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ABSTRACT The Internet of Things (IoT) has rapidly expanded for a wide range of applications towards a
smart future world by connecting everything. As a result, new challenges emerge in meeting the requirements
of IoT applications while retaining optimal performance. These challenges may include power consumption,
quality of service, localization, security, and accurate modeling and characterization of wireless channel
propagation. Among these challenges, the latter is critical to establishing point-to-point wireless commu-
nication between the sensors. Channel modeling also varies depending on the features of the surrounding
area, which have a direct impact on the propagation of wireless signals. This presents a difficult task for
network planners to efficiently design and deploy IoT applications without understanding the appropriate
channel model to analyze coverage and predict optimal deployment configurations. As a result, this challenge
has attracted considerable interest in academic and industrial communities in recent years. Therefore,
this review presents an overview of current breakthroughs in wireless IoT technologies. The challenges
in such applications are then briefly reviewed, focusing on wireless channel propagation modeling and
characterization. Finally, the study gives a generalized form of commonly used channel models and a
summary of recent channel modeling developments for wireless IoT technology. The outcome of this review
is expected to provide a new understanding of the propagation behavior of present and future wireless IoT
technologies, allowing network engineers to undertake correct planning and deployment in any environment.
Additionally, the study may serve as a guideline for future channel modeling and characterization studies.

INDEX TERMS Channel modelling, channel characterization, IoT applications, IoT challenges, wireless
IoT technologies.

I. INTRODUCTION
Wireless Channel Characteristics are essential in any com-
munication system since they directly affect wireless signals
traveling from the transmitter (Tx) to receiver (Rx). On the
other hand, wireless transmission has become the backbone
for enabling wireless IoT applications. Thus, establishing and
developing wireless networks relies on propagation models
that consider geographical features, among other factors,
that can contribute to signal loss [1]. As a result, there is a
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need to investigate the propagation channel parameters that
directly impact wireless transmission performance. Failure to
do so will impact the planning and deployment of any IoT
application.

A. PROBLEM FORMULATION AND BACKGROUND
Besides, choosing an accurate channel model to represent
the actual real-world wireless IoT deployment is challenging
due to imperfection surrounding the deployment area. These
imperfections might include the varying terrain, large objects
(e.g., buildings and tall trees), and various moving objects
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with variable speeds. In other words, the actual wireless IoT
performance differs when used in environments that have dif-
ferent channel conditions from the original development envi-
ronment. Furth, the ongoing expansion of wireless networks
needs further signal propagation studies to assure an effective
post-planning phase service coverage and efficiency [2].

In this sense, radio network engineers frequently employ
PL models to predict coverage, optimize constrained net-
work resources, and conduct interference feasibility stud-
ies [3]. As a result, numerous studies in recent years have
focused on either surveying and evaluating current mod-
els; as in [2], [4]–[8]; or proposing/improving models for
more accurate propagation estimation in a specific area; as
in [1], [3], [9]–[11].

For example, [4] compared PL prediction from nine
empirical PL models to observations from four television
transmitters along five pathways in urban and rural areas.
Similarly, [2] compared the performance of three PL mod-
els at a 5.8 GHz frequency band in 12 cities using RSSI
from 335 fixed user locations. In [4], the Hata and David-
son models outperformed other models. Meanwhile, the SUI
and Okumura models had the lowest prediction accuracy,
ranging from 15% to 21%. In contrast, the SUI Model
performed best in [2], with the lowest root mean square
error (RMSE) of 7.22 dB and standard deviation (STD) com-
pared to COST231-Hata and ECC-33.

On the other hand, [5] and [9] focused on studying the
foliage impact. Reference [5] assessed foliage excess loss
from 2 GHz to 18 GHz and 26.5 to 40 GHz mmWave
frequency bands in a tropical outdoor canopy and thickly
foliated trees. The Weissberger Modified Exponential Decay
(WMED) and ITU-R showed the most optimistic estimate of
the measured data, while COST 235 provides the most pes-
simistic estimate. FITU-R has the largest attenuation incre-
ment as a function of frequency. Thus, results disagreed with
current empirical models built solely for their temperate mea-
surement area. This study, however, did not consider a few
other aspects, such as leaf size, foliage density, tree species,
wind effect, and precipitation. As for [9], a new foliage
empirical propagation model was proposed for two mor-
phologies based on measurements made in outdoor tropical
vegetation at 700-800 MHz. W MED, COST 235, and Chen
& Kuo foliage models were also compared, revealing that
the proposed model differs significantly over larger distances
between Tx/Rx.

The authors of [10] and [1] analyzed an outdoor mixed path
tropical Amazon region and developed a propagation model
for Digital TV (DTV) services in the UHF band. The model
in [10] was based on Geometrical Optics (GO) and the Uni-
form Theory of Diffraction (UTD). In contrast, [1] proposed a
Machine Learning (ML)-based model for non-homogeneous
paths and various climates. The model was then tested using
measurements from two DTV stations, considering multi-
ple paths, woodland, and freshwater. [10] showed that the
attenuation of a forest proved to be greater than that of a
suburban area, with the electric field being lower by 12 dB

for a dense forest compared to a sparse forest. Compared
to the Okumura-Hata, ITU-R P.1546, and Walfisch-Ikegami
models, the proposed model had the lowest RMSE of 2.75 dB
to 3.43 dB. Finally, compared to the Hatamodel, the proposed
model in [1] had a lower RMSE in all cases, ranging from
1.67 dB to 4.25 dB.

On the other hand, [11] proposed a statistical propaga-
tion model to estimate Air-to-Ground (ATG) coverage and
PL between a Low Altitude Platform (LAP) and a terres-
trial terminal in an urban region. Instead of site-specific
3D models, the estimation relied on the elevation angle
between terminal and LAP. However, the study’s drawbacks
are: 1) the Doppler effect caused by the hypothetical high
speed of an aerial transmitter was not examined because
the assumption primarily focused on a semi-stationary LAP;
2) the study was based on simulations with no physi-
cal verification; and 3) potential urban geometry influ-
ences, such as foliage, lampposts, and moving objects,
were also ignored, presuming that the large-scale build-
ing geometry and its EM characteristics will dominate the
average PL.

The forthcoming 5G-based IoT, with its numerous com-
plex application scenarios, necessitates more effective chan-
nel estimates and modeling [6]. Accordingly, [12] surveyed
and evaluated the applicability of existing propagation mod-
els for Industrial IoT (IIoT) applications. The evaluation
utilized worst, median, and best case predictive behaviors.
As case studies, NB-IoT, Sigfox, LoRa, ZigBee, and MIOTY
IoT technologies’ performance metrics such as cell radius,
spectral efficiency, and outage probability were examined.
Themodels considered include Free Space Path Loss (FSPL),
3GPP (indoor open and mixed hotspots, outdoor urban
macro- and micro-cell, and outdoor rural), and industrial
indoor channel model for ISM bands. Results showed that
NB-IoT had the longest cell radius and the lowest outage
probability in outdoor scenarios, Sigfox had the highest
indoor spectral efficiency, and ZigBee had thewidest working
bandwidth. They argued that 3GPP models are the most
suitable for estimating the examined communication metrics,
with estimations frequently close to the median-predicted
behavior.

Besides, [6] provided an outline of the ML conceptual
framework for future radio propagation modeling and esti-
mation. The study also introduced the 5G channel model-
ing domain and summarized current advances in applying
ML-based channel modeling. Then, essential methods in ML
were discussed, including regression analysis and how clas-
sification determines output data to estimate traffic flow. The
study emphasized that much work is needed to overcome
obstacles and achieve accurate modeling despite significant
investment in ML. Nevertheless, ML techniques showed
feasibility by estimating channel parameters and extracting
channel information. Hence, it was concluded that successful
predictive ML techniques would reduce complexity while
increasing precision. Further, as the number of measurements
is reduced, the use of ML approaches in wireless channel
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modeling becomes increasingly important as generalization
abilities improve.

Finally, [7] presented a comprehensive study of existing
over-the-sea channel models used for Unmanned aerial vehi-
cles (UAVs) and marine communication. Hence, the study
targeted simplifying the model selection procedures accord-
ing to the targeted application. Meanwhile, [8] provided a
comprehensive overview of existing ATG channel measure-
ment studies, large- and small-scale fading channel models,
limitations, and future guidelines for UAV communication
scenarios. Different UAV propagation scenarios were also
explored, as well as critical elements for these measurements.

B. STUDY MOTIVATIONS AND CONTRIBUTIONS
In conclusion, most wireless channel characterization and
modeling studies are limited to study area settings. Besides
that, only one study, in [12], examined the suitability of
current channel models for wireless IoT technologies, which
is in turn explicitly limited to IIoT applications, considering
few channel models. On the other hand, the remaining studies
focus on performance evaluation and surveying the suitability
of existing models for traditional communication technolo-
gies with high transmission power, high power devices, and
high gain antennas without considering IoT-based application
requirements. As a result, more research is needed to pre-
cisely evaluate the suitability of existing models for various
wireless IoT technologies, particularly in regions known for
their harsh environments, such as tropical climates with irreg-
ular terrain.

As such, this work builds on past research and presents a
comprehensive review of recent advances in wireless channel
characterization and modeling for wireless IoT technologies.
Therefore, the contributions of this work can be summarized
as follows:

1) Provide a rigorous survey of modern wireless
IoT-based solutions.

2) Describe the most significant challenges in such appli-
cations, with a particular emphasis on wireless channel
propagation modeling and characterization.

3) Briefly describe channel modeling, a generalized
form of commonly used channel models, and lists
34 well-known path loss models for wireless IoT chan-
nel modeling under different communication scenarios
and environments.

4) Finally, the study reviews recent advances in channel
modeling for wireless IoT technologies, identifies gaps
in existing research, and suggests future directions for
developing a robust wireless IoT solution.

The rest of the paper is structured as follows: Section II
examines wireless IoT technologies and potential IoT solu-
tions. Section III discusses the challenges related to wireless
IoT technologies. Section IV covers wireless channel prop-
agation modeling concepts and provides detailed equations
for well-known and commonly used models for wireless IoT
technologies. Section V reviews the most recent studies on
wireless IoT channel modeling and characterization. Finally,

Section VI draws conclusions and suggests some future work
directions. To further facilitate reading, Fig. 1 provides a
detailed structure of the review, while Table 1 summarize the
related works compared to the current review.

II. WIRELESS IoT TECHNOLOGIES AND POTENTIAL IoT
SOLUTIONS
The Internet of Things (IoT) is a network that connects
users and objects by using information sensing devices and
actuators [13]–[15]. IoT has caught academic and industry
interest for the past few years [16] due to the exponential
rise of connected devices and the need for new or optimized
methods to manage many connected devices [13]. As a result,
the number of connected devices nowadays is expected to be
between 26 to 50 billion [17]–[21]. This trend is anticipated to
accelerate further, expected to reach around 75 to 100 billion
connected devices by 2025 [13], [16], [21].

Various wireless IoT technologies and network topolo-
gies can support IoT [22]. Depending on the application
requirements, operational restrictions, and coverage needs,
these technologies can be classified into three categories.
First is traditional short-range technologies, such as Wi-Fi,
ZigBee, and Bluetooth, mostly utilized for high availability
and low latency activities, whereas energy consumption is
not a key issue [14], [23]. As such, they are unsuitable for
long-range communication. Second is cellular-based solu-
tions, such as 2G-4G and future 5G/6G,which provide greater
coverage but demand excessive device energy. Finally, as a
result of the crucial IoT application requirements [13], [20],
Low Power Wide Area Networks (LPWANs) are emerging
as an exciting new trend in the growth of wireless com-
munication systems. Many LPWAN developments, such as
Sigfox, LoRaWAN, and NB-IoT, have lately emerged in
both unlicensed and licensed spectrum, becoming one of
the leading novel technologies with numerous technological
differences [16], [20], [21]. Its main features include large
coverage area support and massive scale networking with low
cost, long-life, and restricted data rate EDs [13], [16], [18].

Together, these wireless IoT technologies support vari-
ous IoT solutions for outdoor and indoor scenarios, whether
deployed in urban, suburban, or rural areas. Those applica-
tions cover many sectors of life, including those reviewed in
the below subsections and as shown in Fig. 2.

A. SMART CITIES
These paradigms are primarily evolving to address the issues
faced by the rising complexity of today’s urban environ-
ments [22]. The essential characteristics of a smart city
include a high level of technological integration and broad
use of information resources [24]. Accordingly, IoT use in
smart cities enables remote device monitoring, management,
and control, alongwith new views and operational knowledge
driven from enormous data streams.

One of these smart city IoT applications is smart light-
ing, which boosts the lighting infrastructure’s efficiency by
reducing electricity use using dimmers and task lighting.
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TABLE 1. Summary of related works.

It can also serve as an access network for context-aware
services such as smart parking. Hence, it has the potential
for a significant economic impact. In 2014, for example,
studies revealed that smart lighting infrastructure in Mon-
techiarugolo, Italy [22] helped reduce electricity usage by
76%, resulting in a 73% cost savings compared to traditional
lighting systems used in the city. Further, the combined effect
of LED lighting and wireless remote control saved 224 TEP

(a ton of oil equivalent) each year and avoided 500 tons of
CO2 emissions.

In a smart city paradigm, many other applications
exist, such as automotive and intelligent transportation
systems [25], [26], Remote Structural Health Monitoring
(RSHM) [27], smart homes and buildings [22], [28], [29],
metering monitoring [28], concrete surface WSN [30], and
level of trash monitoring [31]; as shown in Fig. 2.
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FIGURE 1. A detailed structure of the review.

B. INTERNET OF MEDICAL THINGS (IoMT) AND
EMERGENCY IoT (EIoT)
The healthcare sector has recently experienced tremendous
expansion and is estimated to be very large due to global
aging [32] and corona-virus disease (COVID-19) [33], [34].
The healthcare sector has recognized the huge potential of
IoMT technologies, often known as healthcare IoT, due to
their effective collection, analysis, and transfer of health data.
Thus, the IoMT has risen as a combination of medical equip-
ment and software platforms to offer full healthcare services
linked to healthcare IT systems [35].

In this way, IoMT monitors vital signs, instantly detects
anomalies, and alerts parties concerned. Multiple sensors are
embedded in garments, watches, wearable items, and even
jewels in such a condition to continually monitor vital signs
such as blood pressure, heart rate, blood glucose level, blood
oxygen level, and standing position [36].

Besides, electrical bioimpedance methods require com-
plex devices and measuring settings in medical and person-
alized healthcare systems. As such, various investigations
were carried out in this context. For instance, [37] iden-
tified a standalone bioimpedance analyzer termed ‘‘Zink’’
with IoT monitoring features. The system allows users
to obtain/perform single or multiple bioimpedance read-
ings remotely. The device may also calculate bioimpedance
synchronized with an electro-cardiogram (ECG) or elec-
tromyogram (EMG) readings. Similarly, [38] proposed an
IoT-assisted ECGmonitoring system with reliable data trans-
fer for continuous cardiovascular health monitoring, enabling
automated classification and real-time operation. Such a sys-
tem has a high potential for defining clinical acceptance of
ECG signals to improve an unsupervised diagnostic system’s
performance, accuracy, and reliability.

The IoMT may also be highly effective in emergency sce-
narios. For example, during the current COVID-19 pandemic,
many innovators, medical authorities, and government agen-
cies concentrated on harnessing IoMT resources to relieve
pressure on medical systems. As a result, several IoMT
technologies, such as smart thermometers and telemedicine
(remote patient monitoring), have contributed to monitor-
ing and, eventually, dealing with the COVID-19 pandemic
impact [35].

Smart IoT-based fire-ground and firefighter monitoring
system (IoT-FFM) suggested in [39] can also assist people in
risky situations. It adds functions such as surveillance of fire
environment gases, real-time danger notification, and transfer
of firefighter location and health data to a remote command
unit. As a result, the technology will aid in protecting peo-
ple’s lives (both firemen and victims) and avoid potentially
hazardous situations.

Other IoMT and EIoT applications include medical
bleeder [40], emergency & disaster monitoring [11], Wear-
able Body Area Networks (WBAN) [41]–[43], and Device-
to-Device (D2D) & Device-to-Machine (D2M) based
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FIGURE 2. Several innovative IoT solutions from the reviewed literature.

communication devices to monitor and track devices during
Search and Rescue (SAR) operations [44], as listed in Fig. 2.

C. INDUSTRIAL INTERNET OF THINGS (IIoT)
The IIoT and Industry 4.0 development goals include mas-
sively distributed smart computing and networking advances

in industrial production and manufacturing systems for
automation, quality, and control [45], [46]. IIoT has distinct
features and requirements apart from commercial IoT, like
specific built-in smart devices, network capabilities, QoS, and
strict command and control standards [45]. Thus, IIoT helps
reduce faults and costs and improves safety and performance
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in manufacturing processes, giving the industry a consistent
degree of precision, availability, and scalability [46], [47].

Among other features, IIoT allows control commands to
be sent rapidly from a client device to anyplace in a facility,
such as an oil rig or power plant, without requiring a physical
presence. This ability to respond swiftly from any location
may save the firm and the environment from costly damages
or disasters like the 2015 oil spill in Santa Barbara, CA,
USA [46].Another innovative use of IoT is in condition-based
monitoring (CbM) applications to investigate vibration-based
machine health. As such, the objective is to compare observed
vibration to components that are vulnerable to common wear
processes, such as bearings, gears, chains, belts, brushes,
shafts, coils, and valves. These sensors can save money by
detecting early warning signs of breakdown in industrial
machinery and optimizing the maintenance schedule [48].

Other IIoT applications include industry risk manage-
ment (to reduce infectious disease outbreaks such as
COVID-19) [49], smart grid (SG) [50], [51], smart goods
tracking and transportation systems [52], [53], smart oil-
fields [49], and smart factories [45]; as listed in Fig. 2.

D. SPORT ACTIVITIES
Another prominent application of IoT technology is in sport-
ing activities [36]. Where gadgets such as IoT-based monitor-
ing and tracking devices could, for example, monitor hikers’
positions, health status, and overall safety while hiking [44].
D2D connectivity is favored for such situations with IoT,
as small devices may be unable or need to connect with
standard cellular infrastructure. As a result, such devices may
communicate data on the positions of the various participants,
allowing each to keep track of the others for either competi-
tion or safety [54].

Another example presented in [55] is an IoT-based smart
physical fitness tracking device. The device comprises several
portable sensors and RFID to adapt and control the physical
load intensity in real-time, accurately, and efficiently, based
on the physiological load within the human body, to meet the
predetermined objectives of the training plan. Thus, athletes’
physical fitness testing data may be saved and categorized
with such a system then evaluated using the BP neural net-
work approach. This can provide users and coaches with a
highly matched training plan, generate scientific and routine
physical fitness tests for athletes, give players maximum
competitive potential, and improve physical fitness.

E. ENVIRONMENTAL AND AGRICULTURE IoT
Climate change, population expansion, demographic shift,
urbanization, and resource scarcity imply that the world’s
largest cities will need to adapt to survive and grow in
the future decades [56]–[58]. Cutting greenhouse gas emis-
sions to avoid catastrophic global warming and sustaining or
improving living quality, on the other hand, maybe an expen-
sive and difficult task [56], [57]. For instance, factors directly
impacting the quality of life, such as water and air quality,
are routinely monitored using expensive systems [56], [59].

Such assessments, particularly for water quality monitoring,
typically include on-site sample collection and subsequent
laboratory analysis, which adds intense and costly labor [59].
Recent IoT advances have thus enabled unique methods and
autonomous real-timemonitoring of these factors by integrat-
ing low-cost sensor devices, machine-to-machine (M2M),
and IoT technologies [56], [59].

Besides, IoT monitoring devices may track environmen-
tal impacts on urban underground infrastructure caused by
excess storm and wastewater volumes entering pipelines,
causing backups and sanitary sewer overflows. These sys-
tems, also known as urban underground IoT (UIoT), are
required for controlling external water flow into pipelines and
are enabled by merging underground wireless communica-
tion and sensor technologies [60].

Similarly, various studies have been conducted in agricul-
ture IoT to digitalize the agricultural industry [61]. Thus,
enabling the implementation of Precision Agriculture (PA)
with increased financial returns, increased product quality
and yield, and cost reduction [60], [62]. Besides, farming has
recently become fairly reliant on processing production area
information for various crops, utilizing actuators to remotely
operate network equipment, consequently adopting two-way
communication systems [62].

IoT usage in agricultural processes improves the trace-
ability system and improves overall farming practices, effec-
tive land utilization, agricultural quality, and safety. As a
result, internal traceability assures support for seedlings used
in major crops across the whole agricultural sector. In this
regard, [63] described an IoT-based greenhouse traceability
system for tracking seedlings and other agricultural goods
from germination to harvest. The systemmonitors luminosity,
moisture, temperature, and water usage to indicate water con-
sumption, plant development trends, and product harvesting
timelines. The technology also allows for automatic monitor-
ing of the indoor greenhouse environment via an irrigation
system or temperature control and a vital overview of agri-
cultural product internal traceability from seed to the final
product.

Another example is automated irrigation monitoring and
control systems, which can help identify the precise timing of
watering and the amount of water required to meet crop water
needs while improving water usage efficiency [64]–[67].
Other research looks into solutions like UioT to enable
smooth access to data from agricultural fields, including in-
situ soil sensing capabilities, communication through plants
and soil, and supplying real-time environmental data, thus
delivering useful information to farmers [60].

For example, [67] offered an open-source IoT-based smart
irrigation architecture with a hybrid machine-learning-based
strategy to predict soil moisture and watering requirements.
The system uses sensor data such as soil moisture, soil
temperature, ambient conditions, and weather forecast data
to predict soil moisture for the next few days. Simi-
larly, [68] uses an autonomous IoT-enabled WSN sys-
tem comprising soil moisture & temperature, environmental
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temperature & humidity, CO2, and daylight intensity sensors
to obtain real-time farm data. Furthermore, farm history is
saved to create relevant actions throughout the farming cycle.
The study also uses neural networks to describe accurate
water valve control based on soil water demand estimation
one hour ahead. Accordingly, the structural similarity (SSIM)
index-based soil moisture content shortage is calculated to
control the specified valves and maintain uniform water
needs over the entire farm area. Valve control commands are
examined again using a fuzzy logic-based weather condition
modeling approach to change control commands in response
to changing weather conditions.

In contrast, [61] proposed a cloud-based greenhouse crop
production solution to provide various services for the envi-
ronmental and economic benefits of agricultural operations
and improve system performance by offering recommenda-
tions for the use of water, pesticides, fertilization, or energy.

Other agricultural solutions (as listed in Fig. 2) could
include tracking cows’ grass grazing behaviors [69], [70],
monitoring grass growth on major roadways, residential
lawns, outdoor sports centers, and inaccessible areas [70], and
rice field monitoring [71].

F. INTERNET OF ANIMALS (IoA)
In this context, IoT can be useful in a variety of applications.
For instance, IoT monitoring and tracking devices could be
used to track and monitor wildlife in rural or mountainous
& rocky areas, like mountain lions [44], pink iguanas [72],
and zebras [73]. WSN and MEMS advancements have also
aided other solutions, such as remote monitoring of dairy cow
health issues using IoT-based WBAN, as reported in [74].
Besides that, [75] described real-time IoT-based tracking
systems leveraging sensors to enable large dairy farms to
maximize revenue and improve cow welfare. The latter is
done by monitoring ruminal temperature and pH, which are
critical for monitoring the dairy cows’ nutritional and health
status and predicting anomalies (e.g., metabolic disorders
after calving).

In contrast, [76] described an innovative IoT-based system
with multiple sensors, wireless data transfer, and self-
sustaining power for long-term and robust bee colony mon-
itoring. The suggested system can detect hive temperature
and humidity, bee comb weight, colony sounds, and the
number of bees entering the hive. Long-term monitoring
trials revealed that the system could run continuously without
human intervention, and data can reveal bee colonies’ activity
and growth. Notably, data successfully identified a swarming
behavior, indicating a high potential for recognizing specific
bee colony activities. As a result, the suggested approach had
a significant impact on verifying the activities and state of
bee colonies, which could contribute to the evaluation of bee
behavior and the enhancement of beekeeping quality.

G. UNMANNED AERIAL VEHICLES (UAVs)
Unmanned aerial vehicles (UAVs), commonly known as
drones, have witnessed increased adoption in recent years,

from agriculture to industry, government to private orga-
nizations, and smart cities to rural area monitoring. UAVs
are becoming more maneuverable and intelligent with recent
advances in IoT, cloud & edge computing, and wireless com-
munication technologies. Hence, the Internet of Drones (IoD)
is emerging as a promising technology and use case for UAVs.
Many industries are projected to adopt IoD-based automation
for smart monitoring, surveillance, and search and rescue via
reliable mobile communications systems.

Drones have recently been used as flying cellular base
stations (BSs) to deliver reliable and energy-efficient IoT
communications [77], [78]. Such deployment of BSs would
increase the probability of LOS communication and mitigate
destructive effects such as shadowing and blockage, thereby
increasing the reliability of communication links [79].

One application of IoD is remote sensing, which allows for
easier measurements andmonitoring in harsh or remote areas.
For example, [80] presented an IoD-based system for live-
stock monitoring on large-scale rural farms, in which a fixed-
wing UAV was equipped with a LoRa gateway and collected
data from IoT-based monitoring equipment deployed across
the farm. Disaster relief and management is another novel
application of IoD. Reference [81] proposes a UAV-cloud
framework for disaster sensing in disconnected, intermittent,
and resource-constrained environments. Other UAV use cases
include aerial entertainment [82], agriculture inspection [83],
powerline/BS inspection [84], surveillance [85], aerial mon-
itoring [86], radiation monitoring [87], logistics and trans-
portation [88], and localization and mapping [89].

H. VEHICLE-TO-VEHICLE (V2V) COMMUNICATION
The automotive industry is currently undergoing a techno-
logical revolution fueled by IoT technologies. As a result,
vehicles are going through a disruptive shift from manually
driven vehicles to self-driving vehicles with varying degrees
of autonomy, depending on the technology on-board and
the situations encountered [90]. Existing Original Equipment
Manufacturer (OEM) embedded systems use standard sen-
sors such as GPS, camera, and proximity sensors, limiting
their use to some basic applications such as sensing adjacent
objects and crash detection. Hence, more advanced technolo-
gies are needed to achieve a high level of autonomy, safety,
and traffic control.

V2V communication is a game-changing technology that
connects vehicles and provides drivers with critical infor-
mation about their vehicle, other nearby vehicles, and the
surrounding environment, such as weather, roadblocks, and
traffic [91]. This data will be utilized to warn drivers
of potential hazards via a visual display, seat vibration,
or tone. These warnings will assist drivers in respondingmore
quickly and avoiding potential accidents [92]. Some exam-
ples of V2V-based driver assistance applications include the
following:

• Intersection movement application; warns drivers when
it is unsafe to enter an intersection.
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• Do not pass applications; warns drivers when passing a
slower-moving car is unsafe.

• Emergency electronic brake light application; notifies
the driver when an out-of-sight vehicle several cars
ahead is braking.

• Blindspot warning application; enables drivers to virtu-
ally view what is occurring in their blind spots.

On the other hand, V2V IoT services can continuously
monitor the vehicle’s condition and inform the driver in
advance if something is likely to go wrong. Additionally,
the IoT services can be used to notify medical personnel or
the police in the event of an accident or emergency. Another
application of V2V communication is path optimization,
where critical travel-related information can be exchanged
between vehicles to assist drivers in arriving at their desti-
nations most efficiently.

I. MILITARY
Beyond traditional civilian contexts, IoT has many military
and antagonistic uses. The US Army Research Laboratory
(ARL), for example, has created an Enterprise strategy to deal
with the complexities of the Internet of Battlefield Things
(IoBT). ARL intends to build a new collaborative project
(the IoBT CRA) to develop IoBT core capabilities for future
military operations [93]. Similarly, IoT monitoring and track-
ing systems can enable connectivity during remote military
operations via device-to-device and device-to-machine com-
munications [44]. Furthermore, UioT can be used in border
surveillance applications such as border enforcement and
infiltration prevention [60].

On the other hand, UAVs have been widely used in military
applications. When outfitted with various communication
devices, UAVs working in tandem with satellites and BSs
form a diverse three-tier (space-air-ground) network that pro-
vides seamless coverage and expands the capacity of increas-
ingly profitable IoT networks [94].

Finally, the underwater wireless sensor network (UWSN)
has been widely used for data collecting in an underwater
environment for military and civilian uses. UWSN appli-
cations include tsunami and earthquake warning systems,
undersea military monitoring, ocean exploration, navigation,
environmental, and pollution management [95].

III. CHALLENGES OF WIRELESS IoT TECHNOLOGIES
With the technological advancements and current develop-
ments in the wireless IoT paradigm, various challenging
factors must be considered while deploying precise, high-
performance, and cost-effective IoT systems. As such, the fol-
lowing sub-sections summarize the most crucial challenges
confronting any IoT solution:

A. POWER CONSUMPTION (RELIABLE AND PERMANENT
POWER SOURCE)
In many cases, IoT systems are placed in locations with
limited power resources, resulting in most IoT systems
being battery-powered [96], [97]. Furthermore, the rising

complexity of IoT data transmission, storage, and process-
ing capabilities requires more power-intensive tasks. In this
sense, the capacity of IoT devices to operate for long periods
without recharging is a significant challenge [96], [98], [99].
Finally, the rise of IoT and the emergence of LPWAN IoT
technologies, e.g., in traffic monitoring, PA and animal health
monitoring, posed an additional challenge to power efficiency
in long-range transmission situations [96], [100].

As a result, battery life and the ability of end nodes
to communicate over long ranges is one of the most cru-
cial and problematic issues, particularly for off-grid and
wearable IoT applications [96], [97]. Many studies have
focused on addressing this issue to analyze and optimize
power performance for optimal IoT applications, consid-
ering both hardware and software perspectives [96]–[99],
[101], [102]. Accordingly, low power systems or energy
harvesting techniques such as micro-magneto-electric, ther-
moelectric, piezoelectric, or photoelectric technologies have
lately been proposed as a feasible solution [99].

B. QUALITY OF SERVICE (QoS)
Conventionally QoS was mainly determined by factors such
as bandwidth, jitter effect, packet loss, and network delay.
To provide superior IoT services, however, various other
characteristics of the IoT networkmust be considered, includ-
ing network/server connection time, service level agreement
compliance, availability, and reliability. The authors in [103]
identified and classified major QoS metrics based on the
main IoT components, including communication, things, and
computing.

It is challenging to deliver guaranteed QoS, particularly
for IoT applications distributed in harsh environments or
when IoT nodes are placed near the ground, as in agricul-
tural areas [62], [104]. In such conditions, communication
suffers from severe attenuation due to obstacles [104], thus
adding complexity to the network design phase [62]. There-
fore, such an issue might impact the QoS, causing poor
node communication and an unreliable IoT system that could
increase the number of packet retransmissions and nodes’
energy consumption, resulting in wireless link failure [104].
Consequently, providing the nodes with adequate resources
to operate the system self-sufficiently without affecting QoS
is another tricky task [101].

C. LOCALIZATION
IoT applications frequently demand location data from end
devices [105], [106]. As a result, data obtained for var-
ious applications, such as animal tracking, surveillance,
autonomous vehicle guidance, and patient monitoring [43],
[101], [106]–[108], is only meaningful if the precise location
of sensor nodes is known [105], [106].

Typically, the position can be obtained using Global
Navigation Satellite Systems (GNSS), such as the Global
Positioning System (GPS), which is viewed as an effec-
tive outdoor localization solution [106], [109]. These meth-
ods, however, are not always viable, particularly in indoor

VOLUME 10, 2022 24103



H. A. H. Alobaidy et al.: Wireless Transmissions, Propagation and Channel Modelling for IoT Technologies

environments [105], [106]. Where, for example, such envi-
ronments may impose numerous multi-path effects due to
obstacles between satellites and users [106], [109], resulting
in significant signal degradation [106]. GPS is also recog-
nized for its poor accuracy, which is limited to a maximum
of five meters [109] and a solution that requires more energy
and costs [105]. Aside from that, the cost, power, and size
limitations of IoT technologies, particularly LPWAN, impose
further constraints on embedding a GPS receiver into each
end device [110]. Hence, localization is viewed as one of the
most difficult IoT-related challenges [106], [109], [111].

Numerous IoT localization techniques have been devel-
oped recently [105], [110], [112], to address the existing
challenges and introduce accurate, energy-efficient, low-cost
localization techniques [105], [113]–[115]. These techniques
are typically classified into three categories [43], [101], [107],
as follows:

First is range-based localization techniques, which rely on
the range to identify the position of nodes or objects after a
series of ranging and computing phases [101], [107]. These
techniques can thus be based on methods such as Time of
Arrival (TOA), RSSI, weighted centroid-locating algorithm,
TimeDifference of Arrival (TDOA), Angle of Arrival (AOA),
and Phase of Arrival (POA) [101], [106], [107].

Second is range-free localization techniques; these do not
employ any measuring techniques and usually necessitate
special hardware to do the ranging, which is subsequently
used to compute coordinates [101]. Thus, these approaches
prioritize cost-effectiveness over range-based methods [107]
and are frequently utilized in mobile scenarios where the
precise location of nodes is unknown [101].

Finally, the third category combines range-free and
range-based techniques [107]. Among the three categories,
range-based localization techniques are the most extensively
utilized, particularly the RSSI-based localization technique
[105]–[107], [110], which requires no additional hardware or
synchronization in network end devices [105], [106].

D. SECURITY CONCERNS
Despite all-new IoT-enabled capabilities, there is an increased
security risk [46], [47], which could be caused by device fail-
ure, malicious attacks, unauthorized access, or poor key man-
agement [46], [47], [116]. As a result, such security concerns
will cause severe disruption to global IoT systems, poten-
tially outweighing their benefits [47]. A wide-scale security
attack on a large IoT network, on the other hand, can be
costly and difficult to prevent. For instance, security attacks
may result in factory shutdown and disruption to public
safety [116].

On the other hand, wearable IoT devices are predicted to
have weaker security features due to design compromises to
accomplish lightweight and low power consumption. Main-
taining low complexity in wearables is challenging with
enhanced security standards [99]. In this regard, practical and
reliable security algorithms must be considered, taking both
security and reliability into account [116].

E. ACCURATE WIRELESS CHANNEL PROPAGATION
MODELING AND CHARACTERIZATION
For wireless systems, the surrounding environment, such as
terrain, plant height and density, and obstacles, can easily
affect the received signal [71]. As a result, these channel
imperfections cause signal power loss, which affects QoS,
causing poor communication and thus a higher number of
data packet retransmissions between nodes. Such issues ulti-
mately result in higher power consumption in nodes and radio
link failure, leading to an inefficient IoT application [104].

Wireless channel propagation modeling and characteriza-
tion are thus required for the design and evaluation of robust
wireless IoT systems [71], [104], [117]. Path loss (PL) mod-
eling, in particular, enables an accurate estimation of IoT sys-
tem propagation behavior and interference [71], [117]. Thus,
this enables the best possible estimation of the range and
coverage between adjacent IoT terminals, together with an
estimate of the number of nodes required to cover a specific
area [62], [104], [118], [119]. In agriculture IoT, for example,
the widespread deployment of IoT-based WSNs would be
reliant on unique factors impacting PL model accuracy in
such situations, predicting nodes height and coverage range,
and enhancing transmission quality [71].

In conclusion, wireless channel propagation modeling and
characterization are crucial for sophisticated wireless IoT
systems and related to the other challenges this section men-
tions. As a result, its accuracy is crucial for properly assessing
and optimizing network efficiency amid deployment stages.
It also contributes to energy savings, precise node localization
(for RSSI-based techniques), reduced network interference,
and enhanced network capabilities, all of which improve QoS
in various deployment scenarios [119].

Due to the significance of this constraint, several studies
have been conducted recently to evaluate the effectiveness of
wireless channel models or propose optimized/new models
for wireless IoT technologies. As such, the next sections
will focus on this challenge, providing an overview of wire-
less channel modeling and characterization concepts, current
well-known and regularly used models for wireless IoT tech-
nologies, and a survey of the most recent works aiming at
wireless channel modeling.

IV. WIRELESS CHANNEL PROPAGATION MODELING AND
A SUMMARY OF COMMONLY USED MODELS
The wireless channel is the physical link between the trans-
mitter and the receiver through which the carrier signal trans-
mits data [6]. The signal interacts with various obstacles on
its path to the receiver, as shown in Fig. 3, leading to various
impacts that cause the signal to be either destructive or con-
structive during propagation [6], [120]. These obstacles cause
the signal to be reflected, refracted, or diffracted, resulting
in signal attenuation (by absorption) and inducing scattering
and secondary waves [120], [121]. Additionally, when an
antenna radiates the signal, the signal can take several paths
to the receiver. Each signal may interact chaotically with the
environment and arrive at the receiver marginally delayed.
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As a result, depending on whether the delayed signals are in
or out of phase, they can introduce constructive or destructive
interference. The spread of this delay is known as delay
spread (DS), and the attenuation associated with it is known
as multi-path fading [120].

Subsequently, propagation in wireless channels results in
either large- or small-scale fading based on signal varia-
tions [6], [122]. In turn, large-scale fading can be caused
by either PL as a function of distance or shadowing /
slow-fading caused by big fixed obstacles such as moun-
tains and buildings [6], [28], [123]. Meanwhile, destruc-
tive interference from multi-path effects and small scatterers
causes small-scale fading / fast-fading / scattering [6], [120],
[122], [123]. Small-scale fading is frequently used to evalu-
ate link-level performance using bit error rates and average
fading [6], [124]. In small-scale fading, the amplitude dis-
tribution of the received signal is typically modeled using
a probability distribution, such as Rayleigh, Rician, and m-
Nakagami. [6], [28], [122]–[124]. Signal delays caused by
reflections, scattering, and diffraction, on the other hand,
cause time dispersion, leading the signal to be distorted [6],
[120]. Time dispersion may also cause inter-symbol inter-
ference (ISI). Moreover, distortion can arise due to object
movement, resulting in frequency dispersion due to Doppler
spread [6].

As a result, wireless channel propagation modeling, com-
monly referred to as ‘‘channel modeling’’ or ‘‘propagation
modeling,’’ is essential for the design of wireless communica-
tion systems [6], [114], [120], [123]. It employsmathematical
parameters to determine the impact of the channel medium on
the transmitted signal [6], [31]. These models are classified
into two groups: deterministic (theoretical) and stochastic
channel models [6], [118], [119], which can contain a variety
of randomly varying parameters [6].

Others may classify channel models into three groups:
geometry-based deterministic models such as ray-tracing,
non-geometric stochastic models such as empirical models,
and geometry-based stochastic models (GBSM), also known
as semi-empirical models, which combine deterministic and
empirical models [6], [125].

The stochastic modeling approach is based on the sta-
tistical distributions of channel parameters and can be nar-
rowband or wideband [6]. Meanwhile, deterministic relies
on knowledge of the physical characteristics of the wireless
channel [118], [119] and is based on Maxwell equations [6].
This approach has the drawback of increasing computing
complexity and requiring costly site-specific designs and
extremely accurate 3D maps [6], [118], [126]. In con-
trast, stochastic modeling approaches, such as empirical
models, are based on real measurements of wireless chan-
nels. These models have the advantage of being simple
to develop and flexible enough to incorporate all environ-
mental factors influencing signal propagation during real-
world measurements [118], [119]. However, such models
only include frequency and distance, leaving out reflections,

diffraction, and refraction characteristics. Another disadvan-
tage of such models is the uniform representation of measure-
ment data acquired in a specific area with varying terrain and
climate [4].

Impulse response within a delay bin in the narrowband
can result in non-selective flat or frequency fading. On the
other hand, Wideband focuses on each channel response ray
independently and can be signal dispersion or selective fre-
quency fading. As a result, the stochastic narrowband model
is commonly used to characterize fading statistics and the
Doppler spectrum. The stochastic wideband model, on the
other hand, often focuses on received power, delay, departure
and arrival angle, and Doppler shift [6].

Having stated that, numerous channel models have been
described in past years [28], [31]. However, there is a lack
of studies in the literature that summarize and describe avail-
able channel models suitable for a broad range of wireless
IoT-based systems. As such, this section summarizes several
well-known and frequently used PL model equations for
various communication scenarios and environments, as given
in Table 2. Where 34 equations, from Eq. (1) to Eq. (34), are
listed and classified according to model category (empirical,
semi-empirical, or deterministic). For simplicity, the models
are further categorized into eight sub-categories based on
their intended use scenario, as follows:

A. CHANNEL MODEL FOUNDATION
This set of models includes those models driven purely
from the idealized theory of electromagnetic propagation,
including the Friis equation of Free Space Path Loss (FSPL),
Eq. (1), and two-Ray (2-Ray) or Plane Earth (PE) model,
Eq. (2), which treats the earth as a perfect conductor. These
two models are considered deterministic (theoretical) and are
widely used as baseline models in most comparison studies
and more complex models derivation [123].

B. BASIC
This set of models includes commonly used models, typically
empirical and based on basic inputs such as distance, fre-
quency, antenna height, and gain, with measurement-based
area-specific tuning [123]. The Okumura-Hata model, given
in Eq. (3), is the most popular. It is an empirical model with
environmental type parameters and is valid for frequencies
ranging from 150 MHz to 1500 MHz, 30 m to 200 m Tx/GW,
and 1 m to 10 m Rx/ED. One drawback of the Okumura-
Hata model is that its estimation does not consider the terrain
profile [31], [127]. Due to its popularity, several models
adapted the Okumura-Hata model to expand its supported
frequency, distance, and Tx/Rx height [120], [128]. These
models include Hata-Davidson, ILORIN (an optimization of
the Hata-Davidson model based on measurements in Nige-
ria), CCIR, COST231-Hata, Extended COST 231, ECC-33,
Ericsson 9999, and ITU-R P.529-3, as given in Eq. (4) to
Eq. (11), respectively.
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FIGURE 3. A basic wireless signal transmission with various attenuation scenarios due to channel imperfection.

C. TERRAIN
In contrast to the basic models, this set of models is com-
monly consideredmore complex and considers the estimation
of diffraction losses due to terrain obstacles [123]. Empiri-
cal models, such as Okumura, Lee, and Stanford University
Interim (SUI), and deterministic models, such as the Air-to-
Ground (ATG) model, as given in Eq. (12) to Eq. (15), are
examples of these models. There are also many more highly
complex but extremely popular models in this category, such
as the Longley-Rice Irregular Terrain Model (ITM) [31],
[123], [127], and Irregular Terrain with Obstructions Model
(ITWOM) [127], [129].

Despite their accuracy, empirical terrain models have
several limits due to low antenna heights, limited prediction
distances, and other area-specific limitations. Meanwhile,
ray-tracing ATG epitomizes deterministic models by employ-
ing Maxwell’s equations as well as the laws of reflection and
diffraction. The ATG propagation model is widely used in
Low Altitude Platforms (LAP) since it offers enhanced cell
capacity and downlink coverage. PL is calculated using a
closed-form approach between Tx andRx based on twomajor
ATG propagation categories. The first is LOS or near-LOS,
whereas the second is NLOS but still receives signals with
significant reflections and diffractions [130].

The ITM model is used at frequencies ranging from
20 MHz to 20 GHz. It is a two-part system with an ITM core
and an input-output module. This model is generally used for
point-to-point (P2P) communications and uses terrain data to
measure PL in P2P mode. This model, however, is based on
traditional diffraction theory, which does not incorporate pre-
cise radio wave calculations over irregular terrain. It also does
not account for environmental factors near the Rx [31], [127].
ITWOM, on the other hand, is an extension to ITM that
incorporates high location estimates and better accuracy into
the ITM core. In addition, unlike ITM, it considers more

than one obstacle in its diffraction calculations [127]. As a
result, the latter two models are commonly utilized in ray-
tracing and coverage estimation tools like Cloud-RF and
Radio Mobile [31], [127], [129].

D. BASIC/STOCHASTIC FADING AND BASIC/TERRAIN
This set of models consists of two sub-categories of basic
models. These models comprise Eq. (16) to Eq. (21), with
the last equation being the Egli PL model, which combines a
basic PL model with an empirical terrain loss factor, although
diffraction losses are not explicitly considered [131].

On the other hand, stochastic fading models, as given in
Eq. (16) to Eq. (20), are similar to basic models except that
they incorporate one or more random variables to account for
channel variance [123]. Numerous models fall into this cate-
gory, with the Log-Normal Shadowing PL (LNSPL) model,
as defined in Eq. (16), being the most widely used due to
its simplicity and flexibility to account for a wide variety of
environmental and propagation scenarios [117]. As a result,
it is commonly applied in the PL modeling of most IoT-based
wireless technologies [117], [114]. LNSPL is a one-slope
model, typically known as a one-slope log-distance model
if the PL estimation does not include the random variable.
This model is also adopted in both WINNER II and 3GPP
standards and is referred to as the Floating Intercept (FI)
or Alpha-Beta (AB) PL model [132]–[135]. It is based on
floating-intercept and line slope to provide the best min-
imum PL error fit. This model’s parameters are usually
derived through curve fitting and minimum mean square
error (MMSE) approaches [132], [134].

Another common model in the category of stochastic fad-
ing models is the so-called Close-In (CI) PL model [6],
[134], [136], as given in Eq (17). 3GPP adopts this model
for Urban Microcell (Umi), Urban Macrocell (Uma), and
Indoor Hotspot (InH) using a free-space reference PL at
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a reference distance of 1 m [6], [136]. Therefore, it relies
on a single parameter optimization of a distance-dependent
PLE [134], [136]. CImodel also has an intrinsic PL frequency
dependence within the close-in (1 m) FSPL value [135].
It thus models frequency dependence across a wide range of
frequencies and exhibits good precision and parameter stabil-
ity across various outdoor settings, distances, and frequency
ranges [136].

Several models have also been suggested to further mod-
ify the CI model, such as the Close-In with Frequency-
Dependent Exponent (CIF) model [6], [132], [136], given
in Eq. (18), and the Close-In with Hight Dependent Expo-
nent (CIH) model [136], [137], given in Eq. (19). The CIF
model was proposed to extend the CI model by modifying
the PLE to compensate for frequency dependency empirically
observed in the environment while maintaining a straightfor-
ward physical basis of frequency dependency due to Friis’
equation at reference distances of 1 m [6], [137]. On the other
hand, the CIH model modifies the CI model by adjusting
the PLE to account for the Tx antenna height dependency in
the PL calculation [136], [137]. Finally, Eq. (20) provides the
Alpha-Beta-Gamma (ABG) PL model [6], [132], [134] that
is a multi-frequency [132], [134] and the current 3GPP 3D
model [6]. Due to its three parameters, it always has a lower
shadow fading STD value than other models [6].

E. FOLIAGE AND FOLIAGE/TERRAIN
Another significant constraint in signal propagation is foliage
attenuation. It is shown to be a function of various parameters,
including frequency, foliage depth, tree species, foliage thick-
ness, leaf density, leaf size, branches, trunks, humidity, wind
speed, tree height relative to antenna heights, and foliage
length [138]. Furthermore, foliage attenuation is expected
to be greater in tropical areas where foliage is relatively
comparable to or larger than wavelength plus humidity. Inter-
estingly, recent field studies of tropical foliage attenuation
showed that the presence of a single tree in a link could cause
the signal to suffer foliage attenuation [5].

Numerous models exist to predict the excess loss due
to foliage attenuation, referred to in this sub-category
as foliage models. These models may include empirical
foliage models such as Weissberger’s Modified Exponential
Decay (WMED), ITU-R, Fitted ITU-R (FITU-R), COST-235
[5], [9], [54], [139], and Chen & Kue [9], as specified in
Eqs. (22), (23), (24), (25), and (26).

The W MED model was proposed for dense foliage areas
in temperate climates with propagation paths blocked by dry-
leaf trees [5], [9], [139]. By contrast, the ITU-R model was
developed utilizing Weissberger’s approach [9] and VHF /
UHF frequency band measurements [5], [139]. The latter
was then refined further using data from the VHF-mmWave
frequency band, comprising trees with and without leaves
over a short foliage depth [5]. Similarly, the COST-235model
was proposed utilizing Weissberger’s method and mmWave
measurements through a small grove of trees [5], [139].
Finally, the Chen & Kue model was proposed based on

diffraction theory with a four-layer medium to address propa-
gation impact in a forest environment utilizing measurements
over frequencies from 1-100 GHz [9].

The latter exponential decay models are purely empirical
and are therefore not constrained by inherent propagation
mechanisms. As a result, several semi-empirical models have
been proposed to address this issue [54]. These models may
include the current ITU-R foliage model (P.833-9) [54], also
known as theMaximumAttenuation (MA)model [54], [139],
[140], as well as the Non-Zero Gradient (NZG) model [54]
and the Dual Gradient (DG) model [139], as specified in
Eqs. (27), (28), and (29). The MA model is recommended
for terrestrial radio paths in wooded areas [140] and can
operate at frequencies ranging from 30MHz to 100GHz [54].
Meanwhile, the NZG and DG models expand the MA model
beyond 5GHz [54], [139].

The Tewari model, provided in Eq. (30), is an empirical
model proposed for frequencies ranging from 50 MHz to
800 MHz, considering both terrain and foliage loss. Thus,
this model is listed in Table 2 under the Foliage/Terrain sub-
category. This model was further modified in the Extended
Tewari model, as given in Eq. (31), by including an antenna
height gain factor to account for the effect of Tx and Rx
antenna height above terrain [54].

F. INDOOR
Propagation imperfections are primarily caused by reflec-
tion and diffraction from/around building objects, walls,
and floors for indoor environments. Additional loss happens
due to signals traveling through latter objects and mov-
ing objects, resulting in temporal and spatial signal fluc-
tuation [141]. As a result, estimating and modeling indoor
propagation is critical for indoor applications, gaining sig-
nificant research and development interest [142]. Accord-
ingly, several models have been proposed to compensate for
these indoor propagation imperfections and model the PL in
such environments. These models may include the COST231
Multi-Wall Multi-Floor (COST231-MWF) model [142], the
ITU-R Indoor (P.1238-10) model [141], and the Multi-Wall
Multi-Floor (MWMF) model [142], [143], as represented in
Eqs. (32), (33), and (34).

Indoor PL is addressed in the COST231-MWF model by
incorporating an FSPL with additional attenuation losses due
to building walls and floors [142]. Meanwhile, the ITU-R
P.1238-10 is a site-specificmodel that requires minimal infor-
mation about the signal path and the site while spanning a
broad frequency range of 300MHz to 450 GHz. It is typically
an empirical, basic PL model that considers the various atten-
uations of walls and floors and the shadowing impact under
certain conditions [141]. On the other hand, the MWMF
model was proposed utilizing ray-tracingmeasurements, con-
sidering the nonlinear relationship between total attenuation
and the number of crossed walls or floors [142], [143].

Apart from the models discussed in the preceding sub-
sections, various models have been introduced over the years.
These models include 3GPP TR 38.901 and ITU-R M.2412,
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TABLE 2. Well-known path loss models for wireless IoT channel modeling under different communication scenarios and environments.
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TABLE 2. (Continued.) Well-known path loss models for wireless IoT channel modeling under different communication scenarios and environments.
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TABLE 2. (Continued.) Well-known path loss models for wireless IoT channel modeling under different communication scenarios and environments.
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which support a wide range of transmission scenarios for a
wide range of frequencies and bandwidths, such as Outdoor-
to-Outdoor (O2O), Outdoor-to-Indoor (O2I), and Indoor-to-
Indoor (I2I) [128].

Meanwhile, several other studies have been conducted over
the past yearsmainly to propose newmodels or improve exist-
ing models by optimizing their parameters through different
methods such as linear curve fitting. Hence, the next section
will cover the most recent advances in wireless IoT channel
modeling and characterization.

V. CHANNEL MODELING AND WIRELESS PROPAGATION
OF IoT TECHNOLOGIES
This section thoroughly reviews the most recent develop-
ments and studies aimed at wireless channel modeling and
characterization of wireless IoT technologies. For simplicity,
the section will be divided into three sub-sections according
to wireless IoT technology categories, as follows:

A. CELLULAR-BASED WIRELESS IoT CHANNEL
MODELING AND CHARACTERIZATION
The wireless communications sector is undergoing sig-
nificant growth. In this regard, the fifth-generation (5G)
of mobile communication technology has been designed
to address all wireless broadband communication needs
and enable massive IoT deployments over the next
decade [155], [156]. While spectrum in the existing sub-
6 GHz band remains constrained, new frequency bands are
required to enable the efficient design of IoT applications in
5G networks [155]. As a result of its vast bandwidth, which
spans 30 GHz to 300 GHz, the mmWave band is regarded the
leading choice for adoption [132], [155]. However, the elec-
tromagnetic (EM) wave characteristics of these bands present
several challenges in terms of coverage limits, signal attenu-
ation, PL, penetration loss, diffraction, and scattering [125],
[155], [157]. Besides, buildings and other structures may
block the mmWave band signal [125]. Accordingly, several
studies have addressed these challenges and characterized the
5G frequency bands’ wireless channel characteristics [156].

For instance, the studies in [132], [156], [158], [159] con-
sidered a variety of indoor scenarios and a broad range of
frequencies to evaluate the channel’s behavior. In [156], vari-
ous channel models were studied for the 4.5, 28, and 38 GHz
frequency bands, including CI, FI, and ABG. Then, a new
hybrid probabilistic PL model was proposed, based on the
CI PL model, for directional and omnidirectional antennas in
LOS and NLOS scenarios. Meanwhile, [158] presented mea-
surements of an indoor cellular system operating at 40 GHz
in LOS and NLOS scenarios. A single frequency PL model
was thus proposed, based on the CI and FI models, and the
2-Ray model was investigated. According to [156], the FI
model does not physically represent either the LOS or NLOS
channel. Also, the small STD difference shows that the CI
model may be better suited for closed-form analysis than the
FI and ABG models. The proposed model was compared to
the CI, FI, and ABGmodels, which showed that the PL might

be modeled more accurately utilizing the proposed model
with a single parameter (PLE). According to [158], the PLE
of the CI and FI were similar, around 1.8 and 2.9, respectively,
for LOS and NLOS scenarios. Conversely, the results showed
that the FI model gave the best minimum error fit and, just
like the CI model, would be the most suitable for indoor PL
modeling of a 5G network operating at 40 GHz.

In contrast, [132] conducted a comparative study for the
indoor 5G channel, then proposed two models that addressed
loss due to wall edge diffraction and high-frequency band.
The results showed that the PLE values for the LOS were
1.6 and 1.3 at 3.5 and 28 GHz, respectively. However, the
power received was dropped in the NLOS, with PLE values
being 2.7 and 3.6 at 3.5 GHz and 28 GHz, respectively.
The results also indicated that FI and ABG models provided
reliable PL performance in the LOS scenario for single and
multi-frequencymodels. At 3.5 GHz and 28GHz, the average
diffraction loss was 11.11 dB and 23.37 dB, respectively.

Meanwhile, the frequency-related loss, referred to as fre-
quency drop, was 19.73 dB for the LOS and 32 dB for
the NLOS. The root mean square delay spread (RMS-DS)
values for the LOS and NLOS scenarios were less than 8 ns
and 12 ns, respectively. These results indicated that the 5G
channel has excellent PL performance and a very small DS,
enabling future real-world deployments of 5G-based smart
city IoT networks.

On the other hand, [159] presented an empirical characteri-
zation of the mmWave frequency bands, 6.5, 10.5, 15, 19, 28,
and 38GHz, in an indoor corridor scenario. Over 4,000 power
delay profiles (PDP) were observed overall bands using an
omnidirectional Tx antenna and a highly directional horn
Rx antenna in co- and cross-polarized setups. After that,
a new PL model was developed to account for frequency
attenuation due to distance, termed the frequency attenua-
tion (FA) PL model, which included a frequency-dependent
attenuation factor. Additionally, a more generic and simpler
method for estimating the cross-polarization discrimination
(XPD) factor of close-in reference distances using XPD
(CIX) and ABGwith XPD (ABGX) PLmodels was proposed
to avoid the computational complexity associated with the
MMSE approach. Small-scale metrics were considered to
describe multipath channel dispersion, including RMS-DS,
mean excess delay, dispersion factors, and maximum excess
delay.

Additionally, multiple RMS-DS statistical distributions
were investigated. The results implied that the proposed
models are more physically based and simpler than other
well-known models. RMS-DS values ranged from 0.2 to
13.8 ns, with dispersion factors less than one for all measured
frequencies.

In contrast, [125], [134], [160]–[162] focused on the evalu-
ation of outdoor channel models. For instance, [134] demon-
strated the large-scale propagation characteristics of 5G in an
outdoor parking lot scenario with several end users. As such,
a new CI-based PL model was proposed, including a parking
lot compensation factor. The PL was evaluated using several
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models and observations at 28 and 38 GHz for various sce-
narios. [160] discussed measurement campaigns in a tropical
climate for an outdoor 5G network operating at 32 GHz,
considering the distance, polarization, and antenna type. For
the LOS scenario, highly directional horn antennas with Co-
and Cross-polarizations were used for Tx and Rx.

Meanwhile, horn and omnidirectional antennas were uti-
lized on the receiver side for NLOS. Finally, the CI and FI
PL models were evaluated based on the outdoor data. The
results in [134] indicated that the PLE values were almost
similar. Meanwhile, the compensation factor suggested for
28 GHz and 38 GHz was 10.6-23.1 dB and 13.1-19.1 dB,
respectively. They did, however, show that additional com-
pensation factors are required for more scattered objects,
particularly at 28 GHz. According to the findings in [160], the
PLE for LOS and NLOS scenarios ranged between 3.4 and
6.7. Additionally, the FI PL model was unsuitable for the
NLOS scenario, shown by the large divergence between the
slope lines of the horn-horn and horn-omnidirectional cases.
Likewise, the results indicated that co-polarization decayed
faster than cross-polarization in LOS scenarios.

Similarly, [125], [161] evaluated the potential capability of
mmWave PL models using measurements taken in outdoor
tropical environments. While both studies evaluated the CI
and FI models at 38 GHz, [161] included the CIF and ABG
models and extended the evaluation to include 20-38 GHz
frequency bands. The authors in [161] then proposed a
new PL model for 20 GHz and 30 GHz frequency bands.
Meanwhile, [125] examined network performance in LOS
and NLOS scenarios with co- (vertical-vertical) and cross-
polarization (vertical-horizontal). The results in [161] showed
that the proposedmodel was both reliable and straightforward
in terms of frequency and environment signal attenuation,
suggesting its usefulness for establishing suitable commu-
nication links for the scenarios studied. Reference [125]
showed that the CI PL model predicted significant NLOS
outcomes and better network performance in the LOS case.
Also, the results showed that the FI PL model was unsuit-
able for the NLOS scenario, particularly for V-V polariza-
tion. Additionally, the simulation results indicated that user
throughputs decreased faster with cross-polarization than
with co-polarization in both LOS and NLOS scenarios.

Finally, in [162], the authors presented a brief simulation
analysis of rain fading using simultaneous one-minute rain
rate measurements and its effects on a short 38 GHz experi-
mental link. The PDP was also generated for omnidirectional
and directional scenarios by observing the received power
and PL using Malaysia’s environmental characteristics. Rain
attenuation of up to 15 dB was measured for a 300 m path
at a rain rate of roughly 125 mm/h, indicating that 0.001%
and 0.011% of outages must be considered for 38 GHz.
Moreover, the received power dropped by 33.1 dB for NLOS
scenarios. When considering rain attenuation, it was also
found that received power dropped by 6.4 dB for Malaysia
compared to a temperate area communication link due to
increased PL at 38 GHz. Thus, the study implies that

further research is required to model 5G channels in tropical
environments.

Machine learning techniques are capable of mining high-
dimensional data and extracting the required information to
learn the structural relationship between data in complex
environments. As a result, ML may be a powerful tool for
extracting radio wave characteristics and developing channel
models from measurement data. However, integrating chan-
nel modeling and ML is challenging, and research in this
subject is still in the exploration stage. On the other hand,
artificial neural network (ANN) is a significant branch of ML
that benefits from adaptability, self-learning, and robustness
and may be used to predict PL. Recently, [163], [164] intro-
duced PL models based on ANNs and Levenberg-Marquardt
backpropagation (BP), respectively. The results indicate that
when compared to conventional PL models, the proposed
methods can significantly enhance the accuracy of PL pre-
diction. However, the methods’ input set consists of signal
parameters that describe the channel’s properties, with the
impact of the environment being ignored.

Providing geometrical information is a complicated pro-
cedure. The environment type can be valuable in this sense,
as it can provide useful information for describing the
environment [165]. In [166], a PL prediction model based on
the multilayer perceptron (MLP) neural network (NN) and
environment types is established, with BS and Rx, digital
images, and satellite maps as inputs. To simplify 3D envi-
ronment modeling, principal component analysis (PCA) was
utilized to extract low-dimensional environmental features
from the limited environmental types. An ANN dataset was
constructed to train and evaluate the PL prediction model by
combining measured information from the BS and receiver,
including 3D locations, frequency, Tx/Rx power, antenna
data, feeder loss, and other environmental features. The mea-
surement campaigns were done at 2.5 GHz in Hangzhou,
China, covering 20 different environmental types like subur-
ban areas, urban areas, high-raised buildings, irregular build-
ings, green land, wetland, and forest. Three BSs with heights
of 30 m, 42 m, and 62 m were considered, with the Rx placed
on a vehicle with a height of 2 m. The CI and A-B models
were used to fit the measurement data for PL prediction and
then compared to predicted results in terms of the absolute
value of mean error (AME), mean absolute error (MAE),
STD error, and correlation coefficient (R). The comparison
showed that the proposed model could achieve a higher
prediction accuracy. However, the accuracy of ANN-based
prediction methods can be improved at the expense of the
ANN architecture’s complexity. This study also examined the
impact of ANN architectures, dimension, and training sample
percentage on PL prediction models, finding that 60% of
training samples from training sets is sufficient for a high-
efficiency and stable PL prediction model.

Convolutional neural networks (CNN) is a well-known
deep learning (DL) model that may be used to solve a wide
variety of classification and regression problems with lit-
tle pre-processing and feature extraction. Reference [167]
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proposed a method for 28 GHz mmWave PL modeling based
on CNNs for the suburban scenario. The measurement cam-
paign considered 13 scenarios using a fixed Tx at 3 m, and an
Rx mounted on the rooftop of a moving car. Four directional
antennas were utilized on the receiver side to investigate the
mmWave system’s characteristics in various environmental
scenarios. The method was built assuming that the CNN
could generate relevant environmental features from map
imagery. Thus, two-dimensional (2-D) Google map images
were used to extract geometrical information about buildings
and street objects. The Enhanced local area multi-scanning
(ELAMS) algorithm was proposed to build a training set for
the CNN. The algorithm extracts environmental data between
Tx and Rx from pre-processed map images. A CNN was
constructed with four subnetworks and 20 neurons, with each
subnetwork learning the same propagation and environmental
information from the ELAMS images. A feature sharing layer
was introduced between convolutional layers to concatenate
the activation map of the previous layer as an input to the
next layer. It was claimed that the addition of feature-sharing
layers did not increase the model’s complexity but rather
aided in the backpropagation of loss from each antenna to
the entire network. The comparison results showed that the
proposed CNN model outperforms both the CI and ABG
models in accuracy and complexity, with an RMSE of 8.59 dB
for PL prediction in the test scenarios.

Although prior research has demonstrated potential chan-
nel characterizations for some 5G bands under various setup
scenarios, this technology is still in its initial deployment in
many countries. As a result, most of these studies are primar-
ily experimental or simulation-based, focusing on high-power
devices and high-gain antennas, and do not consider the
requirements of IoT-based applications. Thus, future research
and characterization must incorporate IoT parameters into
the modeling process and optimize the performance of such
applications.

Other studies have evaluated the channel characteriza-
tion of traditionally utilized cellular-based IoT technologies,
including narrowband-IoT (NB-IoT) and cellular-based D2D
communication. In [168], the authors proposed an empir-
ical PL model for NB-IoT in urban areas using a large-
scale measurement campaign conducted in Oslo, Norway.
Three datasets in the LTE band from two cellular operators
were included, considering three different scenarios: outdoor,
indoor, and deep indoor. The ABG and CI PL models were
used to characterize the PL, with model parameters statisti-
cally characterized from known distributions. The shadowing
effect was further studied, and a statistically extended model
for inter-cell shadowing distribution and distance correlation
was provided. The proposed PL model was verified across
NB-IoT and LTE operators, and the findings indicated that it
outperforms state-of-the-art NB-IoT PL models in terms of
estimation accuracy.

To develop a suitable channel model for D2D IoT com-
munication technologies, the authors of [169] presented two
log-distance-based PL models (frequency-independent PLE

and frequency-dependent PLE), as well as a new statisti-
cal distribution of the DS for IoT communications, based
on quasi-simultaneous wideband channel measurements in
the VHF/UHF frequency bands (37.8–370 MHz) in Halifax,
Canada. The results indicated that both models achieved sim-
ilar estimation results, with PLE values ranging from 4.13 to
4.8 and shadow fading standard deviation values ranging
from 8.87 to 10.96 dB. As a result, they emphasize that
existingVHF/UHF propagationmodels are unsuitable for IoT
communications with low Tx and Rx antenna heights.

By contrast, the authors of [54], [170] concentrated on
NB-IoT connectivity in a rural forest with low antenna
heights. Both measurement campaigns were done at a range
of 2.5 km, utilizing LTE band 8 at a frequency of 917.5 MHz,
with a special focus on PL and coverage evaluation in a D2D
communication scenario. [170] noted that previous PL stud-
ies for 900 MHz near-ground scenarios lag of the 164 dB PL
specified in the NB-IoT standard. As a result, measurements
weremadewith a custom-built 180 dB dynamicmeasurement
instrument. According to the measurements, a D2D system
with Tx and Rx antennas at 1.5 m height could achieve a
range of around 2 km when employing the NB-IoT 164 dB
PL limit. Meanwhile, in [54], the authors evaluated the effects
of various antenna heights by utilizing similar measurement
equipment and placing antennas 1.5 m, 2.5 m, and 3.5 m
above the ground.

Additionally, measured data were compared to known
foliage excess loss models and related PL models to deter-
mine suitable models for NB-IoT D2D communication. The
results indicated that the antenna height had no significant
influence on the received power in the given setting. Addi-
tionally, the results indicated that the dominant propagation
path for the first km was through the foliage, resulting in
foliage excess loss being the dominant loss factor in this area.
Thus, the measured received power obeys the fourth-power
law after the first km, implying that the dominant loss factor
is the distance-dependent PL. Additionally, the comparison
revealed that only two models accurately anticipated the level
of foliage excess loss. Thus, they stated that by combining
these excess loss models with PL models, the estimated total
PL might be modeled with an RMSE of less than 10 dB. This
was achieved using either the Tewari model or combining a
2-Ray PL model with an ITU-R P.2108 clutter loss model.
However, for all models compared, foliage excess losses were
modeled only from 200 m onwards.

In [171], [172], the authors followed DL orML approaches
to model the PL. Accordingly, [171] incorporated tabular data
and images as inputs for CNN to perform PL prediction in
urban areas. Hence, the vectors of tabular data were first
manipulated and transformed into images, and then each
feature was spread across several pixels, proportional to its
calculated importance. Then, pseudo images were created
by mixing synthetic images (tabular data transformed) with
images depicting selected regions of the area’s map. The
pseudo images were then used as inputs for a CNN that
predicts the PL value at a certain point within the considered
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area. The results indicated that the presented approach out-
performs models using a single input mode.

In contrast, [172] proposed combining twoML algorithms,
ANN and Random Forests, with three types of input data to
estimate PL for NB-IoT operating at 900 and 1800 MHz.
Both approaches were trained and validated using the same
sets of area architectural attributes for comparison. It was
concluded that data inputs are critical for predicting PL using
ML approaches. Further, it was determined that when the
transmitter is mounted above the building rooftops, LOS data
is more significant than site-specific information, while com-
bining both types of data results in even higher performance.
Additionally, for the 900 MHz scenario, PL predictions were
more precise for all input types and ML approaches.

Finally, developing a PL model for the deep-indoor sce-
nario is challenging, and existing PL models are inaccurate in
such cases. Studies in such scenarios may also be motivated
because many critical IoT scenarios, such as telemedicine
or the monitoring of important assets, require a robust long-
range communication network to performwell. Guarantees of
QoS and high availability are also necessary for such harsh
radio environments, where tracked objects or patients may
move to difficult-to-locate locations, such as a basement. As a
result, developing accurate channel models for these scenar-
ios is a major process toward crucial IoT. In this context,
the authors of [128] conducted an experimental measurement
campaign to determine the attenuation of NB-IoT deep indoor
signals at known points.

Additionally, they showed how deep indoor scenarios
impacted RSSI and evaluated the effect of indoor distance
to the outermost wall on various indoor scenarios. The find-
ings indicated that indoor signal transmission varies signif-
icantly between underground and above-ground scenarios.
The findings indicated that the 3GPP TR 38.901 indoor PL
model accurately predicted the above-ground indoor scenario
but mispredicted the underground tunnel measurements. The
latter implied that theoretical models are inapplicable to all
indoor scenarios, as the overall link budget is far too com-
plicated to be fully characterized by linear dependence. They
emphasize, however, that additional experiments are needed
to verify this concept.

In comparison, the authors of [173] proposed an empirical
outdoor to deep-indoor PL model for NB-IoT at sub-GHz
frequencies. The deep-indoor environment considered is an
underground tunnel, where distance-related (Tx-Rx distance)
and tunnel-related features (such as the closest corridors,
the distance and angle to the farthest tunnel corner, and the
distances to the tunnel walls and ceiling) were characterized
to develop the empirical PL model. It was determined that the
2-D indoor distance and the distance to the tunnel walls are
the most relevant parameters for RSRP prediction. A linear
and a Gaussian process model were also constructed for the
indoor PL prediction. The derived models outperformed the
3GPP TR 38.901 model by 1.8 and 4.1 dB.

In conclusion, few studies have explored the propagation
modeling of such cellular-based IoT technologies. These

studies focused on specific areas, utilizing experimental hard-
ware equipped with limited omnidirectional Tx and Rx anten-
nas. As a result, additional study is needed to determine the
applicability of various existing channel models, propose new
models that consider different scenarios and commercially
available devices, and assess the limitations of such cellular-
based IoT technologies. To summarize the studies evaluated
in this section, Table 3 includes a detailed description of each
study’s modeling approaches, analysis metrics, key findings,
and limitations.

B. SHORT-RANGE BASED WIRELESS IoT CHANNEL
MODELING AND CHARACTERIZATION
Numerous studies have attempted to provide practical lower
bounds on the accuracy of PL model prediction due to
the high need for baseline performance values. Addition-
ally, a well-established error bound for more sophisticated
PL modeling and coverage mapping approaches is required
to verify their accuracy. As a result, the authors in [123]
described and implemented 30 different propagation mod-
els, considering data from networks operating at 2.4 GHz,
5.8 GHz, and 900 MHz in rural and urban areas. They con-
cluded from the results that the PL model environment is
uncertain. As a result, these models’ typical best-case per-
formance accuracy is in the range of 12–15 dB RMSE, and
it can be substantially worse in practice. However, adjustable
models and specific data fitting approaches may reduce the
RMSE to 8-9 dB. These constraints on modeling error remain
relatively constant over various environments and frequency
ranges.

As such, the author suggested using a few well-accepted
and well-performing models, such as Okumura-Hata or Hata-
Davidson, in scenarios requiring priority predictions, and if
possible, well-validated, measurement-driven methods. They
emphasize, however, that the most critical concerns for a
researcher are having a reasonable expectation of error and
picking a model that allows replication and comparison of
findings.

As previously noted, most of the PL models currently used
in WSN were initially developed to provide signal prediction
in conventional high-power wireless systems, such as satellite
and personal communication systems, which differ signif-
icantly from WSN environments. As a result, the authors
in [30], [119] used RFmeasurements to characterize the prop-
agation behavior of WSNs in outdoor scenarios and subse-
quently developed an LNSPL-based model. The focus of [30]
was on WSN deployed on concrete surfaces, whereas the
focus of [119] was on PL modeling of WSN nodes scattered
across a sand terrain environment. Both studies compared
observed and predicted PL values to those obtained from
FSPL, 2-Ray, and models developed for WSNs deployed
in long-grass and sparse-tree environments. Reference [30]
showed a significant difference in the PL and model parame-
ters between the proposedmodel, previous studies, FSPL, and
2-Ray models. Additionally, the MAPE was 36% and 22%
for the FSPL and 2-Ray models, confirming their inaccuracy

24114 VOLUME 10, 2022



H. A. H. Alobaidy et al.: Wireless Transmissions, Propagation and Channel Modelling for IoT Technologies

TABLE 3. A summary of the reviewed cellular-based wireless IoT channel modeling and characterization studies.
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in predicting PL in concrete surface environments. Similar
outcomes were reported in [119], indicating that the com-
pared PL models were inaccurate in sand terrain. However,
the proposed model does not consider the electrical ground
properties of sandy terrain or the placement of Tx/Rx at
various heights.

In contrast, [62], [71], [139] analyzed the influence of
foliage attenuation on wireless signal and the applicability
of existing PL models in a variety of scenarios. The authors
of [71] studied signal attenuation in a rice field environment
at node antenna heights of 0.8 m, 1.2 m, 1.6 m, and 2.0 m
during the tillering, joining, and grain filling stages of rice
fields. Also, they evaluated PL fluctuation over a range of
distances and compared the measured PL to the predicted
PL using FSPL and a 2-Ray model. Then, a one-slope log-
distancemodel was established using regression analysis, and
a modified two-slope log-distance model was proposed.

The authors of [139] analyzed and developed a new linear
regression model for predicting PL in greenhouse environ-
ments. A combination of foliage effects, reflections (from the
ground or tree canopy), diffraction, and traveling wave scat-
tering were used tomodel propagation loss. Numerous empir-
ical measurements were done at 2.425 GHz utilizing an IEEE
802.15.4-based WSN to determine the influence of growing
tree components on PL at various Tx/Rx heights. Finally, [62]
analyzed experimental data from a real-world ECOMESH
test-bed in a native woodland environment, emphasizing
propagation issues in a dense foliage area and along a path-
way over four vegetation growth seasons. Several theoreti-
cal and empirical foliage models were evaluated, including
the FSPL, Fresnel, 2-Ray (PE), W MED, COST-235, and
FITU-Rmodels. Then, two empirical models were developed
to predict the performance of network attenuation in two
different scenarios.

The results in [71] indicated that node height significantly
impacted channel propagation characteristics and feasible
transmission distance, with RSSI decreasing monotonically
as antenna height was changed. Additionally, the wireless
channel transmission environment deteriorated concerning
the developmental stage of the rice field. As a result, the
optimal node antenna height was found to be 2 m above
ground. While FSPL was shown to be inappropriate, the
2-Raymodelmay be used if the antenna height exceeds 1.2m,
as height significantly impacts the 2-Ray model prediction.
On the other hand, the one-slope log-distance model per-
formed better, although its estimated relative error (RE) was
greater than 3%. Finally, the modified two-slope log-distance
model outperformed the one-slope log-distance model in all
heights, with an estimated RE of less than 2%, and was more
applicable to the complicated rice field environment. As a
result, the authors claim that the latter will aid in developing
efficient rice field WSNs while also improving the quality of
wireless transmission.

The results in [139] indicated that the most important veg-
etation effects occur at 1.5 m tree height. Likewise, the results
proved that PL prediction using FSPL and 2-Ray models

is inaccurate in certain environments due to their simplistic
and optimistic nature. Additionally, results indicated that the
combined COST-235 and FSPL models provided the best
results compared to other foliage models. However, the latter
model is not ideal, as the MAPE was 10.69%. In contrast, the
proposed model MAPE has a MAPE of 2.75 %, suggesting
that it is the most efficient model for representing greenhouse
vegetation loss. Finally, the authors noted in [62] that a proper
propagation model, such as those proposed, that enables net-
work performance evaluation enables QoS optimization and
can be used as part of a QoS guarantee management platform
for native Irish trees and dense woodland applications.

The authors in [104] proposed a channel model for rural
smart agricultural WSNs operating in near-ground conditions
in the soil, short grass, and tall grass fields. The measure-
ments considered Tx and Rx antennas mounted at 0.2 and
0.4 m above ground and utilized three frequency bands,
868 MHz, 2.4 GHz, and 5.8 GHz. The PLwas then calculated
and adapted using a three-slope log-normal PL model. The
second experiment used RSSI measurements from commer-
cial ZigBee nodes at 2.4 GHz to predict link performance.
Accordingly, two sensor nodes were mounted at identical
heights to those in the previous experiment, but only in a
short grass field scenario. The QoS efficiency was estimated
using theoretical BER values for various digital modulations.
It was indicated that the Tx-Rx separation could be divided
into three regions, defined by two critical points and a break
or cross-over point. According to the QoS analysis, the near-
ground scenario was more constrained than an obstructed
LOS. As a result, it may be necessary to use more robust
digital modulation schemes or error correction codes to suit
the performance of LOS-based networks. The consequence
of more accurate characterization and formulation of near-
ground systems would be a significant improvement in their
applications, particularly in the near future of 5G-IoT.

The focus of [70] was on the effective deployment of
wireless sensors for applications such as tracking cow graz-
ing behavior on grass or track sporting events. As such,
an LNSPL-based model was proposed, considering exper-
imental data from natural, short, and tall-grass fields. The
empirical PL models were then compared to theoretical PL
models such as FSPL and 2-Ray. The findings indicated
that theoretical models differ by 12% to 42% from proposed
models. Compared to the proposed model in the short grass
field, measured data from comparable environments revealed
a MAPE of 1.1% and a Ts of 5.6. As a result, they concluded
that theoretical models are inappropriate for estimating the
PL for WSN application in dense grass fields with a height of
less than 1 m. Additionally, comparisons to similar past stud-
ies indicated a significant difference in PL and the parameters
of empirical models.

In addition to prior work, the authors of [44] highlight that
there are currently no accurate and reliable propagation mod-
els that ensure the successful and practical deployment of IoT
devices in mountainous terrain. As a result, they examined
the effect of mountain terrain on the efficiency of tracking
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devices and wireless sensor nodes, conducting measurement
campaigns involving IoT devices operating at 900 MHz and
2.4 GHz. They then proposed and compared log-distance-
based PL models to FSPL, 2 Ray, and log-distance PL mod-
els. A variance of 8 dB to 38 dB was observed, indicating that
such models significantly underestimated the performance
of IoT systems in such environments. Additionally, tests
revealed that mountains and rocks cause an average signal
loss of 8 dB. As a result, it was concluded that existingmodels
are unsuitable, and some are proposed based on FSPL and
2-Ray models to support high-power systems in a tree or
wooded areas.

In order to analyze and enhance RSSI-based PL models,
the authors in [117] identified several factors that have an
undeniable negative influence on measured RSSI and, thus,
on the performance of derived PL models. They classify
these factors as intrinsic, resulting from transceivers, con-
nectors, antennas, or extrinsic, resulting from the number of
measurements, coexisting interfering devices, packet length,
ED battery level, temperature, and environmental impacts.
As a result, a set of adjustmentmodels and computational pro-
cedures was developed to resolve the disturbances above for
three well-known technologies: MicaZ, Iris, and Waspmote.
They then compared twoRSSI-derivedmodels (a basemodel,
LNSPL, with no adjustments to raw RSSI measurements and
an adjusted model, using proposed tools and procedures) to
an electrical substation ground-truth VNA-based PL model.
The average prediction error was reduced by around 91.76%,
indicating a significant improvement in network simulation
accuracy. As a result, operational expenses are reduced and
estimating quality and network planning for critical industrial
environments are improved. Overall, the findings indicated
that when intrinsic and extrinsic RSSI-affecting variables are
included, RSSI-basedmodels can be useful, precise, and cost-
effective for WSNs.

Finally, [114] aimed to determine the distance between
a bicycle and a coach using a mobile ZigBee sensor node
and a ZigBee anchor node in outdoor and indoor scenarios.
Due to the difficulty of precisely calculating the location of a
mobile node due to channel impairments caused bymultipath,
NLOS, fading, or other interference issues, they consider two
methods for estimating distance. The first method was based
on LNSPL, whereas the second method used a proposed
hybrid particle swarm optimization–artificial neural network
(PSO–ANN) algorithm to improve the accuracy of distance
estimate. The LNSPL parameters were estimated using RSSI
measurements in outdoor and indoor scenarios. The distance
between the mobile and coach locations was then computed
using the hybrid PSO-ANN and LNSPL algorithm to opti-
mize the precision of the predicted distance. The results indi-
cated that when compared to LNSPL and previous works, the
hybrid PSO-ANN algorithm significantly improved distance
estimate accuracy. Additionally, the hybrid PSO-ANN algo-
rithm achieved an MAE of 0.022m and 0.208m for outdoor
and indoor scenarios, respectively.

As in the previous sub-section, we summarize the reviewed
studies in this sub-section, as shown in Table 4, with a detailed
description of each study’s modeling approaches, analysis
metrics, key findings, and limitations. In conclusion, it is
worth noting that most of the research covered in this sub-
section either evaluates the performance of these wireless sys-
tems in terms of coverage and propagation limits or proposes
channel models based on relatively simple models such as
2-Ray, FSPL, and LNSPL. These studies were mostly lim-
ited to near-ground deployment scenarios utilizing low-power
omnidirectional antennas. Furthermore, none of the studies
reviewed considered more complex propagation scenarios or
evaluated other models available in the literature, such as
deterministic ray-tracing-based models. As a result, it can be
concluded that more study is needed to assess the suitability
of alternative models for diverse implementation scenarios,
such as the influence of different Tx/Rx deployment heights
and varied, challenging climate conditions, to examine the
full boundaries of such technologies and propose more accu-
rate models.

C. LPWAN BASED WIRELESS IoT CHANNEL MODELING
AND CHARACTERIZATION
In recent years, the rapid expansion of ICT and the rapid
development of new technologies have increased the impor-
tance of rapid and accurate planning and deployment of
emerging LPWAN wireless IoT technologies [148]. How-
ever, such technologies’ success relies on signal propagation
robustness, especially in complex terrain and irregular ele-
vation profiles [52], [174]. For example, LoRa offers a wide
range of coverage options; it can span hundreds of meters or
tens of kilometers, depending on its surroundings and the fac-
tors influencing its performance directly [118], [126], [175].
In contrast, widely used LoRa channel models do not iden-
tify this high variability, and typical on-site measurement
options are inaccurate given the huge geographic areas cov-
ered [118], [126]. As a result, several studies have been
undertaken in this domain.

For instance, [22] described two smart city testbeds devel-
oped in Italy for public lighting based on IEEE 802.15.4 and
smart buildings based on LoRa. The latter was then inves-
tigated using measurement campaigns and simulations to
assess LoRa’s coverage and performance in an urban sce-
nario. Similarly, in [25], the authors analyzed the feasibility
of using LoRa-based WSNs in smart public transports to
collect pollution data and meteorological parameters. They
also investigated propagation and network architecture for
possible practical network realization.

According to [22], LoRa’s maximum coverage in dense
urban areas was 1-2 km, far less than the 15 km claimed
by manufacturers and vendors of LoRa. This record was
achieved in favorable conditions, with a GW height of 71 m
AGL and the highest SF. Coverage is expected to be reduced
even further if such criteria are not fulfilled. Finally, the
findings indicated that it is wise to deploy several LoRa GWs
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or equip a single GW with multiple receivers, operate on
multiple channels, and use a larger SF to cover larger areas.
The analysis in [25], on the other hand, showed that the
proposed WSN is suitable for integration in a city’s public
transportation network since theoretical propagation perfor-
mance, based on the Okumura-Hata model, shows that LoRa
delivers adequate outdoor urban coverage areas. As a result,
they concluded that the experimental results would provide
significant indications concerning the deployment of LoRa
and testing on propagation and networking while accounting
for the Doppler effect.

In contrast, the authors of [26] used commercial LoRa
devices to determine and analyze LoRa coverage in Oulu,
Finland. Measurements were made utilizing a node on the
ground, mounted to a car’s roof rack, or on thewater, mounted
to a boat’s radio mast, transmitting data to a GW. They then
presented an LNSPL-based model for the 868 MHz band at
14 dBm Tx power and maximum SF. Results showed that the
PLE for the on-ground scenario was greater than the PLE
for the FSPL scenario due to the presence of buildings and
other obstacles in the path between the end device and GW.
Meanwhile, for the boat scenario, it was 1.76, below that
of FSPL.

Interestingly, they achieved higher coverage ranges, reach-
ing over 15 km on the ground and nearly 30 km on water.
However, they found that for on-ground, the PDR tends to
be high, over 80%, for ranges up to 5 km then degrades for
higher ranges, being lowest for more than 10 km.Meanwhile,
PDR was nearly 70% at distances under 15 km for the water
scenario. Finally, they claimed that network operators could
utilize the derived model to estimate the needed GW density
and enable precise LoRa performance analysis.

In [126], the authors presented an automated method for
estimating post-deployment coverage of LoRa GWs in out-
door environments without on-site measurements by integrat-
ing free multi-spectral images from remote sensing with the
correct channel model. The method automatically classifies
the type of environment (such as buildings, trees, or open
fields) penetrated by a signal with high precision (∼90%) and
spatial resolution. The focus was on the empirical Okumura-
Hata model, showing that its predictions are close to their
observations and that their method can automatically select
and configure its parameters. Additionally, the results showed
that their approach closely estimates expected signal power
(ESP) within a 10 dB error, compared to a 20 dB to 40 dB
errors for widely used channel models. Nonetheless, the
model ignores the impact of walls when GWs are placed
indoors and ignores other signal-influencing parameters
(e.g., physical parameters).

In contrast, [176] evaluated the RSSI accuracy of two
LoRa chipsets in a laboratory environment. The Longley-
Rice Irregular Terrain Model (ITM) was then simulated and
evaluated using SPLAT, a software tool, with real-world Digi-
tal ElevationMap (DEM) resolution of 1 arc-second (∼30 m)
to predict PL. An extensive measurement campaign was con-
ducted in Germany’s outdoor suburban environment to verify

ITMprediction accuracy and compare it to FSPL as a baseline
model and the log-distance-based models proposed in [177]
and [26]. The result indicated that there is no perfect model
for all environments. Further, the results showed that the
chipsets reported significantly different RSSI and terrain data
improves prediction accuracy. Finally, they concluded that
conventional terrain data-based PL models, predominantly
used for mobile or TV broadcasting, cannot be used for LoRa
wireless technology.

Researchers in [31], [52], [118] provided a detailed evalu-
ation of the LoRaWAN channel at 868 MHz for various sce-
narios. Accordingly, [118] conducted detailed measurement
campaigns for indoor and outdoor scenarios in Lebanon’s
urban and rural environments. They then proposed a set
of PL models and evaluated their accuracy against com-
monly used empirical PL models. These models include;
(1) ITU-R, COST 231-MWF, 3GPP’s Cellular-IoT models
for indoor scenarios and (2)Okumura–Hata, COST 231-Hata,
and 3GPP-UMa/RMa for outdoor scenarios. They observed
that the proposed PL models are better, accurate, and simple
to apply in the study area or similar places.

Meanwhile, results showed that a coverage distance of up
to 9 km and 47 km could be obtained in urban and rural
areas, respectively. The ITU-Rmodel showed lower precision
for indoor scenarios with a mean error and standard devi-
ation error of 0.48 dB and 8.3 dB, respectively. Similarly,
Cost 231-MWF and 3GPP models underestimated the mea-
sured PL and reported a standard deviation error of 8.7 dB
and 10.2 dB, respectively.

In [52], the authors provided a detailed performance anal-
ysis in urban, suburban, and rural environments. Various
PHY layer settings were studied to evaluate the most suit-
able one based on propagation conditions. Next, they took a
different approach, assessing the predicted signal strength in
these scenarios using an RF planning tool (Cloud-RF) that
uses topographic maps and the Okumura-Hata model. Then,
an extensive measurement campaign validated the theoretical
findings. In urban and suburban scenarios, coverage ranges
of about 6 km were obtained, while a long transmission
range of over 18 km with the lowest data rates (DRs) was
obtained in the rural scenario. Hence, it was concluded that
there is a clear trade-off between link reliability and DR (and
therefore packet time-on-air); thus, the LoRaWAN configura-
tion parameters must be adjusted appropriately, based on the
propagation conditions and the range between GW and EN.
Finally, they examined the same scenarios but in a stationary
condition to evaluate the mobility impact on performance,
which indicated that LoRaWAN poses a significant Doppler-
related vulnerability if using high DRs; however, this impact
was far less evident when using low DRs. It was concluded
that it is essential to review the deployment scenario’s propa-
gation conditions before actual implantation to reach a com-
promise between network reliability and transmission DR.

In comparison, [31] examined the impact of seasonal
weather changes on the signal-to-noise ratio (SNR), RSSI,
and SF usage while enabling adaptive data rate (ADR).
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TABLE 4. A summary of the reviewed short-range based wireless IoT channel modeling and characterization studies.

Additionally, they evaluated Okumura-Hata and ITMmodels
using Cloud-RF to see how they fit real-world measurements.
They observed that results gain from cold weather since low
temperatures increase noise intensity, resulting in a higher
SNR. In contrast, the battery drains more quickly in cold tem-
peratures. Further, the findings indicated that the combination
of long distances and snow negatively impacted LoRaWAN
performance. As a result, snow must be considered while
designing the deployment of sensors and GWs to reduce the
effect of snow on signal transmission. When measured RSSI
was compared to Cloud-RF predictions, Okumura-Hata was
the best, whereas the ITM model seemed to overestimate
RSSI. As a result, they indicated that propagation models
should be optimized by taking weather into account when
tuning the models. It was also concluded that temperature
should be considered while designing a LoRaWAN imple-
mentation strategy due to its effect on battery life, propagation
conditions, and noise behavior, all of which impact coverage
and transmission rates.

In contrast, [178] evaluated the P2P LoRa coverage and
proposed a log-distance-based PL model based on measure-
ments conducted in urban, forest, and coastal areas, utilizing
low-height nodes of 1.5 m at 868MHz. The PER was then

computed based on the predicted PL parameters to quantify
P2P link quality. In all scenarios, 80% of the data were
successfully received at around 200 m. While, for the LOS
scenario, a range of over 4 km was achieved. Given the urban
scenario’s unfavorable radio propagation and heavily forested
areas, a 1 km distance was achieved. They observed relatively
high variation around the standard deviation (σ ) of shadowing
samples in the coastal area due to handheld device usage,
resulting in higher PER at shorter distances. They also indi-
cated that the Okumura–Hata model significantly overesti-
mates PL, whereas themodified Cost 231-Hata model and the
model derived in [26] underestimated PL. They also observed
that the aligning trees acted as waveguides yielding a PLE
near the PLE of FSPL for the forest scenario. Finally, the
derived PL model based on a maximum-likelihood approach
outperformed the least-square method and existing empirical
models for all studied environments.

Authors in [175] performed an experimental study to eval-
uate the performance of LoRa by considering various topo-
graphical areas on-campus sites and discussing impacting
factors such as the Doppler effect, Fresnel zone, environmen-
tal factors, and interference. The results indicated that the
GW location, environmental scenarios, and topology must
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be considered during deployment to improve performance.
Furthermore, an outdoor experimental study was performed
to test LoRa’s coverage and performance, based on RSSI
and PDR, by applying different SF in different terrain and
environmental scenarios. The findings indicated that ter-
rain impacts LoRa signal propagation, limiting coverage and
reducing PDR by half.

In [127], the authors evaluated the RSSI measurements of
the LoRaWAN network implemented in Skelleftea, Sweden.
Then, they compared it to data obtained from Cloud-RF
based on ITM, Irregular Terrain with Obstructions Model
(ITWOM), and theOkumura-Hatamodel. Thesemodels were
used since Okumura-Hata is a well-known model for large
cellular networks, while ITM and ITWOM are recommended
by the planning tool. The data were obtained from five
sensors mounted along a wooden bridge with various SF
configurations (7, 10, and 12). Hence, results showed that
ITWOM accuracy was nearest to measured values due to
ITWOM improvements that include the adoption of Radia-
tive Transfer Engine (RTE) rather than the classical theory
of diffraction. They, therefore, concluded that ITWOM per-
formed the best, followed by ITM and then Okumura-Hata.
However, the study considered only outdoor scenarios and
did not consider SNR values to infer channel conditions.
The study also indicated that terrain profile, environment,
and transmission distance are significant when selecting a
planning tool’s specific propagation model.

To run WSN all year round and provide a comprehensive
communication range of several tens of kilometers, authors
of [179] used LoRa technology in Antarctica’s outdoor polar
area to implement these nodes with minimal power consump-
tion. They studied the system propagation channel conditions
within 30 km of the Belgian Princess Elisabeth Antarctic Sta-
tion. Hence, they verified the usefulness of LoRa technology
in polar regions and found that installing directional antennas
at the BS would achieve a maximum range of 30 km in both
the 434 MHz and 868 MHz bands for the LOS scenario.
Besides, the dominant factor affecting propagation was vary-
ing terrain elevation, often obstructing the LOS path. Finally,
they suggested that NLOS links are possible but require field
measurements or ray-tracing simulation to determine optimal
antenna locations.

In [148], the authors explored the Lee propagation model’s
potential use and optimization for 868MHz LoRa network
planning, design, and management. The analysis was based
on RSSI field measurement comparison with model calcula-
tions. Hence, based on results, RMSE averaged 6.71731 dB
for Tokyo, 15.0949 dB for Philadelphia, and 19.5495 dB for
Newark. These analyses showed the accuracy of the Lee PL
model for urban areas. Nonetheless, they point out that further
measurements and comparisons with the Leemodel should be
carried out.

In contrast, the authors in [180] evaluated foliage atten-
uation and its overall contribution to PL and link budget
estimates. Accordingly, the attenuation impact of five tree
types was studied for different path crossings (e.g., trunk,

tree-top, and branches). For this evaluation, the Okumura-
Hata, LNSPL, and foliage models were used as references.
Both LOS and NLOS (across tree) tests are considered
through RSSI measurements for horizontal and slant paths.
After that, both horizontal and slant paths RSSI reading over
a tree are taken. Various measurements also determined LoRa
communication coverage in a campus area. They found that
the Mimusops Elengi tree, characterized by its large size
and leaf density, provided the highest foliage attenuation of
up to 20 dB. Trunks showed higher attenuation than tree-
tops and branches. The study also showed that the Okumura-
Hata model failed to capture the foliage effect compared to
measurements. However, the study did not consider the effect
of thick foliage, especially in a dense jungle area, where
attenuation is expected to exceed 20 dB. Also, it does not
consider other impacting factors such as weather and being
a limited evaluation based purely on RSSI measurements.

On the other hand, the authors in [181] evaluated
LoRaWAN propagation in an outdoor-indoor scenario
based on RSSI measurements and compared it to com-
monly used propagation models such as log-distance and
indoor COST231-MWM models. They also adjusted the
COST231-MWM model for better accuracy. However, these
models did not accurately estimate outdoor–indoor propaga-
tion characteristics. Thus, a novel hybrid propagation esti-
mation method was developed and examined. This hybrid
model consists of ANN and an Optimized COST231-MWM,
thus showing higher predictive accuracy and reduced initial
COST231-MWMMSE from 21 to 11.23.

Similarly, for LoRa channel characterization and link per-
formance analysis, an autonomous LoRa-compatible node
was presented in [182] for both 434 MHz and 868 MHz
bands. They showed that the LoRa node provided a signif-
icantly more extensive dynamic range by applying stepped
attenuators controlled by a dynamic attenuation adjustment
algorithm. The node was calibrated to accurately measure the
received signal power in dBm based on SNR measurements.
Findings showed a correlation between a sudden drop in
signal and an event of rainfall, whereas outdoor tempera-
ture fluctuation showed no correlation with measured signal
levels. Finally, indoor measurements showed that people’s
presence in a building also has a measurable influence on
the LoRa link quality, where 2 dB and 3 dB difference in
standard deviation values were found between day and night
measurements, respectively.

Different buildings have different communication con-
straints due to varying sizes, shapes, and structures.
Therefore, the authors in [28] conducted a detailed study
to investigate the large-scale fading characteristics, temporal
fading (TF) characteristics, coverage, and energy consump-
tion of LoRa technology in four types of multi-floor build-
ings. They also conducted an RSSI adjustment experiment
and observed a constant 2 dB shift between the measured
RSSI of the LoRa node (mDot) and spectrum analyzer-
measured RF power. The PL characterization results showed
that a non-fixed intercept model has significantly larger
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intercept PL(d0) and smaller PLE than the fixed intercept
model. Also, standard deviations for non-fixed intercept and
fixed intercept fit well, although it is somewhat larger for
a fixed intercept. Therefore, concluding that using a non-
fixed intercept PL model is better than using a fixed-intercept
model. A Kolmogorov-Smirnov (K-S) goodness-of-fit test
was conducted on one-slope shadow fading samples to deter-
mine log-normality.

They concluded that a one-slope PLmodel can estimate PL
in indoor scenarios but can only be used as a first-order pre-
diction. Hence, they indicate that an attenuation factor (AF)
model is needed to attain more accurate PL prediction in
a multi-floor building. A site-specific model should also be
considered since building materials, structure, and other fac-
tors could significantly affect the PL. Also, the decorrelation
distance in a multi-floor building is small, suggesting that
the large-scale fading is almost independent of one area to
another. Results also showed that TFmet a Rician distribution
with Rician K-factors of 12 dB to 18 dB. Hence, link budget
analysis should consider a fade margin of 9 dB and 7 dB
for tested scenarios. The study also showed that energy con-
sumption would vary up to 145 times, using different param-
eter configurations. Such results highlight the importance of
selecting parameters and enabling LoRa’s adaptive data rate
feature in energy-limited applications.

Moving forward, the authors in [40] presented measure-
ment campaign results to evaluate empirical characterization
and mathematical modeling of the radio channel for a wear-
able LoRaWAN node for different operating ranges across
different environments such as urban, suburban, and rural.
Furthermore, anechoic measurements were also carried out to
evaluate body shadowing effects for this technology. Findings
showed that the best fit model for all measured received
signal strength, using the Akaike information criterion, is the
Nakagami distribution with mu= 0.52 and�= 662.13. Fur-
thermore, anechoic measurement showed typical additional
effects regarding the user orientation concerning the GW
location.

As mentioned in previous sections, advances in wire-
less sensor technology and MEMS have enabled dairy
cow health conditions to be monitored remotely using the
IoT and WBAN. While on-cow measuring devices are
energy-constrained, adequate characterization of the wire-
less off-body link between the on-cow sensor nodes and
the back-end GW is needed for the improved operation of
these networks in barns. Thus, authors in [74] characterized
the 868 MHz off-body wireless channel for dairy cows in
three different barns. LoRa motes investigated both PL and
TF. RSSI calibration was also performed, resulting in a con-
stant 6dB adjustment between measured RSSI and actual RF
power. Results showed that a one-slope LNSPL model could
be suitable for the large-scale fading characterization. It was
also shown that the maximum PL increase of around 4 dB
resulted from the cow body wearing the sensor node.

Meanwhile, other cows had less influence of about 1 dB.
The TF was statistically characterized by Rician distributions

with an average K-factor of 8 dB. Finally, the authors claim
that study findings could enable reliable IoT cow monitoring
systems with optimized network planning and energy con-
sumption.

In contrast, in [75], the authors characterized the in-to-out
body PL between an antenna inside the cows’ rumen and a
specific GW at 433 MHz. Measurements were conducted on
seven different fistulated cows using a signal generator and
a spectrum analyzer. Later free space antenna measurement
was conducted to evaluate PL increase due to the cow body.
Results showed an average PL increase of 45.5 dB (all cows),
with 39.7 dB and 51.1 dB variability. Also, an LNSPL model
matched the measured PL as a transmitter-receiver distance
function in a dairy barn. The observed models were then used
to evaluate a LoRa-based network range. Therefore, using the
highest LoRa transmit power of 20 dBm, the range reached
up to 100 m with the least DR, whereas using the highest
DR, the range was limited to 11 m. Therefore, they concluded
that coverage could be increased by using a lower DR with a
higher transmit power while reducing the battery life and data
collected.

The authors in [183] proposed a LoRa-based positioning
algorithm for search and rescue operations in the mountain
environment. The positioning algorithmwas developed based
on the PL measurement. Hence, a PL model was developed
according to themeasured SNR andRSSI. Themeasurements
were conducted in three relevant mountain scenarios: canyon
(with maximum width, length, and depth of 40 m, 8 km, and
400, respectively), LoRa Tx over the snow, and Tx buried
under 1m of snow. Inmeasurements, Tx was fixed and placed
on/under the ground (depends on the considered scenario),
and Rxwas mobile and put inside a volunteer’s jacket. For the
measurements, two LoPy-4 expansion boards were used that
operated in the 868 MHz frequency band with a bandwidth
of 125 kHz, spread factor of 7, the coding rate of 4/5, and
Tx power of 14 dBm. The results showed that although the
communication range of LoRa decreased from kilometers
to hundreds of meters, the operation range of the proposed
method is at least five times greater than the golden standard
technologies such as ARVA.

Wireless underground communication (WUC) has numer-
ous ecology, agriculture, health care, and environment
preservation applications. However, the propagated signal is
severely attenuated as it travels across the ground due to
the soil composition. Hence, a PL prediction model would
play a vital role in designing a WUC system. In [184], the
authors proposed a WUC PL model for precision agriculture,
in which, first, the underground communication was simpli-
fied to a generic model. The developed model was then inte-
grated with an accurate prediction of the complex dielectric
constant (CDC), called the Mineralogy-Based Soil Dielectric
Model (MBSDM). The integrated method can predict PL in
different scenarios, underground-to-underground (UG-UG),
underground-to-aboveground (UG-AG), and aboveground-
to-underground (AG-UG). The PLmodel considers reflective
and refractive wave attenuation according to each scenario’s
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sensor node burial depth. To further validate the reliability of
the proposed method, intensive experiments were conducted
in a real environment with two different pairs of wireless
transverses, nRF905 and LoRa SX1278. The results showed
that the proposed model outperforms the existing PL models
in different communication types and soil conditions, where
the proposed model can be used on a real cheap sensor with
87.13% precision and 85% balanced accuracy.

On the other hand, [60] presented the PL analysis of
underground wireless communications in urban UIoT for
wastewater tracking. They demonstrated that an underground
transmitter, communicating through a 10 cm thick asphalt
layer, could achieve a range of up to 4 km with PL less
than 100 dB and 10 km with PL of 107 dB. The propa-
gation loss was also less than 5 dB with a layer thickness
below 1 m. However, as the layer thickness increases, it can
reach up to 15 dB for the 4 m asphalt layer. It was also
observed that RSSI drops with distance, with dramatic drops
for distances below 2 km. It decreases gradually afterward.
Finally, at a communication distance of 4 km, the −80 dBm
RSSI demonstrates that underground devices in urban UIoT
could communicate effectively with urban roadside wireless
communication infrastructure.

Finally, for Sigfox devices, their location is predicted and
stored on the Sigfox cloud platform. However, the location
prediction accuracy is unsatisfactory, where, in some cases,
the distance error between predicted and actual location may
exceed 20 km or 30 km, with average distance error ranging
from 2 km to 10 km, as indicated by authors of [185]. Accord-
ingly, they proposed a new ML-based localization method to
estimate the Sigfox device location. The method divides the
area around each BS into a few sectors and trains a more pre-
cise PL model, based on LNSPL, for each sector to represent
their site-specificmultipath propagation environment. Hence,
the proposed method used RSSI measurements and a multi-
sector training and predicting method with four 90-degree
sectors. The experimental data observed in a big city utiliz-
ing 30 Sigfox devices showed that the proposed method’s
maximum distance errors are often smaller compared to the
official localization service of Sigfox.

As in the previous sub-section, we summarize the reviewed
studies in this sub-section, as shown in Table 5, with a detailed
description of each study’s modeling approaches, analysis
metrics, key findings, and limitations.

In conclusion, it can be noted that among the several
LPWAN technologies, LoRa/LoRaWAN has gotten the most
interest from researchers because of its unique characteristics.
As a result, most studies evaluated this technology’s perfor-
mance and proposed channel models for various deployment
scenarios. However, these studies mostly used simple mod-
els like LNSPL and Okumura-Hata models and primarily
focused on urban and suburban implementation scenarios.
As a result, we anticipate a significant gap in channel model-
ing and characterization for these technologies, particularly
in areas with complex terrain and harsh climate conditions,
such as tropical regions. Although some studies considered

utilizing more accurate ray-tracing methodologies or simu-
lation tools, these did not explore the entire limitations of
LPWAN technologies. On the other hand, the low-resolution
maps available limited most of these studies, making them
site-specific and impractical for reuse in other deployment
areas.

In this regard, many future work directions may be pos-
sible in wireless channel modeling and characterization for
LPWAN technologies. Among these, it is believed that
measurement-based and comparative analysis studies are of
utmost desire to understand such technologies’ behavior envi-
ronments accurately. Other modeling approaches may incor-
porate new ML-based and hybrid prediction approaches that
combine well-known stochastic or deterministic modeling
techniques with ML. Nonetheless, any of these approaches
may provide a tremendous opportunity, with the potential
to have a significant impact on a wide variety of critical
applications.

VI. CHALLENGES AND OPPORTUNITIES IN WIRELESS IoT
CHANNEL MODELLING
Choosing an accurate channel model to represent the actual
real-world wireless IoT deployment is a difficult task due to
imperfections in the deployment area, such as varied terrain,
the presence of large objects such as tall trees, and the varying
speeds of moving objects. In other words, the actual wireless
IoT performance varies when used in environments that have
different channel conditions from the original development
environment.

Although many academics have considered addressing the
problem of channel modeling, it can be concluded that a
significant gap remains, and additional research is required
to resolve the crux of the problem. On the other hand,
the proposed models primarily focus on empirical and site-
specific modeling methodologies that may not apply to other
locations or environments. Hence, despite the high demand
for wireless channel modeling, numerous challenging issues
must be resolved to achieve more accurate modeling.

Other limiting factors in certain studies include used equip-
ment and deployment scenarios that are far from ideal or
commercial use scenarios. The reviewed studies revealed
that the research primarily focused on specific cellular-based
IoT technologies, utilizing experimental hardware with low
height Tx and Rx with omnidirectional antennas. Meanwhile,
the research has mostly focused on near-ground deployment
scenarios for short-range IoT technologies utilizing low gain
omnidirectional antennas.

Interestingly, it was also noted that, among the numer-
ous existing LPWAN technologies, LoRa/LoRaWAN had
attracted substantial interest from the research community
due to its unique features. As a result, most LPWAN research
focused on the performance evaluation of this technology and
channel model proposals for various implementation scenar-
ios. However, most of this research used simple propagation
models like LNSPL and Okumura-Hata models and concen-
trated on urban and suburban implementation scenarios. As a
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TABLE 5. A summary of the reviewed LPWAN based wireless IoT channel modeling and characterization studies.
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TABLE 5. (Continued.) A summary of the reviewed LPWAN based wireless IoT channel modeling and characterization studies.

result, we anticipate a significant gap in channel modeling
and characterization for these technologies, particularly in
areas with complex terrain and harsh climate conditions, such
as tropical regions.

Although several studies have considered utilizing more
accurate ray-tracing methodologies or simulation tools, these
did not explore the entire limitations of LPWAN technolo-
gies. On the other hand, the low-resolution maps available
limited most of these studies, making them site-specific and
impractical for reuse in other deployment areas.

The recent trend of using low-altitude platforms (LAP)
and high-altitude platforms (HAP) such as UAVs have
tremendous future opportunities, particularly for rural and
difficult-to-reach IoT deployments. Furthermore, with recent
improvements in IoT, cloud & edge computing, and wire-
less communication technologies, UAVs are becoming more
maneuverable and smarter. As a result, the IoD is emerg-
ing as one of the promising technologies and use cases for
UAVs. Despite recent work on developing channel models
for UAV communications, more comprehensive models for
air-to-air (A2A) and air-to-ground (A2G) scenarios are still
required. The communication channel utilized by UAVs has
characteristics that are significantly different from those used
by conventional models. The most notable characteristics
are: (i) highly dynamic propagation channel characteristics
due to high UAV velocity, (ii) extreme temporal and spatial
channel variation due to UAV mobility, (iii) different LOS
propagation probability than terrestrial communication due

to different flight heights, and (iv) additional shadowing
effects from the aircraft body and propellers. As a result, the
characteristics of UAV channels must be thoroughly inves-
tigated across a wide range of propagation environments,
altitudes, and flying speeds. Thus, more accurate analytical
models are required to characterize large-scale fading, direct
and multipath components, and spatial-temporal character-
istics in non-stationary channels. Additionally, developing
empirically-based channel models is critical for validating or
disproving theoretical models.

On the other hand, having a reliable A2A communication
link is critical in multi-hop UAV networking. Although the
A2A channel appears to be like the free space channel due
to its high LOS conditions, the dynamic environment and
ground reflections have different effects. As a result, issues
such as antenna orientation and Doppler spectrum must be
investigated in various A2A propagation scenarios.

Finally, ML techniques have advanced significantly in
wireless channel modeling, and the reviewed studies have
demonstrated that ML-based methods can significantly
improve the accuracy of PL prediction compared to conven-
tional PL models. However, most proposed methods rely on
small input sets and ignore the impact of multiple KPIs and
other critical parameters such as topological information. A
rich training set covering a wide range of required informa-
tion with high resolution plays a vital role in exploiting the
potential of ML techniques and extracting the structural rela-
tionship between collected data from complex environments.
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FIGURE 4. Challenges and limitations in wireless IoT channel modeling.

FIGURE 5. Opportunities in wireless IoT channel modeling.

Given the diversity and dynamic nature of environmental con-
ditions in IoT communications, providing rich measurement
campaigns for various environments and scenarios is crucial
for developing accurate DL-based channel models.

Many future work directions in wireless channel modeling
and characterization of IoT technologies, in general, and
LPWAN in particular, may be viable in this regard. Among
these, it is believed that measurement-based and comparative
analysis studies are of utmost desire to understand such tech-
nologies’ behavior in real-world environments accurately.
The latter is also crucial to validate the performance of
existing channel models and identify their suitability for a
wide range of actual deployments and the need for further
optimization or new models implementation. Other model-
ing approaches may integrate emerging machine learning-
based and hybrid prediction techniques, combining popular
stochastic or deterministic modeling techniques with ML.
Nonetheless, any of these approaches may represent a sig-
nificant opportunity, with the potential to have a significant
impact on a broad range of critical applications. Figs. 4 and 5
summarize the challenges and opportunities in wireless IoT
channel propagation modeling, respectively.

VII. CONCLUSION
For any communication system, the wireless channel char-
acteristics are a critical parameter that directly affects the
wireless signal traveling from the transmitter to the receiver
antenna through the channel. Wireless transmission has
recently become the core for enabling wireless IoT applica-
tions. As a result, it is crucial to investigate the propagation

channel characteristics that directly impact wireless trans-
mission performance. Failure to do so will harm the plan-
ning and deployment of any IoT application. As such, this
review addresses wireless channel characterization and mod-
eling for wireless IoT technologies, including a comprehen-
sive review of recent advancements and studies in this area.
To properly understand this issue, the study begins by briefly
reviewing several innovative wireless IoT-based applications
and then highlighting the most crucial challenges associated
with them.

The study also includes a brief description of channel
modeling and a generalized form of commonly used channel
models. It also lists 34 well-known path loss models for
wireless IoT technologies, with a thorough description of
each model’s modeling parameters, limitations, and operat-
ing conditions. Finally, the study reviews recent advances in
channel modeling for wireless IoT technologies, describes
gaps in existing research, and suggests future research direc-
tions towards addressing these gaps.

Althoughmany researchers have considered addressing the
problem of channel modeling, it can be concluded that a
significant gap remains, and additional research is required to
resolve the crux of this problem. Moreover, to improve mod-
eling accuracy, many challenging issues must be resolved.
On the other hand, it was observed that, among the numerous
existing LPWAN technologies, LoRa/LoRaWAN had gained
significant research attention due to its unique features.While
much research has been done on LPWANs, it can be observed
that there is still a big gap in channel modeling and characteri-
zation of these technologies, especially in areas with complex
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terrain and harsh climates like tropical regions. Further, the
use of more precise ray-tracing methodologies or simulation
tools in some research has not investigated the full potential
of LPWAN technology. Meanwhile, the low-resolution maps
available constrained most, making such studies site-specific
and impractical for usage in other deployment areas.

Among many directions forward to tackle the channel
modeling and characterization for wireless IoT technolo-
gies, especially LPWANs, it is believed that measurement-
based and comparative analysis studies are crucial for fully
understanding the behavior of such technologies in the real-
world. The latter is also crucial to validate the performance
of existing channel models and identify their suitability for
a wide range of actual deployments and the need for further
optimization or new models implementation. Other model-
ing approaches may integrate emerging machine learning-
based and hybrid prediction techniques, combining popular
stochastic or deterministic modeling techniques with ML.
Nonetheless, any of these approaches may represent a sig-
nificant opportunity, with the potential to have a significant
impact on a broad range of critical applications.
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