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ABSTRACT In this study, a new blockchain protocol and a novel architecture that integrate the advantages
offered by edge computing, artificial intelligence (AI), IoT end-devices, and blockchain were designed,
developed, and validated. This new architecture has the ability to monitor the environment, collect data,
analyze it, process it using an AI-expert engine, provide predictions and actionable outcomes, and finally
share it on a public blockchain platform. For the use-case implementation, the pandemic caused by the wide
and rapid spread of the novel coronavirus COVID-19 was used to test and evaluate the proposed system.
Recently, various authors traced the spread of viruses in sewage water and studied how it can be used as a
tracking system. Early warning notifications can allow governments and organizations to take appropriate
actions at the earliest stages possible. The system was validated experimentally using 14 Raspberry Pis, and
the results and analyses proved that the system is able to utilize low-cost and low-power flexible IoT hardware
at the processing layer to detect COVID-19 and predict its spread using the AI engine, with an accuracy
of 95%, and share the outcome over the blockchain platform. This is accomplished when the platform is
secured by the honesty-based distributed proof of authority (HDPoA) and without any substantial impact
on the devices’ power sources, as there was only a power consumption increase of 7% when the Raspberry
Pi was used for blockchain mining and 14% when used to produce an AI prediction.

INDEX TERMS Edge computing, blockchain protocol, the Internet of Things (IoT), flexible IoT hardware,
artificial intelligence (AI), coronavirus disease (COVID-19).

I. INTRODUCTION
Over the years, IoT systems have grown rapidly and increas-
ingly used by many different organizations and users within
different sectors, such as healthcare and industry. The pres-
ence of IoT in these sectors has offered organizations and
governments realistic opportunities to improve economic sit-
uations by enhancing its growth over the years and provides
an easy way to improve people’s lives in general. This is
because of the vast amount of useful information provided
by IoT systems that can be used for better decision-making.
However, organizations often handle this data by creating IoT
systems that rely on a central data-processing entity, such
as the cloud, for securing and managing IoT devices and
processing the data collected by these devices.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

This approach of utilizing a central unit, such as cloud com-
puting, has its own drawbacks. For instance, it introduces the
risk of a single point of failure, communication overhead, and
bottlenecks. This can easily affect the overall performance
and security of the system, making user experiences unpleas-
ant. It is essential for many IoT mission-critical applications
to obtain secure and reliable solutions that can provide low
latency for data processing. In this regard, edge computing
has grown rapidly to facilitate this type of solution, providing
faster data processing, allowing for near-real-time actionable
outcomes. Edge computing allows for location-awareness
services that allow IoT applications to produce faster, and
more reliable services for users. On the one hand, edge-
computing technologies provide IoT systems with these great
advantages. On the other hand, as a result of the hetero-
geneous nature of edge and IoT end devices, the collected
data may not be fully secured during transit and while
stored [1].
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In recent years, IoT systems’ implementation has signifi-
cantly increased (and this will continue in the future). This
increase, in turn, has provoked the re-emergence of the AI
as the main means of data analysis. These two technologies
can easily create a system with capabilities to sense, think,
learn, analyze, and produce outcomes in the form of future
prediction and in cases where changes can take appropriate
actions.

The data collected by IoT systems require security, espe-
cially in terms of integrity and availability, and the integra-
tion of a distributed and secure system, such as blockchain,
can deliver these security features. Blockchain requires addi-
tional computational power and storage capabilities that
some IoT devices may not have. However, the presence
of edge-computing abilities can accommodate such require-
ments and make it possible to integrate blockchain. Com-
bining the edge technology with blockchain technology can
provide a decentralized, robust, and secure solution, offering
IoT devices the ability to interact and share data among
themselves and with users. The available resources on the
edge devices help to provide the required computation and
storage resources for the blockchain technology, allowing the
end devices to exploit the security offered by the blockchain
closer at the edge.

With the integration of a distributed, self-managed, and
decentralized network, both the dynamic and distributed
IoT systems and the intelligence AI engine will benefit
greatly from such integration [2], [3]. With the presence
of edge computing, these benefits include: a) providing
IoT networks with a reliable ability to control and manage
computation-workload distribution among a large amount
of distributed IoT hardware, b) strengthening the security
posture of the overall IoT system by enhancing its ability
to improve data integrity and ensuring its availability and
holding all participant nodes accountable for their actions [4];
c) enhancing the AI engine’s ability to perform the required
analyses and provide the desired outcomes using these trusted
data.

A. CONTRIBUTION
• The design and development of an architecture that inte-
grates four different technologies: IoT, AI, edge com-
puting, and blockchain in one system that can monitor
and sense the environment, learn, analyze data based
on the requirements of the executed task, and produce
actionable outcome. The proposed system is based on
the integration of low-cost edge devices and takes full
advantage of their available storage and all IoT devices’
computation power to provide a data-processing and
sharing public blockchain platform.

• This architecture was validated experimentally using
14 low-cost, flexible IoT hardware entities. Practical
implementation and performance analyses in terms of
system latency, system accuracy, and energy consump-
tion of real-world applications in the form of an early

warning system for the detection of COVID-19 in
sewage water were carried out.

• A new blockchain protocol for handling communication
aspects of the system and enhancing its security by
providing assurance, ensuring the integrity of the data,
and holding nodes accountable for their actions. It is
suitable for integration into edge, and IoT devices and
can handle the AI-related data.

The remainder of this paper is organized as follows:
section II presents related work, followed by the proposed
architecture in section III. In section IV, we provide an
analysis of the system followed by the security analysis
in section V, and then the implementation and testing of
the system-example application in section VI. Section VII
presents the results, and section VIII presents the discussions,
the conclusions, and the directions for future work.

II. RELATED WORK
The integration of blockchain into the edge layer has attracted
considerable attention from researchers in recent years. The
authors of [5] introduced an architecture that combines the
blockchain, software-defined network (SDN), and edge layer
in one system. The architecture contains a device layer for
collecting data, an edge (fog) for raw data processing utilizing
an SDN controller, and a cloud layer for data storage and
processing. Another work by IBM [6] proposed autonomous
decentralized peer-to-peer telemetry (ADEPT). It is built
for coordinating autonomous devices through the use of the
Ethereum blockchain network and smart contract.

The framework proposed by [7] is an excellent example of
how blockchain and edge layers can be used to secure IoT
applications. It is introduced for vehicular communication
systems by hosting security managers and blockchain, both
of which are utilized to provide key transfer and management
at the edge layer. Similarly, the authors of [8] proposed a
new control system. It uses the hyperledger fabric blockchain,
along with a smart contract, in a micro-service architecture at
the edge layer to secure and validate data initiated at the lower
layer. Another edge-based framework called EdgeChain was
proposed by [9]. Similar to [8], it uses blockchain and smart
contracts at the edge, so that devices in the lower layer can
access resources at edge servers.

Another research area that has gained similar attention
from researchers is the integration of blockchain, edge
computing, and AI technologies. The work by [10] using
blockchain and machine learning introduced a prediction
framework called ModelChain. This allows multiple health-
care institutions to train the same framework for better
results in terms of health prediction. The BlockDeepNet
framework was proposed by [11] for data analysis within
IoT systems. It combines blockchain technology, smart con-
tracts, and deep learning. The authors of [12] introduced a
blockchain-based NeuRoNt platform that integrates multi-
ple agents by using smart contracts to solve complex prob-
lems. A similar approach utilizing both Ethereum and smart
contracts was taken by the authors of [13], who proposed
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TABLE 1. Summary of the important related works.

a mobile edge system for service sharing and data processing
in smart-city IoT applications. The DeepConin framework
was introduced in [14] for fraudulent transaction detection
and blockchain-attack prevention based on deep learning and
blockchain within smart-grid applications. A similar frame-
work based on blockchain was introduced in [15]. It uses deep
learning and SDN to allow smart city applications to access
and utilize cost-effective and high-performance computing
resources.

The authors of [16] provided a practical integration that
combines federated learning (FL) and blockchain with the
aim of securing big data and preserving privacy within
IoT systems. It achieves this by using fuzzy hashing to detect
suspicious activities, such as poisoning attacks in FL-trained
models. The authors of [17] also proposed an architecture for
data analysis at the edge based on blockchain and AI. The aim
is to enhance the security of privacy-critical systems, such
as healthcare applications, by restricting raw data to produc-
ers only. The authors of [18] proposed a blockchain-based
edge intelligence (EI) system for improved data security,
privacy, and performance. It uses a public blockchain to
ensure the communication security of consumer electronic
devices (CEDs) and a private blockchain to ensure commu-
nication security among EI servers.

The work by [19] introduced a scheme for batch authenti-
cation in the Internet of Vehicles (IoV) based on blockchain
and AI. The aim is to address the security challenges that
result from the communication between different entities
within IoV-based smart cities. The scheme provides the IoVs
with the secure ability to authenticate themselves when two
vehicles are communicating and for a group of vehicles to
be authenticated by the roadside unit. The authors of [20]
proposed a pandemic situation supervision scheme based
on blockchain and AI. It utilizes an AI-equipped swarm of
drones to monitor an outbreak in the case of a viral pan-
demic. This scheme was designed to help control the spread
of viruses by ensuring that people follow the guidelines
and performing surveillance checks (e.g., face coverings,

temperature measurements, and social distancing). Similarly,
the work by [21] proposed the use of blockchain technology
along with unmanned aerial vehicles (UAVs) for patient data
collection within healthcare. It uses UAVs to collect data and
a blockchain to store the collected data. It uses tokens and
shared keys to establish secure communication with users’
body sensors. Table 1 provides a summary of the important
related work, including the solution provided, the applica-
tions, and the limitations in each work.

III. SYSTEM ARCHITECTURE
The proposed architecture provides a system for collecting
data, processing, and analyzing data and produces a sharable
outcome among nodes. A general overview of this architec-
ture is presented in Fig.1. The platform operates according to
the following three steps:
• The first step is the Monitoring and Collection step:
the IoT system monitors the environment or situation
and utilizes its sensors at the lowest layer to collect the
environmental or change data.

FIGURE 1. General concept of the system architecture.
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• The second step is the Analysis and prediction step: in
this step, the collected data is propagated to the intelli-
gent engine located at the edge nodes for analyses and
providing predictions.

• The third and the final step is the Sharing step: in
this step, the produced outcome from the edge devices
are shared among all participant nodes on the freely
accessed public blockchain network.

A. ARCHITECTURE DIFFERENT LAYERS
To accomplish the three previously discussed steps and
provide free access to the public blockchain platform,
we designed an architecture that consists of four different
layers. Figure. 2 provides the layout of these layers.

1) SENSING LAYER
This is the lowest layer in the architecture and is the most
important layer; it is the data feeder to the sharing platform.
In this layer, a wide range of many low-cost, low-power,
and small sensor devices are used for monitoring and data
collection. The collected sensor data will then be submitted
to the gateway, which can be in the form of low-cost devices
(e.g., Arduino ESP-32), which can then be validated and
prepared and then submitted to the next layer for processing.
This aids in achieving the first step of our architecture, which
is the monitoring and collection.

2) NETWORK LAYER
The data submitted by the gateway is then transferred to
the next layer. This is where the network layer takes part.
In this layer different communication links can be uti-
lized (for example, wireless connectivity, such as the Wi-Fi,
LoRaWAN, or 5G, or a wired connectivity).

3) PROCESSING LAYER
This layer is equipped with the necessary AI engine to per-
form the required analyses and is responsible for achieving
the second step in the architecture, which is the analyses and

FIGURE 2. Example application - detailed system architecture.

prediction. Devices deployed at this layer can be low in both
cost and power, and one example of such a device is the
Raspberry Pi (R-pi). The data collected by the sensing layer
arrived at this layer. The AI-expert engine located at these
edge devices will then be used to process and analyze the data
and then provide predictions and necessary outcomes that
can be used to help the decision-making process. All nodes
located in this layer should be a full clients of the blockchain
platform (see Subsection III-B). This means that these nodes
will be able to share their collected data and AI outcomes
instantly with the rest of the blockchain clients. In doing so,
the platform will have a continuous stream of data (collected
by sensors and the outcome of the AI), allowing for a better
performance of the system.

4) SHARING PLATFORM
This is a freely accessible and a public blockchain platform
and is responsible for achieving the sharing step, which is the
final and last step of the architecture. All the devices in the
processing layer are part of the public blockchain. This would
allow any organizations, users, or other concerned parties to
be part of such a platform and have the ability to freely access
all processed AI and collected data.

B. BLOCKCHAIN PROTOCOL
Designing a blockchain protocol that has the ability to handle
different types of transactions, including those related to
AI engines, is an essential part of our proposed architecture.
Therefore, a new blockchain platform, including bespoke
transaction and block-header formats, has been designed,
developed, and implemented. In terms of the consensus
mechanism, we utilized our own consensus protocol called
honesty-based distributed proof of authority (HDPoA), which
we previously published in [22]. The blockchain platform can
utilize the resources of all the available IoT devices. Based
on this, we categorized these devices into three different
classes based on their hash power and storage capabilities,
as follows:

• Full Client (FC): These can be low-cost devices that
have enough hash power and storage capability. This
would allow these clients to play more roles in terms of
consensusmechanisms and storage of the full chain. One
example of such a low-cost device that can be utilized as
a full client is R-pi.

• Hybrid Client (HC): These devices are low in cost and
power. Theymay have limited resources in terms of stor-
age capability, but their available power can be utilized
for the purpose of carrying a small number of the hashing
task. These devices can act as gateways in which many
sensor devices are connected.

• Participant Client (PC): These are the small sensor
devices at the sensing layer. Although they cannot be
part of the blockchain, they still play an important role
in our proposed architecture, as they are the data feeder
to the processing layer.
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In terms of HDPoA, the roles of the nodes in the consensus
mechanism are classified into two types of nodes. Authority
Nodes (ANs), these nodes are from the FC class and have
enough trust levels to manage and coordinate the mining pro-
cess.Worker Nodes (WNs), any node that is able to participate
in the mining process is classified as WN and can be from
both FC or HC; only the current AN that manages the mining
process cannot be part of the WNs. All other nodes should
make themselves available for the mining tasks. More details
regarding how HDPoA works can be found in [22].

IV. SYSTEM ANALYSIS
The proposed system utilizes a free-access public blockchain
network where the lowest value of the difficulty D is one—
that is, when the value of the target hash hv is 2232. In the
network, the sources of data traffic are broadcast transmission
processes of transactions and blocks through the network.
The important parameters used are listed in Table 2.

A. TRANSACTIONS CONFIRMATION TIME AND
THROUGHPUT
The probability of any transaction (including AI-related
transactions) to arrive and confirm on the network can be
measured based on the Poisson process, in which the outcome
can arrive on a confirmed block with an arrival rate of λ. The
following equation is used as the starting point for driving all
the equations in this subsection.

P(T ≤ t) = 1− e−λt (1)

In the proposed blockchain system, as discussed above, the
HDPoA-consensus mechanism does not require extra time to
confirm the arrived block, as long as none of the authority
nodes (ANs) initiate a block rejection process. Based on this,
we can define λ as λ = 1

Mt
block/s, whereMt =

D×224
hp

.

TABLE 2. System parameters and their definition.

FIGURE 3. Overall system latency and the processing of AI data.

The t parameter (i.e., time) relies on the number of blocks
n the user needs to wait before the block carrying the trans-
action (e.g. AI-expert engine final prediction) is confirmed
on the network, Bpd , and Vt of the new block. Based on this,
the probability (P(n)) of the confirmation of any transaction
(including AI-related transactions) can be calculated as:

P(n) = 1− e
−

( 1
D×224
hp

)×n×
(
D×224
hp
+Bpd+Vt+Tpd

)
(2)

Based on this the confirmation time Ct of any transaction
can be calculated by:

Ct =
ln(1− P(n))

−1
D×224
hp

+ Bpd + Vt + Tpd (3)

To provide an estimation of the network throughput
(i.e., transactions per second), we assume that the block size
is Bsize and the transaction size is Txsize. Then, the network
throughput can be calculated by:

Throughput =
Bsize
Txsize

Ct
(4)

B. SYSTEM OVERALL LATENCY (L)
Measuring the overall system latency (L) is an important
aspect of the system performance metrics. To calculate (L),
we assume that all AI-related transactions arrive at the elected
AN transaction pool on time to be included in the next block.
As shown by Fig. 3, we assume transactions submitted before
the time t1−Tpd will be included in the next block (Block_n).
Another important aspect of the proposed system we need
to consider is the fact that we validate the AI input values
and the final outcome of the expert engine on the blockchain
network. This means that two rounds of confirmation are
needed before the arrival of the final outcome. Based on these
assumptions and considerations, the overall system latency L
can be calculated as follows:

L = 2×

 ln(1− P(n))
−1

D×224/hp

+ Bpd + Tpd + Vt (5)

C. POWER COST
The energy consumption of both the blockchain and the
AI-engine is a significant parameter of the proposed architec-
ture; therefore, it is important to analyze this parameter and
identify its impact on the power sources of the devices. Each
device is typically in one of the following states:
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1) Sleeping state (S): In this state, the device will not
perform any task. Instead, it will goes to sleep and
wakes up by a timer or event. In this state, power
consumption can be identified by ps:

2) Connectivity state (C): In this state, the device’s operat-
ing system is active, and it is connected to the available
connectivity link (i.e., Wi-Fi link) and does not perform
any task. In this state, the power consumption can be
identified by pc. This is our reference state, in which we
compare the energy consumption of the other states.

3) Data Exchange state (DX ): During this state, the device
will indeed be in data transmission or data reception.
The power consumed during this state can be defined
as pdx .

4) Worker state (W ): In this state, the device is engaged in
the blockchain-mining activity by performing a small
task of the block-mining process, in search of the nonce
for the new block. In this state, the power consumption
can be identified by pw:

5) prediction state (PRE): In this state, the device will
receive the AI-input values and then will utilize its
built-in AI-expert engine to process these values and
produce an AI prediction. During this state, the power
consumed is defined by ppre:

Based on these states, we can calculate the total
power ptot consumed by any device in the blockchain network
as follows:

ptot = ps + pc + pdx + pw + ppre (6)

The system will be in each state for a certain amount of
time, and the time of the sleeping state can be identified as
st ; during connectivity state, it can be defined as ct ; during
the data exchange state, it can be defined as dxt ; during the
worker state, it can be defined aswt ; and during the prediction
state, it can be defined as pret . These values, along with the
measured power in each state, can be used to calculate the
energy consumption EN of any device as follows:

EN = (ps × st )+ (pc × ct )+ (pdx × dxt )

+(pw × wt )+ (ppre × pret ) (7)

Based on this equation and the different system states,
we can calculate the cost of power (Pcost ) (J/s) during the
worker state (pw), or the prediction state (ppre), in comparison
to when the system is in the connectivity state (pc), our
reference state, using the following equation:

Pcost = (pw, ppre)− pc (8)

Battery life (Blife): When dealing with the small
battery-powered IoT devices, it is essential to utilize them
in a way that ensures limited impacts to their batteries.
We designed our architecture to ensure a limited impact on the
battery life of the devices. Based on the above assumptions
and the calculation of the power consumption and cost,
the life of a battery with a capacity of Bcapacity can be

calculated by:

Blife =
Bcapacity × V

EN
(9)

V. SECURITY ANALYSES
For security analyses, we performed a qualitative risk assess-
ment of the proposed architecture using the NIST SP-800-30
standard [23]. Table 3 shows the determination of the risk
level based on attack likelihood and its impact level. The
following subsections discuss the risks associated with the
most likely attacks that can target our architecture.

A. DENIAL OF SERVICE (DoS) ATTACK
The architecture was designed to allow nodes to access
the services provided by the AI-expert engine; however,
a DoS attack against the node hosting the engine is possible.
The system was designed to enhance the robustness of the
AI engine by utilizing the distributed approach provided by
the blockchain. In our experiment, we utilized one node to
host the AI engine, which has the ability to allow any of the
ANs to host the AI-expert engine, and each node can produce
its own prediction value, as all nodes have access to the data
in the blockchain. In fact, with the implementation of the
blockchain and the bespoke protocol formats, it is possible
to implement the AI in a distributed approach, in which each
AN can host one layer or more of the engine, allowing for
more transparency, as the flow of the data from one layer
to another will be validated on the blockchain network. This
makes the system robust against any attacks that target the
services provided by the AI engine.

Therefore, although the likelihood of a DoS attack is high,
its impact’s level is low making the residual risk level of this
attack low.

B. DATA INTEGRITY ATTACKS
The integrity of the data is very important for ensuring that
AI prediction is performed on legitimate and fresh data.
Nevertheless, the integrity of the data can be targeted and
can be vulnerable to manipulation. In our proposed system,
the blockchain platform is utilized to first validate new data
before adding them to the system. Second, it ensures that the

TABLE 3. NIST SP-800-30 determination of the risk’s level [23].
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added data cannot be modified or deleted. This feature of the
blockchain enhances the system’s ability to ensure that the
AI engine accesses only trusted and fresh data. However,
there is still the risk that some sensors may feed the sys-
tem a fabricated or untrue data. This might not be detected;
however, once any node is discovered behaving in a manner
that could harm the data integrity, our HDPoA consensus
algorithm will blocks that node from feeding or accessing the
data on the blockchain.

With the presence of our HDPoA-based blockchain plat-
form, the likelihood of any attacks that can harm the data
integrity is low, and their impact can be high. This makes the
residual risk level of any attack low.

C. MALICIOUS AN
It is possible that one of the ANs can be malicious or that it
can be compromises. A malicious AN can harm our archi-
tecture in two ways: either by forging a new block or by
producing an untrue AI outcome. In both cases, the platform
can manages this node. First, the block-mining process is
performed by multiple unrelated WNs. Second, other ANs
on the network only add and validate a new block produced
by the elected miners (see [22] for more details). If such a
block is not valid, then the node that produced the block will
be eliminated from the AN category, and it will have to build
its trust from zero. In terms of the AI prediction, we built
the system to allow any trusted AN to host the AI-engine.
This would allow the network to utilize more than one node
to perform theAI prediction, allowing formore validation and
outcome-consensus of any outcome before it is confirmed on
the blockchain.

The impact of any attack from any malicious AN high;
however, the likelihood that ANs can misbehave or become
compromised is moderate, making the residual risk level of
any attack moderate.

D. MALICIOUS WN
Similar to the malicious AN, any WN can be malicious, or it
can be compromised. Any WN can misbehave, and this can
only occur in the form of submitting incorrect solution to any
assigned task. The platform can easily address this problem.
First, any solution submitted by any WN will be validated
by the elected AN. Second, any new block will be validated
by other ANs on the network, thus eliminating the collusion
between any malicious or compromised ANs and WNs.

Although the likelihood of an attack by a malicious
WN is high, the impact of such an attack is low, which makes
the residual risk level of any attack low.

E. 51% ATTACK
The traditional 51% attack targets the control of the
blockchain network by controlling the majority of the hash
power (i.e., 51% or more). This type of attack, if successful,
provides the attacker with total control of the blockchain plat-
form. Our consensus mechanism deployed in the blockchain
platform eliminates attacks that are associated with

controlling the majority of the hash power. This is because
themining process is divided amongmultiple unrelatedWNs,
and it also deploys an added security layer by incorporating
the AN category along with the PoW process. However,
in our blockchain platform, for this attack to be successful,
the attacker needs to have control of the majority of the ANs
(control more than 50% of ANs). Although this is possible,
it is also very time consuming, making it difficult to achieve.

Therefore, the likelihood of this attack ismoderate, and the
impact, if it is successful, is very high, making the residual
risk level of this attack high.

F. ATTACK ON COMMUNICATION LINKS
Attacks on the communication links, such as jamming and
DoS are possible. The main focus on this study was to
evaluate the performance and security of the a blockchain
platform when utilized in supporting AI-enabled IoT appli-
cations. Hence, we assume that the network provider will has
adequate security mechanisms and protection in place.

Even though attack likelihoods on communication links
can be moderate; the impact of such attacks is low on the
assumption that adequate protection is in place, making the
residual risk level of this attack low.

VI. IMPLEMENTATION AND TESTING OF EXAMPLE
APPLICATION: AI-ENABLED SYSTEM FOR TRACKING
VIRUSES IN SEWAGE WATER
The worldwide pandemic caused by the novel coronavirus
COVID-19 has wreaked havoc among organizations, govern-
ments, and businesses. The lack of robust and reliable track-
ing and early warning systems and platforms has resulted in
the loss of many lives and major economic losses. Technolo-
gies such as blockchain, IoT, andAI can provide governments
with a secure, intelligent, and robust platform for tracking and
tracing and for implementing early warning system. Such a
system is a desirable solution that can help in tackling the
spread of COVID-19 or other future viruses and allows gov-
ernments to save lives and reduce economic impacts. In this
system, the sensing and data-collection ability of the IoT
can be combined with the decentralized and secure abilities
offered by blockchain and, with the intelligence capabilities
of the AI, can provide the best solution that can be utilized to
tackle current and/or future pandemics.

According to the author of [24], wastewater-based epi-
demiology (WBE) offers an effective method for the early
detection of possible viral infections before its actual spread
by tracking and measuring the presence of viral genetic
markers in wastewater. The proposed architecture discussed
above is shown in Fig. 2. It provides an affordable and more
practical system that can be utilized to efficiently and securely
predict the possibility of any viral infections. By continuously
collecting and analyzing the data, the system will serve as
an early warning notification for concerned entities, such as
disease-control agencies, allowing them to take effective and
early actions to slow down or stop the spread of such a virus.
Additionally, the system’s ability to serve as an early warning
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FIGURE 4. Block’s header and transaction formats.

notification platform can also help governments evaluate the
effectiveness of other virus-control measures, such as social
distancing, lockdown, and mass testing.

A. BLOCKCHAIN IMPLEMENTATION
We developed and implemented our own blockchain plat-
form secured by the HDPoA consensus mechanism that we
previously developed and tested. This platform is a public
blockchain where any node can join in exchange for a small
amount of energy through its participation in performing
tasks on the network, such as performing a small amount
of block mining or AI prediction. For our platform to han-
dle different transaction types on the network, including
AI-related transactions, we created and implemented a
bespoke transaction and block’s header formats, as shown
in Fig. 4.

In terms of the consensus mechanism discussed above,
there are two types of nodes in the network: ANs and
WNs. ANs are responsible for ensuring the security of the
blockchain bymanaging the mining process, validating trans-
actions and blocks, validating any work performed by a WN,
and validating each other’s work. Any node that joins the

FIGURE 5. Data flow within the different layers of the architecture.

blockchain for the first time will join as a WN and then
build its own honesty level until it can be promoted to the
AN category. Full details of how HDPoA works can be found
in [22].

B. DATA FLOW
Figure. 5 shows the different steps of the data flow in the
system. These steps are as follows:

1) First, the sensors that are installed in the different
sewage-water locations will sense and collect data in
the form of readings of any presence of viral agents in
sewage water. One sensor that can be used is a biosen-
sor with a biological receptor [25]. These readings are
submitted to a gateway that can be either a FC or a HC.

2) The gateway will validate the readings (if it was signed
by the sensor), create a transaction, and label the type
of this transaction as an AI-input value.

3) Then, the gateway will broadcast the transaction to all
ANs on the blockchain network.

4) Assuming node AN_1 is responsible for the mining
process of the next block (i.e., block_n), it will collect
transactions, validate them, and add them in a new
block, and it will set the AI-flag to the appropriate
value (0 or 1).

5) Then, in step 5AN_1 will create mining tasks for all the
available WNs and send the tasks to each one of them.

6) Upon receiving the task, any WN will accept it and
begin performing the process of searching for the cor-
rect nonce that satisfies the current difficulty.

7) If any WN finds the nonce that satisfies the next block
difficulty, it will forward it to AN_1 and all other ANs
for future validation.

8) AN_1 receives the nonce and then will validate it by
executing one hash.

9) If the nonce is valid, then block_n will be signed and
propagated to the network.

10) Once block_n arrives at the processing node (we
assume this node is AN_2), it will extract the rel-
evant AI input values, feed them to the AI-engine,
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TABLE 4. Example of our created test dataset, based on information from
related work [27]–[29].

process them, and produce the final AI outcome (the
prediction). This processing of the input values by
the AI-engine occurs during the mining process of
block_n+ 1.

11) AN_2 will then add this outcome to a transaction and
propagate it to all ANs on the network.

12) Assuming the node responsible for managing the min-
ing process of the next block (block_n + 2) is AN_3,
it will execute the same steps as 4–9, and will then
propagate block_n + 2 that carries the final AI out-
come to the network. Now, the AI outcome is available
on the public blockchain and can be accessed by any
interested government entity or organization.

C. EXPERIMENT AND TESTING
To test our system, we deployed a blockchain network and
used 16 R-pis. Two were used as ANs and 14 were used as
WNs. One AN was used for managing the mining process,
and we developed, trained, and deployed an AI-engine on
the other AN. The AI-engine consists of three inputs and
three outputs. For the hidden layer, we utilized the tenser-flow
kerase dense function [26], and for activation functions,
we utilized Relu and SoftMax. Figure. 6 shows the architec-
ture of the AI-expert engine.

FIGURE 6. The architecture of the AI-expert engine.

It was very difficult to find any COVID-19 dataset related
to wastewater, therefore, based on the literature, we cre-
ated our own test dataset. Based on [27], biosensors, such
as electrochemical reaction biosensors, can be utilized to
measure and detect the levels of viral nucleic acids, pro-
teins, and small molecular antibodies. Different studies inves-
tigated the use of biosensors for detecting COVID-19 in
wastewater [27]–[29]. One common way to measure viruses
and proteins using biosensors is the plaque-forming units
PFL/mL; for COVID-19, this could be up to 16 PFU/mL [27].
Themethod used to create our dataset is based on the assump-
tion that there are available biosensors to measure three dif-
ferent parts of the virus: viral proteins S, viral proteins N,
viral genetic material RNA, and provide readings measured
by PFL/mL.We created data based on three input values: viral
protein S, viral protein N, and viral genetic material RNA.
The higher the PFU of each input, the higher is the COVID-19
infection rate in a certain area. We classified our AI outcomes
into three different categories: low risk, medium risk (needs
attention), and high risk (needs immediate action). Table 4
presents an example of our test dataset, where the numbers in
the table are representative of those found in [27]–[29].

VII. RESULTS
A. SYSTEM LATENCY
We tested the system while mining using different numbers
of WN (1 to 12 WNs). We then measured the overall latency
of the system for each test. Figure. 7 shows the average L.
From the figure, we can see that as the number of WNs par-
ticipating in the blockmining process increases, the average L
decreases.Wemanaged to lower the overall latency from over
40 min when we were using only one WN to approximately
4.3 minutes when the total WN utilized to mine one block
was 12. If we had more WN at hand, this time could have
been reduced to less than one minute.

B. AI-ACCURACY
In terms of the AI engine accuracy, the system was first
trained on 70% of the dataset, using R-pi, and produced a

FIGURE 7. Measured and predicted system overall latency.
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prediction accuracy of 97%. We then tested the system on
a stand-alone R-pi device, not connected to the blockchain
network, using 15% of the dataset, resulting in a prediction
accuracy of 95%. In the final test, we deployed the system
on the blockchain network using one AN. We then tested
the system in three rounds. With each round, we used 5% of
the remaining dataset (the data were sent over the network
as blockchain transactions, as described by the data flow
in Fig. 5). All three rounds of the unseen dataset resulted in
the same prediction accuracy of 95%, which is the same as
when testing using the stand-alone system. This shows that
utilizing blockchain for better data security did not affect the
AI-engine accuracy; Fig. 8 shows the accuracy for both tests
compared to the training.

C. POWER COST
An important aspect of the proposed system is the impact on
the battery and power sources of devices. To investigate this
impact, we measured the power consumption during differ-
ent system states, including connectivity (C), data exchange
(DX), worker (W), and prediction (Pre). Figure. 9a shows the
consumed power by the R-pi during each of these states. It is
clear that the impact of using the device for mining or hosting
the AI engine is minimal, as most of the power is consumed
when the system is running and connected to the Wi-Fi
without performing any task. This is clear in Fig. 9b, as it
shows the percentage of the power increase when the system
is utilized to perform blockchainmining, data exchange, or AI
prediction. When using the R-pi for AI prediction, the power
increase was 14%, and this increase was 7% when utilized
for blockchain mining. However, in a network where the
available number of WNs and ANs is a few hundred or even
thousands, such an impact can be eliminated, as we would
have more than enough nodes to perform different tasks in the
network. This means that a device may spend a day without
performing any task.
Battery Life is an important factor in our proposed system.

We designed our architecture with the aim of protecting the
battery-powered IoT devices. We predicted the impact on the
battery life of such small devices [using (9)], and, as can be

FIGURE 8. Accuracy of the AI-expert engine.

seen in Fig. 10, these small devices can participate on the
network without substantial impacts to their batteries. For
example, in a network of 3,000 WN a battery with a capacity
of 600mA has an expected life of more than twomonths. This
expected life is well above three months, when the number of
WN is increased to up to 5,000. This shows that these battery
devices can access the service of the blockchain network by
performing small tasks with limited impact on their battery
life.

D. THROUGHPUT AND BLOCK SIZE
The block size is an important aspect when calculating the
network throughput (transactions per second); as the block
size increases, the throughput increases, and vice versa. Our
experiment was conducted using a reliable connectivity in
the form of Wi-Fi, which connects nodes to each other.
In [30], an intensive study of the impact of the block size
on IoT-blockchain applications was performed, and it was
found that a block size of less than or equal to 1 MB should
be used. Conversely, in our work, we limited the block size
to a maximum of 500 kB for better energy efficiency, and
to limit the impact of the block size on the network syn-
chronization. This allows the number of WNs to increase,
and hence, a lower mining time, while maintaining high net-
work synchronizations among nodes. We tested the network
throughput when the block size was 500 kB while varying
the number of WNs that participated in the block-mining
process (4–14 WNs). Table 5 lists the throughput. Clearly,
as the network grows in terms of the number of WNs, the
throughput increases. This is because the block-mining time
decreased.

We had only a limited number of devices at hand to conduct
large-scale experiments. However, to investigate the impact
of the number of WNs that are available on the network to
participate in the mining process, we calculated that impact
in terms of the number of WNs, transaction confirmation
time, difficulty, and throughput, using (3, 4). Figure. 11 shows
the predicted throughput for different network setups. It is
clear in the figure that as the number of WNs increases,
the throughput can be increased. For example, a network

TABLE 5. Measured throughput (Tx/s) for different network with varying
number of WNs.
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FIGURE 9. Energy and power measurements. (a) Average energy consumption of the system states. (b) Power cost when the system
is in the DX, W, and PRE states compared to when the system is in the C state, that is, the reference state.

FIGURE 10. Predicted battery life for battery powered IoT devices. (a) Network with mining difficulty of 4. (b) Network with mining
difficulty of 8.

FIGURE 11. Calculated throughput for different network’s setups. (a) The number of WNs, difficulty, and throughput. (b) The number of
WNs, transaction’s confirmation time, and throughput.

of 500 WNs and mining difficulty of D = 10 can achieve
a network throughput of 471 Tx/s. This shows the flexibility
and scalability of our blockchain platform,whereHDPoA can

enhance the network’s security by increasing the difficulty
when the number of nodes increases and simultaneously
achieves higher throughput.
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TABLE 6. Performance comparison between this paper and important related works.

VIII. DISCUSSION AND CONCLUSION
The proposed architecture provides a platform that is secure,
robust, and effective in terms of power and throughput to
support AI-enabled IoT applications at the edge. The system
is able to ensure continuous AI prediction, thus eliminating a
signal point of failure, providing governmental entities and
organizations with processed data and outcomes for better
decision-making. It ensures data integrity by validating and
securing all AI data (inputs and outcomes) using a secure,
decentralized, and transparent blockchain platform. Com-
pared with other related studies, the proposed architecture
provides a platform that is capable of ensuring AI data
integrity through validation and transparency, allowing the
deployment of a robust and redundant AI-engine without
any impact on its accuracy. It achieves this by utilizing edge
devices and IoT end devices without a substantial impact
impact on the power of these devices. Table 6 shows a
performance comparison with the important related works.
The authors acknowledge the difficulty of direct compar-
isons to other work due to differences in the presented
assessment criteria. Furthermore, individual blockchain solu-
tions can be tuned to enhance performance for a specific
application.

In conclusion, we proposed, designed, developed, and
implemented a system that has the capability to com-
bine the advantages of three important technologies—edge
computing, blockchain, and AI—in one platform. This
system incorporates the security advantages provided by
blockchain to offer a publicly available platform that inte-
grates the intelligence advantages provided by AI into
an edge layer to facilitate a secure architecture capable
of sensing, analyzing, thinking, and producing actionable
outcomes.

Our results showed that the system provided reliable accu-
racy in terms of the AI prediction of COVID-19 occurrence
in sewage water at an acceptable system latency for such
an application. The results and analyses of the impact on
the devices’ power sources showed that it is possible to use
low-cost and low-power devices to accommodate the require-
ments of AI and blockchain in a network of a few hundred
nodes.

In future work, the integration of biosensors into the system
is needed to further study their impact on the overall system
performance and the security of the collected data. Future
work will include full deployment of the system around dif-
ferent sewage water sources to collect and analyze real-world
data.
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