IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 17, 2022, accepted February 2, 2022, date of publication February 15, 2022, date of current version February 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3151081

Deep Reinforcement Learning-Based Routing on
Software-Defined Networks

GYUNGMIN KIM 1, (Graduate Student Member, IEEE), YOHAN KIM?, (Member, IEEE),
AND HYUK LIM"3, (Member, IEEE)

!'School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
2Division of Data Analysis, Korea Institute of Science and Technology Information (KISTI), Daegu 41515, Republic of Korea
3Korea Institute of Energy Technology (KENTECH), Naju-si 58217, Republic of Korea

Corresponding author: Hyuk Lim (hlim @kentech.ac.kr)

This work was supported the Korea Government (MSIT) through the Institute of Information and Communications Technology Planning
and Evaluation (II'TP) Grant (2021-0-00379, privacy risk analysis and response technology development for Al systems).

ABSTRACT With an exponential increase in network traffic demands requiring quality of services, the
need for routing optimization has become more prominent. Recently, the advent of software-defined
networking (SDN) technology enables centralized management and operation, and the networking resources
such as switches become flexibly configurable through programmable interfaces. In this paper, we propose a
deep reinforcement learning (DRL)-based routing optimization on an SDN. In the proposed method, the DRL
agent learns the interdependency between the traffic load of network switches and the network performance,
and decides an optimal set of link weights to make a balance between the end-to-end delay and packet
losses of the network. The SDN controller determines the routing paths using the set of link weights and
installs the flow-rules on the SDN-enabled switches. To overcome an extensively long learning process of
DRL in a case of topology change, we develop an M/M/1/K queue-based network model and perform the
learning process of DRL using the network model in an offline manner until it is converged. The simulation
results demonstrate the proposed routing method outperforms a conventional hop-count routing and a traffic
demand-based RL algorithm in several network topologies.

INDEX TERMS Routing optimization, deep reinforcement learning, software-defined networking.

I. INTRODUCTION

To deal with the constant increase in network traffic volume,
network operators have continued to improve resource man-
agement performance through traffic engineering techniques.
Traffic engineering in communication networks coordinates
the packet forwarding paths of multiple flows in the network
to improve the overall quality of service for network users.
Routing optimization has long been steadily studied as one
of the major challenges in traffic engineering to maximize
network utility [1]-[3].

In traditional routing methods, each router makes its own
packet forwarding decision without any regard for other
router decisions. Although this distributed routing method
provides scalability because it can be applied regardless of
the network scale, it is difficult to approach routing opti-
mization of the entire network and manage network resources

The associate editor coordinating the review of this manuscript and
approving it for publication was Bijoy Chand Chatterjee.

efficiently and flexibly. For these reasons, there is a greater
need for a better network management model, and software-
defined networking (SDN) has been proposed as an effective
means of managing the entire network by separating control
and data planes in the network, which distinguishes data
transmission from control operations [4], [5]. SDN provides
a global view of the entire network and improves network
programmability for network operation and management by
logically decoupling the control plane and data plane in the
network [6]. This SDN paradigm can achieve efficient net-
work monitoring and flexibly deploying network policies.
However, while SDN enables centralized control of packet
forwarding with a global view of the network, designing an
optimal routing solution is not trivial. Many existing works
formulate the routing problem as a constrained shortest path
problem, but an optimal solution to these problems is usu-
ally NP-hard [7]. In addition, even though there is a typical
solution by considering the network operation as a fixed
model with varying traffic for the general multi-commodity

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 10, 2022

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 18121

https://orcid.org/0000-0003-3782-2609
https://orcid.org/0000-0002-9926-3913

IEEE Access

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

flow problem, such models cannot accurately exhibit
good network operation under complex and dynamic
traffic [8].

Deep reinforcement learning (DRL), which combines rein-
forcement learning (RL) with deep neural networks, has been
introduced to develop traffic engineering techniques in recent
years [1]. The advancement of the DRL technique provides
a new way to solve the optimization of highly complicated
routing problems. DRL-based routing schemes can learn and
adapt to complex networks by improving routing policy per-
formance in an experience driven and model-free manner.
Recent research has demonstrated an impressive advance
in routing optimization performance by utilizing the DRL
technique in an SDN-based network [8]-[15]. It should be
noted here that, due to the nature of RL, which involves
exploration in the process of determining the best policy,
networking performance degradation may occur during the
learning process, particularly in the early stages. Because
an inappropriate routing policy directly increases end-to-
end delay and packet loss in a network, risking network
performance degradation for the sake of training reduces
the system’s reliability. In particular, if there is a change
in the network topology, the DRL agent should re-learn for
routing optimization. The more complex the characteristics
of network traffic, the longer it takes to converge, resulting
in long-term network performance degradation. Furthermore,
in networks where QoS-sensitive traffic is transmitted, the use
of DRL-based routing optimization that necessitates explo-
ration can be disastrous.

In this paper, we propose a DRL-based routing optimiza-
tion on an SDN. The DRL agent learns the interdepen-
dency between the traffic load of network switches and
the network performance using a deep deterministic pol-
icy gradient (DDPG) algorithm, and decides an optimal set
of link weights to reduce the end-to-end delay and packet
losses of the network using the aggregated traffic volume
matrix (ATVM) as an input of DRL. ATVM represents the
amount of traffic volume assigned to each switch in the
network. The SDN controller determines the routing paths
using the set of link weights and installs the flow-rules on the
SDN-enabled switches. In the propose method, we develop
an M/M/1/K queue-based network model and perform the
learning process of DRL using the network model in an
offline manner until it is converged to overcome the net-
work performance degradation problem during the learn-
ing process of DRL. Because an action for exploration
is applied to the modeled network, the proposed method
allows unrestricted exploration without affecting the data
network’s performance. Furthermore, because a reward for
the corresponding action is obtained through interaction
with the modeled network, synchronization with the data
network is not required, allowing for the rapid genera-
tion of a converged routing policy with high computing
power.

The main contribution of this paper is summarized as
follows.

18122

o In the SDN-based network, we propose a deep rein-
forcement learning (DRL)-based routing optimization
method where the DRL agent is trained to decide an
optimal set of link weights to minimize the end-to-end
delay and packet losses of the network.

o To overcome an performance degradation problem in
learning process of DRL, we develop an M/M/1/K
queue-based network model and perform the learning
process of DRL using the network model in an offline
manner until it is converged.

o We adopt the DDPG algorithm to automatically deter-
mine link weights of network and employ ATVM as an
input of DRL to improve the routing performance.

o We evaluate the routing performance of the proposed
method using simulations and demonstrate the proposed
routing method outperforms a conventional hop-count
routing and a traffic demand-based RL algorithm in
several network topologies.

The rest of this paper is structured as follows. Section II
provides an overview of related network routing research.
In Section III, we describe the proposed routing method
as well as the MDP model for link weight decisions.
In Section IV, we discuss the DDPG for link weight allocation
and present the DDPG-based routing algorithm. In Section V,
we present the performance evaluation of the proposed
method, and in Section VI, we provide the conclusions of the
study.

Il. RELATED WORK

A. TRADITIONAL ROUTING METHODS

Traditional routing methods include classic traffic forward-
ing protocols such as Open Shortest Path First (OSPF) [16]
and Equal-Cost Multi-Path (ECMP) [17], which route traffic
through the shortest paths or distribute traffic evenly across
multiple transmission paths. These dynamic routing rules
can route traffic regardless of network topology or traffic
distribution. However, their performance is far from optimal
when network and traffic characteristics are not taken into
account. Many research interests have been drawn to the rout-
ing optimization problem to adapt traffic routing to network
conditions [3].

Fortz and Thorup [18] demonstrated a system of tech-
niques for addressing predicted periodic changes in traf-
fic by adjusting OSPF weights for intra-domain routing.
Sridharan et al. [19] proposed a routing scheme that achieves
near-optimal traffic splitting by activating only a subset of
ECMP next hops to forward packets to the chosen destina-
tion prefix. Xu et al. [20] proposed the Penalizing Exponen-
tial Flow-splitting (PEFT) protocol, which forwards packets
hop-by-hop based on link weights. PEFT-enabled switches
exponentially distribute traffic across all possible paths, but
longer paths are penalized based on total link weights along
the paths. Michael and Tang [21] demonstrated the Hop-by-
hop Adaptive Link-state Optimal algorithm, which results

VOLUME 10, 2022

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

IEEE Access

in an optimal iterative distributed procedure for quasi-static
demands.

B. SDN-BASED ROUTING METHODS

SDN (Software-Defined Networking) broadens the hori-
zon for resolving TE-related issues [22]. SDN-based rout-
ing methods can be designed based on a global view of
the network and real-time traffic characteristics by using
the SDN controller, which monitors overall network condi-
tions and determines the forwarding path for each flow in
the network. Agarwal et al. [6] developed a Fully Polyno-
mial Time Approximation Scheme to solve the SDN con-
troller’s optimization problem for forwarding packets in an
incrementally deployed SDN. Vissicchio er al. [23] inves-
tigated the collaboration of distributed (OSPF-based) and
centralized (SDN-based) routing control planes in hybrid
SDN switches. Celenlioglu and Mantar [24] proposed a
routing and resource management model for SDN-based
intra-domain networks that uses pre-established paths with
resource reservation. This type of scheme boosts routing scal-
ability and network resource utilization. Based on the sim-
ulated annealing algorithm, Deng and Wang [25] proposed
an application-aware QoS routing algorithm for SDN-based
IoT systems. Rezende et al. [26] concentrated on the limita-
tions of traditional multistream protocols and used SDN to
distribute packets across multiple paths. The authors also pro-
vided application interfaces and improved the QoS provided
to end-users.

C. MACHINE LEARNING-BASED ROUTING METHODS

Recently various methods related to machine learning-based
network routing have been proposed. Mao et al. [27]
employed a supervised deep learning technique to con-
struct the routing table for deciding the next routing node.
Zhou et al. [28] proposed a Q-learning-based localization-
free any path routing protocol to prolong the life as well
as reduce the end-to-end delay for underwater sensor net-
works. Pham et al. [15] exploited a DRL agent with convolu-
tional neural networks in the context of knowledge-defined
networking to enhance the performance of QoS-aware
routing. Huang et al. [14] proposed a DDPG-based quality
of experience optimization method for multimedia traffic.
Xu et al. [29] proposed an experience-driven routing scheme
for multiple end-to-end communication sessions. The pro-
posed combined traffic engineering-aware exploration and
actor-critic-based Prioritized Experience Replay methods for
optimizing network delay. Suarez-Varela et al. [30] proposed
feature engineering for DRL-based routing in the context of
optical transport networks and IP networks. Zhang ez al. [11]
introduced a critical flow rerouting reinforcement learn-
ing scheme (CFR-RL). CFR-RL balances link utilization
of the network by forwarding the majority of flows using
equal-cost multi-path (ECMP) and rerouting a few critical
flows selected by the agent to utilize the network link opti-
mally. Zhang et al. [31] also proposed SmartEntry, which is
a destination-based routing solution that reduces the number

VOLUME 10, 2022

Modeled
Network

b 52

Take
Action

Sy

Se

O
Parameter 6

Calculated state

Link Weight l Network
Allocation Information

Data Network SDN Controller

X Ed
S1 "\ ===3) °2 | Forwarding Network
i . | _ Table Topology
o [36) .0 NEQM Flow
EEEER ’ : Traffic Statistics
! . demand
= ’x \ [>¢ \ 5 > Switch
OFFFH Le===2) Specification
SDN- enabled L

FIGURE 1. Overall system architecture of proposed DRL-based routing on
SDN.

of forwarding entries that need to be updated to respond to
dynamic changes of traffic demands using RL and linear pro-
gramming. Fu et al. [12] proposed a routing strategy based
on deep Q-learning designed for data center networks. The
authors assumed that mice and elephant flows had different
requirements and focused on meeting these traffic demands in
respect of throughput, latency, and packet loss. For SDN-IoT,
Guo et al. [13] proposed DQSP which is a DDPG based
secure and QoS-aware routing method. Chen et al. [9] thor-
oughly examines the need for optimized routing in SDN. The
authors presented RL-Routing and proved that their method
offers better results than other routing algorithms like OSPF
and Least Loaded after an extensive evaluation based on a
real SDN controller and networks. Sun et al. [10] leveraged
the idea from the pinning control theory to select a subset
of links in the network to solve the scalability problem that
occurs when DRL is adopted to learn the link weights for
huge network. Later, Sun et al. [8] proposed ScaleDeep to
automatically adjust routing policy to improve network per-
formance and tolerate network topology changes by dividing
the nodes on the network into two classes: driver nodes
and follower nodes. The authors employed pinning control
to alleviate the curse of dimensionality problem when the
network scale rises.

Despite numerous research efforts to improve routing per-
formance through learning techniques, particularly RL tech-
niques, there is still a problem in which the performance of
the data network is degraded due to exploration problems
in the learning process and the longer it takes to converge
the more complex the traffic characteristics. In this paper,
by employing the M/M/1/K queue-based network model in

18123

IEEE Access

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

learning process, we can prevent the performance degradation
during the learning process of RL. In addition, we can obtain
a converged neural model rapidly by acquiring and utilizing
the state and reward for training from the modeled network.

Ill. NETWORK ROUTING SYSTEM MODEL USING MIDP

A. OVERALL SYSTEM ARCHITECTURE

As shown in Figure 1, we consider an SDN-based rout-
ing system architecture where the SDN controller manages
packet forwarding by following the link weight allocation
provided by the DRL agent with the M/M/1/K queue-based
network model. The modeled network in the proposed system
is constructed based on network information such as network
topology and switch specification provided by the SDN con-
troller of the control plane and thus reflects the characteristics
of the data network of the data plane.

Considering the importance of trust in the network sys-
tem and the sensitivity of quality of service for flows, the
proposed routing system is designed to solve exploration
issues, particularly in the early stages of learning technique,
via modeling-based training. In the proposed system, the
DRL agent learns through rewards of actions applied to the
modeled network rather than direct interaction with the data
network. The sophisticated network modeling-based method
allows the learning agent to obtain an effectively trained
neural model without degrading the performance of the data
network. At every iteration in the learning process, the agent
obtains the state and reward values for the action applied to
the data network from the model of the data network rather
than the measurement values on the data network in real-
time. Note that an iteration time step does not correspond
to an actual time value. As a result, the agent can obtain a
converged neural model much faster than the online method
that interacts with the actual data network in real-time. The
amount of time for the learning process depends on the com-
puting power for the computation. In addition, it is possible
to train the neural model for the various traffic demands using
the model of the data network. We generate the synthetic
traffic demands and train the neural model using the traffic to
make the model have the capability of responding to various
traffic states without re-performing the learning process for a
different traffic demand. Therefore, the hyper-parameters of
the neural model should be appropriately adjusted depending
on the data network size and the dynamics of the traffic
demands.

In the proposed method, the learning agent trains the neu-
ral networks using the modeled network based on network
topology and traffic demand of the data network. The DRL
agent employs the ATVM of each switch as the network state
and aims to learn the weight for each link as the action.
The DRL agent updates neural networks of actors and critics
to optimize the link weight allocation based on the DDPG
algorithm and provides the tuned link weights to the SDN
controller when expected routing performance improves and
converges. Here it is worth noting that the learning process to

18124

find the optimal link weights in the proposed architecture is
performed using only the modeled network so that it does not
take the risk of causing network performance degradation by
directly applying the uncertainty risk to the target network.

B. SYSTEM MODEL

In this paper, we consider a backbone network composed
of SDN-enabled switches and edge switches are connected
to traffic sources such as multiple clients or servers. Here,
it is assumed that each edge switch is the departure or arrival
point of the backbone network. We assume that there are
N switches in the SDN-based network and the switches
are denoted by V. = [v1, v, ..., vn]T. The service rate of
the n-th switch is denoted as p,. Here, we focus on the
routing of traffic within a single autonomous system. For a
communication network G, we use E to denote the set of the
links e among the switches, then we have G = (V, E). For
any pair of switches v;,v; € V (i # j), it is assumed that
there is at least one forwarding path p; ; = {e1, ez, ..., ep|}
that can forward the traffic from v; to v;. Among the paths,
we denote the shortest path as p;“ = {e']"/ , e'2’" e ei}‘,]ﬂ .
Here, the shortest path is calculated with a weighted shortest
path algorithm on G, where the weight value for link e,
is denoted by wy,, (0 < m < |E|). This path also can be

expressed as p;ﬁj = {vll’/ , v;/ s vfl’f*l} where v;’/ is the [-th

switch when forwarded through the shortest path. v} and v},
are the same as v; and v;, respectively.

At the time step ¢, let f,k (0 < k < M;) denote the k-th
traffic flow where M, is the number of flows in the network
att. Here, a flow is defined as a source-destination pair. In the
network routing system, ftk is forwarded via selected switches
in accordance with the calculated shortest path, and the data
processing and transmission delay occur as the flow passes
through switches along the path. In this paper, we assume
Poisson arrivals with a rate)»f and exponentially distributed
service times. Here, the data processing and transmission
delay can be modeled as M/M/1/K queue when each switch
has a limited system capacity size. Then, the expected delay
in v, at time step ¢ can be obtained as follows:

E[N.(1)]

EldnOl = = Py

ey

where A, (¢) is the aggregate arrival rate into v, at ¢. Py(t) is
the probability that a packet is lost due to a buffer overflow
in v, at ¢, and N,(?) is the queue occupation that represents
the number of packets in the switch at ¢. Here, PZ(t) can be
obtained as follows:

(1 = pa()(a(1)*

b= T ot

, (@)

where p,(t) = A,(t)/1, and K,, denote the traffic intensity
at switch n and the total system capacity of the switch n,
respectively. In addition, the expected queue occupation can

VOLUME 10, 2022

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

IEEE Access

be obtained as follows:

n(t Ky+1)(pn(t Kn+1 .
l—pp(,lgt) - 1_(;i€t)()lgr),+l if pp(1) < 1

LS if pu(t) = 1.
€)
Under the assumption that the propagation delay over the

link is negligibly small, the end-to-end delay of ftk forwarded
through p;.f ; can be obtained as follows [32]:

E[N.(0)] = {

Dk (1) =

e2e

> Eldu)],)

nepath(p} P)

where path(p;.‘j j) represents the set of switches on the forward-
ing path from v; to v;. Then, the average end-to-end delay of
flows in the network can be obtained as follows:

M,
1 k
DO = 37 2 Db ©

In addition, the expected loss traffic of switch n and
expected total loss traffic of network at time step ¢ can be
obtained as follows:

E[Ly(1)] = 2n())P}(1) 6)
N
ElLiot ()] = Y An(O)PR(1).)

n=1

The sophisticated network modeling-based method
enables the learning agent to obtain an effectively trained
neural model while maintaining the data network’s perfor-
mance. It is worth noting that a single-path routing such
as OSPF is assumed in this work, but it is can be easily
extended to other routing algorithms such as multi-path
routing. Depending on a routing algorithm, the data network
would have different states and rewards for the same set of
link weights. However, the routing algorithm is considered
as a part of the environment in the context of RL, and the RL
agent can respond to different environments if the learning is
re-performed appropriately.

C. MDP MODEL FOR LINK WEIGHT ALLOCATION

In this paper, we use the ATVM as a network state repre-
sentation. The ATVM shows the traffic rate transmitted from
each switch to the next switch in line. Let T = [#;j]nv N
denote the ATVM of the data network, where 7;; is given
by the traffic amount from the i-th switch to the j-th switch.
For a given network topology, the ATVM of the network
is determined by the traffic demand of data flows and their
routing paths on the network. This representation of network
states allows the agent to learn the interdependency between
the links because it reflects both the link utilization of the
network and the interconnection topology among switches of
the network. In the proposed modeling-based method, there is
no interaction between the DRL agent and the SDN controller
during the training process. It means that the agent does
not measure aggregated traffic volume at switches during

VOLUME 10, 2022

TABLE 1. Frequently used parameters.

Parameter | Definition

t Time step
n Index of switch
k Index of flow
N Number of switches
M, Number of flows
Un The n-th switch
n Service rate of the n-th switch
% The k-th traffic flow at ¢
Pr(t) Packet loss probability in vy, at ¢
Ky Total system capacity of vy,
Ny (t) Queue occupation at ¢
An (1) Aggregate arrival rate into vy, at ¢
Ly (t) Expected loss traffic of vy, at ¢
pn () Utilization of v, at t
dn (t) Expected delay in vy, at ¢

the learning process. Instead, the ATVM is computed by
exploiting the data network model and the decision of routing
paths, which is determined by a routing algorithm and the link
weights of the previous action.

In the proposed method, it is worth noticing that the aggre-
gated traffic volume value measured by each switch in the
actual network is almost the same as the value calculated in
the fine modeling-based learning environment for the same
traffic demand and deployed link weight allocation. Based
on this sameness, the DRL agent can train a neural model
suitable for application to the data network, and it makes the
agent able to utilize the unrestricted routing policies without
affecting the performance of the data network. In addition,
these meaningful pairs of state and reward are stored in the
replay buffer of the off-policy-based DRL agent and can be
utilized in the experience replay process later.

1) STATE AND ACTION SPACE
The observation of each switch v, at time step ¢, denoted as
on(t), can be represented by

07 = [t, Kn, Nn(t), An(1), Ln(2), pn(1), dn(1)]. ®)

The parameters are listed in Table 1. In the proposed method,
instead of measurement on each switch in the data plane,
these observations are obtained from modeled network in the
agent. The modeled network is constructed based on network
information, such as network topology and specification of
switches, reported by the SDN controller. Atevery time step 7,
the shortest paths of flows according to the link weights
assigned by the previous action is calculated in modeled
network, and the network state at time step ¢, denoted as s;,
is be obtained as follows:

si=1{s’1i,jeV) ©)
. 1 M:

s = min(1, —— S AKDxk(r)) (10)
! umax,; Ly

K
where 11 = TTiepatioretty-n(1 = Ph®) - 2 and xb(0)
represents the binary indicator to indicate whether the link
from v; to v; is included in the path through which the k-th

18125

IEEE Access

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

Modeled network

A8 Lo A\
Gf: Learning Agent Source d
f Data rate : 1/
Network topology
& Traffic demand
SDN Controller Source 2 Destination 1
Data rate : 1

SDN-enabled
Switch

FIGURE 2. Simple example of modeling-based process.

flow is transmitted according to the shortest path. p,qy 1S
the maximum service rate of switches, and we use the min(-)
function to adjust the element range of state to [0, 1]. Note
that the state s;’ corresponds to the element #;; of ATVM
normalized by ax.

Meanwhile, at each time step ¢, the DRL agent determines
the action a; to allocate the link weights in accordance with
the s;. The action space is defined as follows:

1 2 |E|
ap=a; Xa; X ---Xa

Y

where a}* (0 < m < |E|) denotes the weight value assigned to
m-th link at time step 7. The range of each weight is defined as
al' € [Wimin, Wimax] where wy, and wy,q denote the minimum
and maximum values of link weight, respectively. The action
determined by the DRL agent indicates the weight of links,
and link weight allocation indicates the routing policy of
the network in that packet forwarding is determined by the
weighted shortest path algorithm.

Figure 2 shows a simple example of calculating the state
and its corresponding delay and loss without directly affect-
ing the data network using a modeling-based environment.
The network has six switches and there are two traffic
demands in the network. The SDN controller manages packet
forwarding of the data network following its routing policy
and reports the information of data network to the learn-
ing agent. For a given network topology, the DRL agent
trains the neural network without disturbing the data net-
work. The information for DRL such as the network state,
average end-to-end delay, and expected total packet loss is
calculated using modeled network. Unlike the traffic demand
matrix (TDM) in [15] that corresponds to the traffic volume
between source-destination pairs of edge switches, ATVM is
a summary of the traffic volume aggregated at each router as

18126

o

Destination 2

/

/ < Calculated state s, >

< Calculated delay & loss > \

| w1l valvs[val vs o] Q @ @ @
Bllo ~0000 '
BlooooAo e v
Bo 00000 L
Bloooo o Q @
B0 0000 # ..
00000 e

/

traffic flows pass through the routers along the path as shown
in Figure 2. Since the routing paths of the data network and
the paths applied by the modeled network are different, the
selected actions in the training process do not degrade the
data network. In addition, since learning is performed based
on information of data network, meaningful experiences are
accumulated in the replay buffer during the pre-training pro-
cess, and the trained neural model suitable for immediate
application to the network can be obtained.

2) TRANSITION PROBABILITY AND REWARD FUNCTION

The probability that the network routing system undergoes a
transition from state s; to state s, when action a; is taken
can be represented as Py, : (s, @) — sy41. Since the weight
allocation to each link can be changed dynamically, transition
probability Py, can be determined using the probability of
selecting an action a; at state s; defined by policy .

The goal of this paper is to minimize the average end-
to-end delay of network flows by optimizing link weights.
As a result, the routing system’s reward should be inversely
proportional to the average delay. However, it should be noted
that overall network performance may be degraded when a
high score is granted to improper link allocation that brings
a short delay with reduced traffic by causing a large amount
of packet loss. Therefore, the comprehensive reward of the
proposed routing system is designed to achieve two main
goals: (1) minimizing the average end-to-end delay of flows,
(2) suppressing the increase in the amount of packet loss at
switches. Here, we define the delay performance reward r;(¢)
and packet loss reward r,(¢) at time step ¢ as follows:

D)
2—K (12)

on
nepath(pmw;) Mn

rg(t)y=1-—

VOLUME 10, 2022

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

IEEE Access

/ DRL Agent \
store {s;, a;, R(s, a;), Sp+1} H = {s;i, a;, R(51, a), Si+1}
5t R(5t,at), 5¢4q [i
. » ~ Sample . ‘
'(Replay Buffer: B H Date >{ Mini Batch }—
g
St . Behavior Policy Soft Target Policy |
Network 87 Update Network 87
F 3
Policy Gradient Actor
Vgr/(67)
Environment |« Update Optimizer a' = 1(s141)
Random z
noise a = 1(s;) LossLlE'gg;'tlon
v v A J
F— " T T T TN r— - - - == ™
| Evaluating Q-value | Soft o1 Target Q-value I |
. Network 6 | Update — Network 6 I
_ Critc)/
FIGURE 3. DDPG training process diagram.
and where y € [0, 1] is the discount factor that determines the
Lo () importance of future rewards from time step ¢ + 1 until the
M =1- —F—— (13) infinite time step. In other words, RT is defined as the sum of
Zn:l)“”(t)

Here, it is assumed that p,,,, is the path through the most
hops. Then, let R denote the reward function that returns a
value indicating whether link weights are allocated to mini-
mize the average end-to-end delay by the routing algorithm
while taking into account reducing packet loss due to bot-
tlenecks. When action a; is taken in the state s;, the reward
function is defined as follows:

R(st, ar) = ara(t) + (1 —) rp(1) (14)

where the range of R(s;, a;) is [0, 1], and & denotes the weight
factor for balancing the weight on delay and packet loss of
the network. The reward function in (14) aims to reduce a
weighted linear combination of performance metrics for net-
work delay and packet loss. However, depending on the needs
of network operation, the reward function can be defined in
other forms such as maximizing throughput or minimizing
maximum link utilization.

To consider the impact of current action on future rewards,
we define the total expected discounted reward under policy
7 as follows:

o0
RY =R(s;,ar) + Z Y' - R(Si4is Qr4i)s

i=1

5)

VOLUME 10, 2022

the current reward at time step ¢ and the discounted reward
from time step ¢ + 1 to the infinite time step. For example,
y = Oindicates that the network routing system takes account
of only the current reward, whereas y = 1 means that the
system considers the long-term reward at an infinite time step
with the same weight as the current reward. The objective of
the network routing system is to identify an action-selection
policy that increases the total expected discounted reward
R7? to improve the routing performance of the SDN-based
network.

IV. NETWORK ROUTING ALGORITHM USING DDPG

A. DDPG FOR LINK WEIGHT ALLOCATION

In the proposed system, the DRL agent trains the neu-
ral model to identify the optimal action-selection policy
for packet forwarding with balanced link weight allocation
leading to reducing the delays and packet loss in the net-
work. In order to formulate this objective, we employ the
action-value function that returns the total expected dis-
counted reward when action ¢, is taken in the state s; in
accordance with the policy 7 as:

OC(st, a;) = E{R(st, ar) + Z)’i “R(styi, aryi) ¢ . (16)

1

18127

IEEE Access

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

Here, the optimal action-value function Q* can be approxi-
mated as follows:

Q* (s, ar) = E{R(St, ar)
+ Dy max R(sii @ri)ls=s.a=a, } (17)
. t+i
1

In this paper, we use a DDPG algorithm with model-
free, off-policy, and actor-critic properties to learn the
action-selection policy that maximizes the total expected dis-
counted reward. Using two deep neural networks, as shown
in Figure 3, this algorithm can be used to approximate the
optimal action-value function in continuous action space.
The first neural network is an actor-network that approxi-
mates behavior policy. Its input is observation and its output
is action-value, i.e., 7(s;). The second neural network is a
critic network that approximates the action-value function. Its
inputs are action and observation, and the output is the value
of the action-value function, i.e., Q(s;, a;).

Let t(s|60%) and Q(s, a|#€) denote the actor network and
critic network, respectively. In addition, let us denote 7’ and
Q' as the network functions for the actor and critic target
network, respectively. Then, the DDPG employs 6% for the
actor network and € for the critic network to parameter-
ize non-linear function approximators. Here, 67 and < are
updated in accordance with the policy gradient and loss func-
tion, respectively, as shown in Figure 3. The weight of critic
network 6€ is updated in the direction of minimizing loss as
follows:

1
L9 = = i = QGsi- ail09))’, (18)

where y; = R(si, a;) + v Q' (six1, W (si41107)1602), and H
denotes the number of randomly sampled tuples from the
replay buffer B. That is, H means the size of the mini batch.
The DDPG optimizes 8% by updating J(07), which is the
objective function of the policy gradient method in the direc-
tion of VyrJ(07) defined as follows:

1
Ve (07) ~ - 3 VaQ(s, al09)l = a=r(sp
i

Vor t(s107)s=s;- 19)

To update the target networks gradually, the DRL agent
updates #7 and 6 as follows:

02 = €02 + (1 — €92, (20)
07 = €07 + (1 —e,)0", 21)
where €, and €, denote positive small numbers between 0 and
1 used to learn rates corresponding to the actor network and
critic network, respectively.

B. DDPG-BASED ROUTING ALGORITHM

The proposed DDPG-based routing policy update solution
is described in Algorithm 1. First, the neural network mod-
els in DRL agent are initialized with randomly generated

18128

Algorithm 1 The Proposed DDPG-Based Routing Algorithm
1: // Initialization
2. Set the critic-network Q(s, al09) and actor-network
7(s|67) with randomly generated weight 6¢ and 67
3: Set target parameters equal to main parameters 09 «
09,07 < o7
4: Empty experience replay buffer B
5: Construct the M/M/1/K queue-based network model
using network information from SDN controller.
6: Set initial state sy in accordance with the initial routing
policy
7: // Parameter updating
8: repeat
9: Select action a; = t(s:|60%) + N following the param-
eter noise for exploration
10: Take action a; on modeled network and calculate
R(st, ar), St+1
11: Store transition {s;, a;, R(s¢, a;), $;+1} in B
12: ifit’s time to update then

13: Update the network information from SDN con-
troller.
14: end if

15: Randomly sample a batch of H transitions
{si, ai, R(s, a;), siy1} from B

16: Sety; = R(si, a)) + y Q' (sit1, T'(5i41167)|69)

17: Update critic 8¢ and actor 67 in (18) and (19)

18: Update the targets softly in (20) and (21)

19: until convergence

weights and initial observations. The M/M/1/K queue-based
network model is built using network data from the SDN
controller. The initial observation is derived from the network
topology and traffic demand information reported by the
SDN controller, as well as the state and reward information
calculated in the modeled network environment. The DRL
agent trains the neural model using synthetic traffic demands
that are randomly generated. Here, the learning performance
can be significantly improved by exploiting the pre-collected
network statistics that have been observed in the target data
network.

The algorithm consists of a loop for time step ¢. Lines 7-19
show the loop for each time step 7. At every time step ¢, the
agent selects an action a; following the actor-network policy
with adaptive noise process N in line 9. To make DDPG
policies explore better, adaptive noise is added to the selected
action during the training time because the action-network
policy is deterministic. In line 10, the DRL agent takes action
a, on modeled network and calculates the reward R(s;, a,) and
the next state s;4+1. The observed transition is stored to the
replay buffer 13 for each action. When network information is
reported from the SDN controller every T cycle, the previous
network information is updated with the currently reported
information. 7 is the period at which the SDN controller
observes network information and delivers it to the DRL
agent. The value for 7 is a design parameter that can be

VOLUME 10, 2022

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

IEEE Access

TABLE 2. Simulation parameters.

[Simulation parameter [Grid | GEANT [InternetMCI |
The number of switches | 25 40 19
The number of links 40 61 33
The number of flows 150 150 100
« 0.9 0.9 0.9
Wimin 1 1 1
[— 5 5 5

adjusted in a long term or a short term according to the needs
of the network operation. Based on the randomly sampled
mini batch from B, 0 and 67 are updated in accordance with
the updated rules (20) and (21) in lines 15 — 18.

The proposed algorithm can mitigate the performance
degradation that occurs in the learning stage and is suitable
for a situation where the traffic demand dynamically changes
over time in the backbone network environment. However,
for an environment with highly-dynamic topology changing
(e.g., wireless and ad hoc networks, Internet of Things, etc.),
training a new model each time may not be computation-
efficient. In this case, we can improve the efficiency of com-
putation by adopting a graph neural networks to generate a
generalized model for multiple topologies [33], [34].

V. PERFORMANCE EVALUATION

A. SIMULATION SETUP

In this section, we present the results of simulations designed
to evaluate the performance of the proposed DDPG-based
routing algorithm in an SDN-based network. The simulations
were conducted using the Python networkX library for net-
work topology generation and a stable-baseline framework
for the DDPG algorithm [35], [36]. We obtained all numer-
ical results from the executions on a server equipped with
an Intel 19-10940X CPU @ 3.3 GHz and NVIDIA Quadro
RTX6000 with 24 GB of memory and with CUDA 11.1.
We considered three kinds of network topologies: a gird
topology where 25 switches were configured in the 5 x 5 grid
shape with 40 full-duplex links, a GEANT [37] topology of
40 nodes and 61 full-duplex links, and an InternetMCI [37]
topology of 19 nodes and 33 full-duplex links as shown in
Figure 4(a), 4(b), and 4(c), respectively.

The system capacities and the service rate for topologies
are set to 10,000 packets and 3,000 packets/second, respec-
tively. The arrival rate of k-th flow entering the network is
governed by a Poisson process with average AX where AX is
set by a uniform random distribution in the interval from 10 to
300 packets/second. To consider network flow uncertainty,
we randomly selected source and destination switch pairs
and changed the A* at every iteration. The weight factor «
was set to 0.9 and link weights are selected in the range
from 1 to 5. The shortest path of each flow was calculated with
Dijkstra’s algorithm, which is widely used as the weighted
shortest path algorithm. The simulation parameters are listed
in Table 2.

We used two fully-connected hidden layers with 400 and
300 units for the actor network and the critic network, respec-
tively, to implement the DDPG-based algorithm. We used

VOLUME 10, 2022

TABLE 3. Hyper-parameter values used for the DDPG algorithm.

[Hyper-parameter | Value
Discount factor v 0.99
Replay buffer B 50,000
Batch size H 100
Critic learning rate €. 0.00001
Actor learning rate €q 0.00001

the rectified linear units activation function, which is reliable
and fast. The Adam [38] optimizer is used to train neural
networks. The discount factor y was set to 0.99. The batch
size of the mini batch was set to 100, and learning began after
100 steps to collect transitions before learning began. The
learning rate for the Adam optimizer and both actor and critic
networks are set to 107>. We use the Ornstein-Uhlenbeck
process [39] to produce noise that is added in the exploration
policy to help the agent explore the environment thoroughly.
We set the hyper-parameter values of the DDPG algorithm as
shown in Table 3.

B. SIMULATION RESULTS

Figures 5(a), 5(b), and 5(c) show the rewards of the agent with
respect to the number of iterations when using the proposed
method. In the figures, the reported line is a moving average
of 500-time steps. In the figures, it is seen that the rewards
keep increasing over the iterations in three topologies and it
indicates the algorithm can choose better actions as it experi-
ences iteration. In Figures 5(a) and 5(b), since the number of
flows is the same, the reward is larger in the GEANT topology
with larger network size, and the variation of reward is small
in the grid topology where the diversity of paths is relatively
low. In addition, it can be seen that in the GEANT topology
with a relatively large network size, more time is required for
convergence as the state space is larger and complicated.

We compared the performance of the proposed routing
method against that of the naive method and DDPG-based
routing using TDM as a state. The naive method performs
packet forwarding with the minimum number of hops, which
is equivalent to performing routing using Dijkstra’s algorithm
in a situation where the weights of all links are the same.
In general, the optimal performance in QoS routing is not
easily defined. We evaluated the performance of the proposed
method by comparing it with the de facto hop-count-based
routing method, which forwards packets with the fewest num-
ber of hops. DDPG-based routing using TDM is a method to
learn link weight allocation by defining the state in DRL as
traffic demand between source and destination pairs [40].

Figures 6, 7, and 8 show the average network performance
with respect to the number of iterations in a grid topology,
a GEANT topology, and an InternetMCI topology, respec-
tively. The reported lines in each figure represent a moving
average of 500 time steps. Figures 6(a), 7(a), and 8(a) repre-
sent the average end-to-end delay of flows. As shown in the
figures, it is seen that the delay of DDPG-based routing meth-
ods gradually decreases as the agent experiences iterations.
Both DDPG-based methods achieved better performance

18129

IEEE Access

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

(a) Grid topology with 25 switches (b) GEANT topology with 40 switches (c) InternetMCI topology with 19 switches

FIGURE 4. Network topologies for performance evaluation.

Reward

l"
—— Proposed —— Proposed —— Proposed
25000 50000 75000 100000 125000 150000 175000 200000 25000 50000 75000 100000 125000 150000 175000 200000 090 25000 50000 75000 100000 125000 150000 175000 200‘000
Number of iterations Number of iterations Number of iterations
(a) Grid topology (b) GEANT topology (c) InternetMCI topology
FIGURE 5. Rewards of the agent with respect to the number of time steps.
10 12
3.0
P e 3 0 P
Fevs o f 10 T
MRS S = 2 e 2 S e i e i o g T
S s
— 2.0 wn 2
z s ° <
o 3 a =
o °
10 £ 4
--+—- Proposed R --+- Proposed = --+- Proposed
0s -+- TDM -+- TDM 2 -+- TDM
—e— Naive —e— Naive —e— Naive
o0 25000 50000 75000 100000 125000 150000 175000 200000 ° 25000 50000 75000 100000 125000 150000 175000 200000 ° 25000 50000 75000 100000 125000 150000 175000 200000
Number of iterations Number of iterations Number of iterations
(a) Delay (b) Packet loss (c) Throughput

FIGURE 6. Average network performance with respect to the number of iterations in grid topology.

10
3.0
S
25 B = -+ AeE = = = = = \
G Sean SOPY ¢ RN GRS S S SR v N
= =¥ Q gl W
2o L= e dain aft o) d e s " g
G g :
> = 5
6
‘?‘j 15 g 2
5]
o © 4 =
o °
= 4
10 £
=
--+—- Proposed R --+- Proposed --+- Proposed
0s -+- TDM -+- TDM 2 -+- TDM
—e— Naive —e— Naive —e— Naive
0.0 o o
25000 50000 75000 100000 125000 150000 175000 200000 25000 50000 75000 100000 125000 150000 175000 200000 25000 50000 75000 100000 125000 150000 175000 200000
Number of iterations Number of iterations Number of iterations
(a) Delay (b) Packet loss (c) Throughput

FIGURE 7. Average network performance with respect to the number of iterations in GEANT topology.

18130 VOLUME 10, 2022

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

IEEE Access

RN
Iy %
S

D GRS 2224

Delay (s)
&
Packet loss

-,
4 AN
/’\ Lt o an S

. ot Jufe e ot = 4 P |
b ’)‘7\—\!::!:‘!_1_:7*-1 F-FFE RIS
\

w

-v

e e e

10 —e—
--+- Proposed
05 -+- TDM
—e— Naive

—o—o—{

Throughput (Mbps)
o

--+- Proposed
-+- TDM 2
—e— Naive

--+- Proposed
-+- TDM
—e— Naive

25000 50000 75000 100000 125000 150000 175000 200000
Number of iterations

(a) Delay

25000 50000 75000 100000 125000 150000 175000 200000
Number of iterations

(b) Packet loss

25000 50000 75000 100000 125000 150000 175000 200000
Number of iterations

(c) Throughput

FIGURE 8. Average network performance with respect to the number of iterations in InternetMCI topology.

than the naive method as learning gradually progresses, and
the proposed method showed better performance than the
DDPG-based method using TDM as a state. In a general net-
work where traffic demand can change at every time step like
in the simulation, the proposed method can improve learning
performance by providing more sophisticated information to
the agent by utilizing ATVM as a state.

Figures 6(b), 7(b), and 8(b) show the packet loss for
one second as a function of the number of iterations in
three topologies. Three topologies exhibit slight increases
in packet loss at the start of training, but the packet loss
gradually decreases as training progresses. Here, the increase
in packet loss was negligible in absolute terms. Since the
reward of the proposed method is defined by combining net-
work delay and packet loss metrics, the performance of one
index can be slightly worse as shown in Figure 6(b) and 8(b).
However, in terms of the overall performance, it can be
confirmed that the proposed method is better as shown in
Figure 6(c) and 8(c). As learning converged in the case of
the GEANT topology, the packet loss of proposed method
was smaller than that of the naive method. This is the
result of learning in a direction that reduces packet loss if a
similar delay occurs even if the number of hops increases.
Figures 6(c), 7(c), and 8(c) show the network throughput
with respect to the number of iterations in three topologies.
In three topologies, as the learning progresses, it is seen that
the network throughput increases as the end-to-end delay and
packet loss gradually decrease. In addition, when comparing
Figure 6(c) and 7(c) with the same number of flows, it is seen
that the convergence of throughput is faster in the case of a
simple grid topology with a relatively small network size.
As shown in the figures, the performance of DDPG-based
methods was superior to that of the naive method as learning
progressed, and the performance of the proposed method was
the best.

Figure 9 depicts the average network performance of the
number of flows in a grid topology and a GEANT topology.
In this case, the converged network performance of each
algorithm is compared by increasing the number of flows by
ten from 100 to 150. Figure 9(a) shows the network delay
concerning the number of flows. As shown in Figure 9(a), the
delays gradually increased as the number of flows increased,

VOLUME 10, 2022

3.0

2.5

[N]
=)

1.5

Delay (s)

Proposed in grid topology
TDM in grid topology

Naive in grid topology
Proposed in GEANT topology
TDM in GEANT topology
Naive in GEANT topology

1.0

0.5 4 ——

0.0 T
100 110

T T T
120 130 140

Number of flows

150

(a) Delay with respect to the number of flows

Proposed in grid topology
TDM in grid topology
Naive in grid topology

Throughput (Mbps)

Proposed in GEANT topology
TDM in GEANT topology
Naive in GEANT topology

ERERE

12‘(] 13|(]
Number of flows

T
100 110 140 150

(b) Throughput with respect to the number of flows

FIGURE 9. Average network performance with respect to the number of
flows.

and the delay of the learning-based methods was smaller
than the naive method. The delay of the proposed method
was the smallest regardless of the number of flows, and the
delay in the grid topology with a relatively small network size
was larger than that of GEANT topology. When the number
of flows is small, the gap between algorithms is reduced.

18131

IEEE Access

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

This is because, when the amount of traffic is small, trans-
mission with the minimum hop is close to optimal, so the per-
formance improvement through learning gradually decreases.
Figure 9(b) shows the network throughput concerning the
number of flows. As shown in Figure 9(b), as the number
of flows increases, the throughput gradually decreases as
the delay increases. The throughput of the proposed method
was the highest regardless of the number of flows, and the
throughput in the GEANT topology with a relatively large
network size was larger than that of grid topology.

VI. CONCLUSION

In this paper, we consider an SDN-based routing system in
which the DRL agent trains the neural network to select
an action for link weight allocation via M/M/1/K queue-
based network model. The proposed routing system can
solve exploration issues by utilizing the modeled network,
especially in the early stages of the learning technique. The
DRL agent in the proposed system learns through rewards
for actions performed on the modeled network rather than
through direct interaction with the data network. Through
offline learning with modeled network, the agent can train
neural networks without causing the performance degrada-
tion of the data network. In the proposed method, the ATVM
is employed as a state for DRL learning. The DRL agent
updates neural networks to optimize the link weight allo-
cation based on the DDPG algorithm which is one of the
off-policy based actor-critic algorithms. Simulation results
on three different network topologies demonstrated that the
proposed routing method can improve network performance
by reducing end-to-end delay and suppressing the increase in
the amount of packet loss at switches.

REFERENCES

[1] N.C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and
D. I Kim, “Applications of deep reinforcement learning in communica-
tions and networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 4, pp. 3133-3174, 4th Quart., 2019.

[2] Z.Mammeri, ‘“‘Reinforcement learning based routing in networks: Review
and classification of approaches,” IEEE Access, vol. 7, pp. 55916-55950,
2019.

[3] S. K. Singh, T. Das, and A. Jukan, “A survey on internet multipath
routing and provisioning,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 21572175, 4th Quart., 2015.

[4] O. N. Fundation, “‘Software-defined networking: The new norm for net-
works,” ONF White Paper, 2012.

[5] S.Ortiz, “Software-defined networking: On the verge of a breakthrough?”
Computer, vol. 46, no. 7, pp. 10-12, 2013.

[6] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2211-2219.

[7]1 G. Trimponias, Y. Xiao, X. Wu, H. Xu, and Y. Geng, “Node-constrained
traffic engineering: Theory and applications,” IEEE/ACM Trans. Netw.,
vol. 27, no. 4, pp. 1344-1358, Aug. 2019.

[8] P. Sun, Z. Guo, J. Li, Y. Xu, J. Lan, and Y. Hu, “Enabling scalable
routing in software-defined networks with deep reinforcement learning on
critical nodes,” IEEE/ACM Trans. Netw., early access, Dec. 1, 2021, doi:
10.1109/TNET.2021.3126933.

[9] Y.-R. Chen, A. Rezapour, W.-G. Tzeng, and S.-C. Tsai, “RL-routing:
An SDN routing algorithm based on deep reinforcement learning,” IEEE
Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 3185-3199, Oct. 2020.

18132

(10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

P. Sun, Z. Guo, J. Lan, J. Li, Y. Hu, and T. Baker, “ScaleDRL: A scalable
deep reinforcement learning approach for traffic engineering in SDN with
pinning control,” Comput. Netw., vol. 190, May 2021, Art. no. 107891.

J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “CFR-RL: Traffic
engineering with reinforcement learning in SDN,” IEEE J. Sel. Areas
Commun., vol. 38, no. 10, pp. 2249-2259, Oct. 2020.

Q. Fu, E. Sun, K. Meng, M. Li, and Y. Zhang, “Deep Q-learning for
routing schemes in SDN-based data center networks,” IEEE Access, vol. 8,
pp. 103491-103499, 2020.

X. Guo, H. Lin, Z. Li, and M. Peng, “Deep-reinforcement-learning-based
QoS-aware secure routing for SDN-IoT,” IEEE Internet Things J., vol. 7,
no. 7, pp. 6242-6251, Jul. 2020.

X. Huang, T. Yuan, G. Qiao, and Y. Ren, “Deep reinforcement learning for
multimedia traffic control in software defined networking,” IEEE Netw.,
vol. 32, no. 6, pp. 35-41, Nov./Dec. 2018.

T. A. Q. Pham, Y. Hadjadj-Aoul, and A. Outtagarts, “Deep reinforcement
learning based QoS-aware routing in knowledge-defined networking,” in
Proc. Springer Int. Conf. Heterogeneous Netw. Qual., Rel., Secur. Robust-
ness, 2018, pp. 14-26.

J. Moy, “OSPF version 2,” STD 54, RFC 2328, Apr. 1998, Tech. Rep.,
doi: 10.17487/RFC2328.

C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,
Nov. 2000, doi: 10.17487/RFC2992.

B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a chang-
ing world,” IEEE J. Sel. Areas Commun., vol. 20, no. 4, pp. 756-767,
May 2002.

A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic engi-
neering solutions for current OSPF/IS-IS networks,” IEEE/ACM Trans.
Netw., vol. 13, no. 2, pp. 234-247, Apr. 2005.

D. Xu, M. Chiang, and J. Rexford, ““Link-state routing with hop-by-hop
forwarding can achieve optimal traffic engineering,” IEEE/ACM Trans.
Netw., vol. 19, no. 6, pp. 1717-1730, Dec. 2011.

N. Michael and A. Tang, “Halo: Hop-by-hop adaptive link-state opti-
mal routing,” IEEE/ACM Trans. Netw., vol. 23, no. 6, pp. 1862-1875,
Dec. 2015.

D. Kreutz, F. M. V. Ramos, and P. E. Verissimo, and C. E. Rothenberg,
“Software-defined networking: A comprehensive survey,” Proc. IEEE,
vol. 103, no. 1, pp. 14-76, Jan. 2014.

S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, and L. Van-
bever, “On the co-existence of distributed and centralized routing control-
planes,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015,
pp. 469-477.

M. R. Celenlioglu and H. A. Mantar, “An SDN based intra-domain routing
and resource management model,” in Proc. IEEE Int. Conf. Cloud Eng.,
Mar. 2015, pp. 347-352.

G.-C. Deng and K. Wang, “An application-aware QoS routing algorithm
for SDN-based IoT networking,” in Proc. IEEE Symp. Comput. Commun.
(ISCC), Jun. 2018, pp. 186-191.

P. Rezende, S. Kianpisheh, R. Glitho, and E. Madeira, “An SDN-
based framework for routing multi-streams transport traffic over multi-
path networks,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2019,
pp. 1-6.

B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “Routing or computing? The paradigm shift towards intelli-
gent computer network packet transmission based on deep learning,” IEEE
Trans. Comput., vol. 66, no. 11, pp. 1946-1960, Nov. 2017.

Y. Zhou, T. Cao, and W. Xiang, ““Anypath routing protocol design via
Q-learning for underwater sensor networks,” IEEE Internet Things J.,
vol. 8, no. 10, pp. 8173-8190, May 2021.

Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and
D. Yang, “Experience-driven networking: A deep reinforcement learning
based approach,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2018, pp. 1871-1879.

J. Sudrez-Varela, A. Mestres, J. Yu, L. Kuang, H. Feng, A. Cabellos-
Aparicio, and P. Barlet-Ros, “Routing in optical transport networks with
deep reinforcement learning,” J. Opt. Commun. Netw., vol. 11, no. 11,
pp. 547-558, Nov. 2019.

J. Zhang, Z. Guo, M. Ye, and H. J. Chao, “SmartEntry: Mitigating routing
update overhead with reinforcement learning for traffic engineering,” in
Proc. Workshop Netw. Meets AI ML, Aug. 2020, pp. 1-7.

C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra, H. Uijterwaal, and
P. V. Mieghem, “Analysis of end-to-end delay measurements in internet,”
in Proc. Passive Act. Meas. Workshop-PAM, 2002.

VOLUME 10, 2022

http://dx.doi.org/10.1109/TNET.2021.3126933
http://dx.doi.org/10.17487/RFC2328
http://dx.doi.org/10.17487/RFC2992

G. Kim et al.: Deep Reinforcement Learning-Based Routing on Software-Defined Networks

IEEE Access

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

M. Ye, J. Zhang, Z. Guo, and H. J. Chao, “DATE: Disturbance-aware
traffic engineering with reinforcement learning in software-defined net-
works,” in Proc. IEEE/ACM 29th Int. Symp. Quality Service (IWQOS),
Jun. 2021, pp. 1-10.

M. Ye, J. Zhang, Z. Guo, and H. J. Chao, “Federated traffic engineering
with supervised learning in multi-region networks,” in Proc. IEEE 29th
Int. Conf. Netw. Protocols (ICNP), Nov. 2021, pp. 1-12.

A. Hagberg, P. Swart, and D. S. Chult, “Exploring network structure,
dynamics, and function using NetworkX,” in Proc. Python Sci. Conf.
(SciPy), 2008, pp. 11-15.

A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and
N. Dormann. (2019). Stable Baselines3. GitHub Repository. [Online].
Available: https://github.com/DLR-RM/stable-baselines3

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765-1775, Oct. 2011.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian
motion,” Phys. Rev., vol. 36, p. 823, Sep. 1930.

C. Yu, J. Lan, Z. Guo, and Y. Hu, “DROM: Optimizing the routing
in software-defined networks with deep reinforcement learning,” IEEE
Access, vol. 6, pp. 64533-64539, 2018.

GYUNGMIN KIM (Graduate Student Mem-

ber, IEEE) received the B.S. degree from the

School of Electronic Engineering, Ajou Univer-

sity, Suwon-si, Republic of Korea, in 2016. He is

b currently pursuing the Ph.D. degree with the
School of Electrical Engineering and Computer

. 4 ‘ Science (EECS), Gwangju Institute of Science

e o* Korea. His research interests include artificial

and Technology (GIST), Gwangju, Republic of
intelligence, security for wireless networks, and Al

applications for next generation communications.

VOLUME 10, 2022

YOHAN KIM (Member, IEEE) received the B.S.
degree from the Information and Communica-
tion Engineering, Chungbuk National University,
Cheongju-si, Republic of Korea, in 2015, and the
Ph.D. degree in electrical engineering and com-
puter science from the Gwangju Institute of Sci-
ence and Technology (GIST), Gwangju, Republic
of Korea, in 2021. He joined the Korea Institute
of Science and Technology Information (KISTI),
Republic of Korea, in 2022, where he is currently
a Senior Researcher with the Division of Data Analysis. His current research
interests include big data analysis, artificial intelligence, cloud computing,
mobile edge computing, and Al-enabled resource management for next-
generation communications.

HYUK LIM (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the School of
Electrical Engineering and Computer Science,
Seoul National University, Seoul, Republic of
Korea, in 1996, 1998, and 2003, respectively.
From 2003 to 2006, he was a Postdoc-
toral Research Associate with the Department
of Computer Science, University of Illinois
| b 4 at Urbana-Champaign, Champaign, IL, USA.
i From 2006 to 2021, he was a Professor associated
with the AI Graduate School and jointly with the School of Electrical
Engineering and Computer Science, Gwangju Institute of Science and
Technology (GIST), Gwangju, Republic of Korea. He served as the Dean for
the School of Electrical Engineering and Computer Science and the Director
for the GIST Institute for Al In 2022, he joined the Korea Institute of Energy
Technology (KENTECH), Naju-si, Republic of Korea, as a Full Professor.
His research interests include artificial intelligence, cyber-security, big data
privacy, software-defined networking, and wireless communication systems.
He is also conducting active research on Al applications for cybersecurity,
networks, and energy systems.

18133

