
Received January 19, 2022, accepted February 6, 2022, date of publication February 14, 2022, date of current version February 22, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3151378

Locating Hardware Trojans Using Combinatorial
Testing for Cryptographic Circuits
LUDWIG KAMPEL 1, PARIS KITSOS 2, (Senior Member, IEEE),
AND DIMITRIS E. SIMOS 1, (Member, IEEE)
1SBA Research, 1040 Vienna, Austria
2Electrical and Computer Engineering Department, University of the Peloponnese, 26334 Patras, Greece

Corresponding author: Ludwig Kampel (lkampel@sba-research.org)

This work was supported in part by the Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie
(BMK); in part by the Bundesministerium für Digitalisierung und Wirtschaftsstandort (BMDW); in part by the Federal State of Vienna; in
part by the European Union and Greek National Funds; and in part by the Regional Operational Program ‘‘Western Greece 2014–2020,’’
under the Call ‘‘Financial Strengthening Research Development and Innovation Projects in the Priority Area of RIS3-ICT’’ through the
Project entitled Integrated Information and Communications Technology (ICT)-Based Active Living Support System ‘MeACT’ under
Grant 5038641.

ABSTRACT This paper presents a novel method for locating combinational hardware Trojans (HT) based on
fault location approaches used in combinatorial testing. This method relies exclusively on the combinatorial
properties of the executed test vectors and the results of test execution. Under specific assumptions, the
method is guaranteed to locate all combinational HTs with trigger patterns of length ` or less, with the
location process itself consuming negligible time. We give a description of our method by devising suitable
algorithms and provide the links to combinatorial fault location. Furthermore, we demonstrate our approach
in a concrete case study where we locate HTs embedded in a circuit that implements the AES symmetric-
key encryption algorithm with 128 bits key length. In these experiments, we demonstrate how any HT that
is activated by a trigger pattern of length ` ≤ 8 can be located in an effective way. Our method compares
particularly well against randomized approaches. Although instantiated for a specific circuit in our case
study, the proposed approach is generic, due to its algorithmic description, and can be applied for testing
other (cryptographic) circuits. We believe that our work presents an important first step in the development
of more general logic testing methodologies for HT location using combinatorial testing methods.

INDEX TERMS Circuit testing, combinatorial testing, detection techniques, hardware trojans, fault location
analysis.

I. INTRODUCTION
The security of information and communication technologies
and electronic systems in general is often solely related to
the security of its software part, leaving hardware security
out. However, when treating the security of an electronic
system holistically hardware security must be addressed as
well. A reliable and secure piece of hardware is expected
to implement and execute only what it is designed to and
nothing else, even in the presence of an intentional attack.
In modern society, the globalization of the semiconductor
industry raises additional concerns regarding the authenticity
and security of fabricated integrated circuits (ICs). IC design
and manufacturing may involve multiple fabricators and cir-
cuits have to run through multiple stages until a final product
reaches its customer. In each individual production stage,

The associate editor coordinating the review of this manuscript and
approving it for publication was Porfirio Tramontana.

there is potential for malicious manipulation of an IC. This
threat is recognized in the US not only by intelligence ser-
vice agents [1], but also in reports of government institu-
tions [2]. It has been the subject of scientific discussion and
investigation for several [3]. For instance, rumors exist that
in 2007, a Syrian radar failed to warn of an incoming air
strike due to a backdoor in the system’s chips [3]. Similarly,
a Germanmissile system located at the Turkish-Syrian border
may have carried out ‘‘unexplained commands’’ in 2015,
with rumors suggesting that the system had been hacked
and tampered hardware might have been used as an entry
point [4]. More concrete documentation of attacks based on
HTs are difficult to find, possibly due to concerns regarding
the impact on security, economy, and society. Regardless
of whether these rumors are true or not, there exists scien-
tific evidence that cybersecurity attacks based on vulnerable
hardware are possible [5]. Thus, establishing a trustworthy
supply chain for information technology equipment is of

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 18787

https://orcid.org/0000-0002-1870-5143
https://orcid.org/0000-0003-1851-8775
https://orcid.org/0000-0001-8588-1924

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

interest for government institutions [6] as well as researchers,
see [7] or [8].

Accounting for the manifold opportunities for threats,
it becomes very hard to test if a downstream provider has
installed an undesired functionality or if they are fully trust-
worthy. One of the most severe and threatening attacks to
an IC is the integration of a hardware Trojan (abbreviated
as HT or simply Trojan for short), a malicious modifica-
tion to field-programmable gate arrays (FPGAs), application-
specific integrated circuits (ASICs), microprocessors or IoT
devices [9], [10]. Such modifications can change the func-
tionality of the hardware, e.g. downgrade its performance or
provide a backdoor through which sensitive information can
be leaked. A valuable survey analyzing the threat posed by
hardware Trojans is provided by [11]. To give an example,
the practical feasibility of an S-Box substitution attack for
AES on FPGAdesigns has already been demonstrated in [12].
More recently, in [13] a tampering attack on AES ICs is pre-
sented that is designed to recover the secret key and thus fully
undermine security of the encryption module. The described
attack makes use of an HT that consumes (plaintext) input
signals.

The motivation for our work lies in providing an efficient
and effective method for the location of ‘‘small’’ HTs that
are integrated in the IC at the manufacturing stage, i.e. the
malicious components are added after the design phase and
are not represented in the netlist or register transfer level. The
approach shall be non-invasive, treat the circuit under test as
a black box and allow for automation. Further, we want to
investigate and demonstrate the suitability of combinatorial
testing methods to hardware testing and to advance HT loca-
tion. We believe that particularly the covering and separating
properties of detecting arrays (considered in combinatorial
testing) will positively influence the future development of
HT location techniques.

A. HARDWARE TROJANS: COMPONENTS, TYPES AND
COUNTER MEASURES
While there are implementations of HTs that do not require
the addition of any gates, see e.g. [14], in this paper we
consider HTs that are realized as additional logic circuits.
Such HTs generally consist of two parts: the trigger and
the payload. The trigger circuit is always active. Once it
recognizes the activating input, it activates the payload circuit
that executes the malicious function of the HT, i.e. the HT
is triggered. We distinguish HTs according to their trigger
condition into analog and digital. The latter can be further
split into combinational and sequential HTs according to
the type of their circuit logic. See [15] or [16] for a com-
prehensive HT taxonomy. An example of a combinational
HT circuit is depicted in Fig. 1. This HT is comprised by
a trigger circuit consisting of seven AND-gates and three
NOT-gates, while the payload circuit consists of only one
XOR-gate that changes the encryption-decryption mode of
the underlying AES module. The trigger circuit consumes
the gates that process the input bits of the key or plaintext at

FIGURE 1. An example design of an HT of length eight, e.g., for an AES
module, that consumes the gates in positions 4-25-38-47-95-101-
115-127 corresponding to the key or plaintext input and that is activated
when the signals 10110110 occur in these positions.

positions 4-25-38-47-95-101-115-127 and activates
the payload circuit if the signals 1, 0, 1, 1, 0, 1, 1 and 0 occur
in the respective bits. We call the position of the consumed
input bits together with their respective values the trigger
pattern of the HT and the number of consumed input gates
the length of the HT. Thus, in the following we often identify
HTswith their trigger patterns and do not distinguish between
them, e.g. we interchangeably use expressions like length of
the trigger pattern and length of the HT.

Researchers have explored various approaches for
HT detection. The acquired techniques can be classified
as destructive methods, which permanently destroy the IC,
and non-destructive. Non-destructive methods can be further
divided into invasive techniques, where the layout of the
circuit is modified (e.g. runtime methods) and non-invasive
techniques where the circuit design is unaffected (e.g. logic
testing or side channel analysis methods). More details are
presented in surveys of these topics, such as [17] or [18].
Additionally, we want to mention the recent survey [19] on
physical and logic testing techniques for HT detection as well
as the work given in [20], which reviews HT threats and
existing detection and prevention methods from a system-on-
a-chip life cycle perspective with a focus on the advancement
of machine learning in these domains.

B. THREAT MODEL
We assume that the malicious modification of the design
happens via an untrusted electronic design automation (EDA)
tool, or in themanufacturing phase, by an untrusted employee
at the foundry. Building upon the works of [21] and [22],
we consider the same concrete threat model for our case
study: We consider an implementation of the AES crypto-
graphic algorithm, with a key length of 128 bits, in the form
of hardware IP cores where an attacker integrated an HT
triggered by an ` bit pattern in the plaintext or key input.
The attacker can control the plaintext or the key input and
can observe the ciphertext output. We further assume that the
attacker combines only a few input signals for the activation,
e.g. using a combinational logic relying on AND-gates and
NOT-gates for the trigger circuitry, in order to remain unde-
tected. For the payload circuit we assume that the attacker
changes the encryption mode of the circuit, switching it

18788 VOLUME 10, 2022

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

from encryption to decryption and vice versa. Under these
assumptions, we can recognize misbehavior of the circuit by
comparing its output with the output of a golden chip, which
can either be a trusted hardware or software implementation
of the AES algorithm.

Note that these assumptions are made primarily for the
sake of clarity and simplicity of the experimental setup.
Our proposed testing method does not depend on how the
HT manipulates the logic of the hardware, the essential pre-
condition needed for our methodology to work is rather the
existence of a testing oracle, i.e. a way to recognize that the
HT is activated.

According to the comprehensive list of threat models pre-
sented in [15], we can categorize the described threat model
as model B (untrusted foundry) or model C (untrusted EDA
tool). In this sense, we can also categorize the HT design
considered in this work according to the hardware Trojan
taxonomy presented in [15], which is also underlying the
benchmark library of [23] and is used in several scientific
works (in slightly adapted versions), as in [19]. Adopting this
terminology, we consider HTs that are

• inserted in the fabrication phase,
• on the gate-level,
• activated by a combinational pattern in the user input,
• located at the input, and
• changing the functionality of the circuit.

Regarding the physical characteristics of such HTs, we want
to point out that if the targeted circuit is an ASIC, the layout
will change in many cases. However, it does not change in
case the targeted circuit is an FPGA and the integration of the
malicious logic can be realizedwith available space in already
used lookup tables, in which case the HT is also not visible
in the netlist. Further, the size of a HT is a relevant physical
characteristic, as a small and compact design is better from
an attacker’s point of view, warding off detection through e.g.
optical inspection.

C. CONTRIBUTION
In this paper, we introduce a novel logic testing methodology
based on combinatorial fault location methods that can excite
and locate hardware Trojans that are triggered by certain
combinational ` bit patterns in the primary input using com-
binatorial test sets. We instantiate this method by applying it
to tampered AES cryptographic circuits. Being non-invasive
in nature, our methodology relies solely on the results of
the executed test vectors and their combinatorial properties.
Further, our method does not rely on a physical realization of
a golden chip, i.e. does not require a fully trusted hardware
realization of the circuit under test. The set of test vectors
is optimized aiming for as few vectors as possible while
allowing for an efficient method for trigger pattern identi-
fication. The proposed work is in line with those presented
in [21] and [22], considerably extending their results from
mere detection of the presence of a combinational HT to
the precise identification of the consumed input gates and

the respective values that trigger a potential HT – hereafter
referred to as HT location or HT trigger pattern location.

The devised methodology relies on results coming from
combinatorial testing and combinatorial fault location.
We revisit these results and show how they can be applied
in the domain of hardware Trojan detection and location.
Further, we devise novel algorithms in order to describe the
developed HT location method. An extensive experimental
evaluation demonstrates the functionality of the theoretical
results applied to an AES module. Although exemplified
by means of this application, due to its algorithmic nature,
the proposed method can also be applied for HT location
in more general setups. In the experiments, we perform HT
location for circuits that implement the AES symmetric-key
encryption algorithm in ECB mode for 128 bit key length
that have been maliciously modified with HTs of length up
to eight. In these experiments, we realize the concept of a
golden chip in the form of a software implementation of the
aforementioned AES algorithm. We also compare our HT
location method against a random approach, showcasing the
completeness and efficiency of our technique.

Our testingmethodology does not rely on knowledge of the
internals of the circuit under test and can be considered as a
black box testing approach. We firmly believe that this is a
strong advantage, as under realistic circumstances, we cannot
assume to have knowledge of the internals of the hardware
design where the HT is already inserted.

Thus, the main contributions of this work are as follows:
• To the best of our knowledge, we introduce the first
‘‘pure’’ logic testing method for HT trigger pattern iden-
tification, i.e. we present a non-invasive logic testing
method that relies solely on the results of the executed
test vectors and their combinatorial properties to identify
combinational patterns in the input that trigger HTs.

• The proposed method treats the circuit under test as a
black-box and is independent from the gate-level netlist
or any side-channel analysis.

• It does not require a hardware golden chip.
• We map concepts of combinatorial testing to HT test-
ing and realize combinatorial fault location methods for
logic testing.

• We describe the developed HT location method by
means of novel algorithms which allow for fast HT
trigger identification.

• We conduct an extensive experimental evaluation, locat-
ing HTs of length up to eight in FPGAs realizing the
AES symmetric-key encryption algorithm in ECBmode
for 128 bit key length.

• We further compare our method against a random
approach that highlights the completeness and efficiency
of our technique.

D. STRUCTURE OF THE PAPER
In Section II we briefly review related work on logic testing
and HT location. Thereafter, in Section III we give a brief
introduction to combinatorial testing, give some preliminaries

VOLUME 10, 2022 18789

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

regarding combinatorial fault location and further outline
how the concepts of combinatorial testing can be linked to
HT location. Subsequently, in Section IV, we describe three
different algorithms for HT location using annotated test sets,
along with a running example that illustrates the essential
workings of these algorithms. In Section V we describe the
experimental set-up of our case study and in Section VI we
document our experiments regarding HT location based on
combinatorial and randomly generated test sets. Section VII
contains a brief discussion of practical limitations of the
presented work, while Section VIII summarizes the paper
and outlines potential impacts. Finally in Section IX we
outline several directions of future work based on themethods
presented herein.

II. RELATED WORK
This paper presents a combinatorial testing method for locat-
ing hardware Trojans in cryptographic circuits. We thus dis-
cuss related work pertaining to logic testing methods as well
as to HT location approaches.

A. LOGIC TESTING: TEST SET GENERATION
Logic testing approaches generally rely on the execution of
test vectors while observing the responses of the circuit under
test. Any deviation from the expected result (which can be
provided, amongst others, by a golden chip or a simulation)
reveals the presence of an HT. Logic testing is thus primarily
suited for the detection of HTs that modify the IC’s function-
ality, but it can also be used to enhance side channel analysis,
as it was done in [24]–[26] and [27]. Here, the goal of logic
testing methods is to activate potential HTs with a reasonable
number of test vectors. For a survey dedicated to logic testing
methods as a countermeasure to HT insertion, see also [28].

Generally, an attacker will try to design an HT to be
stealthy under ‘‘normal conditions’’ in order to make it hard
to detect. The trigger condition of an HT can thus be assumed
to be a rare signal in the IC. Exhaustive testing, however,
is usually infeasible due to the number of combinations of
inputs and internal states being not tractable. The objective
of testing is thus to activate potential HTs within a reasonable
test time, aiming for a small number of test vectors, see [29]
and [30]. There exist different strategies for test vector gener-
ation in order to trigger HTs, where some methods connect
the rarity of HT activation to gates with rare values and
design vectors in order to activate these signals in the IC,
see e.g. [31]. Other methods assume that an attacker has no
access to internal gates of the circuit and use combinatorial
objects called covering arrays1 to cover all possible trigger
patterns up to a certain length in the primary input of the IC,
see e.g. [21] and [22].

In [31] a random sampling approach (called MERO) for
HT detection is presented, which is based on multiple exci-
tation of low-probability conditions at the internal nodes of

1A brief introduction to these concepts and combinatorial testing is given
in Section III.

a circuit. MERO works by first identifying rare nodes with
their associated rare values, followed by statistical sampling
and execution of test vectors until all rare nodes have been
triggered a certain number of times (similar to N-detect
tests). Experimental evaluation shows that MERO improves
over a random approach by achieving comparable HT detec-
tion capabilities while reducing the number of test vectors
by 85%.

The work in [32] presents a test generation method based
on a genetic algorithm for logic testing of circuits. The
key point of this work is to define the fitness function that
guides the genetic algorithm based on switching probabilities,
controllability and observability parameters. A test vector
that activates more rare nodes gets a higher score from the
fitness function. A genetic algorithm is used to optimize an
initially random set of test vectors until 95% of rare nodes
are activated. The authors argue that not covering all of the
rare nodes is the main reason why the test generation is
faster than MERO [31]. The generated test vectors achieve
very competitive results, but ultimately cannot compete with
MERO in terms of trigger coverage.

Contrary to these approaches, logic testing based on com-
binatorial testing treats the circuit under test as a black box.
Test vectors are generated such that all input combinations of
a fixed number of input gates are covered at least a pre defined
number of times in order to guarantee the excitement of all
possible combinational HTs up to a certain length. In [21], the
applicability of combinatorial testing to HT testing is demon-
strated by means of testing a hardware implementation of the
AES cryptographic algorithm. Since there are no constraints
amongst the 128 bit vectors that represent the primary inputs
to an AES module, the authors use methods of unconstrained
combinatorial interaction testing to generate the test set. Their
work highlights the efficiency of combinatorial testing, as it
provides test sets that are smaller in size by several orders of
magnitude when compared to other approaches while guar-
anteeing the excitement of specific combinational HTs up
to a certain length. Testing focuses exclusively on the input
gates of the circuit under test, as they represent the primary
interface for testing and triggering a potential attack.

This line of research was continued in [22], where the
completeness of combinatorial testing in terms of excitement
of combinational HT up to a certain length was compared
against random testing. A series of experiments with different
HT designs underpins the efficiency of combinational Trojan
detection through combinatorial testing. A similar study on
the effectiveness of combinatorial testing this task is pre-
sented in [33].

In addition to the ‘‘pure’’ logic testing methods men-
tioned above, we want to highlight the hybrid approach to
HT detection presented in [26], which proposes a side-
channel-aware test generation paradigm. The authors intro-
duce the MERS (Multiple Excitation of Rare Switching)
algorithm - an evolution of the MERO approach [31] - for
test set generation, which takes as input a list of previ-
ously identified rare nodes and a set of random vectors.

18790 VOLUME 10, 2022

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

The set of vectors is modified until each rare node is switched
(i.e. changes from its non-rare to its rare value) at least a given
required number of times. The generated test vectors are then
reordered with the goal of minimizing the total switching
in the circuit while maintaining or improving the switching
in the rare nodes. The aim of this optimization is to improve
the side-channel sensitivity of the approach. Twomethods for
test reordering are proposed, the first is a heuristic based on
minimizing the hamming distance of consecutive test vectors,
the second is simulation based and reorders the test set based
on information of the switching activity in the circuit obtained
from iterated simulations.

The logic testing methods reviewed above share one com-
munality, which is the lack of means for HT location. To the
best of our knowledge, most existing logic testing approaches
do not offer the generation of test sets that are capable of
HT trigger identification at a post silicon stage.

Most recently, another method combining power-based
side-channel analysis with logic testing allows to fully isolate
Trojan signals in some cases [27]. In this work, a three-
phase method based on adaptive logic testing is proposed.
In the first phase, anN -detect test set for transition delay fault
testing is deployed with the goal of exciting any signal from
the Trojan circuitry to produce an initial suspicious power
signal. The second phase aims to magnify the suspicious
signal by modifying test vectors based on a heuristic that
changes small groups of input bits and evaluates the newly
generated test vector for its relative power difference value.
The process returns the test vector with the highest relative
power difference found during the process. The third phase
uses adaptive test vector superposition, aiming for test vec-
tors that have a large overlap and cancel out their common
effects, in order to detect the presence of a Trojan even under
extreme process variation domains. In two documented cases,
it was possible to fully isolate the Trojan signal. This method
achieves Trojan signal magnification increase by orders of
magnitude when compared to ATPG, a significant increase
when compared to adaptive ATPG, and is capable of fully
isolating the Trojan signals for two instances. The authors
of [27] require to apply manymodifications to the test vectors
in order to find a pair suitable for superposition. To a certain
extent, the combinatorial methods for HT location presented
in this work can be considered a superposition method that
incorporates information of multiple test vectors.

B. LOCATION OF HARDWARE TROJANS
The work in [34] presents the COTD technique for Trojan
detection and identification that makes it possible to fully
identify an inserted HT by isolating its trigger and payload
circuit. COTD takes the gate-level netlist as input and com-
bines controllability and observability analysis with unsu-
pervised machine learning to distinguish Trojan gates from
genuine gates. A clear advantage of this approach is its inde-
pendence from a golden chip and any test pattern application
for partial of full Trojan activation. However, the knowledge
of the complete gate-level netlist is required as input, with

the Trojan logic inserted, which may not always be available.
Similarly, the authors of [35] propose a reference-free scheme
for HT trigger location by identifying their rare trigger signals
based on the gate-level netlist. They make use of the hypoth-
esis that nodes with rare values (low probability signals) are
nodes with an imbalance in 0/1-controllability, which can be
calculated by the Synopsys EDA tool TetraMAX. Based on
the differences of the 0/1-controllability values 3-means clus-
tering is applied in order to obtain lists of suspicious signals,
which can then be refined by a dynamic probability analysis.
The authors report that their method can achieve zero false
negatives while improving the number of false positives in
numerous benchmarks and being very competitive otherwise.
Again, this method requires the gate-level netlist with the
inserted HT.

The authors of [36] use social network analysis of register
transfer level designs for HT trigger and payload location in
the design. They assume that the circuit under test, with the
potentially inserted HT, is represented as an edge-labelled
directed acyclic graph, for which they compute several
attributes, such as different centrality measures for vertices
or the density of subgraphs. Based on these attributes some of
the vertices are marked as possible HT trigger or HT payload
nodes, not requiring any simulations or side-channel analysis.

Themethods outlined above, in oneway or another, assume
the knowledge of the Trojan infected design of the circuit,
which might not be available, especially if the malicious
modification of the circuit happens at the foundry in the
silicon stage.

The work in [37] could serve as an important initial step
to our work, as it presents a method to identify circuit cites
where a potential HT trigger may be inserted. It proposes
to first identify nodes with a low controllability based on
probability analysis and then to consider those nodes where
an insertion of additional HT gates would not result in a
significant delay, by considering the nodes with a positive
slack. Additionally, the nodes’ physical placement in the
circuit is taken into account, as a potential HT trigger needs
some space in the layout in order to be integrated. Finally,
the work proposes to consider subsets of nodes that fulfill
the above three criteria, taking into account their physical
closeness in the circuit’s layout. The authors further propose
to generate test vectors designed to trigger the potential HT.
However, this step is not carried out, leaving open the prob-
lem of (partial) HT triggering and location. Nevertheless,
this work treats an important preprocessing step, when one
is interested in physically locating an HT. We mention it
here, because we believe that such methods can benefit, when
supplemented with the hereafter proposed logic testing based
on combinatorial fault location.

III. PRELIMINARIES
In the following subsections, we summarize the main aspects
of combinatorial testing and combinatorial fault location.
We also bridge concepts used in HT detection and location
with the aforementioned topics.

VOLUME 10, 2022 18791

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

A. COMBINATORIAL TESTING
Combinatorial testing is a black box methodology for testing
a system under test (SUT) against undesired interactions of
its input parameters. The requirements for the application of
combinatorial testing are twofold: First, an input parameter
model (IPM) [38], that models the SUT by means of input
parameters, and their respective values. Second, a testing
oracle, which conceptually is some method by which the
tester can recognize faulty behavior of the SUT.

Combinatorial testing can model dependencies of t ≥ 2
parameters and allows for testing of higher-order interac-
tion faults between input parameters. Combinatorial t-wise
testing (combinatorial testing in short) has been applied in
several domains in recent years [39] and has been shown
to be a valuable and efficient testing methodology, see
e.g. [40]–[42] and [43]. For a thorough introduction to com-
binatorial testing, we direct the reader towards [44].

The theoretical backbone of combinatorial testing is pro-
vided by combinatorial objects, such as covering arrays,
which can be defined as follows (see also [45]).
Definition 1: A (uniform) covering array2 CA(N ; t, k, v)

is anN×k array over a v-ary alphabet6 that has the property
that in any N × t sub-array, comprised of any t different
columns of the covering array, every t-tuple in 6t appears
at least once as a row. The parameter t is called the strength
of the covering array.

Simply put, a covering array of strength t provides a
combinatorial test set for the SUT that ensures testing of all
possible configurations of any t input parameters. An exam-
ple of a CA(12; 3, 11, 2) is given in Table 1. This array has
the property that when selecting any three different columns
bi, bj, bk with pairwise different i, j, k ∈ {1, . . . , 11}, every
binary 3-tuple (word of length three) appears at least once
in the array (bi, bj, bk) comprised of these three columns.
Further, we know (e.g. from [48]) that there exists no array
with less rows that also has this property, i.e. there exists no
CA(11; 3, 11, 2). Covering arrays having the smallest num-
ber of rows possible are called optimal. The generation of
covering arrays with small values of N (which translates to
small test sets) is a challenging problem that is subject to cur-
rent research, and the computational complexity of optimal
covering array generation is still unknown [49].

The concept of interactions that are covered by the rows of
covering arrays can be formally defined as follows.
Definition 2: For positive integers t, k and v, a t-way

interaction is a set of t pairs {(p1, v1), . . . , (pt , vt)} with the
property that vi ∈ {0, . . . , v − 1}, ∀i ∈ {1, . . . , t} and
1 ≤ p1 < . . . < pt ≤ k . The values for k and v are usually
clear from the context and hence omitted from the notation.
We say a t-way interaction {(p1, v1), . . . , (pt , vt)} is covered
by a vector u = (ui)ki=1 of length k , iff upj = vj, ∀j =
1, . . . , t . We further define a ≤t-way interaction as a set of

2In the literature there also exist generalizations, such as mixed-level
covering arrays [46] and variable strength covering arrays [47]. These
notions, however, are not relevant for the contribution of this paper.

s ≤ t pairs {(p1, v1), . . . , (ps, vs)} with the property that vi ∈
{0, . . . , v− 1}, ∀i ∈ {1, . . . , s} and 1 ≤ p1 < . . . < ps ≤ k .
The pairs that constitute a t-way interaction represent
parameter-value assignments in combinatorial testing.
To give examples, for k = 11 and v = 2 a 3-way interaction
is might be {(3, 1), (4, 0), (11, 1)} and a ≤3-way interaction
could be the 2-way interaction {(2, 1), (5, 1)}. The above
3-way interaction is covered by the first and fourth row of
the CA(12; 3, 11, 2) in Table 1.

One of the main advantages of combinatorial testing is
that it can be automated, which can help to reduce costs
and resource consumption of testing. Based on the IPM of
the SUT, a combinatorial test set of strength t can be gener-
ated with one of the existing tools, e.g. [50], which then can
be readily applied for testing the SUT.

TABLE 1. An example of an (optimal) CA(12; 3, 11, 2) that is also
a (1, 2)-detecting array.

B. COMBINATORIAL FAULT LOCATION
Combinatorial fault location is an aspect of combinatorial
testing that aims to identify failure inducing t-way inter-
actions (FITs). Instead of mere detection, i.e. verification
of the presence, of misbehavior caused by t-way interac-
tions, we are further interested in identifying which t-way
interactions triggered this misbehavior. It is worthwhile to
mention again that the SUT is considered a black box and
combinatorial fault location can thus not tell uswhy a specific
t-way interaction is causing the misbehavior, but only that it
does so. Thus, in case the SUT is a software system, combi-
natorial fault location differs from traditional software fault
location - which is part of the debugging process - where we
are interested in locating a fault in the source code. However,
knowledge about FITs can facilitate the location of a fault in
the source code [51].

Combinatorial fault location methods can be divided into
adaptive and non-adaptive approaches. Adaptive approaches,
such as [52] and [53] rely on an online communication with
the SUT during testing. The test set is generated during test
execution, where results of earlier tests influence the genera-
tion of later tests. Alternating test execution and test genera-
tion, the set of potential failure inducing t-way interactions is
reduced and concertized iteratively.

In contrast, non-adaptive approaches do not require such
online communication with the SUT. Here, fault location

18792 VOLUME 10, 2022

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

solely relies on properties of the underlying combinatorial
object that gave rise to the test set and the results of test
execution in the form of a pass/fail assignment of the tests,
obtained from a testing oracle. Combinatorial objects with
these desired properties can be regarded as covering arrays
having additional properties that allow to locate failure induc-
ing t-way interaction, see e.g. [54] or [55] for definitions an
discussions of such structures. For example, locating arrays
and detecting arrays as introduced in [54] are covering arrays
with the additional property that a set of t-way interactions is
uniquely identifiable via the set of rowswhere at least one ele-
ment of the set is covered. In terms of testing, this means that
the tests are structured in such a way that the failure inducing
t-way interactions can be reconstructed and revealed from
the oracle assignment. More precisely, as introduced in [54],
in this work we consider (d, t)-detecting arrays, which are
covering arrays A of strength t with the additional property
that any set T of d different t-way interactions can be distin-
guished from any other t-way interaction τ /∈ T only by the
rows of A. This means that any such τ must be covered in at
least one row of A that does not cover any element of T . Such
a row can be considered a ‘‘witness’’ for τ not being an ele-
ment of T . Similarly, (d, t̄)-detecting arrays can be defined,
which have analogue properties when quantifying over
≤t-way interactions, i.e. interactions of strength up to t (recall
Definition 2). For the formal definition of these combinatorial
structures, the interested reader is referred to [54]. Finally we
note that the name detecting arrays may be unfortunate in
some way, as detecting arrays can be used for FIT location
and not only FIT detection. An example of a (1, 2)-detecting
array is given in Table 1.

When used for combinatorial testing, detecting arrays
allow for the following fault location procedure (see
also [54]): iterate over all passing tests, mark all t-way inter-
actions covered by passing tests as non-failure triggering; the
set of all failure inducing t-way interactions is retrieved as the
remaining un-marked set. It must be noted that this location
procedure is guaranteed to work only if a (d, t)-detecting
array is applied for the location of exactly d different fail-
ure inducing t-way interactions. However, there exist similar
structures, (d̄, t̄)-detecting arrays, that can be used for the
location of up to d failure inducing ≤t-way interactions.

In the following we make use of a theoretical result pre-
sented in [54, Th. 8.5], which states:

A CA(N ; t + d, k, v) with d < v is a (d, t)-detecting array.

Remark 1: Since every CA(N ; t + d, k, v) is also a
CA(N ; (t − 1)+ d, k, v), we immediately get that for d < v
every CA(N ; t + d, k, v) is a (d, s)-detecting array for every
s ≤ t , and hence for d = 1 we get further that every
CA(N ; t + 1, k, v) is a (1, t̄)-detecting array. In other words,
this shows that every CA(N ; t + 1, k, v) can be used for the
location of one failure inducing t-way interaction.
In this work, we aim to apply (non-adaptive) combinatorial

fault location for locating HTs (after these have been success-
fully detected).

C. LINKAGE BETWEEN HARDWARE TROJAN LOCATION
AND COMBINATORIAL TESTING
We denote with k the total number of the input signals
available to the attacker and with ` the length of the HT,
i.e. the number of input signals of the Trojan’s trigger
circuit.

In combinatorial testing terminology the 128 bits of the
plaintext yield an IPM consisting of 128 binary parameters.
As we assume no input dependencies (i.e., the value of one
bit does not depend on the value of any of the other input
bits), there are no constraints in our model. According to
the threat model, the attacker is using some ` bit pattern in
the plaintext to activate the HT. In this setting, the natural
choice is to map the HT’s trigger pattern of length ` to the
concept of the failure inducing t-way interaction, the FIT
we are interested in locating in combinatorial fault location.
In this setting, the natural choice is to map the concept of
the length of trigger patterns of HTs to the concept of the
strength of failure inducing interactions. Hence, in our work
we can identify trigger patterns of length ` as failure inducing
t-way interactions. In order to locate the HT’s trigger pattern
we thus have to construct a binary detecting array which
has 128 columns and is capable of locating a single `-way
interaction, i.e. a (1, `)-detecting array or a (1, ¯̀)-detecting
array for 128 binary columns. Since ` is unknown to the tester,
the key issue is the selection of an appropriate strength t to
guide the combinatorial test set generation, allowing us to
capture the length ` of the integrated HT (note that t 6= `

in general, as we shall see in the next sections). While this
problem is not unknown to general combinatorial testing
applications, there is currently no golden rule for selecting
the correct value of t . The selection of t is rather a trade-off
between detection capabilities and availability of resources.
In some cases, there exists empirical evidence that can guide
the selection of the interaction strength for the combinatorial
test set generation. For example, for some applications within
the domain of software testing, security testing as well as
testing of medical devices there is empirical evidence that
suggests that an interaction strength of t = 4 to t = 6,
depending on the use case, is sufficient for testing, in the
sense that all previously documented bugs can be triggered
by interactions of these strengths, see [56] and [57]. We will
demonstrate, however, that based on the arguments given
in Remark 1, we are able to locate HTs of length ` with
(1, t)-detecting arrays, as long as ` ≤ t .
Justified by the identification of trigger patterns with fail-

ure inducing t-way interactions, we use the same terminology
for t-way interactions also for patterns in plaintext inputs. For
example, if a plaintext consisting of 128 binary bits contains
a certain binary sub-pattern, we also say that the pattern is
covered by the test vector, just as we do for t-way interactions
and binary vectors of length k in general.

Table 2 summarizes how concepts and terms from com-
binatorial testing can be translated to the domain of hard-
ware testing (with a focus on cryptographics Trojans) and
vice versa.

VOLUME 10, 2022 18793

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

TABLE 2. A summary of the mappings between equivalent concepts and
notions in HT location and combinatorial testing.

IV. LOCATION ALGORITHMS
Our objective is to first design a testingmethod that can excite
and locate an HT using an optimized test set, and second to
manifest an efficient procedure to retrieve the trigger pattern
from an annotated set of test vectors. In the following we
assume that the AES keys or plaintext vectors applied for
testing are given as the rows of an array A, and the result
of the testing against the golden chip is given as an oracle
assignment, that is a column o of pass/fail assignments to the
test vectors. In other words, we assume we have an annotated
test set (A, o). A naive approach would be to generate and
test all possible input vectors and to use simple enumeration
methods to locate the HT’s trigger pattern. However, this
would be practically infeasible due to the size of the input
space being exponential in the number of input bits.

A. LOCATION VIA FULL ENUMERATION
The first approach towards locating trigger patterns can be
described as follows. Whenever the HT is triggered we
observe a discrepancy in the ciphertext output by comparing
to the ciphertext output of the golden chip. On the contrary,
for any plaintext that represents a passing test (the ciphertext
output is identical with that of the golden chip), we know that
the trigger pattern cannot be covered in the plaintext and thus
that each pattern in this plaintext cannot be the trigger pattern
of the HT (i.e. not the FIT in terms of combinatorial testing).

Therefore, a straightforward approach for identifying the
trigger pattern of length ` is to iterate over all passing tests and
all patterns of length ` covered by the individual passing tests
to mark them as non-trigger patterns. Algorithm 1 represents
a pseudocode for such a procedure. This location algorithm
for detecting arrays was originally mentioned in [54] directly
after the introduction of detecting arrays.

If a trigger pattern exists, the set T returned by Algorithm 1
contains the trigger pattern or a set of potential trigger pat-
terns, depending on the quality of the test set. For example,
if we use a test set that was randomly generated, we generally
cannot expect the returned set T by Algorithm 1 to contain
exactly the trigger pattern, but rather a set of potential trigger
patterns. This is because there is no guarantee that each
non-trigger pattern is covered in a passing test. In contrast,
if the test set is deduced from a (1, `)-detecting array, in case
of the presence of an HT of length `, we have the guarantee
that there is exactly one remaining pattern in T due to the
combinatorial properties of detecting arrays: each non-trigger

pattern must appear in at least one passing test. Thus, we can
formulate the following lemma:

Algorithm 1 SlowPatternLocation(A, o, `)
1: INPUT: Test set A, oracle assignment o, length `
2: P ← passing tests(A, o) F Extract passing tests from

annotated test set
3: T ← set of all patterns of length `
4: for p ∈ P do
5: for all patterns τ covered by p do
6: T ← T \ {τ } FMark τ as non-trigger pattern
7: end for
8: end for
9: return T F Set of unmarked patterns

Lemma 1: If the test set A is deduced from a
(1, `)-detecting array and the oracle column o is the pass/fail
assignment retrieved from testing a modified AES module
with an integrated HT of length `, then Algorithm 1 returns
the trigger pattern of the HT.
Example 1: We illustrate the location method set out by

Algorithm 1 by means of the following example. We use
the (1, 2)-detecting array given in Table 1 as an example
test set A. As this array has 11 columns, it is only suitable
for testing an SUT that consists of 11 binary parameters;
however, the same concept applies to testing the AES module
presented later in this paper. We assume that the occurrence
of the values 01 in the positions 1− 2 trigger a failure in the
SUT; in other words, we assume that there is one FIT, which
is {(1, 0), (2, 1)} denoted as 2-way interaction. Note that the
positions of the trigger pattern do not have to be adjacent for
our method to work. We assume adjacent positions solely for
the sake of better readability. When we use the array given in
Table 1 for testing, the oracle returns the pass/fail assignment
o = (0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0)T , where 1 denotes a fail-
ing test and 0 denotes a passing test. Henceforth we assume
we are only given the annotated test set (A, o) and that we
have no information about the trigger pattern, except that its
length is two.

FromAlgorithm 1, we first extract the passing testsP from
(A, o), which yields the following array:

P =



1 0 1 0 0 1 0 1 1 0 1
1 1 0 0 1 0 1 1 0 0 1
1 0 0 0 1 1 1 0 1 1 0
1 1 1 1 0 1 1 0 0 0 0
1 0 1 1 1 0 0 0 0 1 1
1 1 0 1 0 0 0 1 1 1 0
0 0 1 1 1 0 1 1 1 0 0
0 0 0 1 0 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0


(1)

The set T is initialised as the set of all 22
(11
2

)
binary patterns

of length 2, i.e. binary 2-way interactions for k = 11:

T = {{(1, 0), (2, 0)}, {{(1, 0), (2, 1)}}, {(1, 1), (2, 0)},

18794 VOLUME 10, 2022

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

{(1, 1), (2, 1)}, {(1, 0), (3, 0)}, {(1, 0), (3, 1)},

{(1, 1), (3, 0)}, {(1, 1), (3, 1)}, . . . ,

{(10, 0), (11, 0)}, {(10, 0), (11, 1)},

{(10, 1), (11, 0)}, {(10, 1), (11, 1)}}.

While this is somewhat tedious to manually verify, the
test vectors defined by the rows of P cover all patterns
except 01 in the positions 1− 2, which is the only remaining
pattern in the set T at the end of Algorithm 1. This means
that we have successfully recovered the trigger pattern from
the annotated test set (A, o) and ` = 2.
Example 2: To compare with HT trigger pattern loca-

tion when the test set is randomly generated, we consider
the same preconditions as in Example 1, but now assume
we have tested the SUT with the test set Arand that was
randomly generated:

Arand =



1 0 0 1 0 1 1 1 1 1 0
1 1 0 0 0 1 1 0 0 1 0
1 0 1 1 0 0 1 1 0 1 0
0 1 1 1 1 1 1 0 0 1 1
1 1 0 0 1 0 0 0 1 0 0
0 0 1 1 0 0 0 0 1 1 1
1 0 1 0 1 1 1 0 1 1 0
0 1 1 0 1 1 0 0 0 0 0
1 0 0 0 1 1 1 1 1 1 0
0 0 0 1 1 0 1 1 0 1 1
0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 1 1 1 1



. (2)

It is of the same size as the (1, 2)-detecting array used in
Example 1, but each entry has been selected uniformly at
random from the set {0, 1}. The oracle assignment to the
test set Arand is orand = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)T .
Following Algorithm 1 on the input (Arand , orand , 2), we first
extract the passing tests Prand from (Arand , orand), which
yields the array

Prand =



1 0 0 1 0 1 1 1 1 1 0
1 1 0 0 0 1 1 0 0 1 0
1 0 1 1 0 0 1 1 0 1 0
1 1 0 0 1 0 0 0 1 0 0
0 0 1 1 0 0 0 0 1 1 1
1 0 1 0 1 1 1 0 1 1 0
1 0 0 0 1 1 1 1 1 1 0
0 0 0 1 1 0 1 1 0 1 1
0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 1 1 1 1


.

Again, we can iterate over all patterns of length two that are
covered by the rows of Prand and mark them as non-trigger
patterns, respectively remove them from T . Doing so, we will
find a total of 11 patterns of length two that are not covered by
the rows of P; for example, the patterns 01 in positions 1−2,
11 in positions 2 − 4 and 01 in positions 10 − 11 to name
a view. In this case, we are not able to locate, i.e. uniquely
identify, the trigger pattern.

B. LOCATION VIA SEMI-FULL ENUMERATION
A second, slightly different algorithm, also based on the
enumeration of patterns, can be described as follows.

This algorithm first splits the executed test vectors into two
sets: the failing test vectors F and the passing test vectors P .
As each failing test must cover the trigger pattern, we can
select a failing test f̄ ∈ F at random and we are guaranteed
that it covers the trigger pattern. We can now iterate over
all patterns Tf̄ covered by the failing test f̄ , check which
patterns appear in a passing test and thus mark it as non-
trigger pattern. Finally, Tf̄ is reduced to a set of (potential)
trigger patterns. Algorithm 2 gives a pseudocode of such an
algorithmic procedure.

Let us again consider the case where the test set is deduced
from a (1, `)-detecting array for the location of an HT trig-
ger pattern of length `. Again, as for Algorithm 1, we are
guaranteed that the returned set Tf̄ contains exactly the trig-
ger pattern. This guarantee comes from the property of the
(1, `)-detecting array that each non-trigger pattern must
appear in at least one passing test. We can now formulate the
following lemma:
Lemma 2: If the test set A is deduced from a

(1, `)-detecting array and the oracle column o is the pass/fail
assignment retrieved from testing a modified AES module
with an integrated HT of length `, then Algorithm 2 returns
the trigger pattern of the HT.
Remark 2: While Algorithm 1 has a runtime in2(

(k
`

)
|P|),

as it iterates over all patterns in all passing tests, Algorithm 2
has a runtime in O(

(k
`

)
|P|), with the potential of a reduced

average runtime, since we expect to find a τ ∈ Tf̄ that
is a non-trigger pattern covered by a test vector in P in
|P|/2 steps.
Also, for randomly generated test vectors, we expect

Algorithm 2 to be better than Algorithm 1 when applied
to the same input (A, o, `), in the sense that the result is
more precise. Since we initialize the set of potential trigger
patterns only with those of length ` that are covered by
the failing test f̄ instead of all possible trigger patterns of
length `, the base set from which we remove the non-trigger
patterns is smaller. As both algorithms remove all patterns
covered by some passing test, the set returned by Algo-
rithm 2 must be a subset of the one returned by Algorithm 1.
In other words, let patterns`(P) := {τ |∃p ∈ P :

p covers τ and the length of τ is `}, then:

Tf̄ ⊆ T ⇒ Tf̄ \ patterns`(P) ⊆ T \ patterns`(P).

Example 1: (Continued): We locate the failure induc-
ing pattern of length two, this time using Algorithm 2.
We extract the passing tests P from (A, o) (see Equation (1)),
and randomly select one of the failing tests f̄ ∈ F ,
say

f̄ =
(
0 1 1 0 1 1 0 1 0 1 0

)
.

The set Tf̄ of all patterns of length two covered by f̄ is then

Tf̄ = {{(1, 0), (2, 1)}, {(1, 0), (3, 1)}, {(1, 0), (4, 0)},

VOLUME 10, 2022 18795

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

Algorithm 2 SlowPatternLocationVariant(A, o, `)
1: INPUT: Test set A, oracle assignment o, length `
2: P ← passing tests(A, o) F Extract passing tests from

annotated test set
3: F ← failing tests(A, o) F Extract failing tests from

annotated test set
4: Select f̄ ∈ F randomly
5: Tf̄ ← set of all patterns of length ` covered by f̄
6: for τ ∈ Tf̄ do
7: for p ∈ P do
8: if p covers τ then
9: T ← T \ {τ } F mark τ as non-FIT
10: go to next τ ∈ Tf̄
11: end if
12: end for
13: end for
14: return Tf̄ F set of unmarked t-way interactions

. . . , {(1, 0), (11, 0)}, {(2, 1), (3, 1)}, {(2, 1), (4, 0)},

{(2, 1), (5, 1)}, . . . , {(2, 1), (11, 0)}, . . . {(8, 1), (11, 0)},

{(9, 0), (10, 1)}, {(9, 0), (11, 0)}, {(10, 1), (11, 0)}.}.

It is once more a tedious to verify manually, but we find every
pattern in Tf̄ , except for {(1, 0), (2, 1)} covered by some of the
passing tests in P . Again, the failure inducing pattern 01 in
positions 1− 2 is successfully recovered from the annotated
test set (A, o) and ` = 2.
Example 2: (Continued):To compare against random test-

ing, we follow the same procedure where the test set is Arand ,
as given in Equation (2).We randomly select one of the failing
tests, say f̄rand =

(
0 1 1 0 1 1 0 0 0 0 0

)
. Then, from all

patterns of length two Tf̄rand covered by f̄rand , we remove those
patterns that are covered by the rows of Prand . This yields the
returned set

Tf̄rand = {{(1, 0), (2, 1)}, {(2, 1), (3, 1)}, {(3, 1), (10, 0)}},

which contains 3 patterns of length two. This is a reduc-
tion compared to the 11 patterns returned from Algorithm 1
applied to the same test set, but it also does not locate the
trigger pattern precisely.

C. LOCATION VIA IDENTIFICATION OF SHARED PATTERNS
The third algorithm we introduce allows for efficient HT
location when the test set is deduced from a detecting array.
We present the procedure in Algorithm 3 using HT loca-
tion terminology (see Table 2). The underlying idea of this
location algorithm is as follows: The trigger pattern must be
covered in all failing test sets, hence all failing test vectors
must be identical in the positions of the trigger pattern.

In case the test set is derived from a detecting array with
the desired properties (i.e. sufficient strength), we can further
conclude that for each position i ∈ {1, . . . , 128} that is not
involved in the trigger pattern, there are at least two failing
tests f , f ′ ∈ F that disagree in position i: fi 6= f ′i . Thus,

we can characterize the positions that are part of the trigger
pattern exactly as those where all failing tests agree. Once the
positions of the trigger pattern are determined, i.e. the gates
that are consumed by the HT have been identified, we can
simply obtain the values of the trigger pattern by looking them
up in one of the failing test vectors. In Algorithm 3we present
a pseudocode of this algorithmic procedure.

Algorithm 3 FastPatternLocation(A,o)
1: INPUT: Test set A, oracle assignment o
2: F ← failing tests(A, o) F Extract failing tests from

annotated test set
3: τ ← ∅ F Initialize HT trigger pattern τ as empty
4: Select f̄ ∈ F randomly
5: for i ∈ {1, . . . , 128} do
6: if all f ∈ F agree in position i then
7: τ = τ ∪ {(i, f̄ (i))}
8: end if
9: end for
10: return τ

Lemma 3: If the test set A is deduced from a (1, `)-
detecting array that is a covering array of strength (` + 1)
and the oracle column o is the pass/fail assignment retrieved
from testing amodifiedAESmodule with an integrated HT of
length at most `, then Algorithm 3 returns the trigger pattern
of the HT.

For a randomly generated test set A, we cannot expect that
the τ returned by Algorithm 3 contains the trigger pattern.
First, there is no guarantee that the trigger pattern is actually
covered by one of the tests in A. Second, in case it is covered,
the property that all failing tests agree exclusively on the
trigger pattern is not guaranteed to be satisfied.
Example 1 (Continued): We locate the trigger pattern of

length two, this time with Algorithm 3. We first extract all
failing tests from (A, o):

F =

0 1 1 0 0 0 1 0 1 1 1
0 1 1 0 1 1 0 1 0 1 0
0 1 0 1 1 1 0 0 1 0 1

 .
The idea of Algorithm 3 is to find the trigger pattern as the
common pattern of length 2 of all failing tests. It is easy to see
that the pattern 01 in positions 1− 2 is exactly this common
pattern of length 2.
Example 2 (Continued):A third time, we want to compare

against random testing. We follow the same algorithmic pro-
cedure with the randomly generated test set Arand given in
Equation (2) and the pass/fail assignment given by orand =
(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)T . We extract the failing test
cases Frand from (Arand , orand):

Frand =

(
0 1 1 1 1 1 1 0 0 1 1
0 1 1 0 1 1 0 0 0 0 0

)
.

The pattern τ returned byAlgorithm 3 is 0111100 in positions
1 − 2 − 3 − 5 − 6 − 8 − 9, or, written as a 7-way inter-
action, τ = {(1, 0), (2, 1), (3, 1), (5, 1), (6, 1), (8, 0), (9, 0)}.

18796 VOLUME 10, 2022

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

However, this 7-way interaction contains 21 differ-
ent 2-way interactions: {(1, 0), (2, 1)}, {(1, 0), (3, 1)}, . . . ,
{(2, 1), (8, 0)}, . . . , {(6, 1), (8, 0)} and {(6, 1), (9, 0)}. The
failure inducing 2-way interaction is thus not uniquely
identifiable.
Remark 3: The time complexity of Algorithm 3, is greatly

reduced compared to that of Algorithms 1 and 2, as it only
iterates once over the k bits of the test vectors, searching for
common entries. Algorithms 1 and 2 both rely on enumer-
ation of length ` sub-patterns of test vectors, introducing a
factor of

(128
`

)
to the runtime complexity in our case, or more

general a factor of
(k
`

)
when there are k gates accessible to an

attacker. The reduction in runtime becomes apparent whenwe
consider the location of an HT of length ` = 8; in this case,
we would have to iterate over

(128
8

)
(more than 1012) patterns

to locate the HT via Algorithms 1 or 2. In contrast to this the
runtime of Algorithm 3 is largely independent from the HTs
length `.

V. CASE STUDY
We demonstrate the efficiency of the proposed HT location
based on combinatorial testing in a case study, applying it to
an FPGA implementing the AES symmetric-key encryption
that got tampered with a combinational HT. Even though we
consider a concrete case, we highlight once more that the pro-
posed method is explained by means - but not limited to - the
described AES module. In the next paragraphs, we describe
the used AES cryptographic module’s, the HT variants that
were integrated in the modules design, as well as the setup
for the conducted experiments.

We consider the same scenario as in [21] and [22], where a
tester receives a batch of fabricated AESmodules. The testers
suspect that (some of) the modules are contaminated with a
combinational HT that consumes primary inputs. Their goal
is to locate the HT, with the additional aim of reducing the
test time per module while attaining a high confidence that
the module is HT free.

For our experiments, we opted for the Verilog code of the
AES implementation that is provided by the SAKURA-G
board 2, which hardware architecture is discussed in detail
in [58]. The AES module accepts as input a 128-bit key
and a 128-bit plaintext (respectively ciphertext) and produces
128-bit ciphertext (plaintext) as output. The module imple-
ments the ECBmode of AES, which can be used as a building
block for implementing other modes of AES, such as CBC
or OFB, using additional logic for combining and reusing its
output. The module can be controlled via a control signal to
switch between the encryption and the decryption operation.
In our experiments, we consider the internals of the AES
module as a black box.

As mentioned in Section I-B the output of the AES module
(Verilog code simulation) can be checked against the output
of a trusted implementation of the algorithm (e.g., a software
version from a trusted source), which serves as a testing
oracle. If the two outputs differ, then the HT is assumed to be
activated, i.e. its trigger pattern must be present in the input.

We used theModelSim3 tool with appropriate scripting (do
files and shell scripts) in all of our experiments for automating
the execution, collection, and comparison of the outputs. The
approach can be easily extended to a hardware co-simulation
using hardware co-simulation with Vivado.4 The processing
of the test vectors and the testing results was performed
using aMatlab implementation ofAlgorithm 3. The presented
time measurements are based on Matlab implementations of
the described procedures and were conducted on a machine
with an Intel i9-9900 CPU clocked at 3.60 GHz with 64GB
of RAM.

VI. EXPERIMENTS
In this sectionwe demonstrate the capabilities of the proposed
HT location using combinatorial fault location techniques.
To this end, we adopt the conceptualization of the experi-
ments performed in [22], i.e. consider cases where AESmod-
ules have been contaminated with HTs of different lengths
and different trigger patterns. Thereby, we shift the focus
from mere HT detection as presented in previous works [21]
and [22] to HT location, i.e. the exact identification of the
trigger pattern via Algorithm 3, if not stated differently. Fur-
ther, we analyze the capabilities of randomly generated test
sets (respectively arrays), similar to the analogous process
in [22], but now performing HT location instead of HT detec-
tion. Therefore, as part of our experiments, we consider the
following test sets (which are provided online under [59]):
• CT`: refers to a combinatorial test set derived from a
(1, ¯̀)-detecting array for 128 binary parameters, suited
for HT location of length up to `. The number of rows
(i.e. test vectors) is reported in Table 3.

• rand(CT`): refers to a randomly generated test set
derived from a random array (each entry chosen uni-
formly at random from {0, 1}) that is of the same size
as the (1, ¯̀)-detecting array underlying the CT` array.

• randN (CT`): refers to a randomly generated test set
derived from a random array with N rows (each entry
chosen uniformly at random from {0, 1}). The chosen
size N is identical to that of the smallest (1, ¯̀)-detecting
array for 128 binary parameters currently known.

In our experiments we used combinatorial test sets CT`
that allow for HT location based on Algorithm 3, i.e. we gen-
erated (1, `)-detecting arrays that are CAs of strength `+1 for
the location of HTs with trigger patterns of length up to `.
In comparison to other logic testing approaches these test
sets demonstrate the efficiency of combinatorial testing in
terms of generating small size test sets. Table 3 shows a
comparison to other (state of the art) test sets for hardware
testing for k = 128 input bits. The column headed by ‘‘`’’
denotes the length of the HT for which the respective test
set is designed; the column ‘‘Lesperance et al.’’ reports the
test set sizes given in [60]; ‘‘CWV’’ contains the analogous
sizes given in [61]; ‘‘CTdetect’’ shows the sizes from [22];

3https://www.mentor.com/products/fv/modelsim/
4https://www.xilinx.com/video/hardware/hardware-co-simulation-

vivado-system-generator-for-dsp.html

VOLUME 10, 2022 18797

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

TABLE 3. Comparison of sizes of test sets coming from CT methods
(CTdetect & CTlocate) against other state of the art logic testing
techniques for combinational HT detection.

and ‘‘CTlocate’’ reports the sizes of the test sets CT` for ` ∈
{1, . . . , 8} used in the following experiments. We can see that
the test sets used for HT location (CTlocate) are considerably
larger than those for HT detection (CTdetect). However, these
are still smaller by orders of magnitude compared to the test
sets of [60] and [61] that provide full coverage of all length
` patterns and are designed merely for HT detection. The
increased size of the test sets for HT location is caused due
to additional structure and tests that are required in order to
locate all HTs of a specific length. As the test sets can still be
processed very fast in terms of test execution, we do believe
that the capability of locating all HTs of length ` justifies the
increased size.

Further note, that the test sets we used are not necessarily
optimal, i.e. it is possible to construct combinatorial test sets
with less test vectors. However, the number of test vectors
in the combinatorial test set is not relevant for the loca-
tion capabilities of our approach, as long as the necessary
combinatorial properties, i.e. being a (1, ¯̀)-detecting array
for 128 binary parameters, are guaranteed. This becomes
more clear when we consider Algorithm 3 and the associated
Lemma 3, which do not depend on the test set size, but only
on its combinatorial properties.

In the following sections, we report and discuss the results
of a set of experiments, where in each case the test sets are
applied to a trusted implementation of the AES algorithm and
to a contaminated AES module where an HT is triggered by
a pattern unknown to the tester:
(A) In Section VI-A, we focus on locating Trojans of length

` using CT` arrays:
• We run eight combinatorial test sets against eight

contaminated AES modules that differ in the length
of the inserted HT.

• We run eight combinatorial test sets against eight
different versions of contaminated AES modules.
In each case, the HT is triggered by the signals
11111111, but the eight gates monitored by the
HT differ.

• We run eight combinatorial test sets against eight
different versions of contaminated AES modules.
In each case, the HT monitors the same posi-
tions/input gates, but the values of the pattern differ,
having a varying number of ones.

(B) In Section VI-B, we focus on analyzing Trojans of
length ` using random arrays:

• We run eight random test sets against eight contam-
inated AES modules that differ in the length of the
inserted HT.

• We measure the location capabilities of the random
test sets for HTs of length ` = 1, 2, 3, 4 when used
in conjunction with Algorithm 3.

(C) In Section VI-C, we focus on fast pattern location with
random arrays that have the same number of rows as the
smallest (1, ¯̀)-detecting array for 128 binary parameters
currently known:
• We measure the location capabilities of a second

set of random test sets of reduced size for HTs of
length ` = 1, 2, 3, 4 when used in conjunction with
Algorithm 3.

(D) In Section VI-D, we focus on slow pattern location
properties of random arrays:
• We measure the location capabilities of the

first set of random tests for HTs of length
` = 1, 2, 3, 4 when used in conjunction with
Algorithm 1.

(E) In Section VI-F, we summarize the experimental evalu-
ation as a whole.

A. LOCATING LENGTH ` TROJANS WITH CT` ARRAYS
In the first set of experiments, we demonstrate the HT
location capabilities of the combinatorial test sets CTt for
t = 1, . . . , 8, in conjunction with Algorithm 3. The results
of our experiments with HTs of different length are doc-
umented in Table 4. The columns contain the following
values:
• ‘‘`’’ shows the length of the inserted HT,
• ‘‘positions’’ shows the number of the respective gates
that the HT trigger circuit is consuming,

• ‘‘pattern’’ shows the signals that need to appear at these
gates to trigger the HT,

• ‘‘CTt’’ shows, for t = 1, . . . , 8, how often the specific
HTwas triggered (# trig) by the test set CTt and whether
the HT was located (loc) using Algorithm 3.

When we are able to locate the HT, i.e. precisely retrieve
positions and pattern, we mark this with a 3 in the corre-
sponding column headed by ‘‘loc’’; otherwise we denote it
as 7. We can see that all HTs of length up to ` can be located
with the test set CT`, which is expected since CT` represents
a (1, ¯̀)-detecting array. In some cases, we can also locate HTs
of length ` with test sets CTt where t ≤ `. While there is
no theoretical guarantee for this capability, it is possible that
some trigger patterns can be located using these concrete test
sets in combination with Algorithm 3.

In the second set of experiments, we use the same combi-
natorial test sets CTt for t = 1, . . . , 8 in conjunction with
Algorithm 3 in order to locate HTs of length eight that have
the trigger pattern 11111111 in different positions. Table 5
documents the results of our experiments, with column head-
ings corresponding to those of Table 4.

In the third set of experiments we fixed the input gates that
are consumed by the HT and vary the values in the activation

18798 VOLUME 10, 2022

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

TABLE 4. The given patterns were used in the specified positions as HT trigger patterns. The remaining columns detail the trigger and location
capabilities of the CT` test sets for ` = 1, . . . , 8, using Algorithm 3 for HT location.

TABLE 5. The values 11111111 were used in the positions specified in the first column as HT trigger pattern. The remaining columns detail the trigger and
location capabilities of the CT` test sets for ` = 1, . . . , 8, using Algorithm 3 for HT location.

pattern (with varyingHammingweight, i.e. different numbers
of ones). Table 6 shows the results of these experiments;
again, the column headings are identical to those of Table 4.
Reflecting on the experiments documented in Table 5 and 6,
we can see that some test sets CTt with t < 8 can locate
the HTs of length eight. More detailed, we see that based
on the test sets CT1, CT2, CT3 and CT4 we cannot locate
any of the HTs of length eight, which is expected as they are
designed for locating lower length HTs. In several cases these
test sets also fail to trigger the HTs in the first place. The test
set CT5 can trigger all examined HTs of length eight, and it
is possible to also locate them in half of the cases. Based on
the results of the test sets CT6, CT7 and CT8 it is possible to
locate all examined HTs of length eight. In general it is more
likely being able to locate a HT when using CTt test sets for
larger t , because the test sets are larger. However, there is no
guarantee that all HTs of length eight can be located with test
sets CTt for t ≤ 7. Nonetheless, we are ensured to locate all
HTs of length eight when using the test set CT8.

We wish to highlight that it is always possible to locate
HTs of length `, not just those using the examined trigger
patterns, when a combinatorial test set CTt with ` ≤ t is
used in conjunction with Algorithm 3. The trigger patterns
used in these experiments were arbitrarily selected and can
certainly not guarantee the effectiveness of our proposed
approach, but only serve as a means to exemplify it. However,
thanks to the combinatorial properties of detecting arrays
and the arguments of Lemma 3 we can safely argue that the
previously mentioned location capabilities always hold.

B. ANALYZING LENGTH ` TROJANS WITH RANDOM
ARRAYS
To further illustrate that some trigger patterns can also be
located by arbitrary arrays, we conduct the same experiments

documented in Table 4 with the randomly generated test
sets rand(CT`) and try to locate the trigger patterns via
Algorithm 3. The results of these experiments are given in
Table 7. We can see that the randomly generated arrays tend
to perform similarly to the combinatorial test sets CT`, for
` = 1, . . . , 8, exhibiting comparable trigger and location
capabilities.

These experiments raise the question, how well random
arrays are suited for HT location in general. As these illus-
trative experiments rely on some exemplary random samples
and do not provide a comprehensive assessment, we measure
how many patterns of a given length can be located by
Algorithm 3 when using randomly generated test sets,
to address this question.

For this purpose, for the arrays rand(CT`) (with ` =
1, . . . , 4), we measure how many patterns are locatable via
Algorithm 3. To this end, we first generate the respective
oracle column o for each pattern by checking which test vec-
tors of the random array rand(CT`) cover the specific pattern.
Second, we call Algorithm 3 on input (rand(CT`), o) and
check if the returned pattern τ equals the specific pattern at
hand. We implemented this procedure in Matlab and conduct
these experiments for all patterns of length ` = 1, 2, 3, 4 and
measure how many can be located with each random test set,
where the focus of interest rests on the number of located
patterns of length ` when using the rand(CT`) test set. The
results of these measurements are given in Table 8. The diag-
onal entries of Table 8, i.e. the values of the percentage and
total number of patterns of length ` that were not correctly
located by rand(CT`), are visualized in Fig. 2 and Fig. 3.
We can see that the randomly generated arrays rand(CT`)
are not capable of locating all patterns of length `, while the
equally sized combinatorial test sets CT` are capable of doing
so. Further, we see that for increasing length of the pattern `,

VOLUME 10, 2022 18799

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

TABLE 6. The positions 3-11-25-29-70-88-97-119 are fixed and were used in combination with the patterns specified in the first column as HT trigger
pattern. The remaining columns detail trigger and location capabilities of the CT` test sets for ` = 1, . . . , 8, using Algorithm 3 for HT location.

TABLE 7. The given patterns were used in the specified positions as HT trigger patterns. The remaining columns detail the trigger and location
capabilities of the rand (CT `) arrays for ` = 1, . . . , 8, using Algorithm 3 for HT location.

FIGURE 2. The percentage of missed patterns when using randomly
generated arrays (rand (CT `) and randN (CT `)) on the vertical axis, for the
values of ` = 1, 2, 3, 4 on the horizontal axis.

the randomly generated test sets rand(CT`) seem to increase
their performance, in terms of locating a higher percentage
of HTs via Algorithm 3.

C. FAST PATTERN LOCATION WITH RANDOM ARRAYS
SIZED AS OPTIMAL COVERING ARRAYS
As the combinatorial test sets utilized in our experiments are
not optimal, we conduct the same measurements as reported
in Table 8with randomly generated test sets randN (CT`), that
are of the same size as (currently) best known approximates to
optimal (1, ¯̀)-detecting arrays for 128 binary parameters. The
number of tests for these sets can be found at [62]. However,
as the actual test sets are not provided, we could not use
them for our experiments documented in Section VI-A. The
results of our measurements are presented in Table 9. Due
to the decreased number of tests, the location capabilities of
the randN (CT`) test sets are further reduced when compared

FIGURE 3. The total number of missed patterns when using randomly
generated arrays (rand (CT `) and randN (CT `)) on the vertical axis as
base-10 logarithms, for the values of ` = 1, 2, 3, 4 on the horizontal axis.

to those of the rand(CT`) - we can see that the numbers
of HT trigger patterns that are not correctly located increase
compared to Table 8. Again, we visualize the diagonal entries
of Table 9, i.e. the results regarding the location of length `
HTs with randN (CT`) for ` = 1, 2, 3, 4 in Fig. 2 and Fig. 3.
These measurements highlight even more the advantage of
fault location based on combinatorial testing compared to
random testing approaches.

D. SLOW PATTERN LOCATION PROPERTIES OF RANDOM
ARRAYS
For the sake of completeness, we also conduct experiments
regarding the location of HTs when the randomly generated
test sets rand(CT`) are used in conjunction with Algorithm 1.
Due to the time complexity of the location via full enumer-
ation used in Algorithm 1 (see Remark 2 and Remark 3),
it is not feasible to run a full enumeration version for all

18800 VOLUME 10, 2022

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

TABLE 8. Measurements regarding the fast pattern location properties (i.e. number of patterns that can be located via Algorithm 3) of the rand (CT `)
arrays. The column ’loc’ denotes whether all patterns can be located based on the respective array; the column ‘‘miss %’’ gives the percentage of patterns
of length ` that can not be successfully located - ‘‘miss #’’ the total number; the column ‘‘time’’ denotes the time consumed for the measurement.

TABLE 9. Measurements regarding the fast pattern location properties (i.e. number of patterns that can be located via Algorithm 3) of the randN (CT `)
arrays. The column ‘‘loc’’ denotes whether all patterns can be located based on the respective array; the column ‘‘miss %’’ gives the percentage of patterns
of length ` that can not be successfully located - ‘‘miss #’’ the total number; the column ‘‘time’’ denotes the time consumed for the measurement.

possible HT trigger patterns, but rather a decision version.
This means that for given ` ∈ {1, 2, 3, 4}, we iterate over
all possible HT trigger patterns of length `, generate the
oracle column o for the respective test set Arand and check
if Algorithm 1 successfully reconstructs the trigger pattern
on input Arand , o and `. If a trigger pattern is reconstructed,
we proceed with the next trigger pattern of length `; if the
pattern is not reconstructed we abort the search and record
that the used test set Arand cannot locate all HTs of length `
based on Algorithm 1.

The results of our experiments are documented in Table 11.
If a pattern exists that is not located correctly, we represent
this with 7, otherwise we use3. If we were unable to perform
a computation due to restrictions of our existing computing
infrastructure, we denote it with ?. As a result of the decision
version of the measurements, we cannot provide the number
of HTs of length ` that were not located correctly. We can
see that the test sets rand(CT`) are capable of locating all
HT trigger patterns of length ` via Algorithm 1. Compared
to the location via Algorithm 3, when using Algorithm 1
the test sets rand(CT`) can locate all trigger patterns that
use one additional gate. This can be explained by the more
general location method used in Algorithm 1 that is more
suited for pattern location using arbitrary test sets. However,
note that conducting such measurements for higher strengths
with the aim of obtaining guarantees for the location of HTs is
infeasible in practice. For example, to verify that an arbitrary
array is capable of locating all HTs of length five, using the
technique described above would require processing a multi-
ple of

(128
5

)2
> 6·1016 patterns of length 5, a requirement that

cannot be satisfied using current computing infrastructure.
To showcase this argument and to highlight the advan-

tage of Algorithm 3 in conjunction with combinatorial
test sets, we compare the runtimes of Algorithm 3 and
Algorithm 1 when used to locate an HT of length ` =
1, 2, 3, 4. As the time needed for test execution does not influ-
ence this comparison, we do not include it in themeasurement
and instead only compare the runtimes of Algorithm 3 over
Algorithm 1, provided that the testing oracle o is already
known. To represent 100 randomly generated HTs of lengths

TABLE 10. Comparison of the runtimes of Algorithm 1 and 3 when used
to locate an HT of length ` based on testing with the combinatorial test
set CT` and the respective testing oracle. The given runtimes are averaged
over 100 runs, where the HTs were placed randomly.

` = 1, 2, 3 and 4, we select 100 trigger patterns out of the
2`
(128
`

)
total possible trigger patterns of length ` uniformly at

random. For each of these HTs, we generate the respective
testing oracles o and run Algorithms 1 and 3 on the input
(CT`, o, `) and (CT`, o), respectively. The two Algorithms
are implemented in Matlab and the experiments are run on
a machine with an Intel i9-9900 CPU clocked at 3.60 GHz
with 64GB of RAM. The results of these measurements can
be found in Table 10. The table shows that the runtime of
Algorithm 3 remains under one millisecond in all cases and
appears to grow only linearly in `. This is due to its runtime
being primarily influenced by the number of failing tests,
which grows slowly with increased ` and numbers of test
vectors in CT` (see, for example, Table 4). This observation
is further justified by conducting HT location for HTs of
length ` = 8 with Algorithm 3 and the CT8 test set, which
on average (again for 100 randomly selected HT activation
patterns) needs only 0.2260 seconds for locating the HT.
Compared to that, the runtime of Algorithm 1 seems to follow
an exponential growth in `, which is explained by the factor
of 2(

(k
`

)
) being present in the Algorithm’s runtime, see also

Remark 3. These large runtimes for the location of an HT
of length ` ≥ 5 are the reason why Tables 8 and 9 are only
provided for ` ≤ 4.

E. DISCUSSION ABOUT OTHER TECHNIQUES
The proposed method can be easily combined with other
complementary techniques. First, it can be used in combina-
tion with on-chip sensors based on ring oscillators in order

VOLUME 10, 2022 18801

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

TABLE 11. Measurements regarding the slow pattern location properties
(i.e. patterns that can be located via Algorithm 1) of the rand (CT `) arrays.
The column ’loc’ denotes whether all patterns can be located based on
the respective array.

to detect IC modifications that might indicate that the HT
is activated. This would allow testers to locate HTs where
the activation is not necessarily propagated to the primary
outputs. This can be done by using the proposed test vec-
tors in order to activate HTs that are placed close to an
on-chip sensor [24]. The ring-oscillator’s frequency depends,
amongst others, on process variation, the local temperature,
and the voltage. Thus, the oscillator frequency is changed
when the operation around a sensor is altered. In particular,
if the CT` test vectors [59] are selected to constitute the test
vectors in the first step of the method presented in [24], any
combinational HT with a trigger pattern of length up to `
can be located via Algorithm 3 based on the on-chip sensor
measurements.

In addition, when a HT is activated its signal switching
activity is increased, leading to more power consumption and
increased electromagnetic emission. A side channel method
using power consumption or electromagnetic emission side
channel techniques can be performed to detect differences
due to the presence of a HT [25]. Again, combining the
proposed combinatorial test vectors with such a more sen-
sitive method for HT activation allows us to locate the trigger
patterns of more general HT designs.

F. SUMMARY OF THE EXPERIMENTAL EVALUATION
We first want to note that the experiments and measurements
of randomly generated test sets have been conducted only
for one specific random test set for each instance. It would
have been desirable to conduct the experiments documented
in Tables 8, 9 and 11, for all lengths of HTs and for sev-
eral test sets in order to present results regarding the aver-
age and expected performance of random test sets for all
` = 1, . . . , 8. However, this would involve computationally
expensive and unaffordable tasks. In this sense, the experi-
ments conducted for random test sets should be understood
as experiments with arbitrary test sets with a given number
of tests.

So far, we have demonstrated that combinatorial testing
can provide themathematical guarantees to locate HTs. In our
experiments, this was exemplified for HTs up to length ` = 8.
Although in some cases random arrays appear to have similar
capabilities to the ones derived from combinatorial testing
they do not provide the guarantees provided by combinatorial
test sets.Moreover, the run-time comparison of Algorithms 1

and 3 highlights that Algorithm 3 is faster by several orders
or magnitude.

To summarize, the experiments demonstrate that the com-
binatorial test sets CT` can locate HTs of length up to `
using the efficient location procedure of Algorithm 3. Further,
by theory (see Remark 1 and Lemma 3) we are guaranteed
that this holds for all HTs of length up to `.

VII. THREATS TO VALIDITY
The presented combinatorial methods for HT trigger pattern
identification rely on some information about the length ` of
the pattern that shall be located. We are aware that a testers
generally do not know the length of the trigger pattern that
they want to identify. However, we demonstrated that an
upper bound on the length of the inserted HT is sufficient to
precisely identify it with the proposed combinatorial methods
(combinatorial test sets in combination with Algorithm 3).
A potential attacker is always faced with a trade-off: On one
hand longer trigger patterns are more rare and thus harder to
detect and locate via logic testing; on the other hand they also
necessitate larger HT trigger circuits, thus consuming more
area and power, making detection by physical inspection or
side-channel analysis more likely. Hence, we can assume that
an attacker will not use a full 128-bit pattern, but rather some
pattern of length `, where ` � 128. A Tester, on the other
side, is faced with the inverse problem: The tester has to
select a strength t for the combinatorial test set that is high
enough to locate a potential HT while avoiding excessive
resource consumption. The tester’s selection of the chosen
strength t is likely influenced by the circuit under test and
other HT detection techniques involved in the testing pro-
cess. Aside from this, available resources may determine the
efforts affordable for testing, which is common to all testing
problems in general. For example, a tester can select the
strength t based on the test suite size and the available time
budget. If combinatorial test sets are precomputed and readily
available, a resource consumption assessment is rather easy.
Finally, experience and domain knowledge of the tester may
influence the choice of t .

The work conducted in this paper shows how HTs with
trigger patterns of length up to eight can be located precisely.

The threat model of this work assumes that an attacker
designs his HT so that it only consumes primary inputs. This
is obviously a drastic restriction, as other works [36] notably
exclude primary inputs (and outputs) from their investiga-
tions. However, once more, we made these assumptions for
the sake of simplicity and clarity of the experimental evalu-
ation and in order to present the proposed methodology in
a concise manner. The method proposed in this paper can
also be applied more generally to any set of gates of the
circuit, as long as their input can be actively controlled in
order to apply combinatorial testing methods. To this extent
the proposedmethod can be applied to sets of suspicious gates
of a circuit that were previously identified using alternative
approaches, such as probability analysis or the topology of
the circuits layout as proposed in [37].

18802 VOLUME 10, 2022

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

We want to mention that our approach to HT location
scales well with the number k of gates that are modelled
as subject to a potential attack and are thus represented as
parameters in the combinatorial model. The number of test
vectors grows logarithmically in the number of modelled
gates k , which is due to the number of rows of detecting arrays
growing logarithmically in the number of parameters, which
was shown in [54, Th. 8.6].

For some applications, the assumption that an attacker
can combine any ` of the modelled k gates as input to the
trigger circuit might be too general. For example, a plausible
assumption might be that the input gates consumed by the
trigger circuit are within an interval of some r consecutive
gates, so that the Trojan design is kept compact. In such
a case, variable strength covering arrays (VCAs) [47] may
be well-suited to be used as combinatorial test sets, since
the notion of VCAs allows to specify more freely which
interactions of parameters should be covered. For example,
the columns of a CA(N ; t, r, v) can be used to constitute a
VCA that covers all t-way interactions of any r consecutive
parameters of total k parameters. The number of rows of such
a combinatorial test set is in O(log r) and hence independent
from the total number of parameters k .
Nonetheless, in this work, we focus on the unrestricted case

where an attacker can freely combine any ` input gates, as the
restricted threat model described above would constitute a
threat to the generality of our proposed approach. We also do
not present additional experiments specific to this restricted
threat model, based on test sets coming from VCAs, as this
would require us to use and review further notions from com-
binatorial testing as well as minor changes of Algorithm 3.
The authors believe that this would make it impossible to
keep the paper at reasonable length and therefore defer further
studies incorporating VCAs to future work.

VIII. SUMMARY
In this work, we introduced a method for identifying trig-
ger patterns of hardware Trojans, which are triggered by
combinational ` bit patterns (e.g. trigger circuits composed
of AND-gates and NOT-gates) in the primary input. Using
concepts from combinatorial testing and combinatorial fault
location, our method relies only on the applied set of test
vectors and the testing results in order to locate the HT trigger
pattern, while the circuit under test is considered a black
box. We demonstrated the effectiveness of our approach in
a concrete case study, utilizing it to locate HTs with trigger
patterns of length up to eight embedded in a circuit that
implements the AES symmetric-key encryption algorithm
with 128 bits key length. Our results show that our testing
methodology can perform trigger pattern identification in a
negligible amount of time while providing the guarantee of
locating any HT with trigger pattern of length up to eight.

IX. OUTLOOK AND FUTURE WORK
The location of HTs is an important step in HT testing,
as it can enable several additional options depending on the

scenario. This includes restricted usage of the infected circuit
(e.g. with a reduced key space) in case the identified HT is
known to be the onlymalicious component. Knowledge about
the operation of the HTmay even be used against the attacker,
e.g. by leaking information on purpose. In general, the loca-
tion of HTs can be very valuable, as it allows for under-
standing the purpose of an attack and thus can help to gain
insights about the attacker’s intention and capabilities. In a
different scenario, the identification of combinational HTs
might enhance the analysis of the infected circuit, especially
when logic testing is used in combination with other testing
techniques as in [25], since the identified HT can be excited
or completely avoided on purpose. For example, avoiding an
already identified combinational HT may be helpful when
subsequent testing for sequential HTs is conducted.

We believe that combinatorial methods like those presented
in this paper can give rise to techniques and tools for HT test-
ing that are complementary to existing approaches. In gen-
eral, the hybridization of the proposed combinatorial method
with existing and established HT location methods (such as
side-channel analysis and inspection) is considered future
work. In this context, it is of special interest to investigate
and overcome potential gaps in the literature regarding the
location of HTs of specific length. Such gaps may emerge
when combinatorial methods can no longer locate HTs due
to the trigger pattern being too long, and inspection methods
fail to locate HTs due to the trigger circuit (and the trigger
pattern) being too small.

As future work, one might seek lift to lift the restriction
of locating HTs with trigger circuits consisting exclusively
of AND-gates and NOT-gates. If we apply combinatorial
methods for the location of multiple FITs, e.g. when using
(d, t)-detecting arrays with d ≥ 2 for the testing of inte-
grated circuits, we can also capture HTs that additionally use
OR-gates in their trigger circuit. For example, an HT with a
trigger circuit that combines two of the trigger circuits as con-
sidered in this paper (see e.g. Fig. 1) via an OR-gate (on the
highest level of its concrete syntax tree) can be located with
a (2, t)-detecting array of appropriate strength t . Consider an
HT with a trigger logic of the form (¬g25 ∧ g38) ∨ (¬g95 ∧
g115∧¬g127) (see Fig. 4). This Trojan can be located applying
combinatorial testing based on a (2, 3̄)-detecting array: the
HT is triggered, when the pattern 01 or 010 appears in the
positions 25 - 38 or 95 - 115 - 127 respectively. In terms
of combinatorial testing, this means that we have to locate
the failure inducing ≤3-way interactions {(25, 0), (38, 1)} and
{(95, 0), (115, 1), (127, 0)} - which we are guaranteed to find
when testing with a binary (2, 3̄)-detecting array. The logic
of any combinational circuit is (logically) equivalent to a
circuit that uses exclusively OR-gates, AND-gates and NOT-
gates, which is provided by considering the disjunctive nor-
mal form (DNF) of the trigger logic. Since our proposed
method does not rely on the actual implementation of the
HT trigger, but merely on its logic, this means that the work
presented in this paper can be generalized for combinational
HTs with arbitrary trigger circuit logic. As straightforward

VOLUME 10, 2022 18803

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

FIGURE 4. An example of an HT with a generalized trigger logic, activated
by the signals 01 in position 25-38 or by the signals 010 in
positions 95 - 115 - 127.

as the combinatorial modelling of such HTs might seem, the
challenges arising in this context is caused by the fact that the
existing work on the efficient generation of combinatorial test
sets enhancing non-adaptive fault location for multiple failure
inducing t-way interactions is rather limited [63]. Only a
few algorithms capable of generating such combinatorial test
sets in a near-optimal manner are known. Additionally, these
algorithms have only been investigated for a small number of
failure inducing t-way interactions of small strength [64].
Another important aspect of our future work is the inves-

tigation of combinatorial testing methods for the detection
and location of sequential HTs [16]. Addressing this issue
likely requires to enlarge the combinatorial testing toolbox
from CAs and detecting arrays to approaches used in combi-
natorial event sequence testing, including sequence covering
arrays [65] and algorithms for test sequence generation [66].
Adequate adapted translations of notions appearing in HT
testing to the notions of sequential combinatorial testing
should make it possible to derive suitable combinatorial test
sets for testing against HTs with sequential trigger patterns
(e.g. counter-based time bombs [30], or finite-state machine
based triggers [67]). For the purpose of testing for HTs that
combine combinational with sequential trigger logic, e.g.
counter-based time bombs with trigger circuits that consume
multiple gates, the notion of CAs of higher index λ might
prove useful. These are CAs that guarantee that any t-way
interaction is covered at least λ ≥ 1 times; see [45] for their
definition and the tool presented in [68] for their generation.

Finally, as another avenue of future work, we could inte-
grate our methods into a comprehensive framework. We have
already automated the individual steps of test set generation,
test execution, and the analysis of the testing results for the
work in this paper, leaving the interfaces between these steps
as the main tasks to be automated. We envision this frame-
work as a means to facilitate our and others future research
endeavors regarding combinatorial methods for HT testing.

ACKNOWLEDGMENT
The authors are thankful to the anonymous reviewers for their
constructive comments that improved the quality and presen-
tation of the paper. They are especially thankful to Manuel
Leithner for proofreading and resolving several grammatical
issues. SBA Research (SBA-K1) is a COMET Centre within
the framework of COMET - Competence Centers for Excel-
lent Technologies Programme. The COMET Programme is
managed by FFG.

REFERENCES
[1] R. George, ‘‘Why we should worry about the supply chain,’’ Int. J. Crit.

Infrastructure Protection, vol. 11, pp. 22–23, Dec. 2015.
[2] C. Ruppersberger and M. Rogers. (Oct. 2012). Investigative report on

the U.S. national security issues posed by chinese telecommunications
companies Huawei and ZTE. U.S. House of Representatives, 112th
Congress, 2nd Session. Accessed: Aug. 8, 2021. [Online]. Available:
https://intelligence.house.gov/sites/democrats.intelligence.house.gov/f%
iles/huawei-zte%20investigative%20report%20(final)_0.pdf

[3] S. Mitra, H.-S. P. Wong, and S. Wong, ‘‘The Trojan-proof chip,’’ IEEE
Spectrum, vol. 52, no. 2, pp. 46–51, Feb. 2015.

[4] Z. Abbany. (Jul. 8, 2015). Has Germany’s Patriot missile sys-
tem been hacked?. Accessed: Aug. 8, 2021. [Online]. Available:
https://p.dw.com/p/1FvEy

[5] S. Skorobogatov and C. Woods, ‘‘Breakthrough silicon scanning discovers
backdoor in military chip,’’ in Cryptographic Hardware and Embedded
Systems, E. Prouff and P. Schaumont, Eds. Berlin, Heidelberg: Springer,
2012, pp. 23–40.

[6] C. T. Lopez. (May 19, 2020). DOD Adopts ’Zero Trust’ Approach
to Buying Microelectronics. U.S. Department of Defense. Accessed:
Aug. 8, 2021. [Online]. Available: https://www.defense.gov/News/News-
Stories/Article/Article/2192120/dod-adopts-zero-trust-approach-to-
buying-microelectronics/

[7] S. Garg, ‘‘Inspiring trust in outsourced integrated circuit fabrication,’’
in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2017,
pp. 1128–1228.

[8] Y. Liu, C. Bao, Y. Xie, and A. Srivastava, ‘‘Introducing TFUE: The trusted
foundry and untrusted employee model in IC supply chain security,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[9] J. Dofe, J. Frey, and Q. Yu, ‘‘Hardware security assurance in emerging iot
applications,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016,
pp. 2050–2053.

[10] M. Wolf and D. Serpanos, ‘‘Safety and security in cyber-physical systems
and internet-of-things systems,’’ Proc. IEEE, vol. 106, no. 1, pp. 9–20,
Jan. 2018.

[11] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, ‘‘Hardware trojan:
Threats and emerging solutions,’’ in Proc. IEEE Int. High Level Design
Validation Test Workshop, Nov. 2009, pp. 166–171.

[12] P. Swierczynski, M. Fyrbiak, P. Koppe, and C. Paar, ‘‘FPGA trojans
through detecting and weakening of cryptographic primitives,’’ IEEE
Trans. Comput.-Aided Design Integr., vol. 34, no. 8, pp. 1236–1249,
Aug. 2015.

[13] A. Jain and U. Guin, ‘‘A novel tampering attack on AES cores with hard-
ware trojans,’’ in Proc. IEEE Int. Test Conf. Asia (ITC-Asia), Sep. 2020,
pp. 77–82.

[14] S. Ghandali, T. Moos, A. Moradi, and C. Paar, ‘‘Side-channel hardware
trojan for provably-secure SCA-protected implementations,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 6, pp. 1435–1448,
Jun. 2020.

[15] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and
M. Tehranipoor, ‘‘Benchmarking of hardware trojans and maliciously
affected circuits,’’ J. Hardw. Syst. Secur., vol. 1, no. 1, pp. 85–102,
Mar. 2017, doi: 10.1007/s41635-017-0001-6.

[16] M. Tehranipoor and F. Koushanfar, ‘‘A survey of hardware Trojan taxon-
omy and detection,’’ IEEE Design Test Comput., vol. 27, no. 1, pp. 10–25,
Jan. 2010.

[17] H. Salmani, ‘‘Hardware trojan attacks and countermeasures,’’ in Funda-
mentals IP SoC Security: Design, Verification, Debug, S. Bhunia, S. Ray,
and S. Sur-Kolay, Eds. Cham, Switzerland: Springer, 2017, pp. 247–276,
doi: 10.1007/978-3-319-50057-7_10.

[18] H. Li, Q. Liu, and J. Zhang, ‘‘A survey of hardware trojan threat
and defense,’’ Integration, vol. 55, pp. 426–437, Sep. 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167926016000067

[19] S. R. Rajendran, R. Mukherjee, and R. S. Chakraborty, ‘‘SoK: Physical
and logic testing techniques for hardware trojan detection,’’ in Proc. 4th
ACM Workshop Attacks Solutions Hardw. Secur., New York, NY, USA,
Nov. 2020, pp. 103–116, doi: 10.1145/3411504.3421211.

[20] Z. Huang, Q. Wang, Y. Chen, and X. Jiang, ‘‘A survey on machine learning
against hardware trojan attacks: Recent advances and challenges,’’ IEEE
Access, vol. 8, pp. 10796–10826, 2020.

[21] P. Kitsos, D. E. Simos, J. Torres-Jimenez, and A. G. Voyiatzis, ‘‘Exciting
FPGA cryptographic trojans using combinatorial testing,’’ in Proc. IEEE
26th Int. Symp. Softw. Rel. Eng. (ISSRE), Nov. 2015, pp. 69–76.

18804 VOLUME 10, 2022

http://dx.doi.org/10.1007/s41635-017-0001-6
http://dx.doi.org/10.1007/978-3-319-50057-7_10
http://dx.doi.org/10.1145/3411504.3421211

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

[22] A. G. Voyiatzis, K. G. Stefanidis, and P. Kitsos, ‘‘Efficient triggering
of trojan hardware logic,’’ in Proc. IEEE 19th Int. Symp. Design Diag.
Electron. Circuits Syst. (DDECS), Apr. 2016, pp. 1–6.

[23] Trust-HUB.org. Chip-level Trojan Benchmarks. Accessed: Aug. 8, 2021.
[Online]. Available: https://www.trust-hub.org/#/benchmarks/chip-level-
trojan

[24] L. Pyrgas and P. Kitsos, ‘‘A hybrid FPGA trojan detection technique based-
on combinatorial testing and on-chip sensing,’’ in Applied Reconfigurable
Computing. Architectures, Tools, and Applications, N. Voros, M. Huebner,
G. Keramidas, D. Goehringer, C. Antonopoulos, and P. C. Diniz, Eds.
Cham, Switzerland: Springer, 2018, pp. 294–303.

[25] A. P. Fournaris, L. Pyrgas, and P. Kitsos, ‘‘An efficient multi-
parameter approach for FPGA hardware trojan detection,’’ Microproces-
sors Microsyst., vol. 71, Nov. 2019, Art. no. 102863. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933118305106

[26] Y. Huang, S. Bhunia, and P. Mishra, ‘‘MERS: Statistical test generation for
side-channel analysis based trojan detection,’’ in Proc. ACM SIGSACConf.
Comput. Commun. Secur., New York, NY, USA, Oct. 2016, pp. 130–141,
doi: 10.1145/2976749.2978396.

[27] C. Nigh and A. Orailoglu, ‘‘AdaTrust: Combinational hardware trojan
detection through adaptive test pattern construction,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 29, no. 3, pp. 544–557, Mar. 2021.

[28] S. Dupuis, M.-L. Flottes, G. Di Natale, and B. Rouzeyre, ‘‘Protection
against hardware trojans with logic testing: Proposed solutions and chal-
lenges ahead,’’ IEEE Design Test, vol. 35, no. 2, pp. 73–90, Apr. 2018.

[29] M.-L. Flottes, S. Dupuis, P.-S. Ba, and B. Rouzeyre, ‘‘On the limitations of
logic testing for detecting hardware trojans horses,’’ inProc. 10th Int. Conf.
Design Technol. Integr. Syst. Nanosc. Era (DTIS), Apr. 2015, pp. 1–5.

[30] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, ‘‘Towards
trojan-free trusted ICs: Problem analysis and detection scheme,’’ in Proc.
Design, Autom. Test Eur., Mar. 2008, pp. 1362–1365.

[31] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
‘‘MERO: A statistical approach for hardware trojan detection,’’ in Cryp-
tographic Hardware and Embedded Systems, C. Clavier and K. Gaj, Eds.
Berlin, Heidelberg: Springer, 2009, pp. 396–410.

[32] M. A. Nourian, M. Fazeli, and D. Hely, ‘‘Hardware trojan detection using
an advised genetic algorithm based logic testing,’’ J. Electron. Test., vol. 34,
no. 4, pp. 461–470, Aug. 2018, doi: 10.1007/s10836-018-5739-4.

[33] X. Chuan, Y. Yan, and Y. Zhang, ‘‘An efficient triggering method of
hardware trojan in AES cryptographic circuit,’’ in Proc. 2nd IEEE Int.
Conf. Integr. Circuits Microsyst. (ICICM), Nov. 2017, pp. 91–95.

[34] H. Salmani, ‘‘COTD: Reference-free hardware trojan detection and recov-
ery based on controllability and observability in gate-level netlist,’’ IEEE
Trans. Inf. Forensics Security, vol. 12, no. 2, pp. 338–350, Feb. 2017.

[35] K. Huang and Y. He, ‘‘Trigger identification using difference-amplified
controllability and dynamic transition probability for hardware trojan
detection,’’ IEEE Trans. Inf. Forensics Security, vol. 15, pp. 3387–3400,
2020.

[36] S. A. Islam, F. Islam Mime, S. M. Asaduzzaman, and F. Islam, ‘‘Socio-
network analysis of RTL designs for hardware trojan localization,’’ inProc.
22nd Int. Conf. Comput. Inf. Technol. (ICCIT), Dec. 2019, pp. 1–6.

[37] S. Dupuis, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, ‘‘Identification of
Hardware Trojans triggering signals,’’ inProc. First Workshop Trustworthy
Manuf. Utilization Secure Devices, Avignon, France, May 2013. [Online].
Available: https://hal-lirmm.ccsd.cnrs.fr/lirmm-00991360

[38] M. Grindal and J. Offutt, ‘‘Input parameter modeling for combination
strategies,’’ in Proc. 25th Conf. IASTED Int. Multi-Conf., Softw. Eng.,
Anaheim, CA, USA, 2007, pp. 255–260.

[39] L. Hu, W. E. Wong, D. R. Kuhn, and R. N. Kacker, ‘‘How does
combinatorial testing perform in the real world: An empirical study,’’
Empirical Softw. Eng., vol. 25, no. 4, pp. 2661–2693, Jul. 2020,
doi: 10.1007/s10664-019-09799-2.

[40] L. S. G. Ghandehari, M. N. Bourazjany, Y. Lei, R. N. Kacker, and
D. R. Kuhn, ‘‘Applying combinatorial testing to the Siemens suite,’’ in
Proc. IEEE 6th Int. Conf. Softw. Test., Verification Validation Workshops,
Mar. 2013, pp. 362–371.

[41] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, ‘‘Practical combi-
natorial interaction testing: Empirical findings on efficiency and early
fault detection,’’ IEEE Trans. Softw. Eng., vol. 41, no. 9, pp. 901–924,
Sep. 2015.

[42] M. Bures and B. S. Ahmed, ‘‘On the effectiveness of combinatorial inter-
action testing: A case study,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel.
Secur. Companion (QRS-C), Jul. 2017, pp. 69–76.

[43] D. Jarman, R. Smith, G. Gosney, L. Kampel, M. Leithner, D. Simos,
R. Kacker, and R. Kuhn, ‘‘Applying combinatorial testing to large-scale
data processing at adobe,’’ inProc. IEEE Int. Conf. Softw. Test., Verification
Validation Workshops (ICSTW), Apr. 2019, pp. 190–193.

[44] D. Kuhn, R. Kacker, and Y. Lei, Introduction to Combinatorial Testing
(Chapman&Hall/CRC Innovations in Software Engineering and Software
Development Series). Boca Raton, FL, USA: CRC Press, 2013.

[45] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs
(Discrete Mathematics and its Applications). 2nd ed. Boca Raton, FL,
USA: CRC Press, 2007.

[46] L. Moura, J. Stardom, B. Stevens, and A. Williams, ‘‘Covering arrays with
mixed alphabet sizes,’’ J. Combinat. Designs, vol. 11, no. 6, pp. 413–432,
2003, doi: 10.1002/jcd.10059.

[47] S. Raaphorst, L. Moura, and B. Stevens, ‘‘Variable strength covering
arrays,’’ J. Combinat. Designs, vol. 26, no. 9, pp. 417–438, Sep. 2018, doi:
10.1002/jcd.21602.

[48] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith, ‘‘Constraint
models for the covering test problem,’’ Constraints, vol. 11, nos. 2–3,
pp. 199–219, Jul. 2006.

[49] L. Kampel and D. E. Simos, ‘‘A survey on the state of the art
of complexity problems for covering arrays,’’ Theor. Comput.
Sci., vol. 800, pp. 107–124, Dec. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304397519306486

[50] MaTRIS. CAgen. Accessed: Sep. 18, 2021. [Online]. Available:
https://matris.sba-research.org/tools/cagen

[51] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, ‘‘A survey on
software fault localization,’’ IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, Aug. 2016.

[52] L. S. Ghandehari, J. Chandrasekaran, Y. Lei, R. Kacker, and
D. R. Kuhn, ‘‘BEN: A combinatorial testing-based fault localization
tool,’’ in Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation
Workshops (ICSTW), Apr. 2015, pp. 1–4.

[53] X. Niu, C. Nie, H. Leung, Y. Lei, X. Wang, J. Xu, and Y. Wang, ‘‘An inter-
leaving approach to combinatorial testing and failure-inducing interaction
identification,’’ IEEE Trans. Softw. Eng., vol. 46, no. 6, pp. 584–615,
Jun. 2020.

[54] C. J. Colbourn and D. W. McClary, ‘‘Locating and detecting arrays
for interaction faults,’’ J. Combinat. Optim., vol. 15, no. 1, pp. 17–48,
Jan. 2008, doi: 10.1007/s10878-007-9082-4.

[55] C. Martínez, L. Moura, D. Panario, and B. Stevens, ‘‘Locating errors using
ELAs, covering arrays, and adaptive testing algorithms,’’ SIAM J. Discrete
Math., vol. 23, no. 4, pp. 1776–1799, Jan. 2010, doi: 10.1137/080730706.

[56] R. Kuhn, Y. Lei, and R. Kacker, ‘‘Practical combinatorial testing: Beyond
pairwise,’’ IT Prof., vol. 10, no. 3, pp. 19–23, May 2008.

[57] D. E. Simos, R. Kuhn, A. G. Voyiatzis, and R. Kacker, ‘‘Combinato-
rial methods in security testing,’’ Computer, vol. 49, no. 10, pp. 80–83,
Oct. 2016.

[58] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, ‘‘A compact Rijndael
hardware architecture with S-box optimization,’’ in Advances in Cryptol-
ogy, C. Boyd, Ed. Berlin, Heidelberg: Springer, 2001, pp. 239–254.

[59] MaTRIS. HT Location Arrays. Accessed: Sep. 18, 2021. [Online]. Avail-
able: https://matris.sba-research.org/data/HTlocation/

[60] N. Lesperance, S. Kulkarni, and K.-T. Cheng, ‘‘Hardware trojan detection
using exhaustive testing of k-bit subspaces,’’ in Proc. 20th Asia South
Pacific Design Automat. Conf., Jan. 2015, pp. 755–760.

[61] Tang and Woo, ‘‘Exhaustive test pattern generation with constant weight
vectors,’’ IEEE Trans. Comput., vols. C–32, no. 12, pp. 1145–1150,
Dec. 1983.

[62] C. J. Colbourn. Covering Array Tables for t=2,3,4,5,6. Accessed:
Aug. 8, 2021. [Online]. Available: http://www.public.asu.edu/~ccolbou/
src/tabby/catable.html

[63] C. J. Colbourn and V. R. Syrotiuk, ‘‘There must be fifty ways to miss
a cover,’’ in 50 years of Combinatorics, Graph Theory, and Computing,
1st ed. Boca Raton, FL, USA: CRC Press, 2019, pp. 319–333, ch. 18.

[64] C. J. Colbourn and V. R. Syrotiuk, ‘‘Coverage, location, detection, and
measurement,’’ in Proc. IEEE 9th Int. Conf. Softw. Test., Verification
Validation Workshops (ICSTW), Apr. 2016, pp. 19–25.

[65] Y. M. Chee, C. J. Colbourn, D. Horsley, and J. Zhou, ‘‘Sequence covering
arrays,’’ SIAM J. Discrete Math., vol. 27, no. 4, pp. 1844–1861, Jan. 2013,
doi: 10.1137/120894099.

[66] L. Yu, Y. Lei, R. N. Kacker, D. R. Kuhn, and J. Lawrence, ‘‘Efficient
algorithms for t-way test sequence generation,’’ in Proc. IEEE 17th Int.
Conf. Eng. Complex Comput. Syst., 2012, pp. 220–229.

VOLUME 10, 2022 18805

http://dx.doi.org/10.1145/2976749.2978396
http://dx.doi.org/10.1007/s10836-018-5739-4
http://dx.doi.org/10.1007/s10664-019-09799-2
http://dx.doi.org/10.1002/jcd.10059
http://dx.doi.org/10.1002/jcd.21602
http://dx.doi.org/10.1007/s10878-007-9082-4
http://dx.doi.org/10.1137/080730706
http://dx.doi.org/10.1137/120894099

L. Kampel et al.: Locating Hardware Trojans Using Combinatorial Testing for Cryptographic Circuits

[67] S. Yu, W. Liu, and M. O’Neill, ‘‘An improved automatic hardware trojan
generation platform,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI
(ISVLSI), Jul. 2019, pp. 302–307.

[68] M. Wagner, K. Kleine, D. E. Simos, R. Kuhn, and R. Kacker, ‘‘CAGEN:
A fast combinatorial test generation tool with support for constraints and
higher-index arrays,’’ in Proc. IEEE Int. Conf. Softw. Test., Verification
Validation Workshops (ICSTW), Oct. 2020, pp. 191–200.

LUDWIG KAMPEL received the master’s degree
in technical mathematics with focus on dis-
crete mathematics from the Technical University
of Vienna, where he is currently pursuing the
Ph.D. degree in technical informatics. He is cur-
rently a Senior Researcher with the Mathematics
for Testing Reliability and Information Security
(MATRIS) Group at SBA Research. His research
interests include discrete mathematics, with an
emphasis on combinatorial designs and error-

correcting codes. His work has a strong focus on the application of results in
these fields to practical problems of information security, such as to software
testing.

PARIS KITSOS (Senior Member, IEEE) received
the B.Sc. degree in physics and the Ph.D. degree
in electrical and computer engineering from the
University of Patras, in 1999 and 2004, respec-
tively. From 2014 to 2019, he was an Assis-
tant Professor and an Associate Professor with
the TEI of Western Greece. He is currently
an Associate Professor with the Electrical and
Computer Engineering Department, University of
the Peloponnese, and the Head of the Electron-

ics Circuits, Systems and Applications Laboratory (ECSA Laboratory,
https://sites.google.com/view/ecsalab) and a Collaborating Academic Fac-
ulty (since 2014) with the Industrial Systems Institute (ISI, www.isi.gr).
He has participated in many EU and national research programs projects both
as a Senior Researcher and as a WP Leader in the areas of VLSI design,

secure hardware design, and embedded systems. He has up to 110 research
publications, in international journals, conferences, book chapters, and books
in the above-mentioned research areas and he has received more than
1500 non-self citations. Finally, he has organized numerous special issues
and special sessions in international journals and conferences in the above-
mentioned areas. His research interests include FPGA and ASIC design,
microprocessor and microcontroller system design, system-on-chip design,
digital IC design for security, digital signal processing, and ML systems.

DIMITRIS E. SIMOS (Member, IEEE) is cur-
rently a Key Researcher for the applied discrete
mathematics for information security research
area with SBA Research, Vienna, Austria, and
leads its Mathematics for Testing, Reliability and
Information Security (MATRIS) Research Group,
since 2017. He is also an Associate Professor
(Non-Tenured Track, Venia Docendi for Applied
Computer Science) with the Graz University of
Technology as of 2021. He further holds a Guest

Researcher appointment with the U.S. National Institute of Standards and
Technology (NIST), where he is also a Research Member of its Working
Group on ‘‘Automated Combinatorial Testing for Software’’ (ACTS). During
his career, he has (co)authored over 100 articles in discrete mathematics and
their applications to computer science. His research interests include com-
binatorial designs and their applications to software testing, combinatorial
testing in particular, symbolic computation and optimization algorithms, and
all aspects of information security. He is a member of the Editorial Board
of two Springer journals (MCS and ORFO). He has been awarded the rank
of fellow of the Institute of Combinatorics and its Applications (FTICA),
in 2012. He (co)-organized or (co)-chaired many international scientific
conferences, such as MACIS, ACA, LION, CAI, and QRS, and workshops,
such as IWCT and MoCrySEn.

18806 VOLUME 10, 2022

