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ABSTRACT Technology convergence can trigger technological innovation and change. Therefore, it is
required to develop an approach to predict the convergence between technology fields that did not exist
in the past. It will allow a frim to preoccupy a completely new competitive advantage that is different from
that of its competitors. The timely anticipation of converging technology fields allows the innovating firms
to recognize the changing business developments associated with the technology convergence. A variety
of researchers have presented supervised learning-based approaches to predict potential technology fields
where technology convergence is taking place using patents. They have developed machine learning
models which capture the associations between the past and future connections between technology classes.
Although their contributions are absolutely significant, they have a limitation in that they do not consider in
depth the technological properties that are outputs of technological activities performed in each technology
field. To ensure that the predicted future connections between technology fields are reasonable, technological
properties that can specifically imply technology convergence should be clearly reflected in the process
of the supervised learning. Motivated to remedy this problem, this study proposes a supervised learning-
based approach to anticipating potential technology convergence by using the link prediction results, the
technological influence relationships, and the technological relevance between technology classes. Using
these as input features, several classification models that predict new technology convergence are trained
and a voting classifier is developed to ensemble all the models. This study is expected to contribute to
identifying new technology opportunities that can be realized through technology convergence. Furthermore,
this study will assist firms to reflect the identified opportunities on their technology roadmap and make
business decisions to penetrate the relevant market in a timely manner.

INDEX TERMS Technology convergence, supervised learning, link prediction, technological spillover,
technological relevance.

I. INTRODUCTION
Technology convergence refers to a phenomenon in which
connections between technology domains disparate from
each other in the past are newly generated to create novel
technologies [1]–[3]. It blurs the boundaries between existing
domains, thereby forming a technological overlap in vari-
ous technology fields and consequently allowing new prod-
ucts and services to be developed [4], [5]. Therefore, it is
recognized as a decisive factor driving innovation between
technology fields and overcoming the current obstacles that
outstanding innovations are no longer manifested within one
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single technology field [6]. In this context, it is consider-
ably important to have a systematic way of supporting firms
to quickly discover potential technology opportunities that
can be realized through technology convergence [7], [8].
Transforming the discovered opportunities into new products
or services enables firms to achieve sustainable growth based
on securing competitive advantages [9]. Technology conver-
gence can trigger technological innovation and change that
introduces new value to the market in a timely manner [10],
so it is essential to identify new opportunities based on tech-
nology convergence. To do that, an approach to predict the
convergence between technology fields that did not exist in
the past is required because it allows a frim to preoccupy a
completely new competitive advantage that is different from

19284 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-0863-2267
https://orcid.org/0000-0003-2247-0399


S. Choi et al.: Supervised Learning-Based Approach to Anticipating Potential Technology Convergence

that of its competitors. The timely anticipation of converging
technology fields allows the innovating firms to recognize the
changing business developments associated with the technol-
ogy convergence [11].

A variety of researchers have presented several approaches
to predict potential technology fields where technology
convergence is taking place using various types of data
sources [4], [10]–[13]. Among the data sources, patents
have been dominantly used [14] because they can serve as
a reliable source of knowledge reflecting aspects of rapid
technological advances in a well-structured format [6], [15].
Mainly, the patent-based approaches have used link pre-
diction analysis which estimates the possibility of future
links between nodes based on the existing links to pre-
dict future convergences between disparate technologies [4].
Utilizing multiple proximity indexes together, they usually
compute the index values of pairs of unconnected technol-
ogy classes and designate only pairs with the index val-
ues greater than a predefined threshold value as potential
technology convergence [4]. It is certainly possible to pre-
dict future convergence by identifying potential links in the
future from the existing connections [10]. However, these
approaches determine the threshold value arbitrarily and
ignore the weights of the proximity indexes when combining
them. It inevitably lowers the reliability of the predicted tech-
nology convergence results. Patent bibliometric information
has also been widely used for the purpose of exploring tech-
nology convergence [10], [11]. They generate a knowledge
flow network using International Patent Classification (IPC),
which is representative patent bibliometric information, and
anticipate converging technology fields based on the net-
work. However, using only bibliometric information is not
sufficient in examining future technology convergence fields
since the knowledge it provides is quite limited [16]. To rem-
edy this problem, the supervised learning-based approaches
are introduced for the purpose of predicting future connec-
tions between technology classes [12], [17]. They develop
machine learning models which capture the associations
between the past and future connections between technology
classes. Although the performance of these models was rel-
atively high, they still have a limitation in that they do not
consider in depth the technological properties that are out-
puts of technological activities performed in each technology
field. To ensure that the predicted future connections between
technology fields are reasonable, technological properties
that can specifically imply technology convergence should
be clearly reflected in the process of training the models.
Of course, there have been attempts to incorporate semantic
properties into the prediction process using the text corpus
of patens [10], but it is not sufficient to fully encompass the
technological properties.

Anticipating future technology convergence results in
dominance of the market for associated products by rec-
ognizing prospective technology opportunities in advance.
In the past, much of the anticipation was based on a qual-
itative approach, such as in-depth discussions with relevant

experts. However, it is inappropriate to actively respond to
the rapidly changing technology environment. As a result,
numerous studies implying a quantitative approach have been
done. Because quantitative approaches frequently incorporate
multiple indications, there is an issue with combining them
effectively. A great answer to this problem is a supervised
learning. It effectively illustrates the complicated relation-
ships between multiple inputs and single output. Therefore,
this study proposes a supervised learning-based approach to
anticipating potential technology convergence by using the
link prediction results, the technological influence relation-
ships, and the technological relevance between technology
classes. Using these as input features, several classification
models that predict new technology convergence are trained
through various machine learning and deep learning algo-
rithms. We perform a comparative analysis of the trained
models and develop a voting classifier to ensemble all the
models. To explore the feasibility of the proposed approach,
we conduct a case study by choosing specific technology
fields where convergence frequently occurs. Moreover, we
measure the performance of the voting classifier and discuss
the details of future technology convergence based on the pre-
diction results by the voting classifier. This study is expected
to contribute to identifying new technology opportunities that
can be realized through technology convergence. Further-
more, this study will assist firms to reflect the identified
opportunities on their technology roadmap andmake business
decisions to penetrate the relevant market in a timely manner.

II. GROUNDWORK
A. TECHNOLOGY CONVERGENCE
Technology convergence has become a common feature of
innovation, which leads to the securing of competitive advan-
tages of firms and the evolution of industrial structures [8].
Discovering emerging trajectory of technology convergence
can not only present the way to create new inventions by
convergence of outstanding technologies across industrial
boundaries, but also increase the opportunities for innova-
tion [6]. Technology convergence, a noteworthy feature of
current innovation trends, has created new opportunities for
firms to gain competitive advantages and core competen-
cies [8], [18], [19]. Therefore, capturing current trends and
anticipating future aspects of technology convergence will be
beneficial for firms in that they can seize innovation opportu-
nities for sustainable growth.

The existing studies on technology convergence had
mainly focused on identifying its patterns and measuring the
degree to which it occurs actively from a static perspective.
For example, Han and Sohn [20] discovered key technology
fields that played an important role in technology conver-
gence. To examine technology convergence more precisely,
several multidimensional indicators had also been designed.
Using those indicators, some meaningful insights about
furthering industrial convergence were derived and the pro-
cesses of technology convergencewere established [21], [22].
These previous studies from a static perspective obviously
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contributed to enabling firms to properly understand the cur-
rent technology convergence trends, explore the convergence
innovation, and presenting the significant implications. How-
ever, in order to derive proper action plans to actively respond
to the rapidly changing technology environment, it is required
to anticipate potential future technology convergence from a
dynamic perspective [8]. Thousands of patents, the key data
of the proposed approach, are issued every day. Thus, antici-
pation models should not be used in a static form for a lengthy
period of time. They need to be updated continuously and
frequently. It necessitates the periodic re-establishment of the
intricate relationships between various inputs and an output.
Supervised learning is a great way to perform such frequent
model updates automatically. It can quickly and effectively
depict the complicated relationships between inputs and out-
puts with the help of improved hardware performance and
the emergence of powerful algorithms for data analytics. For
this reason, the supervised learning-based studies to antici-
pating or forecasting new technology convergence have been
extensively carried out [12], [17]. Accurate forecasting of
technology convergence can facilitate firms and governments
to improve innovation efficiency [8]. However, the previous
studies do not consider in depth the technological properties
that are outputs of technological activities performed in each
technology field. Therefore, this study develops classifica-
tion models that predict new technology convergence by
extracting various features that can comprehensively capture
relationships between technology fields.

B. EMPERICAL STUDIES OF TECHNOLOGY
CONVERGENCE USING PATENTS
Several data sources have been used to investigate technology
convergence, including Wikipedia [13], research papers [21],
and some relevant outputs of the government-supported R&D
programs [23]. Among them, patents have been used most
due to its features of the latest reliable sources to capture
technological advances and innovative practices [8], [24].
A patent is often classified into several IPCs at the same
time, indicating that the unique solution inherent in a patent is
applicable in several technology classes and an exchange of
technological knowledge occurs between them [25]. The IPC
is represented by a set of alphanumeric code and is organized
into a hierarchy of section, class, subclass, and group [26].
Many studies have noted that using only IPC subclasses is
sufficient to generate an appropriate number of technology
classes with clear technological boundaries [25], [27], [28].
Thus, this study also uses IPC subclasses to define the neces-
sary features.

Patent co-classification analysis aims at capturing the
aspects of knowledge exchange and sharing between tech-
nology classes by extracting their relational information in
which technological knowledge is implicitly embedded [29].
Using the patent co-classification analysis leads to building
a technological knowledge flow network [30]. Investigat-
ing the network will serve as the basis for depicting the
convergence between technology classes. Song et al. [11]

proposed a novel approach to anticipate converging technol-
ogy areas by analyzing the knowledge flow in the patent
co-classification network. Lee et al. [31] identified conver-
gence patterns of various technology fields and predicted
future patterns performing the link prediction analysis on
the IPC co-classification network. Gauch and Blind [32]
presented a patent-based method of identifying trends in
technology convergence by exploring the structures of con-
vergence in technological development and standardization.
They proved that it is possible to properly illustrate the
aspects of convergence between technology fields through
pairs between technology classes represented by IPC. There-
fore, this study also uses patent co-classification analysis at
the IPC subclass level to extract useful features representing
complex relationships between technology classes and to
predict future technology convergence.

III. APPROACH TO ANTICIPATING POTENTIAL
TECHNOLOGICAL CONVERGENCE
There have been studies to anticipate technology convergence
by linearly combining multiple proximity indexes. However,
they ignore the weights of the indexes when combining them.
In addition, they do not deeply consider the technological
properties that are results of technological activities carried
out in each technology field. Technological properties can
specifically imply technology convergence, so they should
be clearly reflected in the process of training the models.
It will ensure that the predicted future connections between
technology fields can be reasonable. This study proposes a
supervised learning-based approach to anticipating potential
technology convergence by developing classification mod-
els that predict new technology convergence. The proposed
approach consists of 3 steps as shown in Fig. 1: 1) extracting
multiple features suitable for the prediction of technology
convergence, 2) training classification models using various
machine learning and deep learning algorithms, and devel-
oping a voting classifier that ensembles all the classification
models, and 3) measuring the performance of the classifier
and identifying potential technology convergence based on
the prediction results.

A. EXTRACTING FEATURES FOR TECHNOLOGY
CONVERGENCE CLASSIFICATION MODELS
We collect patent bibliographic information such as IPCs and
textual data including titles, abstracts, and claims because this
study is based on the patent co-classification analysis and
explores technology convergence by extracting technologi-
cal features from patent text data. Features to be obtained
from these data can be classified into three types. First,
we assess the possibility that new links between technol-
ogy classes will be formed in the future using link pre-
diction measures. They compute proximity values for all
pairs of unconnected technology classes, which indicates
the likelihood that new links between them will be created
in the future. It can certainly examine the potential tech-
nology convergence in that it refers to the possibility of
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FIGURE 1. Procedural framework for identifying potential technology convergence.

convergence between technology classes. Second, we explore
the cause and effect relatedness between technology classes.
Convergence is influenced by the relationships between inter-
actants. In general, technology classes, which were separated
from each other at first, begin to exchange and share knowl-
edge over time, and eventually convergence occurs between
them. Therefore, exploring their influential relationships is
quite appropriate to investigate the possibility of conver-
gence. We evaluate comprehensive influential spillovers by
extracting direct influential relationships between technology
classes through the patent co-classification analysis, deriving
indirect relationships from the direct ones, and then aggre-
gating them all. It can properly quantify the readiness of
convergence between different technology classes to emerge.
Finally, we examine the technological relevance between
technology classes. The two types of features mentioned
above only explore their external closeness, but do not con-
sider the technological properties that should be involved
in the process of anticipating technology convergence. This
third type of feature complements the previous two types
by incorporating technological properties into the proposed
approach. Technology classes with technological relevance
tend to have their own technological elements easily con-
verged with each other. It can explain the environment in
which convergence between different technology classes can
occur more actively.

This study proposes a supervised learning-based approach
to deal with the effects of these features on technology con-
vergence from a technology-centric perspective. Information
about the class or label usedwhen training classificationmod-
els with these input features is required. If patents classified

into different technology classes are granted, it can be con-
sidered that new inventions are derived by convergence of
knowledge of relevant classes. Therefore, we quantify tech-
nology convergence using those patents and determine label
information. There should be some time gap between the
input features and the emergence of converging technologies.
For the time gap, we collect patents by dividing them into
three periods. We extract the input features and labels from
the patent data of the first and second periods, respectively.
Several classification models are trained through supervised
learning using them. In addition, we evaluate the performance
of the classification models using the input features and
labels from the patent data of the second and third periods,
respectively. Finally, after extracting the input features from
the patent data of the third period, we put them into the clas-
sification models to predict future technology convergence.
Based on the prediction results, we will discuss the details of
future technology convergence.

1) NEW LINK POSSIBILITY
We build a co-classification network using the IPCs of the
collected patents and apply the link prediction measures
to the network to calculate proximity values for potential
technology connections. In the co-classification network,
a technology class is depicted as a node and a relation
between them as a link. The relation shows how actively
the knowledge within the relevant classes is being applied
to the inventions in a convergent way. Technology classes
linked in a certain period mean that converging technologies
are already emerging between them. Conversely, unlinked
classes indicate that an investigation should be made to see
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if technology convergence can occur in the next period. Link
prediction identifies pairs of technology classes that are likely
to be linked in the next period among the unlinked classes
in the current period [33]. Multiple link prediction measures
have been proposed to calculate the proximity between dif-
ferent nodes in a network [34]. A node pair with higher
proximity is more likely to be linked. Link prediction mea-
sures are grouped into three categories: local, global, and
quasi-local [35]. Local measures only focus on the neigh-
borhoods of a given pair of nodes [36]. Most local measures
are variants of the common neighbors (cn) which embodies
an intuition that two researchers are more likely to work
together if they have worked with the same group of people
in the past. Jaccard (jaccard), preferential attachment (pa),
Adamic-Adar (aa), resource allocation (ra), hub depressed
index (hdi), and Leicht-Holme-Newman (lhn_local) are rep-
resentative common neighbors-based local measures. Global
measures consider the properties of the entire network as a
whole [36]. Katz (katz), matrix forest (mf), average commute
time (act), and random walk with restart (rwr) belong to
the global measures. Quasi-local measures are somewhere
between the local and global measures [36]. Local path (lp)
counts the number of paths of length two and three, and
computes the weighted sum of them [37]. Studies using
link prediction usually tend to utilize only a few mea-
sures [38], [39]. However, in this case, significant infor-
mation loss is inevitable [10], [25]. Therefore, we use all
the commonly used measures for link prediction together.
The proximity scores for the measures are summarized
in Table 1.

2) CAUSE AND EFFECT RELATEDNESS
The predicted links represent only undirected associations
between technology classes. Using only these undirected
relationships is not sufficient to properly extract features that
are likely to influence technology convergence. Therefore,
we apply association rule mining to generate directional
connection rules between them. Association rule mining,
one of the representative unsupervised learning techniques,
is the process of revealing important hidden relationships
among sets of items in a huge database [51]. Let I =
{i1, i2, i3, . . . , in} be a set of items, and X and Y are two
subsets of I , association rule mining generates rules in the
form of X → Y , where X ∩ Y = ∅ [52]. The rule X → Y
means X implies Y in which X and Y are said to be antecedent
and consequent itemsets, respectively. Three measures, sup-
port, confidence, and lift, are examined to investigate the
generated rules [53]. The support measure indicates how
often the antecedent and consequent itemsets appear simul-
taneously in the entire transaction. The confidence measure
expresses how closely the antecedent itemset is related to
the consequent itemset. The lift measure explains the corre-
lation between the antecedent and consequent itemsets. The
confidence values of the rules generated based on the patent
co-classification information can show the amount of influ-
ence of the antecedent technology classes on the consequent

TABLE 1. Commonly used measures for link prediction. 0 (x) and kx
indicate a set of all neighbors and the degree of node x , respectively.

classes because they illustrate how strong the implication
relationships between these classes are.

We produce comprehensive influential spillovers among
technology classes using the DecisionMaking Trial and Eval-
uation Laboratory (DEMATEL). As one of the network-based
decision making techniques, it encompasses both direct and
indirect influential effects of each class on other classes [54].
First, we create an average matrix representing the degree of
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direct influence between technology classes from the patent
co-classification information. Next, the average matrix is
normalized by dividing all elements by the maximum of the
column and row sums. LetD be a normalized average matrix,
a total relation matrix is computed by D (I − D)−1. From the
total relation matrix, we can compute the cause and effect
relationships of technology classes by calculating the sum
of rows and columns, respectively [55]. Cause refers to the
extent to which each class affects all other classes and effect
represents extent of influence that each class receives from all
others. Converging technologies will highly likely to emerge
between technology classes that have strong cause and effect
relationships. We, therefore, use the cause and effect for
pairs of technology classes as input features to investigate
technology convergence. Fig. 2 shows exploring the cause
and effect relatedness between technology classes.

3) TECHNOLOGICAL RELEVANCE
Technological relevance can explain the environment in
which convergence between different technology classes can
occur more actively since technologically similar classes can
be more easily converged. To explore the technological rel-
evance between them, we define technological features by
extracting technology topics and calculating the topic similar-
ities. Latent Dirichlet Allocation (LDA) [56], as a generative
topic model, retrieves latent topics hidden in massive textual
documents [57], [58]. It assumes that a document is made up
of multiple topics and determines which topics are related

FIGURE 2. Exploration of cause and effect relatedness between
technological classes.

to the words contained in the documents [56]. Topics are
represented as a set of words based on the probability that
the words will be included in a particular topic. To extract
technology topics from patent documents, we need textual
data of patents such as titles, abstracts, and claims. A corpus
is configured with the collected textual data and is cleaned
through the pre-processing techniques such as stemming and
eliminating stop words. A document-term matrix is con-
structed with the cleaned corpus. Before applying LDA to the
matrix, we have to determine in advance the number of topics
to be extracted, which affects the quality of the topic model.
A commonly used criterion is perplexity [59]–[61]. In gen-
eral, the lower the perplexity value, the better the quality of
the model [60]. We compute perplexity values while varying
the number of topics and adopt the number at which the rate
of change in perplexity values becomes low.

Applying LDA to the document-term matrix leads to the
creation of a document-topic matrix, which expresses prob-
able relationships between patent documents and technol-
ogy topics. We convert them into the relationships between
technology classes and topics by grouping them according
to the IPC subclasses into which each patent is classified.
Technological relevance is finally computed by vectoriz-
ing the relationships between technology classes and topics,
and calculating the similarity between technology classes.
A lot of different methods have been used to calculate
vector similarity. This study extracts input features repre-
senting technological relevance using two similarity calcu-
lation methods: bray-curtis distance and cosine similarity.
The former computes the ratio of the absolute difference of
individual elements to the absolute sum of elements in the
two vectors [62], [63]. The bray-curtis distance is limited to
values between 0 and 1 [64], so it can be easily combined
with other methods. The latter is commonly used to calculate
distance between documents when they are embedded into
a vector space [65]. It determines whether the two vectors
are approximately in the same direction by measuring the
cosine of the angle between them [66]. It can theoretically
range from −1 to 1, but usually has values from 0 to 1
between two documents because term frequencies in doc-
uments cannot be negative. The cosine similarity is often
preferred for measuring the document similarity in text anal-
ysis over other methods since it does not depend on the vec-
tor magnitudes [67]. We use these similarities representing
technological relevance for pairs of technology classes as
input features to investigate technology convergence. Fig. 3
shows examining the technological relevance between tech-
nology classes.

This study uses 16 input features in three different types to
achieve supervised learning. Table 2 lists all of the features
that go towards determining technology convergence.

B. TRAINING CLASSIFICATION MODELS TO PREDICT NEW
TECHNOLOGY CONVERGENCE
Supervised learning algorithms are trained with the extracted
features. The prediction target is whether technology
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FIGURE 3. Examination of technological relevance between technology
classes.

convergence occurs in the pair of two technology classes.
It could be expressed as patents classified into those classes.
To create the labeled data for training and testing, we divide
the patent dataset into three periods. For each pair of technol-
ogy classes, after extracting the input features from the patent
data in the first period and whether technology convergence
occurs in the second period, several classification models
are trained using them. The input features in the second
period and whether convergence occurs in the third period are
used to measure the performance of the models. The twelve
input features naturally have a very wide range of values.
Therefore, they should be normalized before being used to
train the models.

Various machine learning and deep learning techniques
have been used for classification or prediction problems.
Because each of them has their own strengths and weak-
nesses, this study intends to anticipate the convergence
between technology classes by using multiple techniques
together. Decision Tree (DT) is represented by nodes and
branches, where nodes are composed of features for classi-
fication and branches show the values of those features [68].
It is one of the most widely used techniques for classification
because of its simplicity and interpretability [69]. Logistic
Regression (LR) is also a popular statistical generalized lin-
ear model. It is often chosen as a reference baseline for
machine learning because its implementation is simple and
straightforward [70]. Support Vector Machine (SVM) aims
to define the best separating hyperplane in the input feature
space to maximize the interval of positive and negative sam-
ples in the training set [71]. Compared to a single model,
ensemble methods can effectively improve the performance

TABLE 2. All the input features used in this study to investigate
technology convergence.

of prediction by averaging the results of differentmodels [72],
so we also utilize Random Forest (RF), Gradient Boosting
Machine (GBM), XGBoosting (XGBoost), and Categori-
cal Boosting (CatBoost). The ensemble methods suppress
the dispersion of the prediction results and improves the
generalization and robustness of the multiple classification
models by aggregating the results of the differentmodels [73].
We additionally train a Deep Neural Network (DNN) which
learns a set of hierarchical nonlinear transformations [74].
To control the learning process, we have to tune hyper-
parameters because they cannot be inferred while training
classification models [75]. Grid search with cross-validation
has been frequently used to obtain optimal hyperparameter
combinations. It can find the best combinations by iteratively
applying different values of various parameters for a given
model to the validation dataset [76]. The hyperparameters
from the grid search are evaluated by the cross-validation
determining which ones are superior [77].

When different classificationmodels make decisions based
on input data instances, there are bound to be different
answers. Therefore, we develop a voting classifier which
employs multiple models when making predictions. Voting
is an ensemble method for making predictions that integrates
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the results of numerous models. Voting will not be hindered
by significant errors or misclassifications from a single model
because it is based on the performance of multiple models.
A model’s poor performance can be compensated for by the
strong performance of other models. It is quite applicable in
situations where there is some confusion as to which classifi-
cation techniques are appropriate for a given problem [78].
There are two types of techniques for a voting classifier:
hard and soft [79]. In hard voting, the class with the most
predictions is selected as the final voting result, whereas in
soft voting, the class with the highest average of the proba-
bilities of the classes generated by each classifier is chosen
as the final voting result [80]. Since all the techniques used
in this study generate prediction probabilities, we develop a
soft voting classifier.

C. ANTICIPATING POTENTIAL
TECHNOLOGY CONVERGENCE
The performance of the voting classifier is measured using
the input features from the second period and whether con-
vergence has occurred in the third period. It performs binary
classification, so we examine Area Under Curve (AUC) from
Receiver Operating Characteristic (ROC) curve in addition
to basic metrics such as accuracy and f1 score. This study
ultimately aims to predict the potential future technology con-
vergence beyond the third period. We will discuss the details
of future technology convergence based on the prediction
results.

In this study, we use quite a number of features to train vari-
ous classification models and then develop a voting classifier.
Organizing all processes so that they can be clearly identified
at a glance will undoubtedly help to increase the applicability
of this study in various research areas. Therefore, we provide
pseudocodes for extracting input features, training supervised
learning algorithms with the extracted features, and assessing
performance in Algorithms 1 and 2.

IV. ILLUSTRATION
A. FEATURE EXTRACTION
This study develops multiple classification models that pre-
dict new technology convergence. The birth of a converging
technology can be expressed by the first appearance of a
pair of two IPC subclasses [10]. To investigate technology
convergence, we collect patents related to wearables granted
by the United States Patent and Trademark Office (USPTO)
from 2011 to 2019.Wearables are portable electronic systems
that are recently attracting attention from the consumer goods
industry because they are light and small enough to be worn
on a human body [81]. Wearables are typically equipped
with a lot of sensors that can recognize a wearer’s emotional
patterns [11], so significant innovative products are being
derived by the convergence of various technologies with
them. It means that wearables are suitable for our case study.
Song et al. [11] have argued that the two technology fields
of signal transmission and telecommunications, and medical

Algorithm 1. The Pseudocode for Extracting Input Features
Generate a technology class network
Pi = input feature vector for pairs of technology classes (i = 1, 2, . . . ,N )
F = N × M matrix for input features (N and M denote the number of
pairs of technology classes and input features, respectively.)
M = M1 +M2 +M3 (Mi means the number of input features in type i)
for a = 1 to M1 (M1 = 12) do

for i = 1 to N do
Pi = the likelihood of a new link for the pair i using the link prediction
measure a
Append Pi to the F

end for
end for
Generate association rules for all pairs of technology classes
TRM = total relation matrix for all pairs of technology classes
for a = 1 to M2 (M2 = 2) do

for i = 1 to N do
if a = 1:
Pi = the cause for the pair i in TRM
Append Pi to the F

else:
Pi = the effect for the pair i in TRM
Append Pi to the F

end for
end for
Generate a document-topic matrix applying LDA
TCTM = the technology class-topic matrix converted from the document-
topic matrix, which expresses probable relationships between classes and
topics
for a = 1 to M3 (M3 = 2) do

for i = 1 to N do
if a = 1:
Pi = 1− the bray-curtis distance for the pair i in TCTM
Append Pi to the F

else:
Pi = the cosine similarity for the pair i in TCTM
Append Pi to the F

end for
end for
return F

Algorithm 2. The Pseudocode for Training Supervised
Learning Algorithms With the Extracted Features and
Assessing Performance
Pij = performance measurement matrix for the classification models (i =
1, 2, . . . ,N , j = 1, 2, . . . ,M )
for i = 1 to N do

Train classification models using machine learning or deep learning
technique i
for j = 1 to M do
Pij = Evaluate the performance of the trained classification model i
using the measurement indicator j

end for
end for
return Pij

equipment are very closely related to wearables. In addition,
they have defined 21 and 18 IPC subclasses that are in
concordance with each of the technology fields. Therefore,
we can discuss wearables-related technology convergence
using pairs between these two groups of technology classes.
Table 3 shows the number of patents collected by year.
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TABLE 3. The number of wearables-related patents granted by the USPTO
from 2011 to 2019.

As interest in wearables is growing, the number of patents
is also constantly increasing.

Several classification models are trained to predict whether
technology convergence occurs in the second period using
the input features extracted from the patent data in the first
period. In this case study, observations are all pairs of tech-
nology classes that can be generated by selecting one from
two groups of technology classes closely related to wear-
ables. As shown in Table 4, the total number of possible
pairs is 378 (21 × 18), and the number of pairs for which
technology convergence has not occurred in the first period
is 307. Therefore, we extract the input features from the
patent data in the first period, label them according to whether
technology convergence has occurred in the second period,
and then train multiple classification models using them as
a training dataset. In the second period, the number of pairs
in which technology convergence occurred is 99, and the
number of pairs that did not occur is 208. The test dataset
for measuring the performance of the trained classification
models is presented in Table 5. The number of pairs where
technology convergence has not occurred in the second period
is 213, and among them, the number of pairs where tech-
nology convergence has actually occurred in the third period
is 45. It is worth noting that the number of pairs increases
with each period, from 71 in period 1 to 165 in period 2.
This increase is entirely natural given the growing interest
in wearables. Many businesses recognize the potential of
wearable technology and make efforts to develop innovative
products to preoccupy the relevant market. These efforts
result in the creation of numerous patents, which leads to the
birth of a new convergence technology that is distinct from
existing ones in order to differentiate it from competitors.
Therefore, it is critical to anticipate future opportunities for
new technology convergence in order to gain a competitive
advantage. It is the impetus for conducting this study.

1) POSSIBILITY OF NEW LINKS BETWEEN
TECHNOLOGY CLASSES
We build a patent co-classification network from 660 patents
in the first period. A total of 109 technology classes including
ones related to wearables constitute the network. Link pre-
diction has a limitation in that it cannot produce prediction
results unless all nodes in the network are connected to each

TABLE 4. The number of pairs between technology classes to be used as
a training dataset.

TABLE 5. The number of pairs between technology classes to be used as
a test dataset.

TABLE 6. Summary of descriptive statistics of the likelihood of being
linked in the next period for pairs of technology classes that are not
linked in period 1.

other without any isolated subnetworks. It is necessary to
check whether there are such isolated subnetworks in the
co-classification network. In our case data, there are no iso-
lated nodes. Therefore, for all theoretically possible links
between the technology classes in the patent co-classification
network, we can quantify the likelihood that links between
them will be created in the next period.

Proximity values indicating the possibility that all technol-
ogy class pairs that are unconnected in the first period will
be linked in the second period are computed applying vari-
ous link prediction measures. Table 6 shows the descriptive
statistics of the measured proximity values. These values can
represent positive implications for the degree of technology
convergence in the next period. As can be seen in Table 6, the
values vary greatly depending on measures, so it is necessary
to normalize them before using them as input features for a
supervised learning.

2) RELATEDNESS OF CAUSE AND EFFECT BETWEEN
TECHNOLOGY CLASSES
We apply the apriori algorithm, which is one of the most
representative algorithms for association rule mining, to the
co-classification network of technology classes to gener-
ate direct relationships between technology classes. It is
necessary to set the threshold values of several measures
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in advance. We determine the minimum threshold values so
that, while a sufficient number of rules are obtained, technol-
ogy classes showing extremely low frequency of occurrence
in the collected patent dataset are not included in the final rule
list. Applying the apriori algorithm leads to generate 1,252
rules between technology classes. Among them, top 100 rules
sorted by confidence are shown in Fig. 4.

FIGURE 4. Top 100 association rules between technology classes sorted
by confidence.

Next, we encompass both direct and indirect influential
effects of each class on other classes by applying DEMATEL.
The generated rules are considered as an average matrix
because the confidence in the rules can represent the degree
of direct influence between the antecedent and consequent
technology classes. After normalizing the average matrix by
dividing all elements in the matrix by the maximum of the
column and row sums, we compute the total relation matrix.
In the total relation matrix, the sum of rows and columns indi-
cate the cause and effect relationships of technology classes,
respectively. It is natural to be concerned that the influential
relationships between technology classesmay be exaggerated
because applying DEMATEL reveals not only direct relation-
ships but also indirect ones. The upper left and lower right
triangle of Fig. 5 show the cause and effect relationships,
respectively. This heatmap ensures that no such concerns
have arisen since in most cases, very slight relationships were
created, and only a few exhibit relatively strong influential
spillovers. Therefore, examining cause and effect between
technology classes provides a rational view of the influential
relationships between them.

3) TECHNOLOGICAL RELEVANCE BETWEEN
TECHNOLOGY CLASSES
We generate technology topics applying LDA to the patents’
textual data including titles, abstracts, and claims. After con-
figuring and cleaning a corpus, a document-term matrix is
created. Before applying LDA to the matrix, we have to
decide how many topics to create. To do that, perplexity is

examined. Fig. 6(a) depicts the perplexity values measured
while increasing the number of topics to 200, Fig. 6(b) shows
the perplexity values that change as the number of topics
increases by one. The perplexity value naturally tends to
decrease as the number of topics increases. A lower perplexity
value usually gives better performance, but creating too many
topics can cause problems such as topic redundancy. Thus,
in this process of extracting input features for the training
dataset, we decide to create 70 topics where the curves in
Fig. 6(a) and Fig. 6(b) start to flatten.

FIGURE 5. Heatmap of cause and effect of technology classes.

After applying LDA to the patent dataset, we obtain a
document-topic matrix which denotes the weighted associ-
ations between 660 patents and 70 topics. The associations
are represented as a document-topic matrix. Specifically, the
document-topic matrix shows topic-based representations of
patent documents where each row determines the degree of
association between a topic and documents. After converting
these into the associations between technology classes and
topics, we measure technological relevance between tech-
nology classes by computing the similarity between them.
We utilize two vector similarity measures. If the results of

VOLUME 10, 2022 19293



S. Choi et al.: Supervised Learning-Based Approach to Anticipating Potential Technology Convergence

FIGURE 6. Perplexity with different number of topics. (a) perplexity values
measured while increasing the number of topics to 200, and (b) perplexity
values that change as the number of topics increases by one.

these two measures are completely different from each other,
it may be difficult to use them together as input features.
We calculate the Pearson’s correlation coefficient between
the results of the two measures and make a scatter plot as
shown in Fig. 7. It demonstrates that these two measures do
not conflict with each other, and consequently can examine
technology convergence in a consistent way. Therefore, it is
quite reasonable to use these two similarities representing
technological relevance for pairs of technology classes as
input features to investigate technology convergence.

B. CLASSIFICATION MODELS FOR
TECHNOLOGY CONVERGENCE
We train classification models to predict new technology
convergence using the features defined in the previous step.
The training data is preferentially normalized using a stan-
dard scaler since the range of values of input features is
quite different. Of course, there are some techniques that
do not require normalization of the training data, such as
decision trees, but we do it to ensure consistency for all
models. We train multiple classification models using various
techniques and ensemble them to develop a voting classifier.
Training of models requires setting various hyperparameters.
The grid search with cross-validation is used so that models

FIGURE 7. Scatter plot between two similarity measures. The Pearson’s
correlation coefficient between two measures is 0.70, which is significant
at the 0.001 level. It demonstrates that these two measures can be input
features that do not conflict with each other and can examine technology
convergence in a consistent way.

with optimal parameters can be trained. Table 7 shows hyper-
parameter range of each technique utilized in this study.

We obtain eight classification models with different
characteristics to predict new technology convergence by set-
ting the selected optimal combination of hyperparameters to
each technique. These models are trained to predict whether
technology convergence occurs in the second period using
the input features extracted from the patent data in the first
period. Finally, we develop a voting classifier to employ
multiple models to make predictions. The number of the pairs
of technology classes to be trained is limited. Therefore, even
if a typical x86 processor is employed, the computation time
of model training is only a few tens of seconds. Of course,
since we use the grid search with cross-validation to identify
the optimal parameters for each model, this process takes up
to 5 minutes. Even so, as it is not a long period of time, the
proposed approach can be said to be time-efficient.

C. POTENTIAL TECHNOLOGY CONVERGENCE
The performance of the voting classifier is measured using
the input features from the patent data in the second period
and whether convergence has actually occurred in the third
period. Table 8 shows the performance measurement results
for each classification model and the voting classifier. The
AUC based on the ROC curve is illustrated in Fig. 8. All of
them show generally similar performance. If a single model
can outperform a group of models, we simply need to use it
without voting. For example, in a regression problem, if there
is a strong relationship between the predictive features and the
target variable, a single linear regression model can undoubt-
edly perform well. However, a voting estimator made with
other models will neutralize the linear regression model’s
accurate predictions. Table 8 shows that there is no such
outstanding model in our case study. Thus, we develop a
voting classifier. Of course, the voting classifier performs
slightly worse than some individual models in some perfor-
mance metrics. However, since the performance difference
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TABLE 7. Preset hyperparameter search space and selected value of each
technique utilized in this study.

is so little, it is not reasonable to choose only SVM or DT
based on Table 8. It is more feasible to have the voting’s
advantages of improving the generalization and robustness of
the multiple classification models. Moreover, it is not quite
important to predict the potential technology convergence in
the next period for all pairs of technology classes. It is more
important to help firms to seize a small number of major
technology convergence opportunities by identifying them
in advance. Therefore, it is more reasonable to determine
whether the future convergence opportunities predicted with
high probability by the classifier are feasible in a qualitative
way. We will discuss the feasibility of the proposed approach
in the next section.

We trained eight individual classification models, and
finally developed a voting classifier that ensembles them.
They must have similar characteristics in order to be fused
into a single model and represent a single decision. Exploring
the correlation between the prediction probabilities that all

TABLE 8. Performance measurement results of individual classification
models and voting classifier.

FIGURE 8. ROC curve.

models produce is one good way to examine the similar-
ity in their decisions. As shown in Fig. 9, there are fairly
strong positive correlations between all of them. According
to Table 9, they are all statistically significant at the 0.01
level. So, by grouping the decisions they generate, we can
arrive at a single aggregated final decision. However, if the
decisions of individual models are meaningless because they
are generated at random, the decisions derived from their
aggregation will also be meaningless. Thus, we perform runs
tests on the probabilities produced by the eight models to
determine whether probabilities were randomly distributed as
shown in Table 10. The null hypothesis is that the sequence
of elements obeys a random distribution. The rejection of
the null hypothesis means that the sequence does not follow
the random distribution. As the p-values show, all the cases
reject the null hypothesis at the 0.01 level. As a result, we can
be certain that the decisions of all models were not made at
random.

In fact, a supervised link prediction approach to antici-
pating technology convergence, similar to what we did in
this study, had already been presented [4]. The performance
of the proposed approach will be compared to that of this
similar work, which will serve to establish our model’s rea-
sonableness. The similar work generated input features using
a total of ten link prediction measures and predicted tech-
nology convergence training seven classification techniques.
Table 11 shows the performance measurement results of
seven classification models obtained by applying them to our
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FIGURE 9. Scatter plots between the probabilities produced by individual
classification models.

TABLE 9. Correlation coefficients among them. As shown in Fig. 9, there
are fairly strong positive correlations between all of them. They are all
statistically significant at the 0.01 level.

TABLE 10. Results of runs tests, where the null hypothesis is that the
sequence of elements is random. The statistic Z follows a normal
distribution and ∗∗∗indicates the significance level at 0.01.

case data. They have similar AUC scores to the proposed
voting classifier, but their accuracy and f1 scores are much
lower. Therefore, we can conclude that the proposed approach
reasonably predicts technology convergence.

V. DISCUSSION
We predict potential future technology convergence with
the patent data in the third period using the voting clas-
sifier. For 42 pairs of technology classes, the soft voting
probability is 0.5 or higher. Among them, some pairs with

TABLE 11. Performance measurement results of seven classification
models presented in the previous work.

high probability are summarized in Table 12. The pairs of
H01Q and A61L, and H02J and B01L show the highest
probability. H01Q and H02J relate to data reception and
systems for distributing electric power, respectively. A61L
and B01L indicate chemical or physical objects. Wearable
electronic skin is an example of new technology convergence
that can be derived from these pairs. As an ultra-thin and
lightweight e-skin, it is a wearable sensor that can capture
signals such as electrical impulses from muscle movement.
A small wireless transmitter transmits biometric data to a
cloud, allowing users to monitor it remotely. The amount of
biometric data is generally very large, so it is quite important
to exchange data effectively and provide adequate electric
power to allow users to access their biometric information in
real time. Artificial skin sensor, next generation of wearable
and stretchable electronics, can be another good example
from these pairs. By putting it on the skin, it helps to quickly
understand multiple body parameters by capturing all types
of signals generated in our body and analyzing them in real
time. H04M and A61C relate to telephonic communication
and methods for dental hygiene, respectively. Sensors that
attach to teeth can be thought of as a technological impli-
cation between these two technology classes. These sen-
sors can reveal what nutrients a person is deficient in by
extracting the nutrient information from the food he or she
eats. Therefore, it can contribute to the development of a
personalized nutritional recommendation system. In addi-
tion, sensing the physical reaction and inflammation of teeth
caused by chemicals and bacteria contained in food can
enable the predictive treatment of potential dental diseases.
H04L and A62B relate to transmission of digital information
andmethods for life-saving, respectively.Wearable lifesaving
devices can be seen as convergent products that can be derived
from these two technology classes. The devices including
wearable robots will be useful for rescuing people in fires
or building collapses. Other types of wearable devices can
also be used to improve safety in construction sites and
chemical industries where physical and chemical accidents
frequently occur. Jackets, vests, glasses, and helmets with
a wide range of sensors can track the location of workers
in real time, and in a designated area, they can be easily
detected to prevent accidents that can occur because they are
in unexpected places. Measuring environmental conditions
including air quality and airborne pollutants will also protect
them from hazardous environmental conditions by notifying
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TABLE 12. Technological implications derived using the supervised learning-based approach proposed in this study.

them if there is any hazardous gas leaking. H03G and A61H
are for control of amplification and physical therapy devices,
respectively. We can think of smart hearing aids based on
artificial intelligence as a convergent product from between
these two classes. It will help people with hearing problems
hear and communicate with greater clarity by amplifying the
sound intelligently. The amplification technology can also
be applied to image information. The development of smart
vision aids to help people with vision limits by amplifying
image data is also considered as one of convergent products
in this pair of technology classes. H04J and A61F relate to
multiplex communication and filters implantable into blood
vessels, respectively. A medical device that is inserted into
a living body can be considered here. For example, a smart
biosensor in the form of taking, not sticking to the skin, stays
in the human body for a certain period of time and monitors
changes in biometric information. It is naturally decomposed
so that it does not have any other effect on the human body.
Therefore, it can lead to the development of smart pills
that release medications only where needed in the human
body. Some of technological implications derived using the
supervised learning-based approach proposed in this study
have already been attempted from various perspectives. Thus,
we believe that our approach is quite reasonable and feasible.

VI. CONCLUSION
Technology convergence can trigger technological innovation
and change. Therefore, it is required to develop an approach
to predict the convergence between technology fields that did
not exist in the past. It will allow a frim to preoccupy a com-
pletely new competitive advantage that is different from that
of its competitors. The timely anticipation of the technology

fields to be converged enables the innovating firms to be
aware of the changing business developments associated with
the technology convergence. A variety of researchers have
presented supervised learning-based approaches to predict
potential technology fields where technology convergence is
taking place using patents. They have developed machine
learning models which capture the associations between the
past and future connections between technology classes.
Although their contributions are absolutely significant, they
have a limitation in that they do not consider in depth the tech-
nological properties. As specifically implying technology
convergence, the technological properties should be clearly
reflected in the process of the supervised learning. Motivated
to remedy this problem, this study proposed a supervised
learning-based approach to anticipating potential technol-
ogy convergence by using the link prediction results, the
technological influence relationships, and the technological
relevance between technology classes. Using these as input
features, several classification models that predict new tech-
nology convergence were trained through various machine
learning and deep learning techniques. Finally, we developed
a voting classifier to ensemble all the models and com-
pared its performance with that of the previous classifica-
tion models. The voting classifier outperformed all previous
models. We believe that the most fundamental reason that
the proposed approach works well in anticipating technology
convergence is that it incorporates technological relevance in
the anticipation process. Technology classes with technolog-
ical relevance tend to have their own technological elements
easily converged with each other. It can describe the condi-
tions under which more active convergence across different
technology classes is possible. This study is expected to
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contribute to identifying new technology opportunities that
can be realized through technology convergence. Further-
more, this study will assist firms to reflect the identified
opportunities on their technology roadmap andmake business
decisions to penetrate the relevant market in a timely manner.

Despite the contribution, further research should be carried
out.We investigated the technology convergence only in pairs
between two technology classes. Technology convergence
can occur across multiple classes, so we have to explore
how to anticipate clusters, not pairs of technology classes.
In addition, we performed supervised learning using only data
related to patents. Efforts should be made to use other kinds
of data that can account for technological advancements, such
as journal papers. Finally, the verification of the prediction
results of the proposed approach was only performed from
a technological point of view. It has to be done with other
perspectives. For example, examining the impact of financial
factors will help to deepen the verification.
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