
Received January 11, 2022, accepted January 31, 2022, date of publication February 14, 2022, date of current version March 4, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3151346

A Comparative Study of Dispatching Rule
Representations in Evolutionary Algorithms for
the Dynamic Unrelated Machines Environment
LUCIJA PLANINIĆ1, (Member, IEEE), HRVOJE BACKOVIĆ2,
MARKO URASEVIĆ 1, (Member, IEEE), AND
DOMAGOJ JAKOBOVIĆ1, (Senior Member, IEEE)
1Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia
2Visage Technologies, 10000 Zagreb, Croatia

Corresponding author: Marko urasević (marko.durasevic@fer.hr)

This work was supported in part by the Croatian Science Foundation under Project IP-2019-04-4333.

ABSTRACT Dispatching rules are most commonly used to solve scheduling problems under dynamic
conditions. Since designing new dispatching rules is a time-consuming process, it can be automated by using
variousmachine learning and evolutionary computationmethods. In previous research, genetic programming
has been the most commonly used method for automatically designing new dispatching rules. However,
there are many other evolutionary methods that use representations other than genetic programming that can
be used to create dispatching rules. Some, such as gene expression programming, have already been used
successfully, while others, such as Cartesian genetic programming or grammatical evolution, have not yet
been used to generate dispatching rules. In this paper, six different methods (genetic programming, gene
expression programming, Cartesian genetic programming, grammatical evolution, stack representation, and
analytic programming) for generating dispatching rules for the unrelated machines environment are tested
and the results for various scheduling criteria are analysed. It is also analysed how different individual
sizes in the tested methods affect the performance and average size of the generated dispatching rules. The
results show that, with the exception of grammatical evolution and analytic programming, all tested methods
perform quite similarly, with results depending on the selected scheduling criterion. The results also show
that Cartesian genetic programming is the most resistant to the occurrence of bloat and evolves dispatching
rules with the smallest average size.

INDEX TERMS Unrelated machines environment, scheduling, solution representations, dispatching rules.

I. INTRODUCTION
Scheduling can be defined as the process of assigning a set
of available jobs to a given set of limited resources in a way
that satisfies some user-defined constraints and optimises
one or more scheduling criteria [1]. Since most scheduling
problems are NP-hard, various metaheuristic algorithms are
used to solve scheduling problems [2]. Since these methods
search the solution space for a concrete problem, they require
that all information of the scheduling problem is available
before the system is started. This means that such methods
can only be applied for scheduling problems under static
conditions, where it is known in advance when certain jobs
will be released into the system and what their properties will

The associate editor coordinating the review of this manuscript and

approving it for publication was Jamshid Aghaei .

be. However, in many situations such information is not avail-
able. This means that often it is not known in advance when
new jobs will arrive into the system. Therefore, scheduling
must be done under dynamic conditions, simultaneously with
the execution of the system. Since metaheuristic methods
cannot be used to solve such scheduling problems, many
problem-specific heuristics, called dispatching rules, have
been defined in the literature [3], [4].

Dispatching rules (DRs) create the schedule incrementally,
which means that each time a job needs to be scheduled
on a machine, the DR determines which of the available
jobs should be scheduled on which machine. To determine
which of the available jobs should be scheduled next, DRs
use certain job and system properties to assign a priority
to each job, and then select the job with the best priority
value. For example, a DR could schedule jobs in the order

22886
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-8732-4769
https://orcid.org/0000-0002-5254-9148


L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

in which they arrive, meaning that jobs which were released
earlier in the system have a higher priority for scheduling.
It is important to emphasise that when DRs calculate prior-
ities for jobs, they only use the information that is currently
available to them and only calculate priorities for jobs that
have already been released into the system. For this reason,
and because their execution time is substantially smaller than
that of metaheuristic methods, DRs are usually the method
of choice when solving scheduling problems under dynamic
conditions. An important drawback of using DRs is that a
single DR does not perform well for all possible problems
and scheduling criteria. This would mean that new DRs have
to be developed when no suitable DR exists for a particular
criterion or scheduling condition. Unfortunately, designing
new DRs is a lengthy and time-consuming process that usu-
ally needs to be performed by an expert for the specific
domain.

To solve the previously described problem, in the last
twenty years, a lot of research concerned with schedul-
ing problems has focused on the automatic design of new
DRs [5], [6]. Out of the many machine learning and evolu-
tionary computation approaches, genetic programming (GP)
is the most commonly used approach for generating new
DRs. Dimopoulos and Zalzala [7], [8] were among the first
to use GP to generate new DRs for the single machine
environment, while Miyashita was the first to generate new
DRs for the job shop environment [9]. The next several
studies mostly focused on the application of GP in other
machine environments, such as the flexible job shop [10]
or the parallel uniform machines environment [11]. Sev-
eral other studies focused on extending the GP method
in different ways, such as adapting GP to detect over-
loaded machines in the system [12], or generating DRs
by GP for problems with additional constraints such as
breakdowns [13], batch scheduling [14], setup times and
precedence constraints [15], or by using a variety of con-
straints [16]. Another researched topic is the generation
of DRs for simultaneous optimization of multiple criteria,
where different multi-objective and many-objective algo-
rithms have been tested for optimising different combina-
tions of scheduling criteria [17]–[20]. GP was also used to
design due date assignment rules (DDARs) that approximate
the due dates of jobs which arrive into the system. These
DDARs were designed either alone [21], [22] or in combi-
nation with DRs, which required the development of new
procedures for the simultaneous development of DDARs and
DRs [23], [24]. The Order and Acceptance Scheduling (OAS)
problem, which involves determiningwhich jobs are accepted
for scheduling in addition to scheduling jobs on specific
machines, has also been studied in detail, and it has been
shown that GP produces good DRs for this type of schedul-
ing problem as well [25]–[29]. Recent work has also
shifted the focus to some less studied scheduling prob-
lems such as the resource-constrained project scheduling
problem [30], [31] and the single machine problem with
variable capacity [32], [33].

To further improve the performance of the generated DRs,
several studies analysed how different ensemble learning
methods can be used to create ensembles of DRs which can
perform better than a single DR [34]–[38]. Other studies
focused on scheduling with uncertainties where some prob-
lem parameters were nondeterministic [39]–[41], or on apply-
ing surrogate-assisted GP to reduce the computational cost of
evolving new DRs [42]–[44]. In [45], an evolution process
visualisation framework was proposed to better understand
the process of evolving DRs. In [46], the authors propose a
new strategy for selecting subtrees in crossover and mutation
operators. In it, the probability of selecting the subtree is
based on its importance and operator types. The selection
of appropriate problem instances for the evolution of DRs
was studied in [47]. The study proposes an active sampling
method that selects good instances during the evolution pro-
cess. In [48], different scheduling generation schemes were
compared to improve the performance of the generated DR,
while in [49], the authors focused on adapting the generated
DRs for static scheduling conditions. In [50], [51], a multitask
GP model is used to generate heuristics for a broader range
of problems to generate more general DRs. In [52], auto-
matically designed DRs were used to generate the initial
population of a genetic algorithm, which led to significantly
better results compared to randomly generated populations
or those initialised by manually designed DRs. In addition
to GP, gene expression programming (GEP) also received
some attention for generating newDRs [53]–[56], and usually
achieved results as good as GP.

Since GP is mostly used in the generation of new DRs,
several studies dealt with the comparison of different GP
representations or with the comparison of GP with other
methods for the automatic design of newDRs. One such study
was conducted in [57], in which the authors compared three
different representations of GP for generating new DRs. The
first representation used certain job and system properties to
determinewhich of the existingmanually definedDRs should
be applied for the current system conditions, making it quite
similar to a decision tree. The second representation generates
an entirely new DR using arithmetic expressions. Finally, the
third representation is a combination of the previous two,
as it allows additional new DRs to be designed and selected
in place of the manually designed DRs. In [58], the authors
compared DRs generated by GP with those generated by
artificial neural networks (ANNs) and a linear representation
defined as a weighted linear sum of several job and system
attributes. The results show that the linear representation
achieved the worst results, while GP and ANNs achieved
quite similar results. However, the main advantage of GP
over ANNs is that it develops DRs that are easier to interpret
since it evolved them in the form of arithmetic expressions.
In [56], the authors compared DRs generated by GP, GEP,
iterative DRs (IDRs) [59] and dimensionally aware GP [60].
Their study showed that, apart from IDRs which are used
under static scheduling conditions, there is usually no differ-
ence between the other three methods. Therefore, it mainly

VOLUME 10, 2022 22887



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

depends on the users which of the tested methods they would
apply.

From the literature review described earlier, it is evident
that GP is mostly used for generating new DRs, while GEP
is used only in some cases. However, no previous study has
analysed in depth the impact of the different solution rep-
resentations used by the different evolutionary computation
methods on the quality of the generated DRs. Therefore, the
objective of this paper is to compare several GP methods
with different solution representations and determine which
of these methods achieves the best performance on several
scheduling criteria. In addition to the standard GP and GEP
methods, both of which have been previously used to gen-
erate new DRs, this study additionally uses Cartesian GP
(CGP), grammatical evolution (GE), stack representation,
and analytic programming (AP) to generate new DRs for the
unrelated machines environment. In addition to testing the
performance of the six aforementioned methods on several
scheduling criteria, this paper also examines the complexity
of the expressions produced by the various methods to deter-
mine which methods produce the least complex expressions.
The main contributions of this paper can be summarised in
the following three points:

1) The first application of Cartesian GP, grammatical evo-
lution, stack representation, and analytic programming
for evolving new DRs.

2) A comparison of six methods for automatic evolu-
tion of new DRs, which complements several previous
studies.

3) Analysis of the complexity of expressions generated by
the six evolutionary computation methods.

The remainder of the paper is organised as follows.
Section II provides a brief introduction to scheduling prob-
lems, a description of the solution representations used by
the tested evolutionary computation methods, and describes
how GP can be used to automatically generate new DRs.
Section III describes the experimental design of the problem
sets and additionally outlines the chosen parameter values for
the different methods. The experimental results obtained by
the six selected methods on several scheduling criteria are
presented in section IV. Section V provides further analysis
of the obtained results, mainly in terms of the average size
of the generated DRs. Section VI provides a brief conclusion
and identifies opportunities for future work.

II. BACKGROUND AND METHODOLOGY
In this section, the background of scheduling problems and
methodology are described. All acronyms used in this paper
are listed in Table 1 and notations in Table 2.

A. UNRELATED MACHINES ENVIRONMENT
The unrelated machines environment is defined as a machine
environment consisting of n jobs andmmachines. Each of the
n jobs must be scheduled on one of them available machines.
Once a job is scheduled on a particular machine, it must be
executed until it is finished, i.e., no preemption is allowed.

TABLE 1. A list of acronyms.

Additionally, each machine can only execute one job at any
given time. Thus, if all machines are busy, it is necessary to
wait until at least one machine becomes available, so that
another job can be scheduled. The peculiarity of this envi-
ronment is that each job j has a different processing time for
each machine i, which means that a different processing time
pij is defined for each job-machine pair. Since jobs become
available during the execution of the system, the time at which
jobs become available (rj) must also be defined. Depending
on which scheduling criteria is optimised, two additional
properties can be defined for each job: the due date (dj) and
the weight (wj). The due date indicates the time by which the
job should finish its execution, otherwise a certain penalty
will be imposed. On the other hand, the weight specifies the
importance of jobs, which indicates that certain jobs should
have a higher priority of being scheduled. Finally, Cj is used
to denote the time when job j has finished its execution in the
constructed schedule.

Although several scheduling criteria are defined in the lit-
erature [1], this study will focus on optimising the following
four scheduling criteria:
• Makespan (Cmax) - is defined as the largest completion
time of all jobs:

Cmax = max
j
(Cj). (1)

• Total flowtime(Ft) - denotes the sum of flowtimes of all
jobs:

Ft =
∑
j

(Cj − rj), (2)

• Weighted number of tardy jobs (Nwt) - denotes the
weighted sum of all tardy jobs (the formula is written
using the Iverson notation in which the square brackets
return 1 if the condition in the square brackets holds,
otherwise it returns 0):

Nwt =
∑
j

wj[Cj > dj], (3)

22888 VOLUME 10, 2022



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

TABLE 2. A list of notations.

• Total weighted tardiness (Twt) - denotes the weighted
sum of tardiness values of all jobs:

Twt =
∑
j

wjmax(Cj − dj, 0). (4)

The final thing which needs to be specified about schedul-
ing problems are the conditions under which the scheduling
process is performed. In this study, scheduling is performed
under dynamic conditions, which means that no information
about the future of the system is known in advance. Thus, it is
not known when jobs will be released into the system, and
until they are released, the values of all other job properties
are also unknown. This means that the schedule cannot be
created before the system is executed because the necessary
information is not available. Rather, the schedule must be
created in parallel with the execution of the system.

B. SOLUTION REPRESENTATIONS FOR GP
This section contains a brief description of the representations
used by the six evolutionary computation methods being
compared.

The tree representation of solutions is the most commonly
used representation in GP. The inner nodes of the tree rep-
resent function nodes that take the form of various arith-
metic, Boolean, or other kinds of operations. The leaf nodes,
on the other hand, are always terminal nodes representing
certain variables or constants. The size of the expression is
usually limited by a parameter that specifies the maximum
depth of the tree. The representation is quite easy to interpret
and allows GP to evolve expressions of various complexity.

However, the representation usually suffers from a serious
problem called bloat [61]. Bloat represents the uncontrolled
growth of expression trees which occurs during evolution,
although this growth does not improve their performance. The
tree-based GP is very prone to this problem, since using the
maximum depth of the trees makes it difficult to limit the size
of the expressions precisely. Thus, selecting too large a value
for this parameter will result in solutions that are huge and
complex, while if too small a tree depth is chosen GP will not
be able to generate expressions of the required complexity.

GEP [62] uses an alternative representation that stores the
expression not in the form of a tree, but in a linear form,
similar to what genetic algorithms do. In this way, GEP
attempts to combine the simplicity of the representation and
operators from genetic algorithms with the ability to evolve
expressions. The individuals in GEP are of constant size,
however, the part of the individual used to form the expression
depends on its structure. Each GEP individual consists of one
or more genes, where each gene consists of a constant number
of nodes and represents an independent expression tree. Each
gene can be divided into two parts, the head and the tail of
the gene. The head of the gene represents the h initial nodes
of the gene, where h is a user-specified parameter. This part
of the gene can consist of any function and terminal nodes.
The remaining nodes belong to the tail of the gene, whose
size is calculated as t = h ∗ (nmax − 1) + 1, where t is the
size of the tail and nmax is the maximum number of arguments
of all nodes in the function set. The tail of the gene consists
only of terminal nodes, ensuring that the gene consists of
enough terminal nodes to be decoded into a syntactically

VOLUME 10, 2022 22889



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

correct expression. Each gene is decoded into an expression
tree, however, depending on its structure, not all nodes are
used to create an expression. Finally, all genes are combined
using linking nodes, which are usually manually defined
function nodes.

CGP [63] uses a graph-based representation to represent
solutions, although the individuals are represented as a list
of integer numbers which describe the structure of the graph.
The representation uses three parameters, namely the number
of columns (nc), number of rows (nr ), and levels-back (l).
The first two parameters define the number of nodes in the
representation, which are arranged in a grid. The levels-back
parameter determines which nodes from previous columns
can serve as input for the current node. If levels-back is set
to 1, only the nodes from the previous column can be used as
input for the current node. Setting levels-back to nc allows
for the current node to connect to any of the nodes in the
previous columns. It is often suggested to use a large number
of columns and only one row, with levels-back set to the
number of columns. For each node, it must be defined which
function it represents and which nodes serve as its input.
Since each node must be able to represent any of the available
functions, the number of inputs is equal to the number of
inputs of the function with the largest number of operands.
If the node represents a function with a smaller number of
operands, the additional inputs are ignored. The inputs of
a node are denoted by integer numbers which represent the
indices of the nodes that act as inputs. If there are ni terminal
nodes, then the indices [0, ni−1 > are used to denote terminal
nodes, while the indices [ni, ni + nc ∗ nr > are used to
denote the outputs of the nodes in the grid. The outputs are
encoded as additional numbers in the genotype that represent
the indices of the nodes whose output is used as the program
output.

GE [64] also represents the solution as a linear array of
numbers. To decode this array of numbers into a meaningful
expression, a predefined grammar is used. The grammar is
defined with the tuple < T ,N ,P, S >, where T denotes the
terminal set, N the non-terminal set, P the set of production
rules, and S the start symbol from N . The goal is to gener-
ate an expression which consists only of terminal symbols.
To achieve this, the production rules are usually applied in
a way that they replace one non-terminal symbol with one
or more terminal and/or non-terminal symbols. Non-terminal
symbols in the expression are replaced from left to right
using production rules, until there are no more non-terminal
symbols in the expression. Since multiple production rules
can be defined for each non-terminal symbol, the integer
number determines which of the available production rules
will be used. The benefits of this representation are that the
genotype is quite simple and that no new operators need to
be defined for this representation, but rather operators for the
integer representation can be reused.

The stack representation [65] of solutions is defined by
three parameters: the function set, the terminal set, and the
maximum individual size. The terminal and function sets

are the same as for the tree representation. They contain all
the functions, variables, and constants that can make up an
individual. The functions and terminals that compose an indi-
vidual are stored in a linear form. To evaluate the individual,
we must generate the mathematical expression that the indi-
vidual represents. This is done by going through the elements
of the individual. Each time a terminal is encountered, it is
pushed onto the stack. When a function is encountered, the
size of the stack is compared to the number of arguments of
the function. If the number of terminals on the stack is greater
than or equal to the number of arguments of the encountered
function, the required number of elements are popped from
the stack and the function is executed. The result obtained by
executing the function is then pushed onto the stack. If the
number of elements on the stack is less than the number of
arguments, the function is simply ignored and the evaluation
proceeds to the next element in the individual.

Analytic Programming (AP) [66] represents each individ-
ual as a linear array of floating point values from a range
defined by the lower bound and upper bound parameters.
An important component of AP is the general function set
(GFS), which is composed of functions and terminals. The
GFS is further divided into subsets based on the number of
arguments of functions.When decoding an AP individual, the
first step is to convert the floating point values into discrete
indices, which represent indices of functions in the GFS.
To do this, the original value is converted to a value within
the range from 0 to the number of primitives in the GFS.
A mathematical expression is then formed by replacing the
indices with the functions in the GFS at the corresponding
index. The described structure of the general function set is
used to avoid the formation of invalid mathematical expres-
sions when replacing indices with elements from the GFS.
If the function that is supposed to replace an index has more
arguments than there are elements left to the end of the
individual, a function with fewer arguments is chosen. This
ensures that there are enough elements after the function that
can be used as its arguments.

C. GENERATING DRs WITH GP
DRs which will be generated by the previous solution repre-
sentations can be divided into two parts, the schedule gen-
eration scheme (SGS) and the priority function (PF). The
SGS defines how the entire schedule is created and which job
should be scheduled on which machine. To determine which
job should be scheduled on which machine, the SGS uses a
priority function that ranks all job-machine pairs, and then
selects the best pair and schedules the job on the selected
machine. The benefit of such a separation is that a general
SGS can be defined for a variety of problems, while the
priority function that fits the specific problem or optimiza-
tion criterion can be selected and used with the SGS. For
this reason, the SGS is defined manually, while the PFs are
generated using one of the previously described GP methods.
Algorithm 1 represents the SGS used to generate schedules
in the unrelated machines environment. The intuition behind

22890 VOLUME 10, 2022



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

this SGS is that each time a job is released or a machine
becomes available, the PF is used to determine the priorities
for scheduling each of the available jobs on each of the
machines, including those that are currently executing other
jobs. Based on the calculated priorities, the most appropriate
machine for each job is determined, and then all jobs for
which the most appropriate machine is available are sched-
uled in order of their priorities. By calculating priorities even
for machines that are busy, it is possible to include idle times
into the schedule, as this allows for situations where the best
machines may be busy for all jobs, and therefore no job is
scheduled on other available machines, but the scheduling
decision is postponed to a later time.

Algorithm 1 Schedule Generation Scheme Used by DRs
Generated by GP

1: while unscheduled jobs are available do
2: Wait until at least one job and one machine are avail-

able.
3: for all available jobs and all machines do
4: Obtain the priority πij of scheduling job j on

machine i
5: end for
6: for all available jobs do
7: Determine the best machine (the one for which

the best value of priority πij is achieved).
8: end for
9: while jobs whose best machine is available exist do

10: Determine the best priority of all such jobs
11: Schedule the job with the best priority on the

corresponding machine
12: end while
13: end while

As mentioned earlier, the SGS uses a PF to determine
the priority of scheduling a job on a particular machine.
Since it is difficult to design these PFs manually, they are
generated by the evolutionary computation methods defined
earlier. To evolve new PFs, it is mandatory to define ele-
ments which will be used for constructing new PFs. Table 3
represents the set of terminal and function nodes used to
construct new DRs. The first nine nodes in the table repre-
sent terminal nodes which provide certain information about
jobs and the current status of the system. The time variable
used in the definitions of some nodes represents the current
system time. Additionally, it must be emphasised that the
dd , SL, and w terminal nodes are only used in the devel-
opment of DRs for optimising the due date related criteria
(Twt andNwt), since the information provided by these nodes
is not meaningful for the other two optimization criteria.
The last five nodes in the table represent the function nodes
used by the methods to evolve expressions. Although many
other function nodes can be used, a previous study has shown
that GP produces the best results for this set of function
nodes [56].

III. EXPERIMENTAL SETUP
To train and test the PFs, two independent problem sets
are used. Both sets consist of 60 problem instances, each
containing between 3 and 10 machines and between 10 and
100 jobs. The total fitness of an individual is calculated as
the sum of the fitness values for each instance in the problem
set. Since problems of different sizes have different values for
certain criteria, all fitness values were normalised to remove
dependence on the size of the problem instance. For more
details on the problem set generation process, see [56].

In addition to defining the problem instances, it is also
necessary to obtain the optimal parameters for each of the
methods, since the quality of the obtained solutions strongly
depends on the parameters used for their generation. There-
fore, for each of the previous methods, the parameters were
optimised for the Twt criterion. They were optimised in such
a way that all parameters were fixed at certain predefined
values, chosen as a rule of thumb. These values are given in
Table 4 in the initial values row. Then, each parameter was
tested with several different values, also given in Table 4,
while the others were fixed either at the initial value or at
the best value found after optimization. For each param-
eter combination, 30 experiments were performed and the
parameter value that gave the best average value of these
30 executions was selected. Thirty runs were performed to
obtain statistically accurate results. The parameters that were
optimised, the values tested, and the best values obtained after
the optimization procedure are shown in Table 4. For the
CGP, one row was used with nr columns and a levels back
value equal to nr . These parameter values were suggested by
the author of the approach for problems where an arbitrary
directed graph does not need to be implemented [67]. The
smaller population values for CGP were intentionally tested,
as it is usually suggested to use CGP with smaller population
values. The final parameter values for all methods are listed in
Table 5. These parameter values will also be used later in the
optimization of the remaining three criteria, since optimising
the parameters for each criterion individually would be too
time consuming.

To ensure that the conclusions drawn based on the obtained
results were meaningful, all experiments were performed at
least 30 times and the best individual from each run was
saved. Based on these 30 individuals, the minimum, median,
and maximum values for each experiment were calculated
and displayed. In addition, to determine if certain results
were better than others, the Mann-Whitney statistical test
was used to determine if there was a statistically significant
difference between the different experiments.

IV. RESULTS
This section presents the results obtained by the tested meth-
ods on the four selected scheduling criteria. Table 6 presents
the results obtained by the selected evolutionary computation
methods for the optimization of the four scheduling criteria.
Additionally, Figure 1 presents the results in the form of
boxplots to better illustrate the distribution of the obtained

VOLUME 10, 2022 22891



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

TABLE 3. Set of primitive nodes used for designing new DRs.

solutions. From the results, it is immediately apparent that no
single method achieved the best results for all four scheduling
criteria.

For the Twt criterion, the best results were obtained by
GP. Although GEP performed worse to a small extent, there
was no significant difference between its results and those of
GP. However, it can be seen from the boxplot representation
that GP achieved less scattered results than GEP, making
it slightly more favourable. The Stack representation also
performed slightly worse than GP and GEP when compar-
ing by the median. However, it achieved the lowest overall
minimum value. According to the box plot, the results were
slightly more dispersed than GP and GEP, but less than GE
or AP. CGP achieved results significantly worse than GP,
but there was no significant difference between it and GEP.
AP obtained results which are only better than CGP. The
dispersion of the obtained results, which can be seen on
the boxplot, is larger than most of the other tested methods.
Finally, GE obtained the worst results among all six methods,
which can also be seen from the fact that this method usually
obtains quite dispersed results.

In the case of the Nwt criterion, the situation is a bit more
interesting. For this criterion, the best results were again
obtained by GP, GEP and Stack, with GEP obtaining a better
median value, while Stack obtained the best overall minimum
and maximum values. However, there is no significant dif-
ference between the results of these methods. CGP, GE, and
AP obtained results significantly worse than the other two
methods, but there was no significant difference between the
results of CGP and GE, and CGP and AP. On the other hand,
the results for AP were significantly better than the results
achieved by GE.

For the Ft criterion, the best results were obtained by
Stack, GEP and CGP. The statistical tests showed that there
was no significant difference between the results of these
three methods. For this criterion, Stack and GEP obtained
results that were even significantly better than those of GP.
Unfortunately, the results of GE and AP were significantly
worse than those of the other three methods. GE obtained
scattered results, and many evolved DRs performed poorly.
In contrast, AP obtained the least dispersed results, but all
of them performed poorly. Unfortunately, it is difficult to
determine the reason for this in this criterion. One possibility
is that the individual sizes chosen for these two methods were
inappropriate for this criterion and that better performance
could be obtained with a different individual size.

Finally, for the Cmax criterion, it is most difficult to deter-
mine which of the tested methods performed the best. GEP
achieved the best overall median value. However, both CGP
and GE were able to develop a DR that performed better
than any of the rules generated by GEP. Although GP also
achieved a better median value than CGP and GE, the best
DR found by GP was inferior to the best DRs generated by
the other three methods. The statistical tests show that GP
achieved significantly worse results than GEP, while there
was no statistically significant difference between the results
of GEP and CGP. Both AP and Stack achieved results that
were significantly worse compared to all other methods for
this criterion and their results were less dispersed than the
other methods.

In addition to observing the performance of the different
methods, it is also interesting to analyse the size of the
decoded expressions of the evolved PFs. Table 7 gives an
overview of the average sizes of the PFs generated for the

22892 VOLUME 10, 2022



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

TABLE 4. Parameter values used for optimisation.

four scheduling criteria. The first thing to notice is that
the different methods evolved expressions of very different
sizes. GP and AP develop the largest expressions, typically
comprising about 40 elements. GEP, on the other hand,
evolved somewhat simpler expressions, usually with a size
of about 30 elements. Stack evolved expressions that typ-
ically consisted of about 25 elements. The remaining two
methods evolved the smallest expressions, consisting of about
18 nodes. It is obvious that the different methods have a
preference for evolving expressions of different sizes. If the
size of the evolved expressions is also of importance, it might
even make sense to use methods which have a preference
to evolve smaller expressions, such as GEP, CGP, and GE,
especially since these methods have even been shown to
achieve the same or even slightly better performance than GP,
e.g., for the Ft and Cmax criteria. The table also shows that
for certain criteria all methods tend to evolve slightly smaller
expressions. In addition, it can be seen that for the Nwt and
Cmax criteria, the methods generated expressions that were,
on average, several elements smaller than those generated for
the Twt and Ft criteria. These results could potentially mean
that it might be more beneficial to evolve PFs of smaller sizes
for these two criteria.

V. FURTHER ANALYSIS
A. COMPARISON OF DR SIZES FOR DIFFERENT
MAXIMUM INDIVIDUAL SIZES
In this section, we will focus on further analysing how the
chosen maximum individual size affects the average size and

fitness of the DRs generated by the different evolutionary
computation methods. Therefore, each of the methods will
additionally be tested with several different maximum indi-
vidual sizes.

Table 8 presents the results obtained for the different max-
imum tree depths used with GP. In addition to the average
sizes of the evolved DRs, the table also contains the theo-
retical maximum size of an expression for the given depth.
From the table, it can be seen that it is quite difficult to
precisely control the size of the generated individual using
the tree depth parameter. This can be seen from the fact
that the maximum expression size grows exponentially with
the increase of the tree depth. Naturally, this also affects
the average size of the evolved PFs, which is only 13 for
the smallest tested depth, while for the largest tested depth
the PFs consisted of up to 440 elements on average. It is
obvious that the tree size increases significantly with the
depth of the tree. Therefore, it can be concluded that with the
tree depth parameter it is not easy to control the size of the
evolved PFs.

It is also interesting to observe how the different tree depths
affect the quality of the generated DRs. Figure 2 shows the
boxplot representation of the obtained results. The smallest
tested depth produced quite poor results, with most DRs
achieving similar performance. GP evolved DRs with the best
quality when tree depth was set to 5, which can be seen
from the fact that GP achieved the best median value at this
tree depth value. As the depth increases, the results begin to
deteriorate, as can be seen by the increasing median value of

VOLUME 10, 2022 22893



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

TABLE 5. Final parameter values.

TABLE 6. Results of the various GP methods on four scheduling criteria.

the results. In addition, as the depth increases, themethod also
produced more widely dispersed results, as can be seen by the
many outlier values that were obtained. It is also interesting
to note that, for larger depths, GP was able to obtain PFs
which performed better than any of the PFs generated when
using the tree depth of 5. Thus, by using larger tree depths,
GP seems to have a greater possibility of evolving PFs with

the absolute best performance. However, these rules were
generally quite large, so it would be difficult to interpret them
and extract knowledge from them.

Table 9 presents the influence of the number of genes
and the head size on the average size of the expressions
generated by GEP. In addition to the average expression size
of the evolved PFs, the table also contains the maximum

22894 VOLUME 10, 2022



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

FIGURE 1. Box plot representation of results for the different GP representations.

TABLE 7. Average expression sizes of evolved PFs.

expression size that can be generated by the given parameter
value combination. As can be seen, the parameters in GEP
allow much finer control over the size of the expressions than
was the case with GP. GEP typically evolved expressions
with an average size that was about 60% to 70% of the maxi-
mum expression size that can be evolved for the given param-
eter values. For three genes with head size six, GEP evolved
PFs with the smallest average size of about 30 elements.
On the other hand, the largest PFs with an average size of

TABLE 8. Influence of the tree depth in GP.

about 60 elements were generated when using five genes of
head size 10.

The performance of PFs generated by using different
parameter values for GEP is shown in Figure 3, where the
labels denote the number of genes in the individual (denoted
by ‘‘g’’) and the head size of each gene (denoted by ‘‘h’’).
Unlike when GP was used, this time it can be observed that
the results obtained for different sizes were mostly similar.
This is to be expected since the difference in sizes between the

VOLUME 10, 2022 22895



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

FIGURE 2. Results for different maximum tree depths of GP.

different parameter combinations were not as drastic as when
using GP. The best median values were obtained when using
individuals consisting of three genes and for smaller head
sizes. The best result obtained by GEP was achieved when
using the parameter combination that leads to the smallest
average size of individuals. It seems that GEP is more suitable
for finding good PFs of smaller sizes than GP. It is interesting
to observe that in addition to the size of the individual, the
structure of the individual also plays an important role. For
example, GEP developed PFs with the same average size both
when using two genes of head size ten and three genes of
head size six. However, PFs which were evolved by GEP
with three genes of head size six achieved a better median
value. Thus, although both cases result in the same average
expression sizes, better performance is achieved when genes
with smaller sizes are used.

Table 10 shows the effect of different individual sizes
of CGP on the average sizes of generated PFs and their
quality. The table shows a rather interesting phenomenon
for CGP, namely that although the maximum size of the
individual increases, the average size of the generated PFs
is only slightly increased. For example, in the case of the
smallest tested individual size, CGP evolved expressions
that consisted of only 14 nodes on average, while for the
largest individual size, CGP generated PFs that consisted of
about 24 elements on average. CGP did, on several occa-
sions, evolve DRs of quite large sizes. However, these PFs
generally did not perform very well on the test set. Thus,
it seems that CGP is more focused on developing PFs with
a smaller number of elements. The reason for this could be
that the maximum value for the levels-back parameter was
used, which means that CGP is able to evolve individuals
where a large portion of the nodes are simply skipped and
are thus inactive. In this way, CGP can easily evolve PFs of
the preferred size.

Figure 4 shows the boxplot representing the results for
different individual sizes when using CGP. The figure shows

TABLE 9. Influence of the number of genes and head size in GEP.

FIGURE 3. Box plot representation of results for different GEP parameter
values.

that the size of the individuals has a significant impact on the
quality of the results. The best results were obtained when
using individuals of size 301, which means that the individual
contains 100 nodes, not all of which need to be active. As the
size of the individual decreases and increases, the fitness of
the individuals deteriorates. For smaller individuals, this is
probably due to the fact that the individuals of smaller sizes
might not be expressive enough, while the individuals that
are too large are probably not quite suitable because mutation
is mainly performed on inactive parts, which then does not
affect the quality of the individual. This seems to cause even
more problems for CGP than when using too small individual
sizes, as the algorithm usually performs worse to some degree
with larger individual sizes than with smaller individual sizes.

Table 11 presents the results for the different individual
sizes of GE. The results from the table show that GE is
even more biased towards evolving smaller expressions. This
can be seen from the fact that the evolved expressions are
relatively small compared to the previous three methods,
regardless of the maximum expression size used to evolve the
PFs. Therefore, even with larger individual sizes, the average
size of PFswill not bemore than 18 elements. However, larger
PFs are sometimes generated for the larger individual sizes,

22896 VOLUME 10, 2022



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

TABLE 10. Influence of different maximum individual sizes in CGP.

but similar to CGP, these individuals did not really perform
well and were easily outperformed by smaller PFs.

The performance of PFs generated by different individual
sizes using GE is shown in Figure 5. GE did not achieve
results that could compete with those of other methods, as can
be seen from the fact that the method achieved a rather large
median value for all individual sizes. In addition, GE also
obtained rather inconsistent results, which can be seen not
only in the number of outliers that the method obtained, but
also in the fact that a large number of the developed PFs
obtained poor results. The use of too small individual sizes
leads to the worst results for GE. For the individual size of
150 elements, GE obtained the best median results. As the
size increases, the performance of the algorithm deteriorates
once again.

The results for different sizes of the Stack representation
can be found in Table 12. In this case, the theoretical maxi-
mum size of an individual is the same as the maximum size
of the individual. However, it is interesting to see that the
average size of the individuals for the smallest sizes tested,
30 and 40, is about half of the theoretical maximum. This is
to be expected since most evolved expressions will be invalid
and therefore major parts of the expression will be discarded
when the individual is converted to a PF. The results show that
this happens even more for larger individuals. For example,
at the maximum size of 300, the average size of individuals
is only about 46.

The performances of PFs generated by different individual
sizes of the Stack genotype are shown in Figure 6. The box-
plot shows that the results are somewhat more dispersed for
individual sizes greater than 60. The best results are obtained
when the maximum individual size is set to 60. Very similar
results are obtained for size 50, while the worst results are
obtained for the smallest and largest sizes tested.

The results for different sizes of AP individuals are shown
in Table 13. In this case, the theoretical maximum size is
also equal to the set maximum individual size. Since every
individual created in AP has the maximum size, most evolved
individuals will end up with the same size. This explains why
the average size of individuals for most sizes tested is almost
equal to the theoretical maximum size. The biggest difference

FIGURE 4. Results for different CGP maximum individual sizes.

TABLE 11. Results for the various maximum individual sizes in GE.

is seen for individual size 100, where the average individual
size is around 90. Therefore, with this method it is quite easy
to control the size of the developed individuals.

The performances of PFs generated with different individ-
ual sizes are shown in Figure 7. In this case, the worst results
are obtained for the smallest individual size, 10, while the
best results are obtained for size 50. However, the results
for all tested except the smallest one are quite similar and
are similarly dispersed. This shows that for the AP method,
increasing the individual size does not have a large effect on
the quality of the individuals developed.

B. EXAMPLES OF GENERATED DRs
This section briefly reviews the best PFs obtained with each
of the sixmethods tested. It should bementioned that the rules
presented in this section do not represent the very best rules
obtained by each of the methods, since the best obtained were
quite often very large, but rather the best PFs obtained for
the parameter combinations given in Table 5. However, since
all of the methods obtained the best median values for these
parameters, the PFs presented should still give a good idea
of the quality of PFs that can be generated using each of the
methods.

VOLUME 10, 2022 22897



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

FIGURE 5. Box plot representation of results for different GE maximum
individual sizes.

TABLE 12. Results for the various maximum individual sizes in Stack
genotype.

Table 14 shows the PFs evolved by the six methods tested.
The PF evolved by Stack is the best performing PF in
the table. The size of this PF is 26, which is half that of the
next best PF in the table, making it easier to interpret. The
PF evolved by GP achieved the second best result, but was
also the largest PF among those in the table. By observing
the PF generated by GP, it can be seen that it contains several
elements that do not have an effect on the value of the priority.
For example, it can be seen that the PF applies the pos
function to several terminal nodes that cannot be negative
in themselves. Therefore, removing this function would not
change the priority values calculated by the PF, however, the
PF would then be somewhat simpler. In addition, it is also
common for the expression to contain subexpressions which
in most cases do not have a large influence on the priority.
An example of such a subexpression in this PF would be
pmin−w, where w is usually much smaller than the value of
the terminal pmin. Thus, even if this expression were replaced
only by pmin, it would probably not have a large influence on
the fitness of the PF. Such situations are precisely one of the
problems with the tree representation, as it tends to get larger

FIGURE 6. Results for different maximum tree depths of Stack genotype.

TABLE 13. Results for the various maximum individual sizes in AP.

FIGURE 7. Results for different maximum tree depths of AP genotype.

and larger without leading to any significant improvement in
the fitness of the PF.

The PF generated by GEP yields a slightly worse result
than that of GP, but is almost two times smaller. The PF shows
that, with the exception of one unnecessary pos function,
it does not actually contain any elements that can be immedi-
ately classified as redundant. Thus, it appears that GEP is able
to control the size of its expressions to a much greater extent,

22898 VOLUME 10, 2022



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

TABLE 14. PFs generated by the various methods.

and introduces much less noise into the generated expressions
compared to GP. The expression generated by CGP is similar
in size to that of GEP, but performs worse than the GEP
generated PF to some extent. It is apparent from the PF
generated byCGP that it generally does not contain redundant
subexpressions, since it contains an unnecessary pos function
in only one case. Therefore, CGP seems to be suitable for
generating PFs of smaller sizes. The PF generated by GE
achieves the worst result among the six tested methods, but it
also evolved the PF with the smallest size. This one consisted
of a large number of subexpressions that ultimately had no
effect on the priority value. This can be seen in the multiple
redundant pos functions applied to the SL and w terminals,
but also in the fact that it generated some expressions such as
pmin− pmin that ultimately have no effect on the calculated
priority. Finally, the PF generated by AP is the second largest
PF in the table. However, its performance is not as good as
that of the largest PF. This is because large parts of the evolved

expression are redundant. For example,
dd ∗ dd ∗ dd
dd ∗ dd ∗ dd

could

be reduced to only 1 which would reduce the size of the
expression by 10 elements. Thus, of all six methods, GE and
AP seem to have the most problems with such redundant
subexpressions.

VI. CONCLUSION
The objective of this paper was to compare six evolutionary
computation methods that can be used to generate new DRs
for the unrelated machines scheduling problem. Each of the
tested methods uses a different representation for the expres-
sions that serve as PFs and offers different advantages. The
tested methods are used for the generation of new DRs for
optimising different scheduling criteria. In addition, for each

of the tested methods, we analysed how different maximum
individual sizes affect the performance of the methods as well
as the average size of the PFs they generate.

The results presented in this paper indicate that none of the
methods performed the best on all of the tested criteria. With
the exception of GE andAP,which performed quite poorly for
most criteria, the remaining four methods performed mostly
similarly, with their performance largely dependent on the
criterion that was optimised. GP and Stack have proven to be
the most appropriate when optimising criteria which require
more complex PFs, while GEP and CGP were more appro-
priate for generating DRs for criteria where simpler PFs were
preferred. Nevertheless, for most of the tested criteria, the
four methods mostly achieve similar results, so there should
be no significant difference in the results regardless of which
of the four methods is used. Regarding the average size of
the generated PFs, CGP and GE generated the expressions
with the smallest average size among all tested methods. All
methods were found to have redundant parts in the generated
expressions. However, the PFs generated by CGP and Stack
contained the least amount of redundant subexpressions, sug-
gesting that these methods may be best suited to deal with
bloat and redundant subexpressions in PFs.

In future work it is planned to focus more on generating
simpler and more interpretable PFs. First, it is planned to
simply analyse the generated DRs to better understand which
parts of the PFs are redundant and which parts are the most
informative. Based on this information, the evolutionary algo-
rithms will be extended with different methods that try to
detect redundant parts of PFs during the evolution process and
automatically remove them from the expression. This should
lead to the generation of simpler and more interpretable PFs.
Another research direction would be to use interval arithmetic

VOLUME 10, 2022 22899



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

to limit the search to those DRs that are valid over the entire
domain. In addition, further research will focus on testing
different bloat control methods to further reduce the sizes of
the generated PFs.

REFERENCES
[1] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems,

vol. 9781461423614, 4th ed. Boston, MA, USA: Springer, 2012.
[2] E. Hart, P. Ross, and D. Corne, ‘‘Evolutionary scheduling: A review,’’

Genetic Program. Evolvable Mach., vol. 6, no. 2, pp. 191–220,
Jun. 2005.

[3] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, ‘‘Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems,’’ J. Parallel Distrib. Comput.,
vol. 59, no. 2, pp. 107–131, Nov. 1999.

[4] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran,
A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and
R. F. Freund, ‘‘A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems,’’
J. Parallel Distrib. Comput., vol. 61, no. 6, pp. 810–837, Jun. 2001.

[5] J. Branke, S. Nguyen, C.W. Pickardt, andM. Zhang, ‘‘Automated design of
production scheduling heuristics: A review,’’ IEEE Trans. Evol. Comput.,
vol. 20, no. 1, pp. 110–124, Feb. 2016.

[6] S. Nguyen, Y. Mei, and M. Zhang, ‘‘Genetic programming for production
scheduling: A survey with a unified framework,’’ Complex Intell. Syst.,
vol. 3, no. 1, pp. 41–66, Mar. 2017.

[7] C. Dimopoulos andA.M. S. Zalzala, ‘‘A genetic programming heuristic for
the one-machine total tardiness problem,’’ in Proc. Congr. Evol. Comput.,
Jul. 1999, pp. 2207–2214.

[8] C. Dimopoulos and A. M. S. Zalzala, ‘‘Investigating the use of genetic
programming for a classic one-machine scheduling problem,’’ Adv. Eng.
Softw., vol. 32, no. 6, pp. 489–498, 2001.

[9] K. Miyashita, ‘‘Job-shop scheduling with genetic programming,’’ in Proc.
2nD Annu. Conf. Genetic Evol. Comput. San Francisco, CA, USA:Morgan
Kaufmann Publishers, 2000, pp. 505–512.

[10] N. B. Ho and J. C. Tay, ‘‘Evolving dispatching rules for solving the flexible
job-shop problem,’’ in Proc. IEEE Congr. Evol. Comput., vol. 3, Sep. 2005,
pp. 2848–2855.

[11] D. Jakobović, L. Jelenković, and L. Budin, ‘‘Genetic programming heuris-
tics for multiple machine scheduling,’’ in Genetic Programming. Berlin,
Germany: Springer, 2007, pp. 321–330.

[12] D. Jakobović and L. Budin, ‘‘Dynamic scheduling with genetic program-
ming,’’ in Genetic Programming, P. Collet, M. Tomassini, M. Ebner,
S. Gustafson, and A. Ekárt, Eds. Berlin, Germany: Springer, 2006,
pp. 73–84.

[13] W.-J. Yin, M. Liu, and C. Wu, ‘‘Learning single-machine scheduling
heuristics subject to machine breakdowns with genetic programming,’’ in
Proc. Congr. Evol. Comput. (CEC), 2003, pp. 1050–1055.

[14] C. D. Geiger and R. Uzsoy, ‘‘Learning effective dispatching rules for batch
processor scheduling,’’ Int. J. Prod. Res., vol. 46, no. 6, pp. 1431–1454,
Mar. 2008.

[15] D. Jakobović and K. Marasović, ‘‘Evolving priority scheduling heuris-
tics with genetic programming,’’ Appl. Soft Comput., vol. 12, no. 9,
pp. 2781–2789, Sep. 2012.

[16] K. Jaklinović, M. Ðurasević, and D. Jakobović, ‘‘Designing dispatching
rules with genetic programming for the unrelated machines environment
with constraints,’’ Expert Syst. Appl., vol. 172, Jun. 2021, Art. no. 114548.

[17] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, ‘‘Dynamic multi-
objective job shop scheduling: A genetic programming approach,’’
in Automated Scheduling and Planning: From Theory to Practice,
A. S. Uyar, E. Ozcan, and N. Urquhart, Eds. Berlin, Germany: Springer,
2013, pp. 251–282.

[18] S. Nguyen, M. Zhang, and K. C. Tan, ‘‘Enhancing genetic programming
based hyper-heuristics for dynamic multi-objective job shop scheduling
problems,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), May 2015,
pp. 2781–2788.

[19] D. Karunakaran, G. Chen, and M. Zhang, ‘‘Parallel multi-objective job
shop scheduling using genetic programming,’’ in Proc. Artif. Life Comput.
Intell., 2nd Australas. Conf. (ACALCI), T. Ray, R. Sarker, and X. Li, Eds.
Canberra, ACT, Australia: Springer, 2016, pp. 234–245.

[20] M. urasević and D. Jakobović, ‘‘Evolving dispatching rules for opti-
mising many-objective criteria in the unrelated machines environment,’’
Genetic Program. Evolvable Mach., vol. 19, nos. 1–2, pp. 9–51, Sep. 2017.

[21] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, ‘‘Evolving reusable
operation-based due-date assignment models for job shop scheduling with
genetic programming,’’ in Genetic Programming, A. Moraglio, S. Silva,
K. Krawiec, P. Machado, and C. Cotta, Eds. Berlin, Germany: Springer,
2012, pp. 121–133.

[22] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, ‘‘Genetic programming
for evolving due-date assignment models in job shop environments,’’ Evol.
Comput., vol. 22, no. 1, pp. 105–138, Mar. 2014.

[23] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, ‘‘A coevolution genetic
programming method to evolve scheduling policies for dynamic multi-
objective job shop scheduling problems,’’ in Proc. IEEE Congr. Evol.
Comput., Jun. 2012, pp. 1–8.

[24] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, ‘‘Automatic design
of scheduling policies for dynamic multi-objective job shop scheduling
via cooperative coevolution genetic programming,’’ IEEE Trans. Evol.
Comput., vol. 18, no. 2, pp. 193–208, Apr. 2014.

[25] J. Park, S. Nguyen, M. Zhang, and M. Johnston, ‘‘Genetic programming
for order acceptance and scheduling,’’ inProc. IEEECongr. Evol. Comput.,
Jun. 2013, pp. 1005–1012.

[26] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, ‘‘Learning reusable
initial solutions for multi-objective order acceptance and scheduling prob-
lems with genetic programming,’’ in Genetic Programming, K. Krawiec,
A. Moraglio, T. Hu, A. Ş. Etaner-Uyar, and B. Hu, Eds. Berlin, Germany:
Springer, 2013, pp. 157–168.

[27] S. Nguyen, M. Zhang, and M. Johnston, ‘‘A sequential genetic program-
ming method to learn forward construction heuristics for order acceptance
and scheduling,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2014,
pp. 1824–1831.

[28] S. Nguyen, M. Zhang, and K. C. Tan, ‘‘A dispatching rule based genetic
algorithm for order acceptance and scheduling,’’ in Proc. Annu. Conf.
Genetic Evol. Comput., New York, NY, USA, Jul. 2015, pp. 433–440.

[29] S. Nguyen, ‘‘A learning and optimizing system for order acceptance and
scheduling,’’ Int. J. Adv.Manuf. Technol., vol. 86, nos. 5–8, pp. 2021–2036,
Sep. 2016.

[30] S. Chand, Q. Huynh, H. Singh, T. Ray, and M. Wagner, ‘‘On the use
of genetic programming to evolve priority rules for resource constrained
project scheduling problems,’’ Inf. Sci., vol. 432, pp. 146–163, Mar. 2018.

[31] M. Dumić, D. Šišejković, R. Čorić, and D. Jakobović, ‘‘Evolving priority
rules for resource constrained project scheduling problemwith genetic pro-
gramming,’’ Future Gener. Comput. Syst., vol. 86, pp. 211–221, Sep. 2018.

[32] F. J. Gil-Gala, C. Mencía, M. R. Sierra, and R. Varela, ‘‘Evolving pri-
ority rules for on-line scheduling of jobs on a single machine with
variable capacity over time,’’ Appl. Soft Comput., vol. 85, Dec. 2019,
Art. no. 105782.

[33] F. J. Gil-Gala, M. R. Sierra, C. Mencía, and R. Varela, ‘‘Genetic pro-
gramming with local search to evolve priority rules for scheduling jobs
on a machine with time-varying capacity,’’ Swarm Evol. Comput., vol. 66,
Oct. 2021, Art. no. 100944.

[34] J. Park, S. Nguyen, M. Zhang, and M. Johnston, ‘‘Evolving ensembles
of dispatching rules using genetic programming for job shop schedul-
ing,’’ in Genetic Programming, vol. 2015, P. Machado, M. I. Heywood,
J. McDermott, M. Castelli, P. García-Sánchez, P. Burelli, S. Risi, and
K. Sim, Eds. Cham, Switzerland: Springer, 2015, pp. 92–104.

[35] E. Hart and K. Sim, ‘‘A hyper-heuristic ensemble method for static job-
shop scheduling,’’ Evol. Comput., vol. 24, no. 4, pp. 609–635, Dec. 2016.

[36] M. urasević and D. Jakobović, ‘‘Comparison of ensemble learning meth-
ods for creating ensembles of dispatching rules for the unrelated machines
environment,’’ Genetic Program. Evolvable Mach., vol. 19, nos. 1–2,
pp. 53–92, Apr. 2017.

[37] J. Park, Y. Mei, S. Nguyen, G. Chen, and M. Zhang, ‘‘An investigation
of ensemble combination schemes for genetic programming based hyper-
heuristic approaches to dynamic job shop scheduling,’’ Appl. Soft Comput.,
vol. 63, pp. 72–86, Feb. 2018.

[38] M. urasević and D. Jakobović, ‘‘Creating dispatching rules by sim-
ple ensemble combination,’’ J. Heuristics, vol. 25, no. 6, pp. 959–1013,
May 2019.

[39] D. Karunakaran, Y. Mei, G. Chen, and M. Zhang, ‘‘Dynamic job shop
scheduling under uncertainty using genetic programming,’’ in Intelligent
and Evolutionary Systems, G. Leu, H. K. Singh, and S. Elsayed, Eds.
Cham, Switzerland: Springer, 2017, pp. 195–210.

22900 VOLUME 10, 2022



L. Planinić et al.: Comparative Study of DR Representations in Evolutionary Algorithms

[40] D. Karunakaran, Y. Mei, G. Chen, and M. Zhang, ‘‘Evolving dispatching
rules for dynamic job shop scheduling with uncertain processing times,’’
in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2017, pp. 364–371.

[41] D. Karunakaran, Y. Mei, G. Chen, and M. Zhang, ‘‘Toward evolving
dispatching rules for dynamic job shop scheduling under uncertainty,’’
in Proc. Genetic Evol. Comput. Conf., New York, NY, USA, Jul. 2017,
pp. 282–289.

[42] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, ‘‘Selection schemes
in surrogate-assisted genetic programming for job shop scheduling,’’ in
Simulated Evolution and Learning, G. Dick, W. N. Browne, P. Whigham,
M. Zhang, L. T. Bui, H. Ishibuchi, Y. Jin, X. Li, Y. Shi, P. Singh, K. C. Tan,
and K. Tang, Eds. Cham, Switzerland: Springer, 2014, pp. 656–667.

[43] S. Nguyen,M. Zhang, andK. C. Tan, ‘‘Surrogate-assisted genetic program-
ming with simplified models for automated design of dispatching rules,’’
IEEE Trans. Cybern., vol. 47, no. 9, pp. 1–15, May 2016.

[44] S. Nguyen, M. Zhang, D. Alahakoon, and K. C. Tan, ‘‘Visualizing the evo-
lution of computer programs for genetic programming [research frontier],’’
IEEE Comput. Intell. Mag., vol. 13, no. 4, pp. 77–94, Nov. 2018.

[45] S. Nguyen, M. Zhang, D. Alahakoon, and K. C. Tan, ‘‘People-centric
evolutionary system for dynamic production scheduling,’’ IEEE Trans.
Cybern., vol. 51, no. 3, pp. 1–14, Mar. 2019.

[46] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, ‘‘Guided subtree selection for
genetic operators in genetic programming for dynamic flexible job shop
scheduling,’’ in Genetic Programming, T. Hu, N. Lourenço, E. Medvet,
and F. Divina, Eds. Cham, Switzerland: Springer, 2020, pp. 262–278.

[47] D. Karunakaran, Y. Mei, G. Chen, and M. Zhang, ‘‘Active sampling for
dynamic job shop scheduling using genetic programming,’’ in Proc. IEEE
Congr. Evol. Comput. (CEC), Jun. 2019, pp. 434–441.

[48] M. urasević and D. Jakobović, ‘‘Comparison of schedule generation
schemes for designing dispatching rules with genetic programming in the
unrelated machines environment,’’ Appl. Soft Comput., vol. 96, Nov. 2020,
Art. no. 106637.

[49] M. urasević and D. Jakobović, ‘‘Automatic design of dispatching rules
for static scheduling conditions,’’ Neural Comput. Appl., vol. 33, no. 10,
pp. 5043–5068, Aug. 2020.

[50] F. Zhang, Y. Mei, S. Nguyen, K. C. Tan, and M. Zhang, ‘‘Multitask
genetic programming-based generative hyperheuristics: A case study in
dynamic scheduling,’’ IEEE Trans. Cybern., early access, Mar. 22, 2021,
doi: 10.1109/TCYB.2021.3065340.

[51] F. Zhang, Y.Mei, S. Nguyen,M. Zhang, andK. C. Tan, ‘‘Surrogate-assisted
evolutionary multitask genetic programming for dynamic flexible job shop
scheduling,’’ IEEE Trans. Evol. Comput., vol. 25, no. 4, pp. 651–665,
Aug. 2021.

[52] I. Vlašić, M. Ðurasević, and D. Jakobović, ‘‘Improving genetic algorithm
performance by population initialisation with dispatching rules,’’ Comput.
Ind. Eng., vol. 137, Nov. 2019, Art. no. 106030.

[53] L. Nie, X. Shao, L. Gao, and W. Li, ‘‘Evolving scheduling rules with
gene expression programming for dynamic single-machine scheduling
problems,’’ Int. J. Adv. Manuf. Technol., vol. 50, nos. 5–8, pp. 729–747,
Sep. 2010.

[54] L. Nie, L. Gao, P. Li, and L. Zhang, ‘‘Application of gene expression
programming on dynamic job shop scheduling problem,’’ in Proc. 15th Int.
Conf. Comput. Supported Cooperat. Work Design (CSCWD), Jun. 2011,
pp. 291–295.

[55] L. Nie, Y. Bai, X. Wang, and K. Liu, ‘‘Discover scheduling strategies with
gene expression programming for dynamic flexible job shop scheduling
problem,’’ in Advances in Swarm Intelligence, Y. Tan, Y. Shi, and Z. Ji,
Eds. Berlin, Germany: Springer, 2012, pp. 383–390.

[56] M. Durasević, D. Jakobović, and K. Knežević, ‘‘Adaptive scheduling
on unrelated machines with genetic programming,’’ Appl. Soft Comput.,
vol. 48, pp. 419–430, Nov. 2016.

[57] S. Nguyen,M. Zhang,M. Johnston, and K. C. Tan, ‘‘A computational study
of representations in genetic programming to evolve dispatching rules for
the job shop scheduling problem,’’ IEEE Trans. Evol. Comput., vol. 17,
no. 5, pp. 621–639, Oct. 2013.

[58] J. Branke, T. Hildebrandt, and B. Scholz-Reiter, ‘‘Hyper-heuristic evolu-
tion of dispatching rules: A comparison of rule representations,’’ Evol.
Comput., vol. 23, no. 2, pp. 249–277, Jun. 2015.

[59] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, ‘‘Learning iterative
dispatching rules for job shop scheduling with genetic programming,’’ Int.
J. Adv. Manuf. Technol., vol. 67, nos. 1–4, pp. 85–100, Jul. 2013.

[60] M. Keijzer and V. Babovic, ‘‘Dimensionally aware genetic programming,’’
Proc. Genetic Evol. Comput. Conf., vol. 2, pp. 1069–1076, 1999.

[61] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic
Programming, J. R. Koza, Ed. Lulu.com, 2008. [Online]. Available:
http://www.gp-field-guide.org.U.K

[62] C. Ferreira, ‘‘Gene Expression programming: A new adaptive algorithm for
solving problems,’’ Complex Syst., vol. 13, no. 2, pp. 87–129, Mar. 2001.

[63] J. F. Miller and P. Thomson, Cartesian Genetic Programming (Lecture
Notes in Computer Science), vol. 1802. Heidelberg, Germany: Springer,
2000, pp. 121–132.

[64] C. Ryan, J. J. Collins, and M. O’Neill, ‘‘Grammatical evolution: Evolv-
ing programs for an arbitrary language,’’ in Proc. 1st Eur. Workshop
Genetic Program., vol. 1391, W. Banzhaf, R. Poli, M. Schoenauer, and
T. C. Fogarty, Eds. Paris, France: Springer-Verlag, Apr. 1998, pp. 83–96.

[65] T. Perkis, ‘‘Stack-based genetic programming,’’ in Proc. 1st IEEE Conf.
Evol. Comput. IEEEWorld Congr. Comput. Intell., Jun. 1994, pp. 148–153.

[66] I. Zelinka, Z. K. Oplatkova, and L. Nolle, ‘‘Analytic programming sym-
bolic regression by means of arbitrary evolutionary algorithm,’’ J. Simul.,
vol. 6, pp. 1473–8031, Aug. 2005.

[67] J. F. Miller, Cartesian Genetic Programming. Berlin, Germany: Springer,
2011, pp. 17–34.

LUCIJA PLANINIĆ (Member, IEEE) received the
B.Sc. and M.Sc. degrees in computer science from
the Faculty of Electrical Engineering and Com-
puting, University of Zagreb, in 2018 and 2020,
respectively, where she is currently pursuing the
Ph.D. degree with the Faculty of Electrical Engi-
neering and Computing. She is also a Research
Assistant with the Faculty of Electrical Engineer-
ing and Computing, University of Zagreb.

HRVOJE BACKOVIĆ received the B.Sc. and
M.Sc. degrees in computing from the Faculty of
Electrical Engineering and Computing, University
of Zagreb, in 2015 and 2017, respectively. He is
currently working as a Software Developer at Vis-
age Technologies, Zagreb, Croatia.

MARKO URASEVIĆ (Member, IEEE) received
the B.Sc. andM.Sc. degrees in computing from the
Faculty of Electrical Engineering and Computing,
University of Zagreb, in 2012 and 2014, respec-
tively, and the Ph.D. degree, in February 2018,
on the subject of generating dispatching rules
for solving scheduling problems in the unrelated
machines environment. He is currently an Assis-
tant Professor with the Faculty of Electrical Engi-
neering and Computing, University of Zagreb.

DOMAGOJ JAKOBOVIĆ (Senior Member, IEEE)
received the B.Sc. degree, in December 1996, the
M.Sc. degree in electrical engineering, in Decem-
ber 2001, and the Ph.D. degree, in December
2005, on the subject of generating scheduling
heuristics with genetic programming. Since April
1997, he has been a member of the Research and
Teaching Staff with the Department of Electronics,
Microelectronics, Computer and Intelligent Sys-
tems, Faculty of Electrical Engineering and Com-

puting, University of Zagreb, where he is currently a Full Professor with the
Faculty of Electrical Engineering and Computing.

VOLUME 10, 2022 22901

http://dx.doi.org/10.1109/TCYB.2021.3065340

