
Received January 25, 2022, accepted February 4, 2022, date of publication February 14, 2022, date of current version February 28, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3151436

Improving Indoor Localization Using Mobile UWB
Sensor and Deep Neural Networks
LEYLA NOSRATI 1, MOHAMMAD SADEGH FAZEL1,
AND MOHAMMAD GHAVAMI 2, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
2Electrical and Electronic Engineering Department, London South Bank University, London SE1 0AA, U.K.

Corresponding author: Leyla Nosrati (l.nosrati@alumni.iut.ac.ir)

ABSTRACT Accurate localization in indoor environments with ultra-wideband (UWB) technology has long
attracted much attention. However, due to the presence of multipath components or non-line of sight (NLOS)
propagation of the radio signals, it has been converted to a critical challenge. Existing solutions use many
fixed anchors in the indoor environment. Particularly, large areas require many anchor points and in the case
of unexpected events that lead to the destruction of existing infrastructures, the fixed anchor points cannot
be used. In this paper, a novel localization framework based on the transmitting signal from a mobile UWB
sensor on the outside of the building and its received signal regarding the modified Saleh Valenzuela (SV)
channel model is presented. After preprocessing the received signals, two new procedures to reduce the
ranging error caused by multipath components are proposed. In the first procedure, two machine learning
algorithms including multi-layer perceptron (MLP) and support vector machine (SVM) using the extracted
features from the received UWB signal time and power vectors are implemented. Moreover, in the second
procedure, two deep learning algorithms including MLP and convolutional neural networks (CNNs) using
the received UWB signal time and power vectors are implemented to improve the performance of the indoor
localization system. The simulation results show that the architecture designed for the convolutional neural
network based on the hybrid dataset (the combination of the dataset related to received UWB signal time
and power vectors) provides a mean absolute error (MAE) of about 3 cm.

INDEX TERMS UWB, multipath components, indoor localization, machine learning, mobile sensor.

I. INTRODUCTION
Indoor localization has attracted much attention since peo-
ple spend most of their time inside buildings. Some critical
applications and services based on indoor localization such
as emergency rescue, fire brigade, or incident management
need an easy-deployable localization system that can provide
high accuracy localization in indoor environments. There
are two effective methods to localize the target. In the first
method, it is assumed that the target’s position is calculated
using the navigation sensors and then provided to a mon-
itoring station. In the second method, the target does not
have these sensors, its position at the monitoring station
is calculated by transmitting radio signals. The problem of
localization becomes complicated when the operations need
to be carried out in a closed environment such as indoors.
Global navigation satellite systems (GNSS) are the most
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widely used localization technology for outdoor applications.
In indoor environments, however, their signals can be easily
blocked, attenuated, or reflected. Localization through prein-
stalled radio infrastructures (e.g. Wi-Fi access points, RFID
or Bluetooth tags) have been applied in indoor environments,
but there is no guarantee that all of them have these radio
infrastructures and even if they do, may not be suitable for
accurate localization. The alternative approach is based on
UWB technology. The benefits of UWB technology include
high data rate, high time resolution, high bandwidth, low-
cost equipment, and power spectral density (PSD) level much
lower than Wi-Fi and Bluetooth, which makes it suitable for
indoor applications [1]–[4]. Although the UWB technology
has high time resolution versus multipath, in most cases,
because of existing multipath components and NLOS condi-
tions, the signals containing the target information, are com-
parable to noise levels and may be buried among the strong
multipath components. As a result, the need for complex
algorithms and new approaches to detect the accurate special
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target information is doubled. Most investigations have been
conducted on indoor localization using a UWB radar which
is installed inside of the building, or is static on the walls on
the outside of the building. However, it requires an expen-
sive infrastructure of many fixed anchor points (nodes with
known positions that can be used as a transceiver). Also, the
number of necessary anchor points increases by growing the
size of the area where UWB devices are deployed [5], [6]
and the fixed anchor points cannot be used in the case of
unexpected events that lead to the destruction of existing
infrastructures.

In this paper, a novel method to resolve these issues is
suggested. Since mobile sensors have high flexibility and
mobility, they can be used as aerial anchor points with no
limitation on the number of them and the areas that they
can be flown. Also, they can be easily used in the case of
unexpected events. Hence, we use a mobile UWB sensor
and the proposed procedures to improve indoor localization
accuracy.

II. RELATED WORK
In previous similar investigations, authors often use Wi-Fi,
ZigBee, and Bluetooth technologies for indoor localiza-
tion [7]–[12]. In [7] the authors combined the received sig-
nal strength indicator (RSSI) fingerprint and kernel-SVM
learning approach for indoor localization based on Wi-
Fi technology. In this paper, by using the hybrid kernel
instead of the single kernel and increasing the size of the
training set, indoor localization performance was improved.
Their simulation results disclosed that by using the pro-
posed algorithm, the position estimation error is equal to
1.81 meters. The authors in [8] proposed a principal com-
ponent analysis-based support vector machine (PCA-SVM)
approach by using the received signal strength (RSS) sig-
nals for indoor localization based on Wi-Fi technology.
Their results showed, the PCA-SVM method provides a
mean localization error of 1.37 meters, which is a signifi-
cant improvement compared to K-nearest neighbor (KNN)
and SVM methods, which have mean localization errors of
3.08 and 1.76 meters, respectively. In [9] by using the RSS
and channel state information (CSI), the authors presented
a deep learning approach for indoor localization based on
Wi-Fi signals. The indoor localization was considered as
a classification problem. Their simulation results showed
that by using CSI information and CNN algorithm, a max-
imum localization error of 0.92 meter with a probability
of 99.97% was achieved. In [10] by using a series of the
RSSI measurements, the authors proposed recurrent neural
networks (RNN) algorithms for indoor localization based on
Wi-Fi fingerprinting. Their simulation results showed that
by using the proposed long short-term memory (LSTM)
structure, an average localization error of 0.75 meter can be
achieved. In [11] an affordable indoor localization system
based on Bluetooth low energy (BLE) technology was pro-
posed to monitor the location of a target that carries a BLE
beacon. The location of the target inside the building by using

the RSSI and trilateration and fingerprinting based methods
was estimated. Their simulation result showed that by the
fingerprinting-based method, a localization accuracy above
90% was achieved. In [12], the design and implementation
of a wearable device for localization of Alzheimer’s patients,
based on the RSSI and ZigBee technology were presented.
To improve the localization accuracy, a back propagation-
based artificial neural network (BP-ANN) algorithm was
used. Their simulation result showed that the mean localiza-
tion error in the testing phase was 0.921 meter.

The basic problem of using the above technologies is
the need for long-term measurements and sophisticated
calibration procedures. On the other hand, according to
the results provided in the related works, these technolo-
gies cannot obtain a precision of a few centimeters for
indoor localization. It is noteworthy in most cases (such
as unexpected accidents and natural disasters), a localiza-
tion system is needed to estimate a target’s position with
an accuracy of a few centimeters in the shortest possi-
ble time. The UWB technology attracted great attention
in indoor localization problem because of its precision of
a few centimeters, very high bandwidth, wall penetration,
high time resolution [13] and [14]. However, the practical
expansion of this technology has many challenges, including
multi-user interference, multipath effects and NLOS
propagation [15]–[18].

In the literature, authors use the multipath channel statis-
tics such as kurtosis, mean excess delay (MED), root mean
square (RMS) of delay spread, signal amplitude, and CSI to
identify the NLOS conditions or mitigate the ranging error
by machine learning algorithms including Gaussian process
(GP), SVM and MLP [19]–[21]. In [22] without feature
extraction and based on raw channel impulse response (CIR)
data and CNN algorithm, authors have shown that NLOS con-
ditions can be detected and consequently, the ranging error
has reduced. Results in [22] showed that the performance
of the indoor localization system is improved by using the
predicted NLOS conditions and ranging error information,
in combination with least squares (LS) and weighted least
squares (WLS) location estimation algorithms. Authors
in [23] proposed a feature-based localization approach by
using a deep long short-term memory (DLSTM) algorithm
for UWB localization. Their results showed that by using
the extracted features from the user’s distance information
and the DLSTM algorithm, the mean localization error of
0.05 meter can be achieved. The authors in [24] proposed
a deep gated recurrent unit (DGRU) algorithm by using the
time series data generated from the UWB channel. Their
simulation result showed that the proposed GRU-based local-
ization method can achieve a root mean square error (RMSE)
of 0.8 meters compared to their proposed CNN-based local-
ization method. In [25] a neural network structure based on
a deep auto encoder-back propagation (DAE-BP) algorithm
by using time difference of arrival (TDOA) value of UWB
received signal have been proposed to provide high accu-
racy in indoor localization problem. The simulation results
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showed that the DAE-BP can reach mean square error (MSE)
of 0.03 meter.

III. MAIN RESULT AND ORGANIZATION
The main contributions of this paper are as follows:
• In the previous works, fixed UWB anchor points have
been used to localize people indoors. However, in this
paper, it is proposed to perform indoor localization more
effectively and efficiently by a mobile UWB sensor out-
side a building.

• We consider direct and indirect rays reflected from the
target and the received signal is influenced by multipath
components. It is not necessary to have the line of sight
link in the channel model. Unlike the papers [19]–[22]
that use machine learning algorithms to identify NLOS
conditions or mitigate the ranging error, in our paper,
to alleviate the ranging error and estimation of target’s
position, two procedures are proposed. In the first pro-
cedure, some features are extracted from the received
UWB signal time and power vectors and used as the
input for each of the two machine learning algorithms
including MLP and SVM. In the second procedure, the
target’s position is estimated based on the receivedUWB
signal time and power vectors using MLP and CNN
algorithms (without feature extraction).

• By using simulation results we show that if both time and
power measurements of the received UWB signal from
the modified SV channel are used as input to the CNN
algorithm, a significant improvement in the performance
of the indoor localization system can be achieved.

The rest of this paper is organized as follows: Section IV
describes the system model and data collection based on
the modified SV channel model. In section V, the proposed
procedures are discussed in detail. In section VI, the numer-
ical analysis of two suggested procedures is evaluated. Also,
validation of the second procedure with two related works
is performed. Finally, section VII is the conclusion of this
paper.

IV. SYSTEM MODEL
The desired model for indoor localization using a mobile
UWB sensor is presented in Fig. 1. In this figure, the mobile
UWB sensor (for example a small size quadrotor) as an
aerial anchor with height of 3 meters flies to four different
known positions outside of a building with dimensions of
20 × 20 × 2.5 m3 to to find the 2D position of a target that
is placed on the floor inside the building. It should be noted
that at least three anchor points are necessary for this kind of
localization. Using more anchor points, the accuracy of the
localization algorithms is increased, but on the other hand, the
computational complexity, flight time, and energy consump-
tion of the mobile sensor are also increased, which are not
desirable. Here, to achieve an appropriate accuracy with low
computational complexity, we have considered four anchor
points in our system model. Because the UWB technology is
used for short-range indoor applications due to low emission

FIGURE 1. In the proposed system, the mobile UWB sensor flies to four
known positions. At each position, the received signals are preprocessed
and then used to estimate the target position.

FIGURE 2. Flowchart for achieving the indoor localization by machine
learning based algorithms.

levels allowed [26], we assumed that the round trip distance of
the mobile UWB sensor from the target is less than 20meters.
In this paper, the indoor localization problem is formulated
using machine learning algorithms, such as SVM, MLP, and
CNN, which can be solved in two phases: off-line training
and online localization phases. A flowchart that includes both
off-line training and online localization phases is presented
in Fig. 2. According to this figure, in the off-line training
phase, the target is placed randomly at many different known
positions (small blue points). For each of these positions, the
mobile UWB sensor sends and receives the signal at four
known anchor points (black points). After preprocessing of
the data, the regressor (SVM,MLP, and CNN)which describe
the relationship between UWB signal measurements and the
corresponding target positions is learned with the achieved
training dataset. In the online localization phase, the target
is placed randomly at some different unknown positions (red
points). For each of these positions, the mobile UWB sensor
sends and receives a UWB signal at four known anchor points
(black points). After preprocessing of testing data, the target
location is estimated by using the trained regressor.

A. DATA COLLECTION
Since, as in [22], access to the laboratory environment is
not always possible, to create the raw synthetic dataset, it is
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necessary to provide a suitable channel model. In the fol-
lowing, the modified SV channel model based on the IEEE
802.15.4a channel model [27], is represented.

The impulse response of the modified SV channel model
is described as follows [28]:

h(t) =
L∑
l=0

K∑
k=0

βk,lejθk,l δ(t − Tl − τk,l) (1)

where, L, K , Tl , τk,l , βk,l , and θk,l are the number of clusters
in the channel, the number of multipath components within
each cluster, the arrival time of the first path of the l th cluster,
and the arrival time, amplitude and phase shift of k th path
within the l th cluster, respectively. Also, δ(.) is the Dirac
delta function. The leader power of l th cluster (β0,l)2 and the
arrival time of the first path of the l th cluster (Tl) calculated
as follows [29]:

20 log10 β(0,l) = pdBmt + 10 log10(
c2

(4πdfc)2
1

(1− ( w2fc )
2)
)

(2)

and

Tl =
2 ‖xval − xt‖2

c
(3)

where pt , c, and d are the transmitter power, the speed of light,
and the distance between the transceiver and the related vir-
tual node, respectively. Also, w and fc indicate the bandwidth
and central frequency, respectively. Moreover, xt and xval are
the position of the transceiver and virtual node respectively.
Also, ‖.‖2 is the Euclidean norm operator. According to [27]
we assume that the arrival time of k th path within the l th

cluster (τk,l) is modeled by combining two Poisson processes
with signal reception rates λ1 and λ2 as follows:

Pr(τk,l |τ(k−1),l) = αλ1 exp
[
−λ1(τl − τ(k−1),l)

]
+ (1−α)λ2 exp

[
−λ2(τl − τ(k−1),l)

]
(4)

In this respect, α is the probability combination factor. The
average power of the k th path within the l th cluster (βk,l)2

decreases linearly with time constant of γ from its own leader
power. Moreover, Nakagami distribution is used to model the
small-scale fading part of βk,l . In Nakagami distribution, the
shape parameter m is modeled as log-normally distributed
random variable whose logarithm has a mean of σm and stan-
dard deviation of µm. The channel phase shift is uniformly
distributed between [0, 2π ]. It should be noted as we consider
only the amplitude of the received signal in our approach,
we do not need to consider the phase shift of the channel
component.

Fig. 3 shows an example of the outline of the modified
SV channel model. As shown in this figure, each cluster has
some multipath components and the signal power decreases
as time passes. Considering all of these information increase
the complexity of localization algorithms. In this paper, it is
suggested to use the received raw UWB signals from the
modified SV channel up to the second cluster leader as inputs

FIGURE 3. An example of the outline of the modified SV channel model.
The red asterisks are the clusters leader and each cluster has some
multipath components.

to the localization algorithms to decrease the computational
complexity and have fewer multipath components in local-
ization algorithms input. The received UWB signal time and
power vectors in each cluster are calculated according to
Algorithm 1.

Algorithm 1 Calculate the Received UWB Signal Time and
Power Vectors
Input: pt , c, d , w, fc, xt , xval
Output: The received UWB signal time and power vectors

Calculate β0,l based on Equation (2)
Calculate Tl based on Equation (3)
Calculate RAY as the matrix to save the received signal
time and power of paths in each cluster as follows:
RAY(0, 1) = Tl
RAY(0, 2) = β0,l
k = 0
while RAY(k, 1) < Tl+1 do
k = k + 1
RAY(k, 1) = τk,l
RAY(k, 2) = 20 log10 β(0,l) −

RAY(k,1)
γ

+ ζ

end while

V. PROPOSED METHODS
Machine learning algorithms have gained a lot of attention
in recent years. The reason is that, they do not need complex
mathematical equations and achieve low energy consumption
and cost. Therefore, in this paper, two procedures based on
machine learning algorithms are presented to estimate the
target’s position indoors. In the first procedure, the location-
dependent useful information is extracted from the received
UWB signal time and power vectors and used as input for
each of two machine learning algorithms including MLP
and SVM. In the second procedure, without feature extrac-
tion, the received UWB signal time and power vectors are
used as inputs for two deep neural networks, including MLP
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and CNN. In this section, the two proposed procedures,
as well as the designed architecture in each of them are
described in detail.

A. FIRST PROCEDURE
In this procedure, for the SVM and MLP algorithms, the tar-
get is placed at N and M different random positions, respec-
tively. For each of these positions, the mobile UWB sensor
sends and receives the UWB signal at four known anchor
positions. For each algorithm, 60%, 20%, and 20% of mea-
surements for N or M target positions are selected randomly
for training, validation, and testing samples, respectively. The
validation samples are used to watch the training procedure
and prevent the network from overfitting. Overfitting refers
to the gap between the training loss and the validation loss,
which increases as the training loss decreases after some
training epochs. Regarding four anchor points, each training
sample contains a 28-feature vector including the time delay
of the first and second cluster leader, received average power,
maximum received power, the number of multipaths, mean
excess delay (MED) and kurtosis [20]. These features are
extracted from the received UWB signal time and power
vectors. Also, to compare the performance of the SVM and
MLP algorithms, we use the mean absolute error (MAE)
criterion defined as follows:

MAE =

∑p
i=1

∣∣s′i − si∣∣
p

. (5)

where, p is the number of test samples, s and s′ denote the
actual and predicted target position, respectively.

1) REGRESSION WITH SVM
SVM is a supervised learning method that applies to both
classification and regression problems. In this paper, indoor
localization is considered as a regression problem. The objec-
tive is to establish a functional dependence between the fea-
ture vectors and the specific target position (the Cartesian
coordinate of the target) based on the training samples and
then to determine the position of the target test samples
according to their characteristics. Assume that amobile UWB
sensor flies to four known positions with coordinates (xi, yi),
i ∈ (1, 2, 3, 4) as transceiver outside of the building. In the
training phase, the target is randomly assigned toN ′ positions
with coordinates rn = (x́n, ýn), n ∈ (1, 2, . . . ,N ′). The col-
umn vector of the extracted features from the received UWB
signal time and power vectors is cn = [v1,n, v2,n, . . . , v4,n]T ,
where vi,n represents the feature vector with dimensions
1 × 28 for the ith anchor at the nth position of the target.
Therefore the training set can be written as (cn, rn) n ∈
(1, 2, . . . ,N ′). On the other hand, since the extracted features
do not have the same range of values, the learning operation
may take a long time. Hence, in order to have high accuracy
and faster convergence, before the model learning, the target
positions and feature vector are normalized separately such
that all normalized values will be between zero and one.
Using the normalized samples, the regression function for

SVM learning model is expressed as follows [20]:

f (cn) = 〈w, ψ(cn)〉 + b (6)

where, w ∈ R4 is the weight parameter vector and the inner
product operator is performed by 〈, 〉. Moreover, b ∈ R shows
the bias in the network. Due to the complexity of the signal
propagation within an environment, the relationship between
the feature vector and the locations is nonlinear, thus ψ(.)
is a nonlinear mapping function that maps the feature vector
from low dimension space to high dimension space. To obtain
optimal values of the weight parameter vector (w) in (6),
the author [7] proposes solving the following optimization
problem:

minimize
w,ξ,η

1
2
‖w‖22 + C

N ′∑
i=1

(ξi + ηi)

s · t ·


ri − 〈w, ψ(cn)〉−b ≤ ε + ξi
b+ 〈w, ψ(cn)〉 − ri ≤ ε + ηi
ξi ≥ 0 ηi ≥ 0

(7)

where ε and C are the deviation between the regression
function and the real position of ri, and the cost parameter,
respectively. Also, ξi, ηi are slack variables. The dual for-
mulation of the above SVM problem provides an alternative
to solve equation (7). Thus, kernel function approaches can
be used to map the data into higher-dimensional spaces.
Under the optimal conditions, the equation (6) is expressed
as follows [20]:

f (cn) =
N ′∑
j=1

αjϕ(cn, cj)+ b∗ (8)

where ϕ(cn, cj) denotes the kernel function. The values of
αj and b∗ can be obtained by using the advanced con-
vex optimization facility such as the MATLAB LIBSVM
toolbox [31].

2) REGRESSION WITH MLP
MLP is a class of feedforward deep or artificial neural
networks. MLP network consists of three layers: input,
hidden and output. In this network, the stochastic gradi-
ent descent (SGD) algorithm is used as the training algo-
rithm [32]. The basis of this method is to define a loss
function between the predicted and real location. Using the
backpropagation (BP) scheme [33], the error of each layer
propagates from output to input. Therefore all of the net-
work parameters (weights and biases) are updated iteratively.
Generally, as the number of hidden layers in the neural net-
work increases, it becomes more flexible to learn nonlinear
relationships, but sometimes it can cause some problems such
as overfitting. Hence, in our specific scenario, we need to find
the right number of neurons in fully connected (FC) or dense
layer in MLP networks by trial and error which does not lead
to overfitting. Fig. 4 shows the designed architecture for this
type of neural network, which consists of four hidden layers
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FIGURE 4. The architecture used for MLP algorithm in the first procedure.

with 64, 64, 64, and 16 neurons per dense layer, respectively.
Since the purpose of this paper is 2D target localization, the
number of neurons in the output layer is chosen as 2. Using
the sigmoid function (f (x) = 1

1+e−x ) in the hidden layers may
lead to the vanishing gradient problem. To avoid this problem,
a rectified linear unit (ReLu) function (f (x) = max (0, x))
is used as the activation function in each hidden layer [34].
Also, the linear activation function (f (x) = x) is not used
in the hidden layers, because the composition behind them
will still be equivalent to another linear unit and will not
improve the network structure. On the other hand, because
the output of the network is the continuous values of the
target position, the sigmoid or linear continuous activation
function can be used in the output layer. Moreover, we use
adaptivemoment estimation (Adam) to update the parameters
of the network [35] because it needs relatively low memory
and works well even with the little tuning of hyperparameters
and has fast and reliable learning convergence versus SGD.
To avoid overfitting problem, the L2 regularization [36] is
adopted.

B. SECOND PROCEDURE
In this procedure, for theMLP andCNNalgorithms, the target
is placed at M different random positions. For each of these
positions, the mobile UWB sensor sends and receives the
UWB signal at four anchor positions. For each algorithm,
60%, 20%, and 20% of measurements forM target positions
are selected randomly for training, validation, and testing
samples, respectively. Here, six different cases can be con-
sidered regarding three different datasets ( the received UWB
signal time and power vectors each with dimensions 1×544,
which are calculated according to Algorithm 1, and also their
concatenation (hybrid data) with dimensions 1 × 1088) and
two deep neural networks; MLP and CNN. Three different

TABLE 1. The Hyper-parameter of MLP and CNN in the second procedure.

TABLE 2. The number of neurons used in MLP algorithm in the second
procedure.

criteria including MAE, the number of training parameters,
and the estimation time of each test data are used to compare
the performance of MLP and CNN algorithms. The second
and third criteria show the degree of network complexity.
The more complex the network, the higher computational
load. Of course, the lower computational load of the proposed
method, the lower need for expensive resources or CPU.
Also, the Hyper-parameters such as learning rate, batch size,
and the number of epochs, which are set before training,
for both of the MLP and CNN algorithms are presented
in Table 1.

1) REGRESSION WITH MLP
Similar to the previous section, the Relu and linear functions
are used as the activation function in the hidden and output
layers, respectively. Table 2 shows the best trial and error
results we obtained as the appropriate number of neurons
in each dataset which do not lead to overfitting. Because
the localization problem is in 2D coordinates, the number of
neurons in the last layer is chosen as 2.

2) REGRESSION WITH CNN
In general, CNN consists of input, hidden and output layers.
The hidden layer of a CNN typically consists of a series of
sublayers such as convolution layers, pooling layers and FC
layers [37]. The convolution layers contain several filters.
Each of these filters can extract a specific property in different
locations of the input data. The pooling layers are used to
reduce the number of parameters. Spatial pooling also called
subsampling or downsampling, reduces the dimensionality of
data while retaining important information. After convolution
and pooling layers, all data are flattened into a vector and then
are fed into FC layers like neural networks. Similar to the
MLP network, the Relu function is used in the hidden layers
to avoid vanishing gradient problem and the linear activation
function is used to perform regression in the output layer.
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FIGURE 5. The designed architecture to the received UWB signal time
dataset in CNN algorithm.

The learning process is similar to the MLP as mentioned in
subsection regression with MLP of the first procedure
section. In both networks, necessary actions including;
1) using more training data, 2) reducing the network’s capac-
ity by removing layers or reducing the number of elements
in the hidden layers, and 3) applying L2 regularization are
performed to control overfitting. The appropriate number and
size of the filters in convolution layers�Conv�, the size of
pooling in the pooling layer �MaxPool� and the number
of neurons in each dense layer�FC� which do not lead to
overfitting, are shown in Fig. 5, Fig. 6 and Fig. 7 for three
different datasets.

VI. NUMERICAL ANALYSIS
To create synthetic datasets, at first, the target is placed at
1000, 60,000, and 60,000 different random positions, then
for each position of the target, according to Algorithm 1, the
received UWB signal time and power vectors are calculated
and are used as input to the SVM, MLP, and CNN algo-
rithms, respectively for indoor localization. In this section,
the numerical results of these algorithms in both procedures
are evaluated. Also to prove the validity and efficiency of the
used datasets, we investigate the indoor localization problem
based on the proposed approaches in [9], [22], [24].

A. COMPARISON OF MLP AND SVM IN THE
FIRST PROCEDURE
As mentioned in the previous section, the extracted features
from the received UWB signal time and power vectors are
provided as inputs to the MLP and SVM algorithms. To com-
pare the performance of these algorithms, the MAE criterion
according to (5) is used. The MLP with one hidden layer sim-
ilar to SVM can only learn small spaces of data. To learnmore
complex distributed data, we need to increase the number

FIGURE 6. The designed architecture to the received UWB signal power
dataset in CNN algorithm.

FIGURE 7. The designed architecture to hybrid dataset in CNN algorithm.

of hidden layers of the MLP. Consequently, as can be seen
in Fig. 8, the MLP algorithm in the first procedure provides
less MAE than the SVM algorithm in both dimensions of 2D
Cartesian coordination.
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FIGURE 8. Mean absolute error criterion in the SVM, MLP, and CNN
algorithms in both procedures.

B. EVALUATION OF MLP IN THE SECOND PROCEDURE
Table 3, shows the result of three criteria for the MLP
algorithm in the second procedure. Since the used neural
network has no significant complexity, the number of training
parameters and estimation time of each test data have an
acceptable value for the employed architecture. Therefore,
we only use the MAE criterion to evaluate the MLP network
for three datasets. Because the UWB signals have high time
resolution, according to MAE criteria, the received UWB
signal timemeasurements aremore accurate than the received
UWB signal power measurements. On the other hand, since
the hybrid dataset uses thewhole information of both received
UWB signal time and power measurements, it provides the
lowest MAE.

C. EVALUATION OF CNN IN THE SECOND PROCEDURE
In Table 4, the required time for estimating test data is a
very small fraction of the time and the number of network
parameters shows an acceptable value for the used architec-
ture. As a result, again the MAE criterion is used to compare
the performance of these three datasets. Similar to the MLP
algorithm results, the hybrid data set, gives the lowest MAE.

D. COMPARISON OF MLP AND CNN IN THE
SECOND PROCEDURE
In the MLP algorithm, all input samples are received as a
vector and mapped to the feature extraction space, while in
the CNN algorithm, the input data vectors are converted to
a square matrix then the algorithm filters are locally focused
on data sub-matrix and features of each local sub-matrix are
extracted individually. By considering the MAE criterion for
comparing the performance of these neural networks, as in
the Fig. 8, it can be seen that the CNN algorithm shows better
performance than theMLP algorithm in the second procedure
with the accuracy of 3 cm in each of two dimensions. More-
over, in Fig. 9 the flowchart of the CNN algorithm that has
the best result for the hybrid dataset are presented. FIGURE 9. Flowchart of CNN algorithm for indoor localization.
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TABLE 3. Evaluation of the MLP algorithm in the second procedure.

TABLE 4. Evaluation of the CNN algorithm in the second procedure.

E. VALIDATION OF THE SECOND PROCEDURE WITH
THREE RELATED WORKS
To prove the efficiency of the used dataset in the second
procedure, as in [9], we consider the indoor localization
problem as a classification problem. Thus, the 60,000 random
locations of the target inside the cube-shaped environment
are converted into 16 classes and used as outputs to MLP
and CNN networks. Similar to the used architecture in [9]
but with little change and trial and error, the best results can
be seen in Table 5. However, even if we are more accurate
in predicting the target position, because of the large size of
the cube-shaped environment, the area of each block is large
and after classifying the center of each block as the target
location, we will achieve a large quantization error. On the
other hand, if we reduce the area of the blocks we would
have to increase the number of blocks, so in the final layer
of the classification model, we would need a large number of
neurons, which in addition to the difficulty in training would
so increase the computational burden. To analyze the local-
ization performance we assume that the localization error
is equal to the distance between the actual position and the
estimated position. Assuming that the estimated position is
equal to the center of the estimated block, the highest and
lowest value of the MAE for hybrid data with the prediction
accuracy of 97.98% and 100% is equal to 62 cm in both
cases for x-coordinates, 247 and 245 cm for y-coordinates,
respectively. Based on these results, we conclude that the
proposed classification without regression method in [9] is
not suitable for the used dataset in this paper and leads to a
large ranging error.

To test the performance of the proposed localization error
reduction method in [22], a dataset with a measured range

TABLE 5. Performance summary of various classification methods.

between the mobile UWB sensor and target should be con-
structed. Due to lack of access to the DWM1000 IR-UWB
module, the measured range (d′) and actual distance (d)
between mobile UWB sensor and the target is computed as
follows:

d′ =
c ∗ t ′

2
(9)

d =
c ∗ t
2

(10)

where c, t′, and t are the speed of light, the time length of
the first cluster, and the arrival time of the first cluster leader,
respectively. The best localization performance is achieved
when all of the used ranges in the position estimation are
within the LOS range. However, due to the presence of
multipath components, the measured ranges become positive
bias and the position estimation with these measurements in
LS and WLS estimators results in a MAE of several meters.
These results are presented in the LS and WLS rows in
Table 6. According to [22], the ranging error is defined as the
difference between the measured range and actual distance
(ε = d′−d) and is used as outputs for training the CNN-based
regression model. Also, instead of using the CIR measure-
ments, the received UWB signal power, and hybrid datasets
are used as CNN network inputs. By calculating the estimated
ranging error and measured range, the estimated distance
(d̂ = d′ − ε̂) can be obtained. A significant improvement
in indoor localization is achieved if the estimated distance is
used in the LS and WLS estimators. These results are shown
in the LS_REG andWLS_REG rows (two regression method
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TABLE 6. Accuracy of localization methods for the received signal power
dataset.

TABLE 7. Accuracy of localization methods for the hybrid dataset.

based on LS and WLS algorithms) in Table 6. However,
as observed in the previous sections, since the hybrid dataset
uses all of the information, therefore according to Table 7 it
shows a lower MAE when the estimated distance is used in
the LS and WLS estimators.

To prove the efficiency and high accuracy of the used
sequential dataset (time and power vectors of the received
UWB signal) in the second procedure, as in [24] we consider
the indoor localization problem as a regression problem. The
architecture of the proposed GRU-LE model in [24] is illus-
trated in Fig. 10. According to this figure, the model consists
of one input layer, two GRU layers, three fully connected
layers, and one regression layer. The output of the model is
the estimated 2D location of the target. The input data, which
is generated from the received UWB signal time or power, is a
matrix Uq ∈ RI×K , q ∈ (1, 2, . . . ,Q), where I ∈ (1, 2, 3, 4)
represents the number of known positions of themobile UWB
sensor, and K represents the number of time steps for each q
training sample. Also, to generateQ samples for the GRU-LE
model, the target is placed in Q different random positions.
According to [24], the input matrix of GRU-LE model can be
considered as Uq = [i1,q, i2,q, . . . , iK ,q], where ik,q ∈ RI×1

denotes the input vector at k th time step as shown in in Fig. 10.
As it is shown, the number of GRU cells in each GRU layer
are same and equal to the number of time steps in the input
matrix. The number of units for each cell in the first and
second GRU layers and similarly, the number of units for the
first two fully connected layers is selected according to [24].
To estimate the 2D position of the target, in the last fully con-
nected layer, two units are used. Finally in the regression layer
of the model, the mean square error between the predicted
and real position of the target is used as the loss function.
To evaluate the performance of the used sequential datasets
based on GRU-LE model in indoor localization problem, the
RMSE criterion is used as an evaluation metric, which is

FIGURE 10. The GRU-LE model architecture [24]: The input is generated
from algorithm 1, and the output is the 2D position of the target.

TABLE 8. Evaluation of the sequential datasets in the GRL-LE model.

calculated as follows:

RMSE =

√∑p
i=1(s

′
i − si)

2

p
(11)

Table 8, shows the result of RMSE criterion for both sequen-
tial datasets in the proposed GRU-LE model in [24]. Accord-
ing to this table, a significant improvements compared to [24]
in the localization problem are observed by using both
sequential datasets.

Finally, the localization error of the proposed methods
and previous related works are summarized in Table 9. The
second and third columns of the table show the types of
wireless technologies andmachine learning-based techniques
that are used in indoor localization for each research paper.
As it is clear, localizationmethods based onWi-Fi, Bluetooth,
and ZigBee technologies cannot obtain a precision of a few
centimeters for indoor localization. On the other hand, the
MLP localization technique with extracted features and the
CNN localization technique with hybrid data show a sig-
nificant improvement in indoor localization. It should be
noted that by using both sequential datasets, better results in
indoor localization problem are observed compared to [24],
but our proposed approach nevertheless shows a significant
improvement over GRU-LEmodel in [24]. On the other hand,
by using hybrid dataset for training the proposed regres-
sion model in [22], an acceptable accuracy in the indoor
localization problem is obtained using CNN combined with
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TABLE 9. Summary of mean localization error of the proposed methods and previous related works.

the WLS localization technique. But due to the structural
differences in the used hybrid dataset and quantization error
in CNN-CSI localization technique, the proposed approach
in [9] does not provide higher accuracy in predicting the target
position within each class and therefore the target position
cannot be estimated with an accuracy of a few centimeters.

VII. CONCLUSION
In this paper, to reduce the installation cost of the expensive
anchor points in the large areas for indoor localization, the
use of a mobile UWB sensor, due to having high mobility
and low-cost features is presented. Moreover, two procedures
for reducing the indoor localization error are proposed using
SVM, MLP, CNN algorithms applied on the received UWB
signal time and power vectors. In the first procedure, the main
features were extracted from the received UWB signal time
and power vectors up to the second cluster leader (to have
fewer multipath components) and are used as inputs in MLP
and SVM algorithms. The simulation results show that the
MLP algorithm provides lowerMAE than the SVMalgorithm
because the MLP algorithm uses more hidden layers. In the
second procedure, three different datasets were extracted
from the received UWB signal time and power vectors up to
the second cluster leader and are used as inputs in the MLP
and CNN algorithms. Because the CNN algorithm could
extract meaningful information from the datasets, it shows
lower MAE than the MLP algorithm for the hybrid dataset.

Also by comparing the proposed approach with the proce-
dures in the literature, the accuracy and efficiency of the used
dataset in the second procedure are proved. In this paper,
we used synthetic dataset for investigating the indoor local-
ization problem. In the near future, by providing real dataset
achieved by using the mobile UWB sensor, we will show the
validity and high efficiency of our proposed procedures in real
environment.
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