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ABSTRACT In the recent research of Variational Prototyping-Encoder (VPE), the problem of classifying
2D flat objects of the unseen class has been addressed. VPE solves this problem by pre-learning the image
translation task from real-world object images to their corresponding prototype images as a meta-task. VPE
uses a single prototype for each object class. However, in general, a single prototype is not sufficient to
represent a generic object class because the appearance can change significantly according to viewpoints
and other factors. In this case, using VPE and a single prototype for each class in training can result in
overfitting or performance degradation. One solution may be the use of multiple prototypes. However, this
also requires costly sub-labeling for dividing the input class into smaller classes and assigning a prototype
to each. Therefore, we propose a new learning method, the variational multi-prototype encoder (VaMPE),
which can overcome the limitations of VPE and use multiple prototypes for each object class. The proposed
method does not require additional sub-labeling other than simply adding multiple prototypes to each class.
Through various experiments, we demonstrate that the proposed method outperforms VPE.

INDEX TERMS Deep learning, variational encoder, prototype learning, embedding space, image
classification.

I. INTRODUCTION
An object has various appearances depending on the viewing
direction, lighting, color variation, small deformations, etc.
To conveniently represent an object, we commonly use a rep-
resentative image called the prototype of the object. Prototype
images are more refined (under uniform lighting and free
from clutter or noise) than typical images, and show the fea-
tures of the objects well. Therefore, a prototype is suitable as
a reference to classify or distinguish objects (ex. support sets
in few-shot learning [1], [2] and a neighbor in the k-nearest
neighbor [3]).

In general, the prototype looks similar to the object, but
sometimes it may have different characteristics. For exam-
ple, the image of a traffic sign on the street and a graphic
image of the traffic sign in a book may appear similar, but
the domain of each image is completely different. One is a
real-world image, and the other is a synthetic image. This dif-
ference is called the domain discrepancy [4], which makes it
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difficult to directly use the prototype as a reference for object
classification. In a previous work, Variational Prototyping-
Encoder(VPE) [5], the authors attempted to train a deep
learning model that could effectively reduce the domain dis-
crepancy by using prototypes as references for classification.
To this end, they made the model learn the meta-task of con-
verting the input images into their corresponding prototype
images. Through this meta-task, it was possible to reduce the
domain discrepancy between the input image and the proto-
type in the embedding space of the model. Consequently, the
prototype can be used for object classification through the
embedding space of the trained model.

However, VPE only deals with cases in which an object
class is well represented by a single prototype. The actual
application targets were limited to 2D flat objects (traffic
signs and logos). This is a limitation of VPE, and VPE
is not appropriate if an object requires multiple prototypes
for representation. However, a single prototype is usually
not sufficient to represent an ordinary object. Many objects
drastically change their appearance depending on the situ-
ation. For example, in the case of a book, the front and
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FIGURE 1. Learning the embedding space using a single or multi-prototype for image recognition. In the left part, we present the architecture of the
baseline algorithm (VPE). The encoder and decoder networks learn to translate the input into a single prototype for each class. The feature
representation in the embedding space can be used for classification after training. In many cases, there are significant changes in appearance
even within a class, which makes it difficult for a single prototype to represent the class. Three example classes of inputs are shown at the center of
the figure. The different colored boxes represent the different classes. Using single prototypes for such classes can lead to overfitting or a less
clustered embedding space, as depicted in the VPE embedding space. Our new method, VaMPE, tackles this problem by using multiple prototypes.
The right part of the figure illustrates VaMPE. VaMPE obtains a better-clustered embedding space than VPE by simply adding more prototypes for
each class, without additional labeling.

back covers are significantly different. It is inevitable to use
multiple prototypes to represent this object. Some examples
are shown in the center of Fig.1. In this case, if we want to
use VPE, we have to divide the images of the object into
sub-classes by matching each image with a suitable prototype
among the multiple prototypes. We refer to this task as a
sub-labeling task. Suppose that learning is performed using
an arbitrary prototype, without such a process. In this case,
there may be the problem of overfitting the training data
and learning a less clustered embedding space by learning
incorrect matching. This is depicted on the left-hand side of
Fig.1. The sub-labeling task has two issues. First, it is costly.
It is usually challenging to find a suitable prototype for each
image. Second, determining which prototype best fits the
images of an object can sometimes be very ambiguous. For
example, when using an object’s front and back images as
prototypes, it is difficult to choose which prototype is more
suitable for the side image.

Therefore, we propose a new method called the varia-
tional multi-prototype encoder (VaMPE) that can overcome
the limitations of VPE and use multiple prototypes for each
object. VaMPE introduces a newly proposed mechanism
called epsilon-greedy loss selection, which automatically
selects one prototype from several prototypes for each input
image. This mechanism was inspired by the epsilon-greedy
search method for reinforcement learning [6]. VaMPE then
trains a deep learning model through a meta-task that
translates the input image into the selected prototype.
VaMPE can reduce overfitting by utilizing multiple pro-
totypes. As a result, VaMPE can learn a more general-
ized embedding space than VPE. This concept is depicted
on the right side of Fig.1. In addition, the proposed
method is free from sub-labeling tasks as it automati-
cally selects a suitable prototype for each input image
during the training process. The VaMPE pipeline is shown
in Fig.2.
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FIGURE 2. The entire VaMPE pipeline. VaMPE aims to translate a real image into one of multiple prototypes for learning a
generalized embedding space in the training phase. The encoder embeds the input into a single latent vector. The decoder
converts this into a single output image. The losses are computed between the output image and multiple prototype images.
We select one of the losses according to the epsilon-greedy loss selection mechanism. We explain the details of the
epsilon-greedy loss selection in Section III.B. The trained encoder and embedding space are used in the test phase. We use
unseen object images as inputs that we want to recognize. Once the unseen object images are given, the frozen encoder converts
them to latent vectors one by one. We apply the same operation to multiple prototype images. Then we compute the distances
between the latent vector of each unseen object image and those of the prototype images. The label of the nearest prototype
from each input is used as the label of the image. The image samples in this figure are obtained from the ALOI dataset.

We demonstrate the advantages of VaMPE through vari-
ous experiments. VaMPE showed higher accuracy than the
previous methods in all experiments. Particularly for datasets
in which it is difficult to represent the class with a sin-
gle prototype image, the classification accuracy improved
significantly(83.92% −→ 96.6%). We also compare the
embedding spaces induced by VPE and VaMPE through
t-stochastic neighbor embedding(t-SNE) visualization, and
show the reason for the effectiveness of VaMPE. The code
for the model used in the experiments will be released.

II. RELATED WORKS
For object recognition with a limited number of prototype
samples, few-shot learning [1], [2] is generally used. It uses
the knowledge learned from previous tasks for a new task,
which is human-like learning [7]. Recently, few-shot learning
has become a hot research topic, and various studies have
been conducted [8]. In recent years, deep neural networks
have shown strong performance, but implementing few-shot
learning with a deep neural network(DNN) is not easy
because of overfitting problems owing to limited data [9].
Recent deep learning research has aimed to create a more
general embedding space to solve this problem.

In [10]–[13], the authors attempted to create a generalized
embedding space for novel classes by using user-defined
metrics. However, it has been shown that embedding space

made using a discrete user-defined metric is difficult to
embed enough features to represent novel classes when we
use it to recognize prototypes [5]. Kim et al. [5] showed
that a more general embedding space can be learned through
training using a meta-task of translating a real-world image
into a single prototype image. They also demonstrated that
their method(VPE) can solve domain discrepancy and data
imbalance issues. However, VPE considers only datasets in
which a single prototype is suitable for representing a class.
Learning an excessive converging transformation in VPE
may incur overfitting training datasets if a single prototype
is insufficient. VPE is the baseline of our research, and we
want to generalize the method for application to multimodal
datasets.

Zhang et al. [14] proposed a variational Bayesian frame-
work where a class is represented by a class-specific distri-
bution, rather than a single point latent vector. Edwards and
Storkey [15] used context as an additional latent variable,
making it possible to learn distributions with different means
and variances for each class (not samples). Both the studies
used a single modal distribution in the latent space for each
class. Therefore, this is different from the approach of our
study.

Previous attempts have been made to use prototypes for
classification [11], [13], [16]. Jetley et al. [16] suggested
a feature transform approach that makes the features of
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real images similar to the predefined features of prototypes.
In [11], the authors used deep quadruplet networks to map
prototype and real images’ embeddings into a common space.
In [13], the authors suggested prototypical networks for few-
shot learning, as an extension of Vinyals et al. [12]. However,
they used the mean of the support examples as the prototype
of a class. In contrast, our method is different because it
exploits an image translation task and uses multiple proto-
types without integrating them.

III. PROPOSED METHOD
A. VARIATIONAL PROTOTYPING-ENCODER (VPE)
Before introducing our approach, we briefly describe VPE
(Variational Prototyping-Encoder) [5] that is the basis of this
study. VPE is a deep neural network for one-shot classifi-
cation of graphic symbols. Given a single prototype image
for each symbol class, VPE classifies a query into its corre-
sponding category without requiring a large, fully supervised
dataset. The network structure of VPE is the same as that of
variational autoencoder(VAE) [17], consisting of an encoder
and a decoder. The difference is that the reconstruction target
is the prototype image in VPE and the input image in VAE.
The output of the encoder induces a latent feature embed-
ding space. VPE learns to transform an input image into a
target prototype image while regularizing the latent space
distribution to an assumed prior distribution. Only the learned
encoder is used as a feature extractor in the test phase. Given
the prototypes of the novel classes, VPE extracts their features
from the encoder and stores them in the support set. When a
query is given, VPE extracts its features from the encoder and
performs classification by nearest neighbor search using the
support set.

VPE learns an embedding space using the meta-task
of image translation from a real image to a correspond-
ing prototype image. VPE has a few advantages compared
with previous methods(VAE, metric learning) as follows [5]:
1) Due to the prototype image reconstruction loss, VPE indi-
rectly learns the relative similarities between a real image
and a corresponding prototype image according to the appar-
ent similarity. It reduces the domain discrepancy between
the two images and allows a better generalization of the
embedding space. 2) The image translation to a prototype
diminishes the influence of extraneous perturbations such as
background clutter and geometric and photometric perturba-
tions. This also makes the induced embedding space robust
to perturbations.

B. VARIATIONAL MULTI-PROTOTYPE ENCODER (VaMPE)
In [5], VPE was applied to an open-set graphic symbol recog-
nition problem. We found three problems when applying
this method to a more general object recognition problem.
First, when a class of real object images is hard to represent
by using a single prototype(ex. large appearance difference
between the front and back images of an object), image
translation to a single prototype may cause the model to

overfit the training data. This is similar to enforcing mapping
from a multimodal data distribution to a single modal data
distribution. This enforcement could hurt the generalization
capability of the embedding space. Second, it would be better
to use multiple prototypes instead of a single prototype for
each class to handle multimodal data distribution. However,
suppose we want to use multiple prototypes for a class with
VPE. In this case, we need additional preprocessing to find
and separate the images that correspond to each of the mul-
tiple prototypes (we call this process sub-labeling or fine-
grained labeling). It is a costly process. Third, even when
it seems possible to cover a class using a single prototype
image, selecting a prototype image for the class may not be
trivial if there are multiple prototype candidates or variants of
a prototype. We could not be sure which is more suitable as a
prototype image among the possible candidates to enable the
model to learn a better embedding space.

To solve these problems, we propose a new learn-
ing method called the variational multi-prototype encoder
(VaMPE). VaMPE uses the same network structure as VPE.
However, it learns a more general embedding space than VPE
by training the network model with multiple prototypes for
each class. We can say that VPE learns a sort of conver-
gent transformation into a prototype for the input samples of
each class. Convergent transformation should absorb possible
variations in each class. However, if the variation is too
significant, it is difficult to apply VPE. Allowing for multiple
prototypes, VaMPE can handle a more extensive range of
datasets, including datasets with multimodal distributions.
As mentioned above, simply increasing the number of proto-
types incurs a fine-grained labeling cost. Therefore, we also
designed and adopted a new automatic prototype selection
mechanism called epsilon-greedy loss selection in VaMPE.
This new mechanism was inspired by the epsilon-greedy
search mechanism used in reinforcement learning [18]. The
epsilon-greedy search mechanism performs global explo-
ration by selecting the best choice most of the time but some-
times selecting a random choice with an epsilon probability.
With the epsilon-greedy loss selection mechanism, VaMPE
computes the reconstruction losses for multiple prototypes
and usually picks the smallest loss to train the model, but
sometimes randomly selects one of the losses with an epsilon
probability.

To formulate a modified loss function, let us consider
x(i) as the ith image in the image set X , and denote t (i)k as
the k th prototype of x(i)’s class, where k ranges from 1 to
K (assuming K prototypes in each class). We denote q, p,
φ, θ as the encoder, decoder, and their related parameters,
respectively. As in VPE, if a prototype is given, each log
marginal likelihood of the individual prototype log pθ (t) can
be lower bounded by Jensen’s inequality:

log pθ (t) ≥ Eqφ (z|x)[log pθ (t|z)]− DKL[qφ(z|x)||pθ (z)], (1)

where t is the prototype image of input x’s class and latent
code z is generated from a prior distribution pθ (z). DKL[·]
is the Kullback-Leibler(KL) divergence, and the proposal
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distribution qφ(z|x) approximates the intractable true pos-
terior. The log marginal likelihood can be maximized by
maximizing the variational lower bound. Therefore, the loss
function is defined as follows:

L(x, t;φ, θ) =
1
S

S∑
s=1

− log pθ (t (s)|z(s))

+DKL[qφ(z|x)||pθ (z)], (2)

where s denotes each sample and S is the total number of
samples. When we introduce multiple prototypes and the
epsilon-greedy loss selection mechanism, the loss function is
changed to:

L(x, t;φ, θ) =
1
S

S∑
s=1

Lrecon + DKL[qφ(z|x)||pθ (z)], (3)

Lrecon =



min(− log pθ (t
(s)
1 |z

(s)), . . . ,− log pθ (t
(s)
K |z

(s))),
if ε ≥ εth

rand(− log pθ (t
(s)
1 |z

(s)), . . . ,− log pθ (t
(s)
K |z

(s))),
if ε < εth

(4)

where Lrecon represents the reconstruction loss, and epsilon
ε is a randomly sampled number from the continuous uni-
form distribution U(0,1). The loss function is determined
according to the ε selected in each iteration. We set εth as

1
current epoch , decreasing as the number of iterations increases.
In (4), the smallest reconstruction loss is generally chosen,
which is equivalent to selecting the prototype that produces
the smallest loss among the multiple prototypes. If the sam-
pled ε is less than εth, one of the multiple prototypes is
chosen randomly and its reconstruction loss is used regard-
less of its magnitude. In the early stage of learning, εth is
large; therefore, random selection is primarily used. As learn-
ing progresses, εth gradually decreases, and the probability
of choosing a greedy selection increases. This induces the
model to explore several cases to find the optimal matching
between the reconstructed image and the prototypes dur-
ing the early stage of learning. After optimal matching is
found, the model continues learning with the corresponding
prototype.

Multi-Prototype in Training In [5], it is shown that
learning appearance similarity in the image domain allows
better generalization than metric-based approaches that
adopt metric losses induced by labels. This means that
an image translation task can help learn the rich fea-
tures used for unseen classes. In the same context, training
using multiple prototypes can help learn more meaningful
features than just using a single prototype. It can teach
various matching cases between input images and multi-
ple prototypes. This makes the induced embedding space
more general. We demonstrate this in an experiment
in Section IV.D.

Role of Epsilon Selection If εth is always 1, the loss
function is denoted as

L(x, t;φ, θ)

=
1
S

S∑
s=1

rand(− log pθ (t
(s)
1 |z

(s)), . . . ,− log pθ (t
(s)
K |z

(s)))

+ DKL[qφ(z|x)||pθ (z)]. (5)

Assuming that the model parameter change is small between
each iteration and that the random selection follows a uniform
distribution, we can calculate the expectation of the recon-
struction loss function(the first term of the loss) as

E(Lrecon)

=
1
N

N∑
n=1

(
1
S

S∑
s=1

rand

(− log pθ (t
(s)
1 |z

(s)), . . . ,− log pθ (t
(s)
K |z

(s))))

=
1
S

S∑
s=1

(
1
N

N∑
n=1

rand

(− log pθ (t
(s)
1 |z

(s)), . . . ,− log pθ (t
(s)
K |z

(s))))

≈
1
S

S∑
s=1

Etk (− log pθ (t
(s)
k |z

(s))). (6)

N is the number of iterations during training. For conve-
nience of explanation, we assume that we use binary cross
entropy(BCE) loss for the reconstruction loss function. Then,
the equation is changed to

E(Lrecon)

=
1
S

S∑
s=1

−Etk (t
(s)
k log y(s) + (1− t (s)k ) log(1− y(s)))

=
1
S

S∑
s=1

−(Etk (t
(s)
k ) log y(s) + Etk (1− t

(s)
k ) log(1− y(s)))

≈
1
S

S∑
s=1

− log pθ (Etk (t
(s)
k )|z(s)), (7)

where log pθ (t (s)|z(s)) ≈ t (s) log y(s) + (1 − t (s)) log(1 −
y(s)), and y(s) is the output of the decoder when the decoder
input is z(s).
In other words, the expected reconstruction loss is similar

to that when using the average prototype as a single proto-
type. This is similar to moving all prototypes towards the
average prototype. Therefore, in the early stage of learning,
the epsilon-greedy selectionmechanism has the effect of clus-
tering samples in each class in the embedding space. As εth
decreases, greedy selection cases occur more frequently. This
makes each sample closer to its corresponding prototype.
In summary, we can think that the epsilon-greedy selection
mechanism brings all the samples and prototypes in each
class closer in the early stage of learning (global learning)
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and gradually leads input samples to create subgroups around
corresponding prototypes (fine-tuning).

In this study, we used BCE loss as the reconstruc-
tion loss function. Depending on the problem, the mean
square error(MSE) or other loss(from basic to advanced
loss [19]–[21]) can also be used. The stochastic gradi-
ent descent(SGD) was used as the optimization algorithm.
We used the reparameterization trick [17] to make the model
trainable.

The proposed method uses multiple prototypes for each
class. However, the proposed method can also be applied
to datasets with a single prototype for each class through
prototype augmentation, which transforms a single prototype
into several ones. This gives the model a chance to choose a
more suitable prototype among augmented prototypes instead
of just a manually selected prototype.

Test PhaseWe use only the encoder part in the test phase.
Once multiple prototypes are provided for each class as a
support set, we obtain their latent vectors in the embedding
space using the trained encoder.We store the latent vectors for
use as anchors in the tests. When a real image is given, it is
input into the encoder to obtain a latent vector. We compute
the distances between the latent vectors of the image and
the prototypes. The label of the prototype with the shortest
distance is assigned to the image. Various measures can be
used for this distance function. In this study, the Euclidean
distance function is used.

C. NETWORK ARCHITECTURE
For a fair comparison, we used the same network structure
as the VPE network [5]. The encoder consists of three con-
volution layers, and the stride and downsizing factor are set
to two for all layers. The kernel size was set as {7 × 7,
4 × 4, 4 × 4} for each layer. Every layer contains a leaky
rectified linear unit(ReLU) activation and batch normaliza-
tion. We attached a spatial transformer network(STN) [22] to
compensate for the image transform before the first and third
layers. Each STN consisted of {maxpool(2×2) - conv2d(5×
5) - conv2d(5 × 5) - fc}. After the final convolutional layer,
a fully connected layer with an output size of 300 is attached.
The decoder has the inverse structure of the encoder except
for the fully connected layer. We used 2 as the up-convolution
parameter, and kernel sizes were 3 × 3. All decoder lay-
ers include leaky ReLU activation and batch normalization.
We did not use the STN layers in the decoder.

D. DATA AUGMENTATION FOR TRAINING
For a fair comparison, we used the same data augmentations
as in [5] for the traffic sign and logo datasets. We applied
random rotation and flipping to each image, and the same
augmentation to the corresponding prototype. However, the
augmentation to prototypes was different from that for gener-
ating augmented multi-prototypes in sections IV-B and IV-C.
This increases the variety of input images and the gener-
alization performance of the trained models. For the ALOI

dataset, we applied augmentation only to the inputs, not to the
prototypes. This is because the ALOI dataset contains more
viewpoint changes.Wewanted themodel to bemore robust to
changes in the viewpoint. We trained the network to generate
an unaugmented prototype regardless of the input viewpoint
change.

IV. EXPERIMENTS
A. PREPARATION
Dataset In this study, we used six datasets for the exper-
iments. Two were traffic sign datasets, the other three
were corporate logo datasets, and the last was a general
object dataset. We used the GTSRB [23] and TT100K
[24] datasets for the traffic sign classification experi-
ments. The BelgaLogos [25], [26], FlickrLogos-32 [27], and
TopLogo-10 [28] datasets were used for the logo classifi-
cation experiments. The ALOI dataset [29] was used as a
general object dataset. TheALOI dataset containedmultiview
images of general 3D objects.

The size and number of classes for each dataset are
presented in Table 1. We provided single prototypes for
the traffic sign and corporate logo datasets, and multiple
prototypes for the general object dataset. Examples of the
provided prototypes are shown in Fig.2 and 3. Each dataset
was divided into training and test parts. As in previous
papers, we denote ‘All’ for evaluating the entire classes
and ‘Unseen’ for evaluating the classes excluded from the
training.

Implementation Details All previous methods (SiamNet,
QuadNet, MatchNet, VPE) used IdsiaNet as the base model.
They used an ADAM optimizer with a learning rate of 10−4,
β = (0.9, 0.999), ε = 10−8, and a mini-batch size of 128
to train the networks. SiamNet adopts a Siamese network
structure to minimize the distance in the embedding space
between a real image and a prototype image. QuadNet uses
a quadruplet network to train its model to recognize objects.
QuadNet uses quadruplet loss, which uses two pairs of real
images and prototype images picked from different classes.
MatchNet used an attention kernel in its model to maxi-
mize the similarity of the embedding vector between the real
and prototype images. For VPE, we used the same network
architecture as VaMPE and a single prototype for training
and testing. For VaMPE, we used the same settings (base
model, optimizer, optimizer parameter, and number of mini-
batches) as the previous for a fair comparison. The size of the
input image was 64× 64 pixels. During the training process,
prototype and random images were sampled at a ratio of
1:200 and used as the input images of the model. We used

1
epoch as εth in the epsilon-greedy loss selection method. The
epoch is the number of times the entire dataset is explored in
training.

Setting for each experiment The detailed settings for
each experiment are described in each subsection, but we
summarize the experimental settings in Table 3 to prevent
confusion and for easy understanding.
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FIGURE 3. Examples of augmented prototypes. Original single prototypes (red box) and augmented prototypes with affine transformations and
brightness changes(blue box).

TABLE 1. Datasets used in experiments. The largest, medium, and smallest classes have the highest number of instances, median number of instances,
and smallest number of instances, respectively.

TABLE 2. Dataset settings for the experiments. ‘Way’ in the table indicates the number of prototypes provided. For the GTSRB experiment, we used a
portion of the GTSRB dataset as the validation dataset. In the Belga → Flickr and Belga → Toplogos experiments, we used the Toplogos and Flickr datasets
for validation, respectively.

B. SINGLE PROTOTYPE VS. AUGMENTED
MULTI-PROTOTYPE
For the case in which a single prototype was provided,
we compared the accuracy of the existing methods with that
of the proposed algorithm. We conducted experiments on
logo and traffic sign classification.

In experiments using logo datasets, the BelgaLogos dataset
was used for training, and the other two datasets were alter-
nately used as the test and validation sets. We denote each
experiment as Belga→Flickr and Belga→Toplogos, using
the Flickr and Toplogos datasets as test datasets, respectively.
In the Belga→Flickr and Belga→Toplogos experiments,
the Toplogos and Flickr datasets were used for validation,
respectively.

In the experiments using traffic sign datasets, we trained
the model using the GTSRB dataset and then tested it using
the TT100K dataset. In the GTSRB→TT100K experiment,
we obtained test accuracy without validation. An experiment
using only the GTSRB dataset was also conducted. In this
experiment, 22 of the 43 classes in the GTSRB dataset were
used as seen classes, and the remaining 21 were used as
unseen classes.We created a training set to have both seen and
unseen classes. After training with the seen classes, we val-
idated the network with the unseen classes in the training

TABLE 3. The summary of settings for each experiment.

set. We measured its accuracy with the test set. The dataset
settings for the experiments are described in Table 2.

Wemust providemultiple prototypes for VaMPE; however,
only a single prototype exists for each class in the datasets.
Therefore, we created multiple prototypes for VaMPE by
applying simple augmentation to the prototype. (Note: This is
different from the augmentation applied during training. This
augmentation is only applied to generate multiple prototypes
from a single prototype.) We used brightness changes for
the traffic sign datasets because the rotation or translation
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TABLE 4. Classification accuracy (%) for traffic sign, logo, and object datasets. In the QuadNet experiments, augmentations were used for the logo
dataset, but not for the traffic sign dataset. The value in parentheses for VPE-ALOI (green text) denotes the accuracy when trained with a single prototype
and tested with multiple prototypes (see Section IV.D). The best accuracy is marked in blue. ‘aug’ denotes augmentation for input images, not for the
prototypes in this table. We denote ‘All’ for evaluating the entire classes and ‘Unseen’ for evaluating the classes, excluding the classes used in training.

FIGURE 4. t-SNE visualization: single prototype vs. multi-prototype. This figure shows parts of the visualization of the object clusters in the
embedding space learned using the ALOI dataset. The red dots denote each class’s prototype, and the dots of different colors indicate the input
images of different classes. In the left VPE plot, the sky-blue arrows and red arrows represent the distance from the input to the ground truth class
prototype and the prototypes of a nearby class, respectively.

was insignificant, and a brightness-oriented difference was
observed among the data samples.We created four prototypes
by adding −120, −84, −48, and 0 to the image brightness.
There were various variations in the logo datasets, so we
made multiple prototypes by applying the brightness change
in the Belga→TopLogo task and the affine transform in the
Belga→Flickr task. For the brightness change, we used the
same augmentation as before. We applied affine transforms
to make three prototypes rotated by −36, 0, and 36 degrees
along the yaw axis. Examples of augmented prototypes are
shown in Fig.3.

The accuracy is shown in Table 4. The aug and stn used in
Table 4 represent the augmentation on the training input and
a spatial transformer network attached to the encoder, respec-
tively. We took the results related to metric learning from
the previous papers(SiamNet, QuadNet, MatchNet) without
retest [5]. In the case of VPE, we attempted to train the
model for all datasets. However, because the optimal model
parameter values for each dataset were not disclosed, the
results of our training were below those of the original study.
Therefore, we used the accuracy reported in a previous paper

for comparison. In all cases, the VaMPE method showed
higher accuracy than previous methods. Interestingly, we can
obtain better results by simply creating multiple augmented
prototypes from a single prototype instead of adding new
prototypes. This means that with VaMPE, we can easily
achieve better results. To guess why VaMPE always produces
better results than conventional VPE: 1) it may be possible
for the model to obtain invariants with the help of multiple
augmented prototypes. 2) Some augmented prototypes may
have been more appropriate for representing classes than the
original prototype. This means that VaMPEmay be a solution
to the problem in which the user-chosen prototype may not be
suitable for representing a class.

C. VPE: SINGLE PROTOTYPE TRAINING AND AUGMENTED
MULTI-PROTOTYPE TEST
In this section, we demonstrate that training with multiple
prototypes is essential for performance improvement. To this
end, we trained the VPE model using a single prototype and
tested it by providing multiple augmented prototypes as a
support set. We then compared the classification results of
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VPE with those of VaMPE. We used the GTSRB, TT100K,
Belga, and Flickr datasets in this experiment.

We trained the VPE model for the test because there were
no publicly available pretrainedweights for themodel. Unfor-
tunately, it did not achieve the original accuracy (using a
single prototype) as denoted in the VPE paper [5]. Therefore,
we trained it several times and took the best result as the
best accuracy of VPE using a single prototype. The experi-
mental results are listed in Table 4(red text). The test results
of VPE using multiple augmented prototypes as a support
set were still less accurate than those of VaMPE. In some
cases, it is less than that when using a single prototype. This
indicates that training with a single prototype can generate
a more biased embedding space than training with multiple
prototypes. It implies that multiple prototypes can improve
performance in the test phase, but more importantly, they
can also help create a more general embedding space in the
training phase.

D. SINGLE PROTOTYPE VS. MULTI-PROTOTYPE
We compared the results when it was challenging to represent
the samples of a class using a single prototype. The ALOI
dataset [29] was used in this experiment. Unlike previous
datasets, the ALOI dataset contains multiview images of
general 3D objects, making it difficult to represent all samples
in a class (object) with a single prototype. We trained the
model using 500 classes(seen) andmeasured the test accuracy
using the remaining 500 classes(unseen). We used images
captured in four directions around an object as its multiple
prototypes. For training and testing in single prototype classi-
fication, only the frontal view image was used as a prototype.
All four prototypes were used for training and testing in
multi-prototype classification. Since ordinary objects are
highly likely to be taken from different views in an actual
situation, we applied additional augmentation of random 2D
rotation to the input imageswhenmeasuring the test accuracy.

We show the accuracy of VPE trained with a single proto-
type and that of VaMPE trained with multiple prototypes in
the last column of Table 4. Unlike in the previous experiments
(Sections B and C), we can see a substantial performance
improvement in VaMPE. The ALOI dataset contains not only
simple objects that can be covered with single prototypes, but
also ordinary 3D objects that are difficult to represent with
single prototypes. This result indicates that VaMPE can be
used to learn more general objects. Despite this high accuracy
improvement, the additional cost is only the addition of new
prototypes to the existing class without difficult fine-grained
labeling.

To verify the usefulness of embedding space learning using
multiple prototypes, we compared the embedding spaces of
VPE and VaMPE using the t-SNE algorithm [30]. We calcu-
lated the latent vectors in the embedding space for all unseen
input images. We then used the t-SNE algorithm to visualize
the distribution in two-dimensional space. In the analysis,
we ran the t-SNE algorithm for 2000 iterations to generate
the plots. In the visualization plot in Fig.4, a red dot denotes

each class’s prototype, and dots of other colors indicate the
input images. In the left image of Fig.4, the sky-blue arrows
and the red arrows represent the distance from the input to
the ground truth class prototype and to the prototypes of
other classes, respectively. We can see that some of the input
images in one class are closer to those of another class on
VPE, which uses a single prototype. This means that a single
prototype cannot adequately cover the full input images. For
this reason, we adopt multiple prototypes on VaMPE, and
show that multiple prototypes can solve the above problem.
Multiple prototypes make it possible to cover classes that are
difficult to cover with a single prototype. This can lead to
higher accuracy in the proposed VaMPE.

E. VPE: SINGLE PROTOTYPE TRAINING AND
MULTI-PROTOTYPE TEST
For the same reason as in section IV.C, we conducted a sim-
ilar experiment. We used multiple prototype images instead
of multiple ‘augmented’ ones. The ALOI dataset was used
in this experiment. The experimental result is presented in
Table 4(green text). The test result of VPE using multiple
prototypes is more accurate than that using a single prototype,
but still less accurate than that of VaMPE. This means that the
embedding space created using multiple prototypes is more
generalized than that created using a single prototype. This
implies that multiple prototypes can improve performance in
the test phase, and they can also help create a more general
embedding space in the training phase.

We compared the embedding spaces of VPE andVaMPE to
verify the usefulness of multi-prototype training. We selected
the 30 classes showing the highest accuracy difference
between VPE and VaMPE from the test results and visualized
them in the embedding space using t-SNE. In the t-SNE plot
in Fig.5, we can see that the samples are dispersed and over-
lapped between classes in VPE, while they are well clustered
by class in VaMPE. This shows that VaMPE can produce
clearer clusters than VPE can. This means that VaMPE’s
embedding space captures rich features, making it easier to
distinguish unseen samples.

F. ABLATION TEST: EPSILON-GREEDY LOSS SELECTION
We conducted an ablation test using the proposed
epsilon-greedy loss selection method. We performed an
experiment using only greedy loss selection(VaMPE_greedy)
instead of epsilon-greedy loss selection, where the prototype
with the least reconstruction loss was selected for training.

The experimental results are listed in the lower part of
Table 4. With only greedy loss selection, the accuracy is
reduced and even worse than that of VPE using a sin-
gle prototype. We compared the t-SNE visualizations of
VaMPE and VaMPE trained with only greedy loss selection
(VaMPE_greedy) to observe the effect of epsilon on the
embedding space. Fig.6 depicts the results. In Fig.6, we can
find that the clusters of ‘supreme logo’ class are separated
in VaMPE_greedy but not in VaMPE. This indicates that
epsilon-greedy loss selection can better cluster the embed-
ding space.
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FIGURE 5. t-SNE visualization: effect of a multi-prototype in the test. These are the t-SNE plots for classifying 30 classes (out of 500 classes),
showing the highest accuracy differences between VPE (with a multi-prototype support set) and VaMPE. We can discover that some classes have
separate clusters in VPE with a multi-prototype test, while those classes are clustered well in VaMPE.

FIGURE 6. t-SNE visualization: effect of epsilon in training. This figure shows t-SNE plots for the TopLogos-10 dataset. We can discover separated
clusters for a class (supreme logo) in the VaMPE_greedy plot (left) whereas the class is clustered well in the VaMPE plot (right). The bottom three
plots are magnified views of the circles and show the samples as real supreme logos. We find that the samples are clustered by color in the
VaMPE_greedy algorithm. However, in VaMPE, they are divided but still close because of their apparent similarity. This means that VaMPE learns a
more general embedding space to represent unseen classes.

G. SUCCESSFUL AND FAILURE CASES OF VPE AND VaMPE
We show some examples of success and failure cases of
VaMPE in Fig.7 and Fig.8, respectively. As shown in Fig.7,
VaMPEworks evenwhen the background is not clean.We can
find failure cases for both VPE and VaMPE. In particular,
the logo experiment revealed some extreme failure cases.
In the ‘extreme failure case’, the selected output prototype
differed significantly from the input image. This means that
the learned embedding space is not sufficiently generalized
by training. We believe that it is due to the size of the training
dataset. The logo datasets contain fewer training samples than

the traffic sign and ALOI datasets do. It seems that the logo
training datasets are not sufficient for learning a generalized
embedding space, considering the various variations in logos.
Therefore, we can confirm that a more diverse and sufficient
dataset for training is recommended. As shown in Fig.8, in the
ALOI dataset, where training data are sufficient, the failed
classification results appear more similar to the inputs than in
the logo case(3-6 rows). This means that the embedding space
trained with sufficient data can learn more features, thereby
reducing extreme failure cases. Moreover, the failure cases of
VaMPE are more plausible than those of VPE. We presume
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FIGURE 7. Successful cases of VaMPE on traffic sign, logo, and ALOI datasets. The second, fifth, and eighth columns show the
inputs, and each left/right column represents the corresponding output of VPE/VaMPE. The 1, 2, 5, 6, 9th, and 10th rows show the
case where both VPE and VaMPE are successful. The 3, 4, 7, 8, 11th, and 12th rows indicate when VPE fails, but VaMPE succeeds.
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FIGURE 8. Failure cases of VaMPE on traffic sign, logo, and ALOI datasets. The second, fifth, and eighth columns show the inputs,
and each left/right column represents the corresponding output of VPE/VaMPE. The first, third, and fifth rows show the case
where VPE succeeds, but VaMPE fails. The second, fourth, and sixth rows indicate when VPE and VaMPE are unsuccessful.

that this is becauseVaMPE can reduce the overfitting problem
of VPE.

V. CONCLUSION
We have presented VaMPE, a new method for recognizing
objects using multiple prototypes. The network was trained
using generative losses and a new loss selection mechanism.
VaMPE is a generalization of the variational prototyping-
encoder(VPE) [5], which tackles open-set graphic symbol
recognition. VaMPE increases the ability to learn a general
embedding space using multiple prototypes. This allows us
to apply this method to more general datasets. VaMPE retains
the advantages of VPE, its strength against domain inconsis-
tencies and data imbalances.

Quantitatively, we have shown that the proposed method
can achieve a higher accuracy than previous methods in
various experiments. It indirectly proves that VaMPE can
learn a more generalized embedding space than the previ-
ous methods. In the qualitative analysis, we can verify that
the images in the same class are more clustered than in
VPE, and that multi-prototype is helpful for classification.
Despite these performance improvements, the additional cost
is simply the addition of multiple prototypes, without further
fine-grained labeling. Note that our research deals with the

case in which initial prototypes are provided. The determi-
nation of prototypes is another issue that can affect further
performance improvement. This could be a research topic for
future studies.

Meanwhile, the proposed method introduces a new prob-
lem of multi-target training, where there are only target
candidates without any specific target for each input during
training.We solved this problem by using a new loss selection
mechanism called epsilon-greedy loss selection. The epsilon-
greedy loss selection mechanism is meaningful because it
introduces randomness into the loss function when the best
target is unknown.We believe that this mechanism can inspire
us to design loss functions in uncertain environments. This
can be a link to reinforcement learning in the future.
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