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ABSTRACT Early alert fire and smoke detection systems are crucial for daily and security manage-
ment decision-making. Recent literature approaches are based on Deep Learning (DL) models. Efficient
models are required for hardware-constrained systems, such as mobile devices, embedded systems, and
robotics achieving high performance at low power consumption. For this research, we designed a novel
specific-purpose model for fire and smoke recognition using still images and the study of state-of-the-
art convolution techniques to improve the trade-off between accuracy and complexity. In this regard, the
literature suggests that the inverted residual block, the depthwise and octave convolution techniques, reduces
the model’s size and computation requirements working well by themselves. In this work, we propose the
KutralNext architecture, an efficient model for single- and multi-label fire and smoke recognition tasks.
Additionally, a more efficient architecture KutralNext+, demonstrates that those convolution techniques
achieve a better trade-off combined, reaching an 84.36% average test accuracy in FireNet, FiSmo, and
FiSmoA fire datasets. The KutralSmoke and FiSmo fire and smoke datasets attained an 81.53% average test
accuracy. Furthermore, a previous fire and smoke recognition model considered, FireDetection, KutralNext
uses 59% fewer parameters, and KutralNext+ requires 97% fewer flops and is 4x faster.

INDEX TERMS Efficient approach, fires, image classification, convolutional neural networks.

I. INTRODUCTION
The presence of unrestrained fire in any environment is a dis-
aster that causes economic and ecological damage, endanger-
ing people’s lives [1]–[4]. Highly fire-hazard industries need
risk assessment tools to reduce the fire occurrence probability
using preventive actions [5], such as storage protocols for dif-
ferent combustibles. However, when a blaze appears, reactive
tools are needed [6] at the early stages of the combustion in
the case of preventive action failure. Early warning devices
are essential to managing fire disasters, reducing the damage.
Nevertheless, traditional sensor-based systems are not quick
enough to sense the fire [7], [8]. Image-based fire recognition
methods are a new and promising approach [9], considering
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the outstanding results on image processing applications of
deep learning (DL) methods [10].

Deep learning has been applied in many tasks using
images, such as classification [11], object detection [12],
and segmentation [13]. Current DL methods are successful
in computer vision tasks since it is the most approximated
way to model a visual data input into useful information
mathematically [14]. The input image is processed through
each one of the model’s layers. The deeper the convolutional
neural network is, the richer low-dimensional features it can
obtain.

Moreover, current DL methods have been proven to sur-
pass the human eye performance in recognizing objects [15].
Many of these DL models achieved state-of-the-art perfor-
mance in the ImageNet ILSVRC dataset, improved to obtain
even higher efficacy. For example, in 2015, GoogLeNet [16]
achieved 74.8% top-1 accuracy with 6.8M parameters.
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More recently, GPipe [17] achieved 84.3%, using
557M parameters. Nevertheless, Tan et al. [18] demonstrated
that deeper networks do not always perform better or more
efficiently. The authors studied how thewidth, resolution, and
depth are related when scaling up a model in their research.

Many neural networks developed from scratch can be
treated as a heuristic task, in which the purpose is to sur-
pass the state-of-the-art performance. However, as pointed
out by Tan et al. [18], other aspects must be considered dur-
ing the architecture’s design. These characteristics include
width, resolution, and depth as correlated values. This
research addresses the feasibility of mixture DL techniques
to attain the lowest model complexity with the highest accu-
racy. In recent studies, the inverted residual block [19] has
been proven to be an efficient convolution block architec-
ture [20], [21]. Additionally, the octave convolution [22]
with their high- and low-frequency signal processing method
has shown to be a suitable replacement for the vanilla
convolution [23]–[25].

Ayala et al. proposed a lightweight approach for fire recog-
nition using two benchmark datasets to test generalization
under the same and different data distribution. The best accu-
racy of their model was under a balanced class partitioning,
demonstrating that KutralNet is a suitable low computational
cost fire classifier. This research proposes an extension of
KutralNet architecture to prove the feasibility and efficiency
in combining the inverted residual block with the depthwise
and octave convolution, named KutralNext. First, a baseline
model is defined with vanilla convolutions as a reference to
a more efficient model, replacing some parts with combined
cost-effective DL techniques. Hereof, KutralNext also pro-
poses recognizing fire and smoke as a multi-label approach
giving separated inferences to assess the fire dimensions or
intensity. Additionally, to improve the results and solve the
lack of balanced datasets, the ImageNet dataset is used for
pretraining the models and the class balanced loss func-
tion to deal with unbalanced instances. Moreover, a newly
compiled correctly labeled dataset is proposed as a new
multi-label dataset to recognize fire and smoke in still images.
We compared the proposed models with state-of-the-art fire,
and smoke recognition approaches over the FireNet [26],
FiSmo [27], and FireSmoke [28] datasets. The KutralNext
proposes recognizing fire and smoke presence in an image
using the deep learning methodology and a newly compiled
correctly labeled dataset. Our model’s primary focus is to
reduce the complexity of processing an image by a model
capable of running in embedded resource-constrained plat-
forms, like closed-circuit TV systems, mobile devices, and
robotic systems, and warning about the existence of a fire
emergency scenario.

A. RELATED WORKS
The first approaches to fire recognition in computer vision
were addressed using RGB color space [29], spectral
color [30], texture recognition [31], and spatio-temporal treat-
ment [32]. Recent work [33] has focused on optimizing the

response time of a computer vision system by reducing the
number of frames processed through a convolutional neural
network (CNN). A motion detection stage skips the unpro-
cessed frames based on a backgroundmodel. Spatio-temporal
information analysis is helpful to discriminate fixed pixel
values from fluctuating pixel values, this in a determined
number of a video frames sequence, identifying as motion
when a pixels transition from a fixed to another different
value is encountered. The most recent methods follow this
line using deep neural networks with CNNs.

Many DL implementations were built on previously
trained models [34]–[36], such as ResNet and its vari-
ations [37]. Others were designed for this specific pur-
pose [26], [38] to recognize fire presence in images. More
recent studies [39], [40] focused on identifying the presence
of fire and smoke images, considering three outputs: one
for fire, one for smoke, and another for both, addressing the
problem as a single-label classification task.

A lightweight approach to fire recognition was addressed
by Jadon et al. [26] where the authors proposed a fire recog-
nition model with three-convolutional layers to process a
64 × 64 RGB input image, trained and tested against the
author’s dataset, obtaining a 93.91% in test accuracy. The
proposal used the CNN as part of an embedded IoT fire alarm
system from visual input. That is why the authors designed
a lightweight model to run at a high frame rate with low
resources.

Another lightweight inspired approach was achieved by
Ayala et al. [38] where the authors combine the Octave
convolution with the ResNet architecture presenting a few
residual blocks with the shortcut connection. The authors
compared the model with four datasets previously used in
this task, obtaining an 87.44% average of validation accuracy.
The dataset included FireNet [26] and FiSmo [27] original
datasets.

Gotthans et al. [39] proposed the Fire Detection model
to fire and smoke recognition trained with two datasets to
compare it against AlexNet [11] and SqueezeNet [41]. The
model received an input image of 224×244 pixels with RGB
channels, normalized with average values of (0.485, 0.456,
0.406) and standard deviation of (0.229, 0.224, 0.225) for
each channel. The training was performed during 100 epochs,
with a batch size of 20 and a learning rate of 0.001. They
proposed a lightweight model capable of recognizing fire
and smoke in still images. The Fire Detection model reduced
by 27% the execution time compared to AlexNet, achieving
1% less accuracy. However, only the validation accuracy of
the experiments was presented. Additionally, they executed
the model in the Jatson Nano platform with similar results
during training.

Oh et al. [40] used the EfficientNet-B0 [18] model to rec-
ognize a fire emergency from images. Using an automated
algorithm, they elaborated a new dataset from various image
search engines to collect cloud, snow, rural, fire, wave,
and waterfall labeled images. Next, they made a manual
cleanup obtaining a total of 14,741 images. In this case, the
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fire-labeled images contained an open-air environment with
the presence of fire, smoke, or both. The model was trained
using Focal Loss [42] to deal with dataset class imbalance,
in addition to random data augmentation, over 90 epochs, and
a batch size of 256. A pre-trained version of the model with
ILSVRC2012 was also used with fine-tuning. The proposal
achieved a high test accuracy of 99.05% with their datasets.

Much current development using the DLmethod combined
with fine-tuning or transfer-learning techniques solves the
lack of training data. The only issue is the network’s size and
complexity constraint. Most proposals focus on solving and
surpassing the current state-of-the-art accuracy, leaving out
resource constraints and requirements.

II. MODEL EFFICIENCY TECHNIQUES BACKGROUND
With the success of deep convolutional neural networks, effi-
cient techniques appeared with newly proposed models. The
first known technique used is the residual connection [37].
It can be formally defined asH(x) = F(x)+ x where x is the
input signal or the identity connection, andF(x) is the convo-
luted input signal. This strategy reduces the overfitting during
the training of deeper architectures, improving the gradient’s
propagation across multiple layers requiring almost the same
number of operations.

The second widely used technique is depthwise separable
convolution. It separates the convolution in a channel-wise
spatial correlation mapping, followed by a cross-channel
mapping with a 1× 1 convolution called pointwise convolu-
tion. Chollet et al. [10] proposed the Xception model, where
the authors used depthwise separable convolutions and resid-
ual connections in the architecture. Depthwise convolution
was first presented by Sifre et al. [43]. Chollet [10] proved
its efficiency in-depth with its Xception model, which uses
depthwise separable convolution and residual connections in
almost all the architecture.

If the computational cost of a vanilla convolution is given
by

Cv = Dk ∗ Dk ∗M ∗ N ∗ Df ∗ Df , (1)

whereDk is the kernel size, assumed square,M is the number
of input channels, N is the number of output channels, and
Df is the feature map size. According to the definition, the
computational cost of depthwise convolution is given by

Cdw = Dk ∗ Dk ∗M ∗ Df ∗ Df

=
Cv
N
. (2)

On the one hand, depthwise convolution is more efficient than
vanilla convolution because it breaks the relationship between
output channels, as presented in (2). On the other hand, the
pointwise convolution computational cost is given by

Cpw = M ∗ N ∗ Df ∗ Df

=
Cv
D2
k

, (3)

breaking the relationship between the kernel size, as pre-
sented in (3).

A third most commonly used technique is the inverted
residual block [19]. It is composed of depthwise separable
convolution and residual connections. The peculiarity of this
convolutional block is the presence of the shortcut in the
bottleneck between the layers with a low number of channels,
as can be observed in Figure 1(a). Additionally, it presents an
expansion layer that increases the number of channels pro-
cessed between the bottleneck using a depthwise convolution,
before and after pointwise convolution. This convolutional
block presents a computational cost that depends on an expan-
sion rate t:

Cirb = Df ∗ Df ∗M ∗ t(2N + Dk ∗ Dk ),

= t(2 ∗ Cpw + Cdw) (4)

in comparison with vanilla convolution, this block obtain a
reduction of

Wirb =
Cirb
Cv
=

2

D2
k

+
1

t ∗ N
. (5)

Another new technique for efficient model design is
octave convolution [22]. It decomposes the input signal
in a high-spatial frequency to describe the rapidly chang-
ing details and in a low-spatial frequency to describe the
smoothly changing structure. The authors have demonstrated
that using the octave convolution in popular DL models
like ResNet [37] consistently improves the results, reduc-
ing the flops and model size. Formally, let X be the input
image∈ RM∗Df ∗Df , whereDf is the spatial dimension consid-
ered squared, and M the number of channels. X is factorized
into X = {XH ,XL}, considering XH ∈ R(1−α)M∗Df ∗Df

the high-frequency feature maps of fine details, and XL ∈

RαM∗
Df
2 ∗

Df
2 the low-frequency feature maps of general char-

acteristics. Here α ∈ [0, 1] is a hyper-parameter denoting the
ratio of channels allocated in the low-frequency part. In this
regard, the computational cost consists of two components
given by

Co = Cv ∗ (1− α)+ Cv ∗
α

4
, (6)

obtaining a reduction dependent of α

Wo =
Co
Cv
= (1− α)+

α

4
. (7)

Each side of the equation’s addition represents the convolu-
tional cost for the high- and low-frequency. After process-
ing the signal, each frequency feature map’s information is
exchanged between them, as shown in Figure 1(b).

Considering that (2) reduces (1) in terms of N and (6)
weight (1) into two terms, we can assume that the inverted
residual block with octave convolution cost is given by:

Cirb8 = t(2 ∗
Co
D2
k

+
Co
N
), (8)
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FIGURE 1. Main DL techniques used in this research: (a) The inverted residual block. Diagonally hatched layers do not use
non-linearities. The thickness of each block is used to indicate its relative number of channels. The inverted residuals connect the
bottlenecks. Adapted from [19]. (b) Detailed design of the octave convolution. Green arrows correspond to information updates, while
red arrows facilitate information exchange between the two frequencies. Adapted from [22].

obtaining a reduction dependent of (7)

Wirb8 =
Cirb8
Cirb
=

Co
Cv
. (9)

III. KUTRALNEXT
This work proposes KutralNext, a model to fire and smoke
image recognition under a multi-label approach, based on
the KutralNet architectures to process 84 × 84 pixels RGB
images. The KutralNext baseline model uses vanilla convolu-
tion on its stack of layers with two units as exit, one for each
fire and smoke case, to work under a low computational cost.
The more efficient version, named KutralNext+, is built on
the inverted residual block [19], depthwise convolution [43],
and octave convolution [22], modifying the baseline blocks
with those techniques. As the literature suggests, pretrained
models with the ImageNet dataset increase the number of
filters learned by a model. Therefore, the baseline and effi-
cient models are pre-trained using the ILSVRC2012 dataset
and then fine-tuned with the fire and smoke datasets. Further-
more, it is uncommon to find balanced datasets between its
labels, and therefore, it is included the class balanced loss to
solve these disproportional number of instances. More details
about the architecture of each model, ILSVRC2012 dataset,
loss function, and multi-label approach are described in the
following subsections.

A. BASELINE ARCHITECTURE
The baseline model comprises three kinds of convolutional
blocks, named KutralBlockN (KBN), where N corresponds
to the number of output channels, KutralBlockP (KBP), and
KutralBlockO (KBO). KBN block was built up with a convo-
lution layer with N channels as output, a batch-normalization
layer, a LeakyReLU activation, and a max-pooling layer to
size down the output. Next, the KBP block possesses two
convolution layers and a batch-normalization layer. Finally,
the KBO block comprises a LeakyReLU activation, a global
average pooling layer, and a fully-connected layer. More
details for each block are present in Figure 2(a).

As illustrated in Figure 2(b), the model consists of three
KBN blocks, one KBP block followed by a shortcut of max-
pooling, and batch-normalization layers. This KBN is the
block that processes the signal from the KB64 block and,
finally, a KBO block. The KBO block’s fully-connected layer
presents a variation for a single- and multi-label approach
specified in section III-D. This approach has proved that few
layers can acquire enough features for a fire classification
task to optimize the inference time [26]. Additionally, using
a shortcut and batch-normalization layer avoids overfitting
the model [37]. We have chosen LeakyReLU as a non-zero
slope for the negative part, which improves the results with a
low-cost implementation [44].

In simplified terms considering only the convolution layer
costs, we can formalize the baseline cost as

Cbs = 4 ∗ Cv +
Cv
D2
k

. (10)

B. EFFICIENT ARCHITECTURE
The efficient architecture combines KutralNext’s architecture
with inverted residual block [19], using the octave convo-
lution [22] methodology. In this case, the octave convolu-
tion is separated into two regular convolutions, the octave
feature representation or low-frequency convolution, which
processes the most general features, and its counterpart or
high-frequency convolution, which processes the most fine-
grained features. A hyper-parameter α gives each convo-
lution’s size to process the signal further separately and
exchange information at the end. We called this OctConvPN
for the pointwise 1 × 1 convolution and OctConvDN for
the depthwise convolution, where N denotes the number of
output channels, as shown in Figure 3(a). The α parameter
for both convolution blocks was settled to 0.5. The convolu-
tional block is namedKutralPlusBlockN-E (KPBN-E), where
N -E refers to the number of output channels and the expan-
sion rate t , respectively.

The efficient model, as presented in Figure 3(b), com-
prises an OctConvPN block, twins of batch-normalization,
twins of LeakyReLU activation, OctConvDN block, twins of
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FIGURE 2. (a) The KutralNext main blocks are KutralBlockN (KBN), where
N refers to the number of output channels, KutralBlockP (KBP), and the
KutralBlockO (KBO). (b) the baseline KutralNext model with three KBN
blocks, a KBP block, a shortcut connection, and a KBO block as output.

batch-normalization, twins of LeakyReLU activation, another
OctConvPN, and finally, twins batch-normalization layers.
For the first OctConvPN and the OctConvDN blocks, the
N output channel number is given by multiplying the num-
ber of output channels and the expansion rate from the
KPBN-E block. The architecture comprises a KBN block,
followed by three KPBN-E blocks with a shortcut connection
from the first KPB64-4 block. That process the signal through
twins max-pooling layers, twins bath-normalization layers
and, an OctConvPN block to the final KBO block.

In the case of the separable depthwise convolution used
in the inverted residual block [19], the increasing num-
ber of parameters and the reduced flops number is still
efficient, as demonstrated in equation (2) given the group
way of processing the channels where groups = Cin and
out_channels = Cin∗K . In those groups, the output filters are
K times the input filters, reducing the mathematical complex-
ity of the operation as expressed in equation (4). In this regard,
the model cost notation replaces the convolution layers cost
expressed in (1), by the Cirb cost as follows

Ckpm = Cv + 3 ∗ Cirb, (11)

obtaining a first reduction denoted by

Wkpm = 3 ∗

(
2

D2
k

+
1

t ∗ N

)
. (12)

For the octave convolution, both parameters and flops are
reduced. This strategy separates the filters processing on high
and low frequency, computing the parameters information
W into two components W = [WH ,WL] and exchanging
information between them, expressed in equation (6). The
KutralNext+ cost reduction, is given by (12) and (9)

Wkp =Wkpm ∗
Co
Cv
+

1

D2
k

. (13)

C. IMAGENET PRETRAINING
One of the challenges in deep learning model developments
is the huge amount of data required for training. In this
regard, using pretrained models over a challenging dataset
with a considerable quantity of instances and labels improves
the results using transfer learning and fine-tuning, reducing
the data required to learn filter kernels and acquire valuable
information from a high dimensional input.

For this purpose, we used the ImageNet ILSVRC
2012 dataset. It comprises 1.3 million instances with
1,000 classes, designed for a classification and detec-
tion competition, widely used as a model’s performance
benchmark. Many classical DL models, such as ResNet and
EfficientNet, have been trained with ImageNet. They are
publicly available in different repositories for the community.
We used the ImageNet dataset for training the baseline, and
the efficient architectures for later use in the fire and smoke
classification task.
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FIGURE 3. (a) The efficient model’s main blocks, KutralPlusBlockN-E (KPBN-E), where N refers to the number of output channels and E for
the t value of expansion rate. OctConvPN and OctConvDN are the octave convolution version block for the separable depthwise
convolution. (b) The efficient model with a KBN block, three KPBN-E blocks, a shortcut connection, and a KBO block as output. The
left-side connection from one block to another represents the α = 0 value for the input or output of octave convolution.

D. SINGLE-LABEL AND MULTI-LABEL VARIANTS
All of the models were tested over two kinds of classification
tasks. The first one was a fire-flame single-label classification
task, where the models must indicate if a fire presence exists
or not in the images. For this case, the fully-connected layer

of the KBO block is composed of two outputs, one for the
positive and the other for the negative cases of fire presence.
The second one was a fire and smoke multi-label classifi-
cation task, where the models must indicate if the image
has fire, smoke, or nothing. In this case, the fully-connected
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layer comprises two neurons. The first one indicates if a
fire presence exists in the image, and the second indicates if
smoke is present.

Each proposal presents two neurons in the fully-connected
layer as output and uses the focal loss function and the
sigmoid activation. Experiments have demonstrated that the
multi-label approach, in addition to recognizing smoke in
the image, also improves the model’s capability to acquire
fire features.

E. CLASS BALANCED LOSS
As a dataset grows, focused on obtaining more instances of
those classes of interest, it is much more likely to have a
long-tailed distribution with many underrepresented classes.
A novel framework was implemented in our proposal to deal
with this class imbalance issue. This framework uses the
effective number of samples or expected volume of samples
to define each class’s impact on the loss value. This method
is named class balanced loss [45], and it defines the effective
number of samples as (1 − βn)/(1 − β), where n is the
number of samples and β an hyper-parameter ∈ [0, 1] which
control how fast the effective number of samples grows as
n increases. This loss function’s main idea is to introduce a
class weighting factor inversely proportional to the effective
number of samples to balance the output loss value as a
model- and loss-agnostic method, formulated as

CB(p, y) =
1− β
1− βny

L(p, y), (14)

where ny is the number of samples for the class y, L(p, y) is
the loss function for the predicted class probability p.
In our proposal, the L(p, y) loss function is replaced by the

focal loss (FL) [42]. It is an α-weighted method to address
the class imbalance issue, defining each class impact in the
loss value with α ∈ [0, 1] for the target class y, and 1− α for
the other classes, defined as follows

FL(py) = −(1− py)γ log(py), (15)

where py is the probability of the y class, (1 − py)γ is a
modulating factor with a γ ≥ 0 hyper-parameter to determine
how smoothly it affects the loss function, focusing in difficult
samples. Each py class probability at the exit of the models is
represented by the sigmoid cross-entropy loss denoted by

py =
1

(1+ exp−z)
. (16)

In this regard, our implementation included the base sigmoid
cross-entropy loss (16), with the datasets classes weighted by
the focal loss (15), and defining each class impact by the class
balanced loss (14), formulated in next

CBfocal(z, y) = −
1− β
1− βny

(1− py)γ log(py), (17)

where z is the model’s predicted class probability.

IV. EXPERIMENTS
The environment used to train and test each model was an
online open cloud platform for machine learning algorithms.
This online platform provides a ready-to-use ecosystem with
libraries for data manipulation, data visualization, and the
training process, among others. The environment is available
through a virtual machine configured with up to 13GB of
memory, an Intel Xeon@2.30GHz, and an NVIDIA GPU
with 12GB of memory.

A. DATASETS
Three publicly available datasets usedwere designed for a fire
or smoke single-label classification task, with fire, smoke,
or none classes, named FiSmo1 [27], FireNet2 [26], and
FireSmoke.3 All the datasets were previously used in fire
and fire and smoke classification tasks as presented in [9],
[26], [28], [38], [39]. For this project, 16,140 datasets’ images
were checked by one person, labeling all the images for a
multi-label classification approach. Missing label addition
was performed during review when both fire and smoke
classes were present in the image mainly.

Four datasets emerged from the augmented and combined
data once all the image labels were reviewed and corrected.
From the three primary datasets, the FireNet and FiSmo
datasets were used with the original 3, 296 and 6, 063 image
instances, respectively. Additionally, FiSmo was augmented
until a total of 6, 548 instances, and the FireSmoke dataset
was used to complement FireNet. The FireNet dataset con-
tains a test subset with 871 images, used for testing purposes
for the fire-only recognition task. The augmentation of FiSmo
used in this research adds 485 black images as none class
because it has been shown to improve the model’s perfor-
mance for fire recognition [9], [38]. Finally, the combination
of the FireNet and FireSmoke datasets were merged into
a new one called KutralSmoke with 6, 296 images. This
KutralSmoke dataset contains a test subset with 1,171 images
used for testing the fire and smoke recognition task. This
dataset was consolidated to get a training and testing subset
with more instances labeled as smoke and reduce the class
unbalancing. The instances allocation for training and test-
ing of the datasets follows the implementation used in their
original works, being FiSmo the dataset with training subset
only.

For the single-label experiment, the FireNet (training),
FiSmo, and FiSmoA datasets were used for training, sum-
marizing 8, 973 images. The FireNet (testing) dataset was
used for testing with 871 images. Only the fire and none
classes were used from each dataset for this single-label
experimentation. The fire and smoke labeled instances were
considered with the fire class, and those smoke labeled
instances were considered with the none class. For the

1https://github.com/mtcazzolato/dsw2017
2https://github.com/arpit-jadon/FireNet-LightWeight-Network-for-Fire-

Detection
3https://github.com/DeepQuestAI/Fire-Smoke-Dataset
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TABLE 1. Quantity of images per class present in each dataset.

multi-label experiment, 11, 188 images were used for train-
ing, considering the FiSmo and KutralSmoke (training)
datasets, and 1, 171 images were used for testing from the
KutralSmoke (testing) dataset. For this last experiment, all
labels were used with no changes. More details about the
datasets class’ distribution are shown in Table 1, and image
samples are in Figure 4. During each experiment’s parame-
ters’ optimization, the training datasets were split for training
and validation subsets, considering the 20% as validation and
the other 80% for training.

B. MODELS
All of the models were trained and tested with all of the
corresponding datasets mentioned earlier in Section IV-A.
For our models previously trained over Imagenet, the training
process refers to transfer-learning and fine-tuning themodels’
weights for this new data distribution for recognizing fire
and smoke. The training and testing processes were exe-
cuted five times to get statistical significance. Considering
the five models and that training is highly time-consuming,
we hypothesized that five executions would show a tendency
and variability in the metrics obtained for each model in
the different tasks. Each training execution was iterated over
100 epochs with a batch size of 32 instances each. For our
case, just KutralNext presents a variation in the learning rate
starting at 10−3 and reduced to 10−4 after epoch 85 to avoid
overfitting the parameters and stabilizing the learning in the
last epochs. All the other models use a fixed learning rate
of 10−3.

C. PERFORMANCE EVALUATION
The experimental setup compared the fire and smoke recogni-
tion performance of our KutralNext architectures against fire-
specialized models. The first one compares the single-label
fire classification task performance, where each model must
infer the presence or not of fire in images. For this case,
just the fire label is used from the image datasets, codifying
the target label y into a two-component vector ∈ [0, 1].
When the first component is equal to 1, it indicates no fire
presence, and when the second component is 1, it indicates
fire presence. The sum of the outputs, in this case, must
be equal to 1. The second experiment is the multi-label fire
and smoke classification task, where each model must infer
the presence of fire, smoke, or none in images. For this

TABLE 2. The computational cost of each implemented model
represented as flops and parameters.

task, the fire and smoke labels were used from each dataset,
codifying the target label y as vector ∈ [0, 1], with one
component for each class. In this case, the target label can
represent the fire and smoke presence, with both components
equal 1, and both components equal 0, representing neither
fire nor smoke presence. The behavior was checked under
two different data representations and distribution in both
experiments, using a cross-dataset test, proving each model’s
robustness.

All of the images were preprocessed with a resize trans-
formation to fit each model’s input size and normalized with
values ∈ [0, 1]. For each model, a different loss function was
used to follow their original implementation. For FireNet,
OctFiResNet, and FireDetection, a cross-entropy loss was
used with a softmax activation in the single-label experimen-
tation and a binary cross-entropy loss with sigmoid activation
in the multi-label approach.

V. RESULTS
All of the models were trained and tested against FiSmo,
FireNet, and KutralSmoke datasets to compare their suit-
ability in single- and multi-label recognition tasks. More
than one data source under different distribution is affordable
to check the model’s generalization capability to acquire
features and recognize fire or smoke presence in images.
Thus, as aforementioned, two types of experiments were
carried out.

The first subsection explains the results obtained during
the single-label fire recognition task. The second subsection
describes each model’s recognition of fire and smoke in still
images as a multi-label classification approach. The third
section discusses how well the models could generalize in
both tasks and the benefits presented by our KutralNext+
model. All of the models were compared using the following
metrics: the accuracy obtained during validation and testing,
the receiver operating characteristic (ROC) curve, the area
under the ROC curve (AUROC), the number of floating-point
operations (flops), precision, recall, f1-score, and the time
required to process all the images in the corresponding testing
dataset.

Table 2 presents the costs of each model in terms of param-
eters and flops. Tables 3 and 5 display the average training
results obtained during the five executions with their standard
deviation values for the single- and multi-label approaches,
respectively.
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FIGURE 4. Data samples for each dataset used in this work. (a) FireNet image samples, (b) FiSmo image samples, (c) KutralSmoke image
samples. In the first row are the Fire and Smoke labeled images, the second row are the fire labeled images, the third row are the smoke
labeled image, and in the bottom row are the none labeled images.

A. SINGLE-LABEL CLASSIFICATION: FIRE RECOGNITION
The first experiment considers our proposals’ single-label fire
recognition task performance compared with state-of-the-art

fire recognition deep learning models. Table 3, presents the
training and testing statistics results. Table 4 demonstrates
each model’s performance statistics over all the datasets
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with averaged values and standard deviation. Overall, our
KutralNext+ can generalize better for this task, and Kutral-
Next achieves better performance acquiring fire features,
both against previous fire recognition models. Our proposals
achieved the best results. They were the most time inexpen-
sive models in image processing.

From the results presented in Table 3, previous fire
recognition models’ results are similar to OctFiResNet as
the best accurate model during validation, followed by
FireDetection and FireNet. Nevertheless, in test accuracy,
FireDetection performs better than OctFiResNet. Our pro-
posals have proven to achieve the best generalization trained
over different data distributions as FiSmo and FiSmoA,where
KutralNext+ obtained the best mean validation and test
accuracy. In terms of time, OctFiResNet is the model that
requires more time to deal with the test data taking about
3 seconds to process the images, followed by FireDetec-
tion with 1.5 seconds, with KutralNext and KutralNext+
requiring 0.45 and 0.42 seconds, respectively. The FireNet
model presents a lightweight approach found in the litera-
ture and performs 29% faster in processing the test dataset
than KutralNext+ with 0.30 seconds. However, it presents
a difference of 4.96% and 14.15% in validation and test
accuracy, respectively. All of the KutralNext models outper-
form all the previous fire recognition models in a single-label
approach, with KutralNext+ in the first position, followed by
KutralNext, demonstrating an efficient computational cost to
recognize fire. The best trained average KutralNext+ model
is 0.29% and 5.51% higher than KutralNext. It is 1.83% and
2.65% higher than OctFiResNet in terms of validation and
test accuracy, respectively.

Moreover, in Table 4, in terms of fire’s feature acqui-
sition for each model, the FireNet model obtains the best
AUROC and precision among previous fire recognition mod-
els, followed by OctFiResNet and FireDetection. In this
regard, it is demonstrated that a few layers can acquire
enough features to recognize fire. Nevertheless, it is inef-
fective to process more complex images where the fire
is present. KutralNext performs the best in both AUROC
and precision values for all datasets, achieving 94.00%
and 97.13%, respectively. KutralNext+ performs competi-
tive results against KutralNext, with 93.64% and 97.03%
for AUROC and precision, respectively, all mean values.
In this regard, a demonstration between the trade-off and the
model’s depth is achieved, with efficient results recognizing
fire. Additionally, the KutralNext+ presents a similar result
under an efficient configuration processing in less time an
image.

Interesting results were obtained for the black augmented
FiSmo version, FiSmoA, which improved FireNet, Kutral-
Next, KutralNext+, and remarkably OctFiResNet in test
accuracy values. For FireDetection, the augmentation neg-
atively impacted the performance, reducing by 2% test
accuracy, and it increased the deviation value compared to
FiSmo. This result was presented for test performance results
in Table 4, where the FiSmoA dataset with black images

increases the performance for all the models, resulting in a
reduction over the standard deviation values.

Figure 5(a) shows more detailed performance for the
models trained over FireNet where KutralNext+ obtained
97.59%, followed by KutralNext with 94.18% AUROC
index. In the ROC curve, KutralNext performs well at a low
false-positive rate. The use of the FireNet dataset proves
the model’s generalization over the same data distribution.
A different data distribution model’s behavior is achieved
with FiSmo and FiSmoA showed in Figures 5(b) and 5(c).
In FiSmo, KutralNext retains first place with 92.44% of
AUROC index, followed by KutralNext+ with 90.57%.

An even higher AUROC value was obtained for the aug-
mented version of FiSmo, where KutralNext achieves first
place with 95.39%, followed by our KutralNext+ model
with 92.79%. KutralNext achieved the best ROC curve with
low false-positive rates in both cases.

B. MULTI-LABEL CLASSIFICATION: FIRE AND SMOKE
RECOGNITION
In this second experiment, the performance in the fire and
smoke multi-label recognition task for our models’ proposals
was checked. Two datasets were used for training and one
dataset for testing. The training datasets were FiSmo and
KutralSmoke. The testing dataset was the KutralSmoke Test
subset. The models’ performance was compared, optimizing
its parameters with different data complexity and distribu-
tion of the corresponding labels to check its generalization
capability. Due to the chance of fire and smoke appearing
in the same image, the fire and smoke classification task
was addressed under a multi-label setup. Table 5 shows the
statistical results for each model trained over all the datasets
with averaged values for the validation, test accuracy, and
test time. Table 6 presents the test performance for each
model. Our proposals are the best for recognizing fire and
smoke as the most accurate and time inexpensivemodels. The
classification was considered binary, with fire, smoke, or both
classes as a true label, and none class as a false label.

The models’ training performance in terms of accuracy
are shown in Table 5. For the mean validation accuracy,
KutralNext performs the best with an 85.43%, followed
by KutralNext+ with an 85.84%, considering their devia-
tion values. Different results were obtained during testing.
KutralNext+ performs the best under the same and different
data distribution with an 81.53%. Our models surpass the
state-of-the-art fire recognition models, requiring less time in
processing the test data images.

In terms of time required to process the 1,171 testing
images, OctFiResNet is the most time-consuming, taking
2.0 seconds, followed by FireDetection with 1.87 seconds.
For the KutralNext architectures, KutralNext+ is the model
that requires more time with 0.61 seconds, leaving Kutral-
Next as the model that requires less time with 0.41 seconds.
FireNet is a model that requires less time to process the
images. Nevertheless, it also presents the lowest mean vali-
dation and test accuracy.
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TABLE 3. Training results during 5 executions in the fire recognition task.

TABLE 4. Test performance during 5 executions in the fire recognition task.

A general overview of each model’s metrics over the
test dataset are shown in Table 6. In the first place, for
the fire label, KutralNext demonstrated the best average
AUROC value and OctFiResNet the best mean precision
value in this multi-label test approach. Considering the
mean AUROC between both datasets, the KutralNext model
obtains a 94.47% index value, taking first place, followed
by KutralNext+ with 93.40% index value. Overall, all of
the models present a good performance in detecting fire
under this approach. For the smoke label, a lower outcome
is shown in AUROC and precision terms, in the second

place. KutralNext+ model achieves a remarkable AUROC
of 89.59% and precision of 56.27%. KutralNext attained
second place with 87.00% and 46.92% for the same met-
rics. Our proposals are the best models in acquiring smoke
features under a multi-label approach compared to the pre-
vious one. Overall, the models have shown a better out-
come trained over the same data distribution than a different
one.

Figure 6 shows themean ROC values obtained for themod-
els trained over all of the datasets to compare each model’s
features acquisition performance. Our proposals presented
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TABLE 5. Models’ training results during 5 executions in the fire and smoke recognition task.

TABLE 6. Performance during 5 executions in fire and smoke recognition task.

the best results for both classes from the datasets we used,
capable of acquiring features at a low false-positive rate.
Important results were obtained for the smoke label compared
with previous models, as shown in Figures 6(c) and 6(d).
Additionally, KutralNext and KutralNext+ obtained the best

results under a different data distribution as the case for the
FiSmo dataset. Thus, our proposals demonstrated their imple-
mented techniques efficiency because the models’ designs
were not meant to recognize smoke. Even so, it achieved the
best results in recognizing smoke.
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FIGURE 5. Single-label classification average ROC curves of five executions for the models trained over
(a) FireNet, (b) FiSmo, and (c) FiSmoA datasets. As illustrated, our KutralNext+ outperforms the other models
with the same data distribution in the FireNet dataset (a). It is competitive with KutralNext in different data
distributions as (a) FiSmo and (b) FiSmoA. The obtained results between FireNet against OctiFiResNet and
FireDetection prove that a few layers are required to acquire fire features.

C. DISCUSSION
Our KutralNext deep learning model proposals were capa-
ble of achieving a proper performance for fire and smoke
recognition as a single- and multi-label approach, compared
to previous deep learning models in the same approach. For
this research project, all compared previous models were
designed under a single-label approach and adapted to be
used under a multi-label approach. The FireDetection model
was the only one designed to recognize fire and smoke from
images. All of the models previously used were designed to
recognize fire only. However, the output layer was success-
fully adapted for those models, demonstrated in the results
obtained for the fire label. The central aspect of addressing a
multi-label approach in still images is that fire or smoke can
be present separately, together, or not be in the image. In this
regard, the multi-label approach could be suitable for an early
alert system to measure the fire’s magnitude. This magnitude

could be translated from the inference of each label present in
the image. When only the smoke label was detected, it could
be an early fire stage. When just the fire label was detected,
it could be a fire of minor intensity. Alternatively, a more
extensive fire was detected if both fire and smoke labels were
present.

Moreover, the results highlight the importance of using a
pre-trained model with ILSVRC2012 over one trained from
scratch. This benefit was demonstrated by the KutralNext+
model’s performance, from which the pre-trained versions
perform significantly better than the one from-scratch ver-
sion in the single-label fire classification task with a 5.10%
more in average test accuracy. Additionally, present 4.05%
less mean standard deviation. During the efficient models’
training over the ILSVRC2012 dataset, the validation accu-
racy was not appropriate to classify the 1000 contained
classes. Nevertheless, the optimized parameters obtained
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FIGURE 6. Multi-label ROC curve average performance of five executions for the models trained over
(a) KutralSmoke, and (b) FiSmo datasets. The KutralNext architecture presents the highest AUC value in both
labels from both datasets. Exciting results are shown under a different data distribution, (b) and (d), where
KutralNext performs well for the fire label and KutralNext+ for the smoke label. Additionally, it can be observed
that previous approaches still lack generalization for the fire label and present a low performance processing
the smoke label.

during the training of our efficient models, KutralNext and
KutralNext+, were enough to obtain better performance for
both fire and smoke recognition task-specific model architec-
ture design. These from-scratch results were not included in
this research. However, this aspect has been widely demon-
strated [46]. Additionally, the portable version with the
inverted residual block and the octave convolution methods
reduced the model’s flops. It improved accuracy in single-
and multi-label fire and smoke recognition tasks, suitable for
a portable device at a high frame rate. Thus, our portable
proposal is suitable for a fire detection vision-based system
for fire or smoke presence incidents.

Let us compare the models’ computational cost in flops
and allocation size as the number of parameters. This
research demonstrated that the kind of convolution and its

configuration define the model’s size and complexity. Some
existing convolution methods are more efficient than others
in processing the input signal, requiring minimal computa-
tion resources to achieve remarkable performance. In this
regard, FireNet uses fewer flops given its image resolu-
tion than KutralNext but presents more parameters. FireDe-
tection requires the biggest image resolution as input but
uses fewer parameters than FireNet and OctFiResNet, and
fewer flops than OctFiResNet, demonstrating the use of
other convolution configurations such as squeeze and expand
from SqueezeNet [41]. Between our proposals, KutralNext+
presents fewer flops than KutralNext, but with more param-
eters. This effect is occasionated by the inverted residual
block method, which adds more parameters given the sep-
arable depthwise convolution, but with reduced complexity
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given the pointwise convolution. In this way, an efficient
fire and smoke recognition model with enough parameters
to generalize fire and smoke features was developed. This
low-complexity configuration was only achieved with this
specific-purpose architecture because general-purpose mod-
els require a huge amount of parameters to learn how to
process features for a significant number of classes.

Hereof, our proposals are suitable to assess a fire accident,
allowing the possibility to automate a response, controlling
its propagation. Additionally, it can be used in a surveillance
monitoring system with multiple cameras requiring low-cost
computation hardware to recognize a fire event and location.
The only concern encountered in this research, is the unre-
lated values of flops and the time required by each model.
This issue is not related to the model or its techniques, but it is
related to the PyTorch library.4 Another considerable aspect
of time is in the multi-label problem with the label prepa-
ration, which requires a few steps of encoding the classes
before being processed by the model. Thus, the time issue
can be solved for a final portable detection system migrating
the library and implementing a specific label codification
system.

Recently published fire and smoke classification works
present different approaches to address the problem. One of
them uses feature descriptors presented by Sari et al. [47],
where the authors use the histogram of oriented gradi-
ent (HOG) to further classify fire with a support vector
machine (SVM). Singh et al. [48] presented a CNN to clas-
sify video frame sequences into the fire, smoke, and fire and
smoke classes as a single-label classification task. Their work
achieves a high recognition rate related to the video dataset
used and the similarity between frames, as demonstrated
by Ayala et al. [38]. Some application works are presented
by Altowaijri et al. [49], where an IoT system captures an
image and sends it to be processed by a CNN in the cloud.
Rahmatov et al. [50] use a visual fire detection system to
route planning in a UAV system as industrial surveillance
from fire hazards. In this regard, current works are still
improving the accuracy or applications without improving the
model’s efficiency.

VI. CONCLUSION
Different kinds of industries present specific risks to experi-
ence a fire incident. The ones that manipulate fuel elements
are the most exposed. In such cases, using preventive and
reactive control methods reduces fire accidents. Hereof, effi-
cient methods to monitor the facilities and rapidly control this
kind of event by detecting fire or smoke in multiple places at
low cost become essential.

A novel KutralNext approach for fire and smoke recog-
nition was proposed with 138.9K parameters and 76.9M
flops, with an efficient model developed in this research.
KutralNext+ considerably reduces the number of flops to

4Some users reported the slow implementation in the depthwise convolu-
tion using CUDA 32 bits floating-point operations to the PyTorch repository
https://github.com/pytorch/pytorch/issues/18631

24.6M, achieving the best performance with 84.36%, and
81.53% mean test accuracy in the fire and fire and smoke
recognition tasks, respectively. Additionally, it comprises
97% fewer flops and 16% more accurate during fire and
smoke recognition testing than FireDetection. Hence, it is
executed 4x faster with better generalization.

Addressing the fire and smoke recognition model in a
multi-label approach is affordable to implement a more
specific early vision-based alert system. Nevertheless, our
efficient proposals could recognize the smoke in images,
even when the architecture design was not intended for this
task. Additionally, the pre-training over the ILSVRC dataset,
the convolution techniques, and the multi-label approaches
considerably improve our specific-purpose models’ perfor-
mance. Therefore, our KutralNext+ achieved the best test
metrics, generalizing fire and smoke labels more effectively,
suitable for portable device implementations.

For future studies, we recommend improving the smoke
label recognition under an efficient approach. Maybe the
architecture could be adapted into an ensemble model, reduc-
ing the number of layers and sharing important features to
infer. Furthermore, we plan to extend our research to fire
and smoke detection using a bounding box approach. Addi-
tionally, we consider KutralNext and KutralNext+’s imple-
mentation in an embedded platform and check its real-time
performance. Positive results also could lead to implementing
KutralNext architecture in a reinforcement learning frame-
work to control an UAV searching for fire, as presented
in [50].
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