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ABSTRACT The same class of objects clustering process in a frame is known as semantic segmentation.
The deep convolutional neural network-based semantic segmentation needs large-scale computations and
annotations for data training to reach real-time inference speeds. The heterogeneous image segmentation is
a more challenging task to categorize each pixel of an image. However, the heterogeneous image semantic
segmentation method extracts the features of visible and thermal images separately. We designed an efficient
architecture with the multi-hybrid-autoencoder and decoder for Faster Heterogeneous Image (FHI) Semantic
Segmentation. The proposed corresponding architecture has fewer layers resulting in lower parameters,
higher inference speed, and Intersection over Union (IoU). The specialty of this architecture is the discrete
autonomous feature extraction framework for RGB image and Thermal (T) image inputs with individual
convolutional layers. Later, we combined the 4-channels (RGBT) convolution features to reduce computa-
tional complexity and robust the model performances. The proposed FHI-Unet semantic segmentation model
experimented on NVIDIA Xavier NX edge Al platforms with standard accuracy under the real-time inference
requirement. The proposed FHI-Unet model has the highest mIoU of 43.67 and the fastest real-time inference
of 83.39 frames per second on edge Al implementation. The proposed approach improves 31.36% inference
speed, 7.16% mAcc, and 5.1% mloU on the Multi-spectral Semantic Segmentation Dataset compared with
the existing works.

INDEX TERMS Heterogeneous image, semantic segmentation, edge Al platform, deep convolution, multi-

hybrid-autoencoder, autonomous feature extraction, feature fusion.

I. INTRODUCTION

Semantic segmentation is the fundamental technique for
autonomous application. The human-computer interaction,
virtual reality, and medical representation analysis rely on
semantic segmentation. The semantic segmentation does
fine-grained reason by employing compact categorization
and labeling for each pixel. The use of the convolutional
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neural network has been increased considerably in recent
years with the rapid development of deep learning appli-
cations. The computer vision-based object detection model
identifies the location and detects object, classifies each
object, determines their class number, predicts the direction,
and many other things [1]. However, the object detection
model marks a bounding box corresponding to each class in
the frame, but nothing explains the object shape. The image
segmentation technique creates the pixel-wise mask for each
object in an image, which is a grainier understanding of
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the picture. Image segmentation techniques make a massive
impact on autonomous security systems [2], military surveil-
lance [3], self-driving cars [4], traffic congestion systems [5],
the granular manner in the medical image [6], and so on. The
research community has made encouraging progress on Con-
volutional Neural Network (CNN) model architectures for
semantic segmentation process, for example, coarse-to-fine
semantic segmentation [7], DeepLab [8], PASCAL VOC [9]
to learn image illustration methods. The Fully Convolutional
Network (FCN) [10] is a foundational work that accepts input
images for semantic segmentation and modifies the fully
connected layers into convolution layers for classification
networks such as the AlexNet [11], the VGG16 [12], and the
GoogLeNet [13]. Whereas FCN network reduces the sizes of
the final predictions because of several convolutional strides
and spatial pooling functions resulting in the loss of granular
picture information and erroneous predictions.

The ability of deep neural networks, amount of training
data, quality of input images, and the lighting source of image
and video inputs all aspect have a significant role in robust
performance. Some neural networks [14] and [15] have been
built on 3-channel RGB input images from near-infrared vis-
ible cameras. Unfavorable lighting conditions, such as dark-
ness, cloudy or foggy weather, and glare from automobile
headlights, make significant obstacles for RGB picture dete-
rioration [16]. The thermal imaging camera creates heat radi-
ation pictures, which can see in various light conditions [17].
In this work, we acquire images fusion of thermal and vis-
ible images to obtain more accurate semantic segmentation.
Commercial appliances such as remote sensing, autonomous
surveillance, automotive driving assistance systems, military
surveillance, embedded module systems require faster infer-
ence speed and appropriate object segmentation.

In this study, the various image data are divided into two
categories based on camera functions: thermal images and
visible-light images. A thermal image employs an object
with fluctuating degrees of thermal radiation energy to create
the temperature distribution map. Furthermore, its perception
range makes it suitable for usage at night view, cloudy and
foggy weather, and in the presence of glare from oppos-
ing headlights at absolute and abnormal temperatures [18].
The RGB visible image contains rich information such as
object color, texture, and clear boundary, which is com-
paratively easy to extract features in a lighter environment.
Although, the image discrimination ability decreases in a
dim environment. Therefore, the combination of both image
characteristics of these two inputs complements each other
to alleviate the environmental interference and obtain bet-
ter semantic segmentation results, which is called heteroge-
neous image semantic segmentation. If the RGB and thermal
images convolute directly without processing, it’s hard to
improve the precision. Therefore, we adopted the concept
of Unet architecture and extended it through the proposed
FHI-Unet model. We have developed the independent convo-
lutional network with the multi-hybrid-autoencoder for RGB
and Thermal (T) image inputs feature extraction separately.
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The visual and thermal pictures are semantically segmented
using the multi-hybrid-autoencoder and decoder through the
proposed heterogeneous image segmentation architecture.
We utilized 4-channels (RGBT) inputs autonomous encoder
and feature fusion encoder to match the heterogeneous dual
image features and extracts the thermal and visible image
features particularly. The following is a list of significant
contributions of this work.

1. We designed the independent convolutional network
with the multi-hybrid-autoencoder for RGB and Thermal
(T) image inputs feature extraction separately, which
reduces the computational complexity of the proposed
architecture.

2. A feature fusion encoder combines and fuses the
4-channel (RGBT) convolution features that enhance
inference speeds.

3. The proposed FHI-Unet model has fewer layers, lower
parameters, lower-rung read and write memory which
increases the FPS and accuracy.

4. The proposed design has been implemented on NVIDIA
Xavier NX edge Al platforms for investigating the faster
heterogeneous image semantic segmentation.

Il. RELATAD WORK
The semantic segmentation algorithms require large-scale
and high-quality data to robots the performance while deal-
ing with numerous instabilities. The semantic segmenta-
tion methods are categorized into traditional approaches
and deep learning algorithms. The sparse representation
approaches [19], k-means clustering [20], Markov random
fields [21], and the random forest [22], clustering [23] are
counted as traditional approaches. The traditional techniques
are replaced by convolutional neural networks (CNNs) pro-
gressively. In recent years, researchers are investigating the
CNNs based algorithms for semantic segmentation with the
rapid growth of deep learning algorithms. The PSPNet [24]
techniques represented the dilation convolution method. The
state-of-the-art network DeepLabv3+ [25], two-part of neu-
ral networks aggregated multi-scale contexts to enlarge the
receptive field and lead to a higher-resolution and compact
FCN based pixel prediction. The Visible and Thermal image
fusion [26] for few-short semantic segmentation based on bi-
modal images. The Edge conditioned convolutional neural
network [27] for thermal image semantic segmentation built
on a feature-wise transform layer. The GMNet [28] catego-
rized feature extraction to the multilevel for feature fusion.
In recent years, the encoder-decoder base models have
been investigated actively in semantic segmentation with
the popularity of deep learning algorithms. The depend-
ability and flexibility of encoder-decoder-based models are
more suitable in real-world applications such as robots
and autonomous applications. ABMDRNet [29] multi-
modality feature fusion network employs a bi-directional
image-to-image translation through two-stage networks. The
SegNet [30] is a deep convolutional neural network that
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FIGURE 1. The proposed FHI-Unet architecture is presented with the multi-hybrid-autoencoder on left side and a decoder respectively.

employs the encoder and decoder to conduct semantic pixel-
wise segmentation. The model encoder consists of 13 convo-
lutional layers of VGG16, which serves for down-sampling
and max-pooling. In addition, the pooling coordinates solve
the pixel location information loss causes by multiple pooling
layers. Besides, the decoder employs the associated max-
pooling index value for up-sampling. Finally, the Softmax
classifier predicts each pixel’s class output feature map. The
Unet [31] model predicts tiny medical picture segmenta-
tion by linking the symmetric relationship between encoder-
decoder. Two convolutions use at the encoder to perform
the four down-samplings by max pooling. The decoder uses
up-convolution to perform up-sampling and concatenation
of the corresponding size of the encoder feature map. The
MENet [32] was designed based on the dual-encoder archi-
tecture, with RGB and Thermal images two parallel branches
being simulations by the encoders. The encoder fuses the
RGB feature, and Thermal feature maps using element sum-
mations and is sent to the decoder for convolutional operation
through the nearest-neighbor interpolation for up-sampling.
The RTFNet [16] consists of an RGB encoder, a thermal
encoder, and a decoder to extract features using RGB and
thermal data fusion whereas, the ResNet [33] is the backbone
network. The thermal feature maps fuse the RGB encoder
through the element-wise summation. The MMNet [34] con-
sists of two-stage networks to feature extraction and refine
details. The GMFNet [35] is composed of three parallel
Unet for modality and multimodal fusion. The FuseSeg [36]
architecture used a dense native representation for laser
range scanner data introduction. The effectiveness of the
method is LIDAR and RGB data fusion for segmenting the
LiDAR point clouds. The dual attention network for image
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segmentation [37] method extracts the feature map spatial
dependency through the location channel attention mecha-
nism.

Some of the semantic segmentation models mentioned
above have good performance. However, the complexity of
the architecture and frame structure leads to computational
problems which require costly graphics cards for the imple-
mentation and the inability to use embedded systems for
real-time preceding to trade-off the accuracy and higher
speed.

Ill. THE PROPOSED NETWORK
Figure 1 displays the proposed Faster Heterogeneous
Image (FHI) Semantic Segmentation architecture. The pro-
posed FHI-Unet architecture consists of 2 modules: the multi-
hybrid-autoencoder for feature extraction and decoder for
feature map sampling. The first autoencoder extracts inde-
pendent 4-channels RGB and Thermal (T) input image fea-
tures separately at the initial stage, whereas needs to do
several convolutional operations, batch normalization with
Leaky Relu activation function, and max-pooling at the next
steps. Later, another feature fusion autoencoder combines the
4-channel (RGBT) convolution features for further process.
The convolutional feature fusion speeds up the model opera-
tion and computation. The individual input feature extraction
autoencoder saves operation time and speeds up the perfor-
mance. We employed the customize convolution to imple-
ment this experiment. The customize convolutional compu-
tation speed is faster than the typical deep convolutional
architecture [38]-[41].

The typical convolution complexity is measured by adding
all input and output channels together. If the input image
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TABLE 1. Multi-Hybrid-Autoencoder operation analysis.
Multi-hybrid-autoencoder operation

Feature size

Stage R G B T (HxWxC)
CBL CBL CBL CBL 480%640x8
(Individual)
I Max Max Max  Max 480%x640%8
Stage  pooli pooli  pooli = pooli (Individual)
ng ng ng ng
2% 2% 2% 2% 240x320%x16
2nd CBL CBL CBL CBL (Individual)
Stage Hybrid Concatenate output 240%320%64
Max  Max Max Max 120x160x16
pooli = pooli = pooli = pooli = (Individual)
ng ng ng ng
2% 2% 2% 2% 120x160%32
3rd CBL CBL CBL CBL (Individual)
S Hybrid Concatenate output 120x160x128
Max pooling 60x80%128
4th 3xConv + Shortcut 60x80x128
Stage Max pooling 30x40x128
5t 3xConv + Shortcut 30%40x128
Stage

size is 240 x 320 with 4-channel RGBT data, and the output
channel is 32 with the kernel size (K) is 3 x 3, the total
flops are 88.473 for the initial layer. The proposed FHI-Unet
uses a multi-hybrid-autoencoder to extract RGB and Thermal
(T) picture features individually. The proposed architecture
generates 8 output feature channels for each input channel
based on the same kernel size. The proposed FHI-Unet has
22.118M flops for the first stage. Following the process, the
second and third stages also reduce the overall flops.

Table 1 illustrates the multi-hybrid-autoencoder operation
details for the proposed FHI-Unet semantic segmentation
architecture. Each stage has different convolutional layers,
different input & output channels, and different feature sizes.
Whereas, H, W & C stands for the height, weight, and chan-
nel number of each image separately. The 1°¢ stage, 2" stage,
and 3™ Stage has individual convolutional operation. The 1%
stage extracts RGB and Thermal image features separately.
The 2" stage and 3" stage create hybrid concatenate layer for
output features. The 4™ stages and 5™ stage do the combine
convolution and pass information to the decoder for further
process.

The decoder performs for feature map up-sampling and
restores the target to 480 x 640 resolution. The design of the
decoder is mainly for recovering the input image feature up-
sampling size. Since the encoder used four down-sampling
operations, the decoder also performed four up-sampling
operations to recovery the same size feature map. There is
different way to calculate the recovery up-samples and reduce
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TABLE 2. Decoder operation analysis.

Decoder operation

Stage RGBT Feature size
(HxWxC)
4th Up-pooling 60x80x128
Stage Shortcut block 60x80x128
CBL 60x80x128
QI Up-pooling 120x160x128
Stage Shortcut block 120%160x64
CBL 120x160x64
2nd Up-pooling 240%320%64
t
Stage Shortcut block 24032032
CBL 240x320x32
1%t Up-pooling 480%x640%32
Stage CBL 480%640%9
P 4 4 Output
RGBT i i features

...... T SIS .

i Convolution | :lBatch Normalization i E_Leaky Relu |
________________________________________ ]

FIGURE 2. Convolution, BN and Leaky Relu operation.

the computational effort. We used the nearest-neighbor inter-
polation method to reduce the computational complexity.
In addition, the performance of up-sampling used same size
feature map for the decoder and encoder to reduce the loss
by adding them together. Table 2 demonstrates the detailed
operational computational function of the decoder. Whereas
up-pooling and Conv BN Leaky Relu blocks utilized for the
operation.

IV. MULTI-HYBRID-AUTOENCODER AND DECODER
COMPUTING INSTRUCTIONS

The encoder and decoder computing instructions belong to
down-sampling and up-sampling. The convolution kernel
settings, layers computation, shortcut blocks, and all other
aspects of the multi-hybrid-autoencoder, decoder operation
are described in depth at these sections.

A. CBL (CONV BN LEAKY RELU) LAYER

An autoencoder extracts the R, G, B, and T 4-channels
input features independently. The autoencoder operation for
stage 1 and stage 2, extracts features using individual convo-
lution, batch normalized, and the Leaky Relu activation func-
tion for the output feature. The Batch Normalization (BN)
calculates the mean and variance values. The Leaky Relu
properties backpropagation [42], one of the possible newer
activation functions. The Leaky Relu mitigates the dying
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FIGURE 3. The max-Pooling operation using 2 x 2 kernel size.
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FIGURE 4. The concatenate operation and features fusions.

Relu problem that prevents backpropagation from being ter-
minated if the value is less than 0, which calculating by the
equation (1). Figure 2 shows the convolution, batch normal-
ized, and activation function details. Wearers, the Leaky Relu
negative slope = 0.2.

X, x>0
LeakyRELU (x) = ) (1)
x X negative slope, x <0

B. MAX LAYER (MAX POOLING 2 x 2)

The max-Pooling function picks the maximum value from
each kernel, the highest value creates a significant impact in
the image [43]. When the kernel size is 2 x 2, half of the
values denote the actual value, which increases the receptive
field. In this study, the max-pooling operation reduced the
feature maps by the convolution as down sampling. Besides,
the input feature map H x W is scaled down by a 2 x 2 pooling
layer in the encoder. The output feature map becomes half of
H and half of W with the maximum of 2 x 2 kernel filters.
Figure 3 shows how to shrink the feature map from stage 1 to
stage 5 in the autoencoder operation while saving computing
time.

C. CONCATENATE LAYER

A concatenation layer accepts many inputs and concatenates
them along with specific dimension. However, the entries
must have the same size in all aspects, which increases the
precision of learning [44]. The autoencoder concatenates
thermal (T) image characteristics with the visible RGB image
features as the same size, and the channel features are inte-
grated and simplified, as shown in Figure 4. In stage 3,
the autoencoder combined RGBT features at same size and
joined along the axis and dimension make it easy to perform
decoder convolution operations.
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FIGURE 7. The encoder and decoder addition for Shortcut block
operation.

D. CONV + SHORTCUT LAYER

The shortcut connections skip the imperfect low-level fea-
tures training layers by transferring immediately to high-
level features [33] and solves the gradient drifting problems.
We incorporated the shortcut connections in the designed
architecture. The purpose of the Conv and Shortcut layer
is to perform one convolution of the input feature map fol-
lowed by residual joining. Besides, avoids the disappearance
of the backpropagation gradient during training. The Conv
and Shortcut layer speeds up the convergence of the archi-
tecture shown in Figure 5. The residual function overcome
the vanishing gradients problem and mitigates the deterio-
ration problem during stages four and five of multi-hybrid-
autoencoder operations.

E. UP-SAMPLING

The up-sampling operation transforms a small image input
into a large image output. The feature maps up sampling
works by repeating the rows and columns features at the
decoder for restoring the target resolution. The up-sampling
rate can be considerably high while guaranteeing the higher
quality of the up-sampled results [45]. In this work, the near-
est interpolation method employed for features up-sampling,
resulting in a doubling of each row and column for input data
(see Figure 6). From stage 5 to stage 1, the decoder used
2 x 2 nearest-neighbor interpolation to reduce the complexity
and speed up the computational calculation.
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F. SHORTCUT BLOCK

The shortcut block in the decoder acquires context informa-
tion, creates semantic characteristics, and enables features
fusion between multiple output resolutions [46]. The shortcut
block maintained the detail features of the encoders and
added with the decoder feature map shown in Figure 7. From
stage 5 to stage 1, added all feature resolution instead of
concatenating. This shortcut block technique took less time
to compute the output feature maps and significantly reduced
the memory requirements in the system.

V. DATA ANALISYS AND EXPERIMENT

A. THE DATASET

The dataset is one of the most important parts of machine
learning performance while dealing with deep neural net-
works. It’s critical to collect and construct a comprehen-
sive turbulence-degraded image dataset before designing a
semantic segmentation model in degraded conditions. The
RGB-Thermal image dataset with pixel-level annotation and
multi-spectral semantic segmentation dataset [47] was used
for this experiment, which execute pixel-by-pixel labeling
for visible and thermal images. The image dataset consists
of three channels of viewable image with a horizontal field
viewing angle of 100 degrees and a one-channel thermal
image with a viewing angle of 32 degrees. The dataset is
stored in 4-channel PNG format whereas, 1568 training data
(820 for daytime and 749 at nighttime), 392 validation data,
and 393 test data. In general, most of the road picture seg-
mentation is available in the dataset. The dataset has nine
category objects: background, car, person, bike, curve, car
stop, guardrail, color cone, and bump, with each component
having its different color.

B. TRAINING DETAILS

We used PyTorch frameworks for the proposed faster hetero-
geneous image semantic segmentation architecture to con-
duct the experiments. The AMD 5600, Intel Core 17 CPU,
NVIDIA 3090 with 24GB graphics card, CUDA 11.1, and
cuDNN v8.0.4 are all employed in the training procedure. For
the FHI-Unet experimental evaluation, we used the Frames
Per Second (FPS), Mean Accuracy (mAcc), and Mean Inter-
section over Union (mloU) as evaluation metrics, as well as
an Adam optimizer (Adaptive moment estimation) for weight
update, Cross-Entropy Loss (CEL) function for training loss
calculation, and Batch size parameter is 4.

C. EVALUATION METRICS

Many real-world applications demand for firster inference
speed into the production environment; hence network
latency time correctly is one of the most significant aspects
of installing a deep network. To calculate the multispectral
image semantic segmentation inference speed for the pro-
posed FHI-Unet model the equation 2 is the following.

Running test time

I = 2
nference spee Test numbers 2
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Two validation measurement models are used to assess
the heterogenous image semantic segmentation performance.
The first one is Accuracy (Acc) per class of pixels
(equation 3), and the second one is Intersection over Union
(IoU) per class of pixels, as calculated in equation 4. The TN
(True Negative) refers to negative samples that are wrongly
stated to as positive samples by the FP (False Positive).
Likewise, the TP (True Positive) is the positive samples and
erroneously sorted into FN (False Negative) to calculate the
Accuracy and Intersection over Union.

TP = True Positive, TN = True Negative,

FP = False Positive, FN = False Negative,

TP + TN
Acc = 3)
TP+ TN + FP + FN
TP
IoU = —————— 4
TP + FP + FN

The “mAcc” indicates the mean value of the accuracy
function, and “mloU” represents the mean value of Inter-
section over Union. The values of mAcc and mloU can be
calculated by the following equations 5 and 6, where the total
number of object categories denoted by u = 9.

1 TP + TN

mAcc = — E " + (5)
1L £~0 TP+ TN + FP + FN
1 TP

mloU = — P (6)
" 20 7F Y FP+FN

The fewer parameter refers less computational complexity
to the convolutional neural network’s whereas, the number
of parameters influences the memory size. Besides, more
computations make the network’s more complex and cor-
responded to the model execution time. Assuming that the
input channel is Cj,, the convolution kernel size is K x K,
and the output channel is C,,,, the input feature map size
is Hjy, x Wj,, the output feature map is Hy,y X Wy, then
the number of parameters and the computational quantity
as in Equations 7 and 8. However, the value of G refers to
1 without making any groups.

1
Parameters: Cj, X K X K X Cyyr X 5 7)
Computational quantity:
1
Hyyt X Wour X Cip X K X K X Cyyp X G (8)

VI. EXPERIMENTAL RESULTS

In this experiment, we have considered the real time inference
speed, Intersection over Union, and accuracy on edge Al
platform. The six models, namely the RTFNet, the FuseSeg,
the FuseNet, the MFNet, the SegNet, the U-net, and proposed
FHI-Unet performance compared on the GPU as well as
Nvidia Xavier NX Edge Al platform.

A. PERFORMANCE COMPARISON
Table 3 displays the performance of RTFNet, FuseSeg,
FuseNet, MFNet, SegNet, Unet, and proposed FHI-Unet
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TABLE 3. Performance compares on GPU and edge Al platform.

Architecture Parameter Memory Madd Complexity Memory read FPS FPS
™) (MB) (GMAdd) (GFlops) write (GB) (GPUL) (Edge)
RTFNet 185.23 2336.72 398.04 183.71 4.93 44.63 13.16
*FuseSeg 100 N/A N/A N/A N/A N/A 3.13
FuseNet 44.17 2565.82 566.27 283.47 5.0 136.42 34.85
MFNet 0.73 238.44 16.72 8.39 0.48 121.6 34.96
SegNet (4C) 1.98 466.41 48.55 24.34 0.93 185.58 51.59
Unet (4C) 17.33 2088.28 377.67 189.11 3.96 258.13 63.48
Proposed 1.22 286.52 22.97 11.52 0.59 293.85 83.39
FHIU-Net
* The FuseSeg doesn’t have open access code and above data in their paper.
TABLE 4. Comparison of the accuracy rate of semantic segmentation architecture.
Models  Backgro Car Person Bike Curve Car Stop  Guard Color Bump Average
und rail Cone
Acc  IoU Acc IoU Acc IToU Acc ToU Acc IToU Acc IoU Ac Io Acc  IoU  Acc IoU m- m-
c 8] Acc IoU
FuseNet 98. 98. 80. 68 75. 59. 64. 37. 51. 31. 17. 63 0. 0. 31. 11. 51. 45 52. 39.
82 82 96 09 21 03 51 47 25 75 4 1 0 0 1 3809 48 35 81
MFNet 99. 99. 77. 67. 67. 57. 53. 47. 36. 32. 12. 13. 0. 0. 30. 28. 30. 32. 45. 42.
31 30 02 53 12 62 91 7 25 17 5 77 0 0 3 88 11 25 16 13
SegNet 99. 99. 64. 58. 45. 42. 27. 24. 33. 27. 14. 10. 0. 0. 39 20 2.0 20 32. 29.
“0) 33 33 9% 19 94 26 46 32 71 8 8 8 0 0 7 9 0 0 47 65
Unet 99. 99. 71. 62. 67. 56. 51. 38. 47. 39. 13. 11 0. 0. 29. 25. 46. 40. 47. 41.
“0) 36 36 11 8 21 24 43 33 8 8 87 0 0 67 45 48 14 44 47
Propose 99. 99. 78. 67. 72. 61. 61. 48. 48 33. 17. 16. 0. 0. 30. 24. 48. 41. 50. 43.
dFHI- 38 47 6 4 36 36 99 99 31 31 5 11 0 0 58 48 88 35 84 060

Unet

models. Among these models the FuseSeg and RTFNet had
slowest inference speed on GPU and Nvidia Xavier NX
Edge Al platforms, which is marked as red color, both
models aren’t suitable for real-time proceeding applications.
The MFNet architecture has good performance on Param-
eter, Memory, Madd, Flops, and read-write memory but
the FPS performance is still similar as the FuseNet and
lower than SegNet, as well as Unet. The proposed FHI-Unet
semantic segmentation model achieved height and fastest
inference speed on GPU and Edge Al platforms. Besides,
the Parameter, Memory, Madd, Flops, and read-write mem-
ory performances are better than the RTFNet, FuseSeg,
FuseNet, SegNet, and Unet. Considering the real-time appli-
cations, the inference speed accelerates the performance
of devises. The proposed FHI-Unet semantic segmentation
model has achieved maximum FPS on both platform (marked
as green color) among those models. Therefore, the proposed
FHI-Unet model could be a good solution for real-time appli-
cations for Edge Al devises.

B. EDGE Al IMPLEMENTATION

For the Nvidia Xavier NX Edge AI Implementation,
Table 4 demonstrations the performance of FuseNet,
MFNet, SegNet (4C), Unet (4C), and proposed FHI-Unet
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segmentation model. The FuseNet achieved best result for
object detection accuracy (mAcc) of 52.35 which is notice-
able in green color. Besides, the proposed FHI-Unet model
achieved second-highest accuracy on 50.84 that marked as
purple color. The MFNet and The Unet (4C) has decent pre-
sentation for object detection accuracy. However, the SegNet
(4C) performed lowest result (red color) for object detection
in terms of accuracy. On the other hand, the Intersection
over Union (IoU) for object detection performance, the pro-
posed FHI-Unet model has achieved the best mloU of 43.60
(marked as green color) and MFNet has the second-highest
accuracy of mloU value whish shown in purple color. The
FuesNet and Unet (4C) shows an average performance for
intersection over union of object detection. Whereas, the
SegNet (4C) has lowest mIoU only 29 that marked as red
color. All models show different values for each class of
object segmentation, but the *Guardrail’ color pixels are only
0.0095 percentage among other classes, which is difficult to
classify for all models.

Figure 8 shows the FHI-Unet model implementation sys-
tem on Nvidia Xavier NX edge Al platform for heteroge-
nous image semantic segmentation. We have connected the
Nvidia Xavier NX devise with our desktop computer for
system implementation. The RGB-Thermal image dataset
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FIGURE 9. The FPS and mloU performance for semantic segmentation on
Nvidia Xavier NX Edge Al platform.

“multi-spectral semantic segmentation dataset” introduced
by MFNet model was used for this experiment. Table 4 illus-
trated the details results of proposed FHI-Unet performance,
which achieved best FPS of 83.39 and mloU of 43.59.

Figure 9 illustrates the performance of the FuseNet,
MFNet, the SegNet (4C), the Unet (4C), and the proposed
FHI-Unet model on the Nvidia Xavier NX Edge Al plat-
form in terms of mloU and inference speed comparison. The
FuseNet has the lowest mloU and inference speeds. Alter-
natively, the proposed FHI-Unet image semantic segmen-
tation model has state-of-the-art performance than the rest
of models.

Table 5 illustrates the performance (flops, mAcc, mloU,
and FPS) comparison of Unet (4C) and proposed FHI-Unet
on Nvidia Xaviar XN edge Al platform. The proposed
FHI-Unet model has less computation and higher mAcc and
mloU value than Unet (4C) model. Furthermore, the proposed
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TABLE 5. Model size and inference speed performance compares on GPU
and edge Al platform.

Model Flops Average FPS
(G) Acc IoU
Unet (4C) 189.11 47.44 41.47 63.48
Proposed 11.52 50.84 43.60 83.39
FHI-Unet

FHI-Unet achieved better inference speed on edge Al plat-
form, which is state-of -the art performance.

To evaluate the segmentation results of different models,
we considered four RGB images and four Thermal images
as inputs with night views and daytimes perspectives which
shown in first and second rows at Figure 10. In addition, the
third row demonstrates the ground truth of RGBT images
fusion results. The FuseNet, the MFNet, the SegNet (4C), the
Unet, and the proposed FHI-Unet models’ performance are
evaluated based on segmentation results in the columns (a),
(b), (¢), and (d). The wrong prediction and failure segmenta-
tion are marked by red circle of those columns.

The columns (a) and (b) represent the segmentation
results of night view images, besides columns (c) and (d) sig-
nify the segmentation results of daytime images. The
FuseNet did some wrong prediction and segmentation in the
column (a) and (d). Besides that, the model is unable to pre-
dict and segmentation of the bicycles at column (c). Similarly,
the MFNet also did wrong prediction and segmentation for
example, the model is unable to predict person and full car
segmentation at the column (b). In addition, the model did
some wrong prediction and segmentation in the column (a)
and (d) for car and person segmentation. The SegNet (4C)
model has missed some objects in the columns (a), (b), and
(d) while doing the segmentation. The color temperature of
the bicycle and the background appear to be similar in the
RGB and Thermal image at the column (c); as a result, the
Unet (4C) model is incapable for bicycle segmentation that
shown in the column (c). In addition, the U-net (4C) model
did some wrong segmentation in the column (a) and (d).
However, the proposed FHI-Unet model has excellent per-
formance for the heterogenous image semantic segmentation
similar as ground truth objects, whereas the other models
couldn’t dose the proper way.

The FuseNet has highest accuracy result, but still did some
wrong prediction and segmentation. Whereas the U-Net (4C)
model has better segmentation performance than the FuseNet,
MFNet and SegNet (4C). Considering to the object prediction
and segmentation, the proposed FHI-Unet model achieved
better performance than the Unet (4C). Whereases, the Unet
(4C) model has adopted to design the proposed FHI-Unet
model and an extended form of that model. However, the
segmentation result shows that the proposed FHI-Unet model
has better performance than other models. Furthermore, the
proposed FHI-Unet model achieved second-higher accuracy,
best inference speed, intersection over union as well as object
segmentation on Nvidia Xavier NX platform compares to
other models.
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FIGURE 10. The Visual segmentation results comparisons of the proposed FHI-Unet with different models. The
first and second rows represent the RGB and Thermal images. Third row denotes ground truth of the RGBT
images. The column (a) and (b) shows the performance of night views. The column (c) and (d) demonstrations
the performance of daytime images respectively. The wrong detection and missing information are marked by
red circle of each model.

VOLUME 10, 2022



M.-H. Sheu et al.: FHI-Unet: Faster Heterogeneous Images Semantic Segmentation Design

IEEE Access

Performance on Nvidia Xavier NX platform

EmAcc EmloU uFPS
91 83.39
81
7 63.48
61 535 5189 50.84
5 5. g
o 39.81 B164213 4147 36
41 34.85 34.96
| 32472965 '

31
2
; - -

1

FuseNet MFNet SegNet (4) Unet 4C)  Proposed FHI-Unet
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Figure 11 illustrates the performance of proposed
FHI-Unet and other models on the Nvidia Xavier NX plat-
form. The FuseNet has better accuracy performance than the
MENet, and Unet while the SegNet has the lowest accuracy,
whereas the proposed FHI-Unet achieved the second-highest
accuracy. Furthermore, the proposed FHI-Unet displays best
inference speed and highest mloU among those approaches.
On the other hand, the FuseNet and MFNet have the slowest
inference speeds. The SegNet has the smallest mloU com-
pared to other models. Finally, in terms of FPS, mloU, and
mAcc, the proposed FHI-Unet model beats the state-of-the-
art performance on the Nvidia Xavier NX platform.

VII. DISCUSSION

The Pytorch 1.6 framework has been employed for proposed
FHI-Unet which is implemented on Nvidia Xavier NX edge
Al platform. For considering the higher speed on real-time
applications, the proposed FHI-Unet model has less com-
putation and higher inference speed. The proposed model
accomplishes edge computing for heterogeneous image seg-
mentation and reduced computational complexity. We intend
RGB and Thermal images for daytime and nighttime as train-
ing datasets which improve the FPS performance. However,
the background data makes up most of the total pixels in
the dataset, and the number of object category was imbal-
anced. The frequency of each item category was not modified
individually for each image as a result the accuracy was bit
low. For improving the accuracy rate, need to increase the
amount of training data and balances the number of training
categories in practice. In future, we may increase the convo-
lutional layer to higher accuracy performance of the proposed
FHI-Unet semantic segmentation model.

VIil. CONCLUSION

The proposed FHI-Unet semantic segmentation model for
visual and thermal image feature fusion minimizes the com-
putational complexity and speeds up the real-time operation.
A multi-hybrid-autoencoder is included with architecture for
individual RGB and Thermal image input feature extrac-
tion and down sampling operations. Later, another feature
fusion encoder combines the 4-channel feature maps for
further process. An efficient decoder is utilized to recover
the feature map to compensate of feature loss during up
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sampling, which reduces the number of parameters and
computational complexity. The convolutional layers were
generated using the Leaky Relu activation function to avoid
back-propagation errors. The experimental result shows the
proposed FHI-Unet model has the highest mean Intersection
over Union value (43.39) and inference speed of 83.39 FPS
for the multi-spectral semantic segmentation dataset. The
proposed FHI-Unet model could be a suitable approach for
real-time application on edge Al platforms.
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