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ABSTRACT Sign language recognition using computational models is a challenging problem that requires
simultaneous spatio-temporal modeling of the multiple sources, i.e. faces, hands, body, etc. In this paper,
we propose an isolated sign language recognition model based on a model trained using Motion History
Images (MHI) that are generated from RGB video frames. RGB-MHI images represent spatio-temporal
summary of each sign video effectively in a single RGB image. We propose two different approaches
using this RGB-MHI model. In the first approach, we use the RGB-MHI model as a motion-based spatial
attention module integrated into a 3D-CNN architecture. In the second approach, we use RGB-MHI model
features directly with the features of a 3D-CNN model using a late fusion technique. We perform extensive
experiments on two recently released large-scale isolated sign language datasets, namely AUTSL and
BosphorusSign22k. Our experiments show that our models, which use only RGB data, can compete with the
state-of-the-art models in the literature that use multi-modal data.

INDEX TERMS 3D-CNN, attention, deep learning, motion history image, sign language recognition.

I. INTRODUCTION
According to the World Federation of the Deaf (WFD), there
are 70 million deaf people around the world [1]. People
in deaf communities use sign language for communication
with each other and with hearing people. Sign languages
are visual languages that use manual articulations of hands
in combination with facial expression and body posture to
represent signs. Each country has its own sign language,
and sign languages have their own lexicon and grammar.
The fact that the majority of hearing people do not know
sign language poses a challenge for deaf communities in
daily life. To overcome this challenge, computer vision
researchers carry out studies on automatic Sign Language
Recognition (SLR) systems.

In the literature, there are two main tracks of related
research on the SLR domain; isolated and continuous SLR.
While a video sample includes only one sign in an isolated
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SLR setting, continuous SLR videos contain multiple signs
and require recognition of a sequence of multiple signs.
Although continuous SLR is more challenging, isolated SLR
is still an active research area. Particularly, the recently
released new large-scale datasets provide unique challenges
to the community [2]–[7]. According to the survey in [8],
there is an exponential growth in isolated SLR studies
between 1983-2020.

Computationally, isolated SLR can be considered similar
to an action recognition problem. However, SLR involves the
discrimination of a sequence of fine-grained local motions
that are usually performed quickly. For similarly performed
signs, only small differences make signs different; for
instance, for some pairs of signs, hand gestures look very
similar, yet there is a difference in the facial expressions.
For some pairs of signs, hand motion trajectories look very
similar, yet local hand gestures look slightly different. For
some pairs of signs, although hand gestures and trajectories
are the same, the number of repetitions of a gesture
is different. To deal with these challenges, most studies
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explicitly segment the hands or face regions in video frames,
or use multiple modalities, such as depth, skeleton, etc.
to obtain higher accuracies in sign classification.

In this research, we aim to propose an effective solution,
which uses only RGB images in the sign videos with-
out requiring any explicit part segmentation or additional
data modalities. We create RGB-Motion History Images
(RGB-MHI) for each video and train an SLR model using
only RGB-MHI images. Based on this model, we propose two
different approaches that use RGB-MHI images and RGB
frames of sign videos: In the first approach, we experiment
with a 3D Convolutional Neural Network (3D-CNN) using
our RGB-MHI model features as an attention mechanism to
focus on relevant parts of the video frames. In the second
approach, RGB frames and RGB-MHI images are used
together with a late fusion technique. Our empirical obser-
vations show that using RGB-MHI images with 3D-CNN
models provides comparable performances with the state-of-
the-art models that use multiple input modalities, such as
depth, skeleton, hand and face segmentation, etc., or multiple
model ensembles. The proposed solutions in this research
are considerably cheaper with respect to their memory and
computation requirements.

The remainder of the paper is organized as follows: In
Section II, we summarize the related works. In Section III,
we describe our proposed methods. In Section IV, we provide
the experiments and model training details. Finally, we con-
clude the paper in Section V.

II. RELATED WORKS
Feature extraction is a crucial step for isolated sign language
recognition as it is for other problems in computer vision.
In the literature, some early studies utilized mainly hand
features for sign language recognition by utilizing glove-
basedmodels, or using different devices, such as LeapMotion
Controller (LMC), which aims to detect and track hands
and fingers [9], [10]. Tracking only the hand region is not
sufficient for general-purpose sign recognition. The signs
in sign languages are identified by manual sources and
non-manual sources simultaneously. While manual sources
consist of 4 components: hand shape (finger configurations),
orientation of the palm, movement of the hand, and position
of the hand; non-manual sources include body posture and
facial expressions such as head tilting, mouthing, etc. [11].
A powerful SLR system should follow all these body parts
simultaneously. Therefore, in most recent SLR studies, the
methods approach the problem holistically; analyzing all
components of the signer data as a whole.

The early research in the field use hand-crafted fea-
tures such as HOG, Hu moments, motion velocity vector,
relative hand positioning [12]–[14] as features. After the
release of the new large-scale datasets and advancements
in deep neural networks, spatio-temporal sign features are
successfully learned from the data distribution. Convolutional
deep models are useful in this regard to learn spatial
features automatically from data [15]–[17]. In these studies,

after spatial features are extracted by 2D-CNNs, temporal
information is modelled by a recurrent neural network.
On the other hand, some studies use the combination of deep
learning and traditional methods. Rastgoo et al. [18] used
some hand-crafted features and 2D-CNNs to obtain spatial
information. Then, they fuse all the features and feed them to
LSTM for temporal feature extraction.

Recently, 3D-CNNs show remarkable performances in
modeling the spatio-temporal patterns simultaneously in
video frames. Joze and Koller [2] released a large-scale
American Sign Language (ASL) dataset, namely MS-ASL,
and provided baseline methods including 2D-CNN-LSTM
and 3D-CNN based models. A 3D-CNN based I3D
model [19] achieved the best result with a large improvement
to the 2D-CNN based model. Li et al. [4] released another
large-scale isolated ASL dataset namely WLASL, and they
experimented with several appearance-based and pose-based
deep learning methods; (a) 2D-CNN network and Gated
Recurrent Unit (GRU), (b) 3D-CNN network, (c) human
pose-based GRU (d) human pose-based temporal graph con-
volution network. Their results also show that 3D-CNN based
I3D achieved the best results. Deep learning architectures
that work with a sequence of images require considerable
processing power and memory requirements. Therefore,
some studies work on more efficient representations; Dos
Santos et al. [20] created colored motion history images
(MHI), namely the star RGBs, to represent video sequences.
They trained two ResNets and combine these models
with a soft-attention mechanism. They achieved significant
accuracy rates in three different public datasets using only
RGB data. Imran and Raman [21] also represented a video
in a single image. They created three different kinds of
motion templates: MHI, RGBmotion image, dynamic image.
In our proposed approach, we use a similar single MHI
image representation to [20], yet we compute MHI images as
in [22].

In SLR research, it is a common approach to use different
types of data modalities such as depth, skeleton, optical
flow, etc. in addition to RGB data, and combine these
multiple modalities with a fusion technique in order to boost
the accuracy rate. Jiang et al. [23], the winner team of
the ChaLearn 2021 Looking at People Large Scale Signer
Independent Isolated SLR CVPR Challenge [24], utilized
different types of data modalities, e.g., RGB, skeleton, optical
flow, depth, depth HHA, depth flow. They mention that
multi-modal ensembles obtain a higher accuracy rate than
every single modality. Some studies try to segment hand or
face regions to use them as an additional modality. Luqman
and El-Alfy [17] utilized Microsoft Kinect for this purpose.
Firstly, they trained several 2D-CNN-LSTM models using
color, depth, or optical flow data separately. Then, they used
animation units of the signer face provided by the Kinect
as input and trained a stacked LSTM model. They fused
these manual and non-manual features at the classification
level with their best 2D-CNN-LSTMmodel and improved the
accuracy rate by about 3%. Some studies try to segment these
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regions from RGB data without using any hardware but with
some extra preprocessing. Using a pose estimation algorithm,
such as OpenPose [25], is one of the popular methods to
detect body, face, and hand keypoints. In [26] and [27],
hand regions were cropped by creating a bounding box
around the hand keypoints obtained using OpenPose. They
trained several models separately using different types of data
including cropped hands and proposed an ensemble model in
order to increase the recognition accuracy. Gökçe et al. [28]
also utilized OpenPose to crop both face and hand regions,
and used these modalities together with the full-body images.
Rastgoo et al. [29] used Faster R-CNN model [30] to detect
hand regions, and they created three forms of input; original
image, cropped hand image, and noisy cropped hand image.
They proposed a Restricted Boltzmann Machine (RBM)
using RGB and depth modalities to perform automatic hand
sign language recognition.

In parallel to these, using attention mechanisms to focus
on relevant spatial regions or temporal video frames without
needing explicit segmentation have been also studied in
the SLR domain. Shi et al. [31] proposed an iterative
visual attention mechanism for ASL fingerspelling. They
aimed to focus on signing hand with an attention model,
which is based on a convolutional recurrent architecture.
Their attention model reduced the area of interested regions
iteratively, and while doing this, increased the resolution.
Huang et al. [3] proposed an attention-based 3D-CNN
for isolated SLR. In their proposed model, they extracted
spatio-temporal features with a C3D model. A spatial
attention mechanism was incorporated into C3D by using
skeleton information of hands and arms. Then, they built
a temporal attention-based model for classification. In our
previous work [5], we proposed a baseline model for a new
large-scale isolated Turkish Sign Language (AUTSL) dataset.
We integrated a Feature Pooling Module and a temporal
attention model to focus on more relevant spatio-temporal
parts of the videos. Hu et al. [7] collected non-manual
features aware isolated CSL dataset, which contains visually
similar confusing signs that only differ in their non-manual
features. They proposed 3D-Resnet-50 based [32] model that
consists of two cooperative global and local enhancement
modules to differentiate confusing signs. Global enhance-
ment module contains a self-attention mechanism based on a
Non-local Neural Network [33], with the aim of enhancing
the global contextual relationship. In our proposed work,
we utilize the RGB-MHI images as an attention model
to assist our 3D-CNN model to focus on spatially salient
regions.

III. PROPOSED METHOD
In this paper, we aim to construct a sign language recognition
model using only RGB data, without using any explicit
part segmentation of hands or face regions. In this regard,
we create an RGB-MHI image that summarizes the entire
video in a single video frame and propose a RGB-MHI
model that learns a representation of relevant spatial and

motion patterns using these single images. Then, we propose
two different approaches utilizing this model. In the first
approach, we use the RGB-MHI model as a motion-based
attention mechanism to focus on relevant spatial regions.
In the second one, we propose a fusion model that combines
RGB and RGB-MHI features.

A. RGB-MOTION HISTORY IMAGE MODEL
Motion History Image (MHI) [34] is a static gray-scale image
where more recently moving pixels are brighter; there are
different variants ofMHI image generation [22], [35]. In [22],
MHI is estimated by the sum of the absolute values of
differences between consecutive frames as in (1), where N
is the number of frames in a video; I t is the t th video frame;
(i, j) are the coordinates of a pixel in a frame andW represents
the weight for the absolute difference, which is calculated as
W = t/N . In [20], a modified version of (1) is proposed
by including magnitude and phase information as well. They
also propose an approach to represent MHIs as RGB images.
In this approach, the frames in a video stream are split into
three equal parts, and motion histories are calculated for each
part separately. Then, a 3-channel colored MHI image, which
is referred to as star RGB, is created. In this representation
B-channel contains the motion history information from the
first temporal region, the G-channel has the motion history
information from the central one, and the R-channel from the
last part. Dividing the video frames into 3 parts helps prevent
temporal information loss.

M (i, j) =
N∑
t=2

|I t-1(i, j)− I t(i, j)|W (1)

In our proposed method, we also consider using colored
MHI images for SLR as in [20], yet while generating
our RGB-MHI images we use the differences between two
consecutive frames as in (1) for its simplicity. We depicted
our colored RGB-MHI image generation approach in Fig. 1.

Our RGB-MHI model is based on ResNet-50 [36],
which achieved successful results with star RGB in gesture
recognition problem [20]. We use pre-trained ResNet-50
model on ImageNet [37] dataset, and fine-tune it to the
used sign language datasets. However, RGB-MHI images
are contextually different from normal images. Therefore,
we made some ablation studies to select ResNet layers
depending on their performances; we wanted to reduce the
number of layers without sacrificing the model performance.
However, we observed that the classification accuracies were
lower than we expected when we used the Global Average
Pooling (GAP) as it was used in the original ResNet model.
We believe that losing the details in the spatial context
affects model performances considerably with MHI images.
Therefore, we removed the GAP layer and included an
additional fully connected (FC) layer with 1024 neurons,
with a ReLU non-linearity; the last FC layer follows
this layer with a softmax function. We obtained the best
results when we included all the convolutional layers in the
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FIGURE 1. An example of creating an RGB-MHI image.

pre-trained ResNet-50 model. The details of the experimental
results are provided in Section IV-C. As we expected,
2D-CNN models converge much faster when we use single
RGB-MHI images than using a sequence of RGB video
frames.

B. 3D-CNN MODELS
3D-CNN models have recently been widely used in video
classification problems in different computer vision domains
and provide state-of-the-art results. Motivated from this,
in this study, we planned preliminary experiments with
several successful 3D-CNN models to select the base 3D
model that we can use together with our RGB-MHI model.
In this context, we first worked with the C3D [38] model that
is pre-trained on Sports-1M [39] dataset. Secondly, we exper-
imented with the Inflated 3D ConvNet (I3D) [19] model that
is pre-trained on Kinetics-400 [40] dataset. With the original
C3D model, which has 8 convolutional layers, 5 pooling
layers, 2 FC layers, we had a vanishing gradient problem.
Therefore, we made some modifications in the architecture;
we replaced the 2 FC layers with a global average pooling,
and also we inserted a batch normalization (BN) layer after
all the convolutional layers. Compared to the C3D model,
the I3D model has fewer parameters and achieved better
results; recently, it has been used on new sign language
datasets, e.g., WLASL [4], MS-ASL [2], and BSL-1K [41].
In [41], it was observed that I3D achieved higher accuracy
on two ASL datasets when pre-trained on a new large-scale
British Sign Language dataset, BSL-1K, compared to
Kinetics-400. Therefore, we experimentedwith an I3Dmodel
that is pre-trained using both Kinetics-400 and BSL-1K
datasets.

In recent years, for efficiency reasons, 3D convolutions are
separated into a 2D spatial convolution and a 1D temporal

convolution. In these methods, 3D-CNNs are replaced with
spatial and temporal separable 3D convolutions, i.e., t× k× k
is replaced with 1 × k × k followed by t × 1 × 1, where t is
the width of the filter in time, and k is the width of the filter in
spatial extent [42], [43]. In this work, we also experimented
with two (2+1)Dmodels, Separable 3D-CNN (S3D) [42] and
R(2+1)D-18 [43]. S3D is the separable version of the I3D
architecture and has much fewer parameters than the original
I3D. On the other hand, although R(2+1)D does not reduce
the number of parameters much, it eases the optimization
process.

For all the architectures, we used publicly available
pre-trained models and fine-tune them to the used sign
language datasets. At the end of the preliminary experiments,
we decided toworkwith the I3Dmodel [19] that is pre-trained
on BSL-1K [41].

C. 3D-CNN MODELS WITH ATTENTION MECHANISM
Attention mechanisms have been included in deep models
in various ways to improve the performances of different
tasks in computer vision and natural language processing
domains. It has also been used in video classification
problems, such as action recognition and sign language
recognition, to focus on more relevant spatial or temporal
parts of the stream and construct more robust models. In this
study, we propose to utilize our RGB-MHI model as an
attention model with the I3D model to focus on the spatial
regions where there is a motion cue. In addition to our
RGB-MHI based attention model, we also implemented a
separate self-attention integrated I3D model. In this section,
we first present the details of our self-attention integrated I3D
model, then we describe our proposedmotion-based attention
mechanism.
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1) SELF-ATTENTION MECHANISM
The convolutional operators in CNNs, process a region, i.e.
computes the responses of filters, considering the values in
their local neighborhood; hence, long-range dependencies
are not captured. A self-attention mechanism aims to learn
long-range dependencies [44]. The embedded Gaussian
version of Non-Local (NL) blocks [33] is a kind of
self-attention that is proposed for computer vision tasks.
In this architecture, a non-local operation computes a
response for an output position by the weighted sum of the
features from all positions.

Motivated from [33], we incorporate NL blocks to some
of the middle-layers of I3D architecture. In this context,
we feed a feature map, X ∈ RC×T×H×W , into three different
convolutional layers (θ, φ, g) with filters of size 1 × 1 × 1,
where C,T ,H ,W represent the channel, temporal, height,
and width dimensions, respectively. The NL operation is
described as in (2), where i is the index of output position,
j is the index of all possible positions, X is the input feature
map, and x is the output feature map. With all convolutional
layers in (2), we reduce the channel dimension to half, thus
the new channel dimension becomes C/2. Also, we apply
a max pooling layer after φ and g to reduce the amount of
pairwise computation. Then, the obtained feature map, x i,
is fed into another 1 × 1 × 1 convolutional layer with C
channel dimension, and the result is added to initial feature
map X i as in (3).

x i = softmax(θ (X i)Tφ(X j))g(X j) (2)

zi = W zx i + X i (3)

We conduct some experiments by adding a various number
of NL blocks to different middle-layers. We achieve the best
accuracy rate when we add 1 NL block after the third block
(3a) of the I3D model. Our experimental results are given in
the Table 3.

2) THE PROPOSED MOTION-BASED ATTENTION
MECHANISM
In order to assess the salient regions using our pre-trained
RGB-MHI model, we first apply channel-based global
average pooling to the feature maps at the output of one of
the middle layers. Then, we create an attention weight by
passing the obtained feature matrix through softmax function
and then normalizing the result between (0, 1) as follows:

α = softmax(
W∑
j=1

H∑
i=1

1
C

C∑
c=1

Y c,i,j) (4)

αnorm =
α − min(α)

max(α)− min(α)
(5)

where Y ∈ RC×H×W is the feature map of a middle-layer
in RGB-MHI model; α ∈ RH×W ; C,H ,W represent the
channel, height, and width dimensions, respectively. The
normalized attention weights, αnorm, indicate the salient
regions in a video. As ablation studies, we generated attention

weights from three different layers of the RGB-MHI model,
i.e. conv2, conv3, or conv4. After the attention weights are
obtained, it is element-wise multiplied with the feature maps
in the I3D model, which has the same spatial size with αnorm;
i.e. 2a, 3a, or 4a layers of the I3D.

Our proposedmethod is illustrated in Fig. 2a. In the Figure,
we depict the motion-based attention aggregation in 3rd layer,
since we observed the best accuracy rates using this layer.

D. FUSION OF I3D AND RGB-MHI MODELS
In the literature, some studies show that fusing multi-
modalities or multi-model ensembles achieve higher accu-
racies than a single model. Therefore, we fuse our I3D
and RGB-MHI models with a late fusion technique. In this
approach, we utilize separate versions of I3D and RGB-MHI,
without parameter updating.We assignw1 andw2 weights for
the output of the last layers before softmax, and then calculate
their weighted sum as in (6) for the final prediction. Our
proposed fusion method is illustrated in Fig. 2b.

prediction = softmax(w1x1 + w2x2) (6)

IV. EXPERIMENTS
This section describes the datasets, training details, various
ablation studies, and comparisons to the state-of-the-art
model performances in the literature.

A. DATASETS AND PREPROCESSING
We evaluate our proposedmodels on two very recently shared
large-scale isolated sign language datasets: AUTSL [5] and
BosphorusSign22k [6].
AUTSL [5] is a large-scale, signer independent, isolated

TSL dataset that contains 226 signs, and 36,302 video
samples. The dataset contains 43 signers; 31 of them are
included in the training set, 6 are in the validation set, and
the remaining 6 are in the test set. This benchmark provides a
signer independent evaluation of themodels. Themethods are
also challenged with 20 different backgrounds with dynamic
elements, e.g., moving trees or moving people behind the
signer.
BosphorusSign22k [6] is another large-scale, isolated

TSL dataset that contains 744 signs, 22,542 video samples in
which signs belong to health and finance domains, and also
cover frequently used signs in daily activities. The dataset
contains 6 signers; 1 of them is reserved for testing. In our
experiments, we use 1 signer for the validation set. All signers
are deaf people in this dataset.

1) DATA PREPROCESSING
Firstly, we apply pre-trained Faster R-CNN model [30] with
ResNet-50 Feature Pyramid Network (FPN) backbone to
the first frames of the videos in order to detect signer and
eliminate some of the irrelevant background details. In some
videos of AUTSL, some people are passing by behind the
signer. Therefore, when there is more than one person in
the videowe choose the largest person bounding box since the
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FIGURE 2. Proposed methods. (a) I3D with RGB-MHI attention (b) I3D+RGB-MHI fusion.

signer is always the closest person to the camera in this dataset
and has the largest bounding box among people. We crop
all video frames to be square by expanding the bounding
box on both left and right sides (Fig. 3b, 3f). For 3D-CNN
models, we fix the number of frames in all the videos to
32 frames. In isolated videos, the signer initially starts with a
neutral position and returns to this position after performing
the sign. For this reason, we skip some frames (maximum
10), which we determined according to the total number of
frames in a video, from the beginning and the end of the
stream. Then, we select 32 video frames from the remaining
middle part by uniform sampling. On the other hand, while
creating RGB-MHI images, we use all the video frames. After
generating an RGB-MHI image, we crop it to be square using
the bounding box information returned from Faster R-CNN
of the corresponding video.

Moreover, in order to increase the variability, we apply data
augmentation to RGB videos in the training and validation
sets. In order to prevent the signers appear always in the center
of the videos, we expand the bounding box from the left
(Fig. 3c, 3g) or right (Fig. 3d, 3h), at first. In doing so, we also
vertically shift the bounding box randomly (within a limited
pixel) to allow the signer to be in different vertical positions.
Finally, we also apply horizontal flip to these 3 versions of the
data to accommodate our model for both hands. We resize all
frames to 224 × 224.

B. TRAINING DETAILS
We implement all the models using PyTorch library [45].
In our models, some experiments are conducted in order to
determine the optimum hyperparameters. The best results are
obtained as follows. In the RGB-MHI model, modified C3D,
and R(2+1)D models, we use Adam optimizer with an initial

FIGURE 3. Examples of frame cropping and data augmentation of one
standing, and one sitting signer from AUTSL dataset. (a, e) Original video
frame. (b, f) After getting the bounding box with the Faster R-CNN [30],
the bounding box is extended equally from the left and right to be a
square. (c, g) The bounding box is expanded from the left side first.
(d, h) The bounding box is expanded from the right side first. While
expanding from the right and left, the bounding box is randomly shifted
in the vertical direction.

learning rate 1e − 4. In I3D-based models, we use SGD
optimizer with an initial learning rate 1e−2, and momentum
0.9. In S3D, we use Adam optimizer with an initial learning
rate 1e − 3. We reduce the learning rate by 0.2 factor if
no improvement is observed on the validation set for three
epochs in all models.We repeat this process several times, and
when there is no improvement anymore, we finally terminate
the training.

C. EXPERIMENTS ON AUTSL
The results of our RGB-MHI model, which uses only one
RGB-MHI image per video as an input, are reported in
Table 1. In this approach, we modified the ResNet-50 model
and made empirical observations on several versions with
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TABLE 1. Ablation studies with RGB-MHI model on AUTSL dataset.

TABLE 2. Ablation studies with 3D-CNNs on AUTSL dataset.

different depths. We achieved the best results when we used
all the layers of ResNet-50. Compared to the baselinemethod,
which is presented with the AUTSL dataset in [5], our best
RGB-MHI model achieves 71.95% classification accuracy
using a single image, which is higher than 2D-CNN and
attention-based bidirectional LSTM model that takes entire
video frames. Also, RGB-MHI model training is very fast
since it only needs 1 motion history image, compared to
2D models where entire video frames are used as inputs.
Moreover, since there are more than 200 different sign
classes in the AUTSL dataset, 71.95% accuracy rate shows
that a single RGB-MHI is capable of learning important
discriminative features to represent isolated signs.

Since there is still a large room for performance improve-
ment, we experiment with 3D-CNN based models using only
RGB video frames. The results of the ablation studies with
3D-CNN architectures on AUTSL are provided in Table 2.
Firstly, we experiment with the modified C3D model and
achieve 83.04% accuracy. Then, we experiment with the
I3D model that recently achieves successful performances on
the recent large-scale sign language datasets, as well as in
action recognition. In our first experiment, the I3D model is
pre-trained on Kinetics-400 [40] action recognition dataset,
and the second one is pre-trained on BSL-1K [41] British
sign language dataset. We observe that when we transfer the
features fromBSL-1K, we obtain 1.58% higher accuracy. I3D
that is pre-trained on BSL-1K, R(2+1)D-18, and S3Dmodels
all achieve above 89% recognition accuracy. We choose the
I3Dmodel as the baseline to use in our follow-up experiments
since many recent state-of-the-art works in SLR also chose
I3D as their baseline, e.g., WLASL [4] and MS-ASL [2].

TABLE 3. Accuracy results of the ablation studies on self-attention and
RGB-MHI attention on AUTSL dataset.

In the follow-up works, we include the self-attention
mechanisms to the selected 3D baseline model, i.e. I3D,
to focus on related parts of the video frames. For this purpose,
we insert different number of NL blocks [33] after different
stages motivated from the original paper, specifically after
3rd, 4th, or 5th layers of I3D. In our experiments, we observe
similar accuracy rates, but we get the best result (89.94%)
when we insert 1 NL block after 3a block of I3D, only a slight
improvement (0.64%) over the base model as seen in Table 3.
Due to the memory constraints, we were able to add fewer NL
blocks at lower level layers. However, we still obtain the best
result when we add 1 NL block after the 3rd layer. We believe
that the 3rd layer’s larger spatial size is the main reason for
that since it provides more spatial information.

1) I3D MODEL WITH RGB-MHI ATTENTION
We conduct some experiments with our proposed motion-
based attention model. In this scope, we create attention
weights from the feature maps taken from one of the middle-
layer, i.e. 2nd or 3rd or 4th layer of RGB-MHI model.
The sizes of the attention weights are 56 × 56, 28 × 28,
14 × 14, respectively. As in the experiments with the self-
attention model, the best results in these experiments are
obtained after the 3rd layer, that is, when the size of attention
weights are 28 × 28. Our RGB-MHI based attention model
performs 90.18% accuracy rate (Table 3), contributing 0.88%
to the basic I3D model and 0.24% to the I3D model with
self-attention.

2) I3D AND RGB-MHI FUSION MODEL
In our second approach, we fuse I3D and RGB-MHI models
with a late fusion technique and obtain 91.13% with the
weights of w1 = 0,6; w2 = 0,4. The empirical results show
that RGB and RGB-MHI features are complementary to
each other, thus the fusion of I3D and RGB-MHI model
achieve better results than I3D with self-attention or I3D with
RGB-MHI attention. Table 4 compares our proposed method
variations.

We observe that our proposed I3Dmodel and its RGB-MHI
variants work successfully, invariant to the complex exter-
nal motion arising from the background. In dynamic
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TABLE 4. The results of our proposed method variations.

FIGURE 4. Sample videos that are correctly classified by the I3D, I3D with
RGB-MHI attention, and I3D+RGB-MHI fusion models. Although the
backgrounds contain moving people and swaying trees, all models could
identify the correct sign without getting influenced by the cluttered
background.

backgrounds, motion history images also summarize some
undesirable (moving background) information (Fig. 4).
However, our models can tolerate external motion in the
background. In Fig. 4, we show examples that are correctly
classified with all three models, i.e. I3D, I3D with RGB-MHI
attention, and I3D+RGB-MHI fusion. I3D model alone
already performs well in these samples, hence we did
not observe additional help from RGB-MHI images in
correct classifications for these samples. Still, I3D with
RGB-MHI model variants also correctly classify these chal-
lenging samples, even RGB-MHI images contain background
motion.

On the other hand, the overall test scores depict that the
RGB-MHI model helps I3D to better classify the challenging
signs in the AUTSL dataset. Note the accuracy rates of
I3D, I3D with RGB-MHI attention, and I3D+RGB-MHI
fusion in Table 4, which are 89.30%, 90.18%, 91.13%,
respectively. When we analyze test results, we observe
that while some videos are misclassified with I3D, they
are classified correctly when the RGB-MHI features are
incorporated.We observe that using RGB-MHI features helps
to correctly classify some challenging signs where the hand
shape is quite similar, yet there are differences in hand

FIGURE 5. Sample videos that are misclassified by the I3D model and
correctly classified by the I3D with RGB-MHI attention and I3D+RGB-MHI
models. Each row contains some sample video frames and the
corresponding RGB-MHI image. (a-first row) ‘‘agir: heavy’’ is misclassified
with the I3D model as ‘‘ocak: oven’’ (second row). As seen in the video
frames, hand shapes are very similar, but there is a difference in the
movement of hands. In the ‘‘heavy’’ sign, both hands are lowered from
above, while in the ‘‘oven’’, the hands move in opposite directions. (b-first
row) ‘‘yavas: slow’’ sign is misclassified as ‘‘eldiven, gloves’’ (second row).
These two signs are very similar; there is only a slight difference in hand
orientation and movement.

movements (Fig. 5). Note that in these test samples, the
background environments are not simple.

3) I3D WITH RGB-MHI ATTENTION AND FUSION MODEL
Finally, we investigated the contribution of both the
RGB-MHI attention and RGB-MHI model fusion. When
we fuse the I3D with RGB-MHI attention model and
the RGB-MHI model, we obtain 91.55%. Considering the
trade-off between the model complexity and accuracy rates,
we selected the I3D+RGB-MHI fusion model as our final
model.

In order to increase the generalization capability of the
model, we train our base I3D model with the augmented
data that is described in Section IV-A. In this experiment, the
classification accuracy has been improved from 89.30% to
92.19%when 6 timesmore train data, which is generatedwith
data augmentation, has been used. In an SLR challenge [24]
on the AUTSL dataset, participants are allowed to use val-
idation labels to fine-tune their models. Therefore, we fine-
tune our model with the union of training and validation sets
and obtain 92.43% classification accuracy. In this experiment,
the initial learning rate is set to 2e − 3, instead of 1e − 2.
Since there is no validation set in this experiment, we stop
fine-tuning when the training loss is reduced to the same
level as in the previous run. Finally, we ensemble it with the
RGB-MHI model using a predefined set of fusion weights.
Since I3D achieves a higher accuracy rate than the RGB-MHI
model, we give higher or equal weights to I3D model
and we experiment with three different weight pairs for
fusion: (0.7, 0.3), (0.6, 0.4), (0.5, 0.5), respectively. The
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TABLE 5. Comparison of the literature on AUTSL.

fusion model achieves approximately 1% better, and our best
I3D+RGB-MHI model performs with 93.53% accuracy,
using (0.6, 0.4) weight pairs.

Table 5 contains the state-of-the-art model performances
on AUTSL in the literature. All recent models perform
considerably higher than the baseline 2D-CNN+LSTM
based model. Most of the works use multiple modalities, such
as skeleton joints, optical flow, hand crops, etc., and model
ensembles to increase the classification accuracies. Our
model performs comparable to the state-of-the-art models,
although we only used RGB frames and the RGB-MHI image
that we generate from RGB data.

D. EXPERIMENTS ON BosphorusSign22k
We evaluate our I3D+RGB-MHI fusion model on another
large-scale sign language dataset, BosphorusSign22k [6],
since our I3D+RGB-MHI fusion model achieves a bet-
ter result than I3D with our RGB-MHI attention model.
RGB-MHI model alone classifies the signs in this dataset
with 75.77% accuracy. Following that, we conduct similar
experiments with the I3D model using augmented train data.
In our first experiment, we use the BSL-1K pre-trained
version of the I3D model and obtained 91.64% accuracy.
Next, in order to analyze the results of the transfer learning
from different datasets, we use AUTSL-trained parameters
instead of BSL-1K in the same model. In this case, we obtain
slightly better accuracy, i.e. 92.66%. We first thought
that pretraining with AUTSL is more helpful since both
datasets are TSL datasets, and hence contain similar signs
(although performed in different contexts and with different
signers). However, we realized from the works of [46]
that pretraining with AUTSL is effective in Spanish Sign
Language as well. In Vazquez-Enriquez et al.’s work [46],
the authors show the effect of transferring data from different
sign language datasets. In their experiments, they worked
on LSE-Lex 40 [48] Spanish Sign Language dataset; they
trained their model from scratch or applied transfer learning
to models that were trained with AUTSL orWLASL datasets.
They observed that the best results are obtained with an

TABLE 6. Performances of the proposed methods on BosphorusSign22k.

TABLE 7. Comparison of the literature on BosphorusSign22k.

AUTSL pre-trained model. In experiments conducted on
both BosphorusSign22k and LSE-Lex 40 datasets, higher
accuracy rates are obtained when initial parameters are
transferred from the AUTSL dataset, indicating that AUTSL
provides a good initialisation for other sign language datasets.
Therefore, we choose the AUTSL pre-trained I3D model
as our baseline in these experiments. Then, we fine-tune
the I3D model with the union of the train and validation
datasets. Since there are only 4 signers in the training data,
an additional 1 person in the validation set contributed to
the increase in generalization of the model, and we obtained
94.47% accuracy. Finally, we fuse our I3D and RGB-MHI
model with the coefficients of w1 = 0.6; w2 = 0.4,
and obtained 94.83% accuracy. Our results are provided in
Table 6.

Table 7 compares model performances on Bosphorus-
Sign22k in the literature. As seen in the table, our proposed
I3D+RGB-MHI fusion model achieves competitive perfor-
mance, 94.83%, with the state-of-the-art; following the best
performing method very closely. Notice that in our proposed
model, no explicit part segmentation is included as a separate
modality. The context provided with the RGB-MHI image
helps the 3D model to focus on relevant parts of the sign
action.

V. CONCLUSION
In the isolated SLR literature, the methods that train
different models with multiple modalities and use ensembles
of these models with various fusion techniques achieve
more successful results. Although performing significantly
well, such models are complex and usually demand more
computational resources. In this research, our aim is to utilize
only the RGB data modality to avoid additional modalities
without sacrificing the model performances significantly.
Two methods are proposed in this regard; in the first
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approach, rather than explicitly segmenting the hands or
face, a model that focuses on motion patterns is proposed
with the RGB-MHI images. For the second approach,
RGB and RGB-MHI features are fused in a late fusion
technique, before the prediction. Compared to the literature,
our proposed models perform comparably to the state-of-the-
art models that use multiple data modalities; and provide
strong baselines for the models that use RGB data on two
large-scale TSL benchmarks. As future work, we plan to
investigate the effectiveness of the proposed models in the
continuous SLR domain.
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