denoted by G′(V ′,E ′).
The resulting graph is different from the original one. 2) The
second algorithm protects nodes by adding Laplace noise
to each group. The noise is randomly added to the nodes.
3) The third algorithm disturbs the degree sequence to protect
specific nodes from identification by an attacker. 4) The
fourth algorithm is a post-processing step that consists of
adding noise to nodes with a small degree to protect edges.
This approach [80] provides a higher privacy protection level
and data availability compared to the approaches proposed
in [107] and [108], however, the authors did not evaluate the
impact of the proposed approach on the accuracy.

IV. LOCAL DIFFERENTIAL PRIVACY FOR DEEP LEARNING
Local DP has been proposed to ensure users’ privacy when
individuals do not trust the central data curator (i.e., the cloud
or the central server). The client adds noise or falsifies his
answer with a probability before sending his response to the
central data curator [109]. LDP was implicitly introduced
in [38], [50] and first formalized in [37]. Although the idea
of LDP is relatively old, it has only recently seen many real
applications such as privately collecting data [33], [35], [36],
and privately train FLmodels [110]. In the rest of this section,
we present the relevant works and ideas based on LDP to
protect users’ privacy from inference and inversion attacks in
FL. In addition, we will go over the three real applications

FIGURE 8. Local differential privacy.

implementing LDP for privately collecting data from
end-users.

Figure 8 illustrates how LDP collects data from end-users
while ensuring users’ privacy. Specifically, the process
involves three main steps. In step 1, users send their personal
data after introducing noise to their responses. In step 2, the
data curator collects the PP data from users and stores it in
the database. In step 3, the data analysts could interrogate the
database by launching direct queries or requesting the whole
dataset. Unlike CDP where noise is added by the data curator,
in LDP the data curator does not add any noise as the noise
was added at users’ level in step 1.

A. PRIVACY-PRESERVING FEDERATED LEARNING
FL [110] is a machine learning structure where many devices
(e.g., mobile devices, laptops, organizations, etc.) collabo-
ratively train a learning model under the orchestration of a
central server. The main property of FL is that the dataset is
not centralized, i.e., each device trains the model on its local
dataset and then sends the updated parameters (e.g., gradient)
to the central server. We refer the reader to [121] which
is a good paper that presents in detail FL’s characteristics,
challenges, and research directions.

FL provides significant privacy improvement, as the local
data of users is not explicitly sent to the central server. How-
ever, this is not enough for strong users’ privacy protection.
Since, a malicious user (or the server) could reconstruct the
users’ local dataset using only the local gradient sent to the
server [10], [122], [123]. There are many recent research
works tackling the problem of users’ privacy in FL. Table 4
summarizes the presented works in this subsection, showing
the key idea and the final objective of the contribution along
with the type of probability distribution (i.e., type of noise).
We divide these works into three main categories.

The first category is the works combining DP with
another method/tool (e.g., Homomorphic encryption, secure
multiparty computing, etc.) to protect the clients’ privacy.
Gong et al. [118] propose a framework for protecting the
privacy of clients participating in an FL model based on
DP and homomorphic encryption. DP is used to protect the
gradients of clients from the central server by adding a noise
drawn from a Laplace distribution. The amount of privacy
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TABLE 4. Summary of Contributions Using Local Differential Privacy to Protect Users’ Privacy in FL.
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budget ε increases dynamically with iterations (i.e., epochs),
for example, in the first epoch the privacy budget is εmin,
then in the second epoch the privacy budget is increased
by εmin + c × εmax−εmin

γ
where c is the current epoch, and

γ is the number of epochs to reach εmax . Homomorphic
encryption is used by each client to encrypt the gradient sent
to the server. It is used to protect gradients of clients from a
malicious server, in this case, all clients should share the same
encryption key. Hence, even when the server colludes with a
client and gets the key, it will not be able to retrieve the true
values of clients’ gradients as they are already protected using
DP. However, recently, authors in [9] were able to conclude
useful information about the original dataset even gradients
were protected using DP.

Li et al. [120] propose a privacy-preserving FL framework
based on secure multiparty computing called chain-PPFL.
This approach is similar to [31], except that here the authors
are based on the principle of secure multiparty computing
instead of DP. First, the server sends the global model to
all clients and initiates a token τ ∈ Rd (where d is the
dimension of gradient) with a random value. This token is
sent to a client chosen from all clients. This latter updates
the token by adding its gradient to it and sends the newly
updated token to a randomly chosen client from its neighbors,
and so on, until the last client sends the token to the server.
The server subtracts the initially attributed value to the token
and calculates the global weights of the next round. This
process is repeated until the learning model converges. Using
this approach, the privacy of clients is protected from their
neighbors and also from the server. Since the server will
receive the aggregated local gradient and will not be able
to distinguish the local gradient of each client. Comparing
chain-PPFL with other privacy-preserving approaches based
on DP [34], [111], [112], chain-PPFL provides strong privacy
(equivalent to an FL with 0−DP) if clients do not collude
with the server to attack a specific client which is not always
guaranteed. In terms of accuracy, chain-PPFL provides higher
accuracy as the noise added to the token, in the beginning,
is subtracted at the end when the server receives the aggre-
gated local gradients. The major issue of this approach is that
the clients should trust each other and do not collude to attack
one of them. In addition, using this decentralized strategy to
aggregate local gradients make the FL network vulnerable
to label-flipping and data poisoning attacks [124], [125],
besides, it is difficult for the server to distinguish malicious
from legitimate clients.

Wu et al. [116] propose to use DP for multi-task learning
models. As the multi-task learning paradigm [126], [127] is
to leverage useful knowledge in multiple tasks to improve the
generalization performance of all tasks, the authors propose
that each device in FL learns a task-specific parameter ωi
with the objective function fi. The parameter ωi is sent to the
global server for learning the global task parameter ωM+1
which in turn is sent back to the clients and so on until
the algorithm converges. For ensuring privacy, each client

perturbs its own parameter according to Gaussian distribution

N (0,
12
f

ε2
), where 12

f is the sensitivity of the average of the
local gradients and ε is the privacy budget. The advantage
of this approach is its ability to learn over multiple clients
holding heterogeneous datasets, however, it is vulnerable to
label-flipping attacks and also to model inversion attacks [9].

The second category is the works based on DP and the
structure of the FL network (e.g., adding a proxy server,
using a decentralized architecture) to protect the privacy of
clients. Cyffers et al. [31] propose a new relaxation approach
of LDP that allows analyzing data belonging to various
devices while achieving a good trade-off between utility and
privacy. FL is done by peer-to-peer communication from one
node to another without a central server handling the com-
munication. The proposed approach is a fully decentralized
protocol where participants have only a local view of the
studied system. The learning ismade by a token τ transiting in
the network. The token is updated sequentially by the device
receiving it. Before realizing the token, each node adds ran-
dom noise to the contribution to ensure differential privacy.
This process is repeated K (a predefined value) times before
getting the final model. The big issue of this contribution is
its vulnerability to label-flipping and data poisoning attacks.
An attacker could easily be infiltrated into the network and
ruin the learning process.

Tran et al. [119] propose a framework, called Secure
Decentralized Training Framework (SDTF), to protect the
privacy of clients participating in training a decentralized
FL. The clients train a model without a server, however,
at each epoch, they elect a master node (one of them) which
calculates the global gradient and sends it to all nodes, and
so on until the algorithm converges. Each client perturbs his
local gradient before sending it to the master node to protect
his privacy. This framework achieves good accuracy since
the master node, before sending the updated global gradient,
estimates the sum of all noises added by clients and pulls it
out from the global gradient. However, this framework cannot
protect the clients’ privacy from the master node and it cannot
protect the privacy of a client if all other nodes collude against
him/her.

Through several experiments, Zhao et al. [34] illustrate
that sharing partial parameters of the gradient may almost
achieve the accuracy of sharing all the parameters. Based
on these results, the authors propose a PP learning approach
which consists of sharing only some parameters of the local
gradient and adding Gaussian noise to these parameters
before sharing them with the server. The proposed approach
is based on [64] to determine the noise amount to add and
also to control the privacy leakage through synchronization
rounds (i.e., composition). Besides, the authors propose to
add a proxy between the clients and the server to ensure the
anonymity of clients, therefore the server cannot distinguish
from which client receives a certain gradient. The authors
propose a strong method for protecting the clients’ privacy,
However, it would be of great importance to evaluate the
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robustness of the proposed approach against inference and
model inversion attacks [9].

Yin et al. [112] propose a PP approach that combines
functional encryption and Bayesian differential privacy. The
authors use functional encryption (FE) [128] to protect the
communication between clients and the server. The FE pro-
posed mechanism, called Multi-Input Function Encryption
(MIFE), requires the help of a trusted third party (TTP) that
provides a public key to clients and a private key to the
server to encrypt/decrypt the gradient by the client/server.
In addition, the authors are based on Bayesian DP [129] to
1) protect the privacy of clients by adding Gaussian noise to
gradient depending on the data distribution, and 2) to track the
privacy leakage due to synchronization rounds of FL. In order
to reduce the communication cost between the clients and the
server and also reduce computation cost at the server-side, the
authors propose a method called sparse differential gradient
where clients, at each synchronization round, send gradient to
the server only if the gradient experienced a massive change
(i.e., higher than a predefined threshold) compared with the
previous gradient of the last synchronization round. Although
this approach secures the communication and protects the
gradient from the server, it requires a trusted third party
that may launch model inversion attacks using the gradient
received from clients.

The third category is the works whose objective is to pro-
tect privacy usingDP and at the same time reduce the resource
consumption, such as the energy and the communication
overhead. Liu et al. [114] handle the problem of communi-
cation overhead and data privacy in federated edge learning
for edge computing in the Industrial Internet of Things (IIoT).
The authors propose:

1) an asynchronous model update to reduce the com-
putation time that edge nodes wait for global model
aggregation. Edge nodes send their gradients once they
finish the local training without waiting for the next
synchronization round by the server, this enhances the
communication efficiency.

2) utilize LDP to mitigate gradient leakage attacks. The
LDP mechanism is deployed at the edge nodes to pro-
tect the gradient.

3) a cloud-side malicious node detection method to
detect malicious nodes. The detection of malicious
nodes relies on the accuracy of the model parameters
(e.g., gradient) sent by these nodes to the server. A node
is characterized as malicious if the accuracy of its
model parameters is lower than a dynamically calcu-
lated threshold ρth.

However, the proposed malicious node detection mechanism
may discriminate some legitimate nodes from participating in
the learning process. Indeed, the accuracy of these legitimate
clients may be low than ρth in the first training rounds.

Sonee et al. [115] handle the problem of privacy and
communication for training a federated stochastic gradient
descent (SGD) model where the communication between
the clients and the server takes place over a multiple access

channel (MAC). The problem is formulated as an optimiza-
tion problem aiming to determine the transmission rates allo-
cation for the clients in the MAC to achieve the maximum
convergence rate while satisfying the privacy and communi-
cation constraints.

Hu et al. [84] tackle the problem of resources constraints,
accuracy, and privacy using FL in the Internet of Things (IoT).
The authors’ contribution is based on the assumption that
each device should perform multiple local training epochs
before sending the model updates to the server, instead of
sending the model updates after each training epoch. This
reduces the number of communication rounds and hence
reduces the communication overhead. The problem has been
formulated as an optimization problem to find the best model
parameters (2∗) which guarantee the constraints on t and ε,
where t is the number of epochs an IoT device should perform
before sending the updates to the central server and ε is the
minimum achievable privacy.

Mahawaga et al. [117] handle privacy in the case where
multiple clients try to train a DL model using a convolu-
tional neural network (CNN). TThe first convolutional layers
of the model are placed at the clients’ side along with a
new layer called LATENT. This new layer is responsible for
protecting the privacy of clients via LDP; The authors pro-
pose an approach called modified optimized unary encoding
(MOUE) [130] that consists of randomizing the bit’s vector 1
and 0 differently before sending the output to the server.
The last layers are placed at the cloud server that commu-
nicates with the clients via software-defined networks (SDN)
and network function virtualization (NFV). The simulation
results show that the proposed approach achieves high accu-
racy (up to 90%) with a lightly high privacy budget (i.e.,
ε = 0.5), however, the authors did not evaluate the privacy
leakage due to composition.

Kim et al. [32] study the trade-off between the privacy
budget, utility, and communication rate for an SGD FL
model. The authors characterize the Gaussian noise variance
σ 2 required to guarantee a target privacy budget after T
rounds of weight updates between the clients and the server.
The authors compare their works to [49], [61], [62], [64] and
find that their approach requires the smallest noise variance
for the same privacy budget ε.

Wei et al. [113] improve the work done by [64] for
controlling the privacy leakage of DP through sequential
composition and provide an explicit expression for calcu-
lating the standard deviation σi of the Gaussian distribution
that should be used by a client i to guarantee a privacy
leakage of (εi, δi)−LDP at the end of T synchronization
round. The expression of σi of the client i depends on the
sampling ratio q (i.e., q is the ratio of clients chosen ran-
domly by the server to participate in the synchronization
round t) and T the total number of communication rounds.
The authors also propose an algorithm called communication
rounds discounting (CRD) that allows the server to adjust,
during training, the total number of communication rounds T
to an optimal value that leads to achieve a better convergence
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performance. Although the authors get important results in
terms of controlling the privacy leakage through composition
and enhancing the convergence performance, they did not
evaluate their contribution against model inversion attacks.

Yu et al. [111] use DP to protect the privacy of Internet-
of-Things (IoT) devices while collaboratively training an
FL model for content popularity prediction. The pro-
posed approach is called FL-based Cooperative Hierarchical
Caching (FLCH), it keeps data locally and trains the model
using Fog Access Points (F-APs) with their connected IoT
devices. The F-AP is responsible for constructing the global
model using the weighted averaging method [110] on the
gradient received from IoT devices. These IoT devices add
a Gaussian noise for protecting their privacy before send-
ing their gradients. However, applying DP is not sufficient
to protect the privacy of IoT devices, as an attacker could
recover the original data from the noisy gradients sent to the
F-AP [9]. Finally, Farokhi et al. [131] proved an important
result about the relationship between the privacy budget, the
size of the dataset, and the loss function. The authors study
the cost of privacy for training asynchronously differentially
private models with asynchronous communication with dif-
ferent clients. The cost is defined as the mean of a loss
function f (θ ) that captures the distance between the output of
the MLmodelM (x; θ ) and the true output y. The authors find
that the cost is inversely proportional to the combined size of
training datasets squared and the privacy budgets squared.

B. PRIVACY-PRESERVING STATISTICS COLLECTION
LDP consists of applying DP at user devices. The user pro-
tects the privacy of his/her data before sending it to the data
curator. LDP can be used for collecting data from end-users
when users do not trust the data curator. LDP can be imple-
mented either by adding a noise drawn from a probability
distribution that satisfies ε−DP (such as Laplace, Gaussian,
etc.) as stated before in section II, or by implementing the
randomized response (RR) [29], [132], [133] technique.

The RR technique consists of flipping the true answer of
the user by a certain probability before sending it to the
data curator. For example, a social scientist wants to collect
statistics from users about drug addiction while maintaining
privacy; Before responding to the question, the user toss a
coin: 1) if the coin comes up heads then he/she respond truth-
fully, otherwise 2) the user tosses another coin and respond
truthfully if the coin comes up heads, otherwise, the flips
his/her response. Specifically, the RR technique is defined as
follows:

RR(x) = toss a coin b =

{
0, w.p.

ε

2
,

1, otherwise.
(25)

• if b = 0, then answer truthfully,
• otherwise, if b = 1, then toss another coin b̂.

– if b̂ = 0, then respond truthfully,
– otherwise, flip the correct response.

RR is proved to satisfy ε-DP [132] and it is recently used
in many applications [33], [35], [36]. In the rest of this
subsection, we explain three practical implementations of
ε-LDP along with RR by the major technology organizations
namely: Apple [36], Microsoft [33], and Google [35].

1) APPLE
Starting from the theory ‘‘understanding how people use
their devices often helps in improving the user experience’’,
Apple is interested in implementing LDP for their users to
understand how they use their devices. It started by studying
frequencies per element [36], specifically, estimating typed
emojis per web domain; when a user types an emoji, this
record (emojis) is privatized via one of the three explained
algorithms below and stored locally in the user’s device in
a list. After a time, the user’s system randomly selects some
records (i.e., emojis) from the already stored list and sends
them to the server. The server, before analysis, strips the
privatized records of their IP addresses and any additional
sensitive information. The three proposed algorithms for
ε-LDP are detailed below:

• Private Count Mean Sketch (CMS) [134]: outputs a
histogram of counts over for a dataset of n records over
a domain D. This algorithm is divided into two parts:

– The client sends his response of size m by map-
ping the client’s response d with one of k hash
functions (preliminary defined at the clients and the
server). Before sending the response, each bit of the
response v(i) is flipped with probability 1

1+exp(ε)/2 to
guarantee the ε-differential privacy.

– The server introduces some noise to the ith

client’s response ṽ(i) before constructing the sketch
matrix M where each row j represents the sum of
the users’ response who selected the hash function
indexed by j. Finally, the server estimates the count
for the entry d ∈ D by debiasing the counts and
averaging over corresponding entries inM .

• Hadamard Count Mean Sketch (HCMS): is developed to
leverage the cost paid by the clients to send the informa-
tion to the server. HCMS only requires sending a single
bit from the client to the server rather than sending a
whole vector as developed in CMS. The client algorithm
remains the same, except that here in HCMS the client
uses the Hadamard transform to calculate the single bit
of the transformed vector w resulting of the client’s
vector response v. The server algorithm is updated for
calculating the sketch matrix M using the transpose
matrixHT

m ofHm used by the client. HCMS gives similar
results compared to CMS with the advantage that the
client’s bandwidth/cost does not scale with the length of
the data element d .

• Private Sequence Fragment Puzzle: is developed for the
case where we don’t know the domain elements D, such
as counting the most frequent words that the user types
and that are not part of any Apple-deployed dictionary.
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On the client-side, privacy is guaranteed by applying ε
privacy budget to the hash function of size 256−bit (used
to hash the word) in addition to another ε′ privacy budget
to another sub-string (of length 2 constructed from the
original string) add to the original output. The server
calculates the frequency oracle f̃ for the word and the
frequency oracle f̃` for the substrings, then it calculates
the heavy hitters to get the hash function h and creates
the Cartesian product across the hash function and the
substrings to create the dictionary.

Although the three proposed algorithms could guarantee
strong privacy, they are greedy in terms of resources (i.e.,
computation and bandwidth). In addition, data elements (i.e.,
responses) with low frequencymay not appear in the statistics
at the server.

2) MICROSOFT
LDP does not guarantee strong privacy when we are col-
lecting data repeatedly from the same individuals, such as
studying an application usage behavior for several days to
improve the user experience. As long as we collect the same
statistic, as long as an attacker could learn more information
about the real values. For example, if we collect the same
statistic T time stamps, the privacy leakage will increase
from ε to T × ε (see Theorem 1). Microsoft Research team,
Bolin et al. [33], handles this problem and proposes newLDP
mechanisms for mean and histogram estimation. The first
method is called 1−bit LDP mechanism for mean estimation.
It is inspired from [135]–[138] with an efficient commu-
nication enhancement and stronger protection for repeated
data collection. The main idea is based on sending only one-
bit bi(t) at time t for each response xi(t) that may take the
values 0 or m, where bi(t) is independently drawn from the
distribution:

bi(t) =

{
1, with probability 1

eε+1 +
xi(t)
m ×

eε−1
eε+1 ,

0, otherwise.
(26)

Therefore, the data collector calculates an estimate of the
mean σ (t), for n individuals, as

σ̃ (t) =
m
n

n∑
i=1

bi(t)(eε + 1)− 1
eε − 1

. (27)

The above mechanism is proved to satisfy ε−LDP [33].
Based on the same principle, the authors propose another
method called d−Bit mechanism for histogram estimation.
In addition, the authors introduce the memoization7 tech-
nique to mitigate privacy leakage for continuously collected
statistics.Memoization consists of memorizing the calculated
1−bit response for each specific counter value. At data col-
lection, the client sends the memorized responses without
re-calculating the 1−bit responses for already encountered
counter values. Hence, an attacker/spy will not learn much

7Memoization is an optimization technique used to accelerate calculation
by storing the results of expensive functions and returning the cached result
for the same inputs.

information even if he/she collects the client’s responses for
a very long time. This mechanism has been first implemented
in Windows 10 Fall Creators Update to collect the number of
seconds that a user has spent using a particular application.

3) GOOGLE
Earlier, Google [35] has used ε-LDP in its proposed algo-
rithm called Randomized Aggregatable Privacy-Preserving
Ordinal Response (RAPPOR). RAPPOR is used for privately
collecting all types of statistics on clients such as frequencies,
histograms, etc. However, the Microsoft approach [33] is
less expensive in terms of computation and communications
overhead.

In RAPPOR, first, the client’s response v is hashed onto a
Bloom filter B [139], [140] of size k using a hash function h.
Second, each bit i in the Bloom filter B is flipped with a
certain probability to get a noisy response vector B′:

B′i =


1, with probability

1
2
p,

0, with probability
1
2
p,

Bi, with probability 1− p,

(28)

where p is a user-tunable parameter that controls the level
of privacy protection. The resulting new vector B′ is mem-
oized and reused for all future response values equal to v.
This memoization step is very important to protect the user’s
privacy when we are collecting the data repeatedly.

Third, the client initializes a new bit array S to 0, and
modifies each bit in S with probability:

P(Si = 1) =

{
q, if B′i = 1,
p, if B′i = 0.

(29)

Fourth, the client sends the new response S to the data cura-
tor. It is worth mentioning that steps 3 and 4 allow RAPPOR
to guarantee strong privacy protection even for the case where
the data is collected repeatedly for a long time. If an attacker
gets access to all the individual responses, he/she will be able
to only learn the randomized response B′ without getting any
information about the true response B. Although RAPPOR
provides a strong privacy guarantee it is costly in computation
and communication overhead. In addition, RAPPOR is not
able to detect responses with low frequencies. When the
number of different responses increases, their frequencies
proportionally decrease and they become hard to detect at low
frequencies.

V. OPEN ISSUES AND FUTURE DIRECTIONS
A. COMPOSITION
One of the major shortcomings of differential privacy is that
the privacy decreases under composition, we can distinguish
two scenarios:

1) Sequential querying. The privacy of a fixed pair of
dataset neighbors D,D′ decreases under the composi-
tion of interactive queries; An attacker could learn with
some certainty if an individual belongs to a dataset or
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not by launching several queries. The composition of
k queries each of which is (ε, δ)−differentially private
is at least (kε, kδ)−differentially private [61], [62],
[141], [142]. Thus, sequential querying degrades pri-
vacy. This issue has been handled by Kairouz et al.
(Theorem 9) [62] by answering the question: howmuch
privacy is guaranteed after k-fold composition experi-
ment (i.e., after k times databases access). Given k , the
authors in [62] define a sequence of privatizationmech-
anisms to guarantee an upper bound on the overall pri-
vacy level after the k queries. However, the remaining
open questions are about scalability and consistency:

• Does the privacy control leakage, proposed
by [62], guarantees strong privacy protection espe-
cially when k takes a larger value?

• How does this approach impacts the accuracy?

2) Stochastic gradient descent. The privacy protection
of a learning model degrades with each stochas-
tic gradient descent iteration. Similar to sequential
queries; a composition of k SGD iteration each
of which is (ε, δ)−differentially private is at least
(kε, kδ)−differentially private [61], [62]. The released
(i.e., trained) learning model becomes crisp against
model inversion attacks [81] when the amount of pri-
vacy loss (i.e., kε) is large. One of the earliest works
that handle this problem is [64], where Abadi et al.
propose a method called moments accountant (MA)
as a tool for tracking the privacy loss across multiple
iterations. The MA approach uses Rényi differential
privacy [52] in which composition has a simple lin-
ear form. In this approach, the privacy budget of the
SGD iteration is determined using RDP, afterward, it is
mapped back to the standard (ε, δ)−DP by determining
ε and δ via the relationship between DP and RDP
(Theorem 2, [64]). However, this solution is loose,
i.e., it does not define an upper bound on the privacy
budget. Asoodeh et al. [143] derive an approximate
of the optimal DP parameters that should guarantee a
given level of privacy for about 100 SGD iterations.
Although, this approach cannot provide strong privacy
beyond 100 iterations, where the greatest need for a
solution guaranteeing strong privacy while maintaining
a good accuracy regardless of the number of the SGD
iterations.

B. EVALUATING DIFFERENTIAL PRIVACY RESISTANCE
Recently, Ren et al. [9] propose to use Generative Regres-
sion Neural Network (GRNN) for attacking the privacy (i.e.,
recovering the original dataset) in FL by only using gradients’
of clients shared with the server. They found that DP is the
most strong approach for protecting privacy. The proposed
approach fails to recover the original image when a high level
of noise is added to the gradient, however, it succeeds to
recover the original image when a small noise (the scale of
noise is 0.01) is added to the gradient. Nevertheless, adding a

high level of noise leads to poor accuracy. Therefore, the most
important question that needs to be answered is: What is the
privacy budget ε that gives good accuracy while guaranteeing
strong privacy protection?

VI. CONCLUSION
In this paper, we provided a detailed survey on differential
privacy and its applications. Differential privacy and local
differential privacy guarantee strong privacy protection of
users’ privacy in deep learning, federated learning, and data
collection. However, differential privacy still suffers some
drawbacks of sequential composition. The privacy degrades
as long as the number of composition times increases, which
procreate some new variants of ε−differential privacy and
open new future research directions for tracking the privacy
leakage while ensuring a high level of accuracy.
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