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ABSTRACT In recent years, the field of digital imaging has made significant progress, so that today every
smartphone has a built-in video camera that allows you to record high-quality video for free and without
restrictions. On the other hand, rapidly growing internet technology has contributed significantly to the
widespread use of digital video via web-based multimedia systems and mobile smartphone applications such
as YouTube, Facebook, Twitter, WhatsApp, etc. However, as the recording and distribution of digital videos
have become affordable nowadays, security issues have become threatening and spread worldwide. One of
the security issues is identifying source cameras on videos. There are some new challenges that should be
addressed in this area. One of the new challenges is individual source camera identification (ISCI), which
focuses on identifying each device regardless of its model. The first step towards solving the problems is a
popular video database recorded by modern smartphone devices, which can also be used for deep learning
methods that are growing rapidly in the field of source camera identification. In this paper, a smartphone
video database named Qatar University Forensic Video Database (QUFVD) is introduced. The QUFVD
includes 6000 videos from 20 modern smartphone representing five brands, each brand has two models, and
each model has two identical smartphone devices. This database is suitable for evaluating different techniques
such as deep learning methods for video source smartphone identification and verification. To evaluate the
QUFVD, a series of experiments to identify source cameras using a deep learning technique are conducted.

The results show that improvements are essential for the ISCI scenario on video.

INDEX TERMS Database, smart phone, source camera identification on videos, deep learning methods.

I. INTRODUCTION

Cellphone has developed rapidly over the past century due to
its economic advantages, functionality and ease of access [1].
It allows the creation of digital audiovisual content without
any constraints such as time, objects, places and network
connections [2]. Smartphone devices can provide some per-
tinent information for crime prosecution and forensic inves-
tigations in massively important manner [1]. These types
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of investigations have a potential importance in research
fields in all the sectors like medicine, law, and surveillance
system where images and videos authenticity is important.
In general, video forensic analysis is much more difficult than
the image analysis due to lossy video compression, so the
current traces can be erased or significantly damaged by
high compression rates, making all or part of the processing
records unrecoverable. While numerous forensic methods
have been developed based on digital images [3]-[9], the
forensic analysis of videos has been less explored. It should
be noted that methods based on images cannot also be applied
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directly to videos [10]-[12]. This is due to some challenges
such as compression, stabilization, scaling, and cropping,
as well as the differences between frame types that can occur
when producing a video.

Video identification algorithms are used to identify and
distinguish camera types based on video produced by digital
cameras. During the last few years, forensic specialists have
been particularly interested in this topic. In general, there
are two main ways to identify images and videos, namely,
examining images or videos to extract a unique fingerprint of
the camera and using metadata associated with the images or
videos (the DNA of a video). Lopez et al. [13] demonstrated
that the internal elements and metadata of video can be
used for source video identification. Since metadata can be
removed from an image or video, identifying video or images
based on fingerprint is a reliable method. Moreover, two
concepts are considered for identifying camera: individual
source camera identification (ISCI) and source camera model
identification (SCMI). ISCI distinguishes cameras from both
the same and different camera models, while SCMI is a subset
of ISCI that distinguishes a particular camera model from
others, but cannot distinguish a particular camera model from
the same camera models. SCMI has been more researched
compared to ISCI [14]. Other aspect that is important in
identifying source camera on video is codec for compensation
purpose. The codec may affect the accuracy of the source
camera identification, as some useful information is lost dur-
ing the action.

As a result of the challenges and advances in research in
the field of forensic video analysis, such as deep learning
methods, there is a need for standard databases that allow
researchers to more easily compare techniques using the same
experimental protocols. Although there are several databases
for identifying source cameras for images [15], [16], there are
few databases for videos. Therefore, for new challenges such
as ISCI and deep source camera identification analysis that
focus on video, it is essential to have a database to perform
new methods on video.

Since most video databases focus on videos recorded with
a (videocassette recorder) VCR, and among them there is only
one database for smartphones (Daxing) [1], in order to give
new tasks to the databases, we focus on presenting a smart-
phone database for videos. It should be noted that the Daxing
database cannot cover the ISCI challenge for all devices (out
of the 22 models, 16 models can be used for the challenge)
and QUFVD is more suitable to train a Deep Learning method
due to the number of videos recorded in the database (6000
videos) compared to Daxing (1400). This study is an attempt
to develop a database that is unique to the new challenges of
smartphone video. The structure of the database for identi-
fying source camera is shown in Figure 1. As shown in the
figure, to evaluate the database, we need to extract frames.
Generally, frames consists of intra-coded picture (I-frame),
predictive coded picture (P-frame), and bi-predictive coded
picture (B-frames), which show promising results among
those obtained with I-frames [12], [14]. The database is
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FIGURE 1. Overview of QUFVD structure and evaluation step for ISCI
scenario.

presented by both videos and I-frames corresponding with
videos. We also consider training, validation, and testing
data for two common categories of methods used in the
field, namely Photo Response Non Uniformity (PRNU) and
Machine Learning approaches. PRNU, which is understood
to be the unique fingerprint of the camera, is often referred
to as residual noise or sensor pattern noise (SPN). PRNU
occurs when the CCD (Charge Coupled Device) or CMOS
(Complementary Metal Oxide Semiconductor) sensors pro-
cess the input signal (light) and convert it into a digital signal.
In deep learning methods, which are a popular category of
machine learning, this traing step should be performed to
extract the fingerprint of the camera. The main challenges
for these methods are the separation of content from noise
and the number of training data. The first challenge can be
solved by introducing architectures that address the problem
by, for example, adding new layers and loss functions.

The paper is organized as follows. Section II is a review
to available databases for videos with a brief description.
Our motivation is explained in Section III. Our new video
database is completely presented in Section IV. Section V
describes database evaluation based on the deep learning
method. The last section concludes this work.

II. LITERATURE REVIEW
The databases presented based on videos are summarized in
Table 1.

One of the main reasons for the lower exploration of videos
compared to images is that there are few standard digital
video databases to develop the methods [14]. We explore the
databases in the section.

CAMCOM2010 [17] is a contest designed to identify
source YouTube videos. Two participants submitted results
despite a satisfactory number of participants at first. However,
the database is not available publicly.

The University of Surrey’s website provides access to
SULFA database [18]' that contains original videos and

1 http://sulfa.cs.surrey.ac.uk/
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TABLE 1. The databases presented based on videos.

Method Availability  Year Description
SULFA [18] Public 2012 150 videos collected from three camera sources
VISION [21] Public 2017 34,427 images and 1914 videos, 35 portable devices of 11 major brands
video-ACID [14] Public 2019 12 000 videos from 46 physical devices representing 36 unique camera models
Daxing [1] Public 2019 43400 images and 1400 videos captured

by 90 smartphones of 22 models belonging to 5 brands for capturing images
SOCRatES [24] Public 2019 9700 images and 1000 videos captured with 103 different smartphones

forged ones. The original videos are suitable for source cam-
era identification purpose. About 150 videos were collected
from three sources that was also extended by [19]. Method
presented in [20] was tested in the study.

VISION database? was introduced in [21] that is the
most popular database in the field. In total, 35 portable
devices from 11 major brands contributed 34,427 images
and 1914 videos, all in native format and social format
(Facebook, YouTube and WhatsApp are included). There are
videos captured in indoor, outdoor, and flat scenarios. Videos
of flat surfaces such as walls and sky are included in the
flat scenario. Videos depicting offices or shops are included
in the indoor scenario, while videos depicting gardens are
included in the outdoor scenario. Three recording modes were
used for each scenario: Still mode, where the user stands
still while the video is recorded. While capturing the video
(moving video), the user walks, the panrot mode combines
a pan with a rotation to achieve a recording. YouTube and
WhatsApp social media platforms were used to exchange
videos belonging to each scenario. In the study, they evaluated
the database by method presented in [4].

video-ACID database® was presented in [14] to source
camera identification that is accessible publicly. Over 12,000
videos were collected from 46 physical cameras repre-
senting 36 different camera models in the video- ACID’s
database. All of these videos were shot manually to represent
arange of lighting conditions, content, and motion. Moreover,
this database is suitable for both SCMI or ISCI scenarios.
They evaluated deep learning method presented in [22].

[1] presented a Daxing smartphone identification
database,* which include both images and videos from exten-
sive smartphones of different brands, models and devices.
The data from 90 smartphones, representing 22 models
and 5 brands, includes 43400 images and 1400 videos. In the
case of the iPhone 6S (Plus), 23 different smartphone models
are available. Scenes selected normally include a sky, grass,
rocks, trees, stairs, a vertical printer, a lobby wall, and a white
wall in a classroom, among others. The videos were shot

2https:/llesc.dinfo.unifi.it/VISION/
3 misl.ece.drexel.edu/video-acid
4https:// github.com/xyhcn/Daxing
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vertically in each scene. Each scene contains at least three
videos. In addition, all videos were recorded over 10 seconds.
The database was evaluted by method presented in [23].

SOCRatES database® [24] captured by smartphones.
Around 9700 images and 1000 videos were taken by 103 dif-
ferent smartphones from 15 different brands. [3] and [25]
were assessed on the database.

IlIl. MOTIVATION

The rapid development of new smartphones in the field of
imaging may be an important reason for the development of
databases in forensic analysis, especially in the identification
of source cameras. On the other hand, the coverage and com-
pletion of aspects that other databases have not considered
in the development of the databases may lead researchers to
present a new database.

As described in the previous sections, most databases
contain videos recorded on VCR, and only one of these
databases is dedicated to smartphones (Daxing) [1]. Although
the database can be considered as an important database in
this field as it covers a wide range of devices, there are some
aspects that may lead researchers to develop a new database
to meet new challenges in this field.

Table 2 shows the database in detail based on number of
videos for each device. Of the 90 devices used in the database,
85 devices were considered for recording the videos. As can
be seen from the table, the range of videos recorded by
the devices is limited. This may be because the Daxing
database focuses on both videos and images. The smallest
number of videos recorded by a device in the Daxing database
is 4 while the largest number of videos recorded by a device
is 106 videos, where only one device has 106 videos and the
rest of the devices have less than 31 videos. More devices
have 12 to 28 videos. On average, the number of videos
for each device is around 26. As a result, the assessment
of PRNU-based methods may not be reliable. Furthermore,
source camera identification techniques based on machine
learning may face a problem of unbalanced data since the
number of training videos is small and differs across the
devices. This prompts the researchers to adjust and balance

5 http://socrates.eurecom.fr/
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FIGURE 2. Sample frames from captured videos: (a) Huawei-Y7 (device 1), (b) Huawei-Y7 (device 2), (c) Huawei-Y9 (device1), (d) Huawei-Y9 (device 2),
(e) iPhone-8Plus (device 1), (f) iPhone-8Plus (device 2), (g) iPhone-XsMax (device 1), (h) iPhone-XsMax (device 2), (i) Nokia-5.4 (device 1), (j) Nokia-5.4
(device 2), (k) Nokia-7.1 (device 1), (I) Nokia-7.1 (device 2), (m) Samsung-A50 (device 1), (n) Samsung-A50 (device 2), (0) Samsung-Note9 (device 1),

(p) Samsung-Note9 (device 2), (q) Xioami-RedmiNote8 (device 1), (r) Xioami-RedmiNote8 (device 2), (s) Xioami-RedmiNote9Pro (device 1),

(t) Xioami-RedmiNote9Pro (device 2).

the database before use. For example, for the iPhone 8 Plus,
24 videos were recorded for device #1 and only 4 videos were
recorded for device #2.

As our experiments have shown (Section V), increasing
the number of training data can improve the results in our
database. Also, since most machine learning methods require
enough data to train, it is obvious that a database with many
more videos is better suited to machine learning methods
compared to Daxing for the ISCI scenario. As shown in
Table 2, for implementing ISCI scenario, only one device
has 106 videos to train, and the rest of the devices have less
than 31 videos to train. Additionally, to design the structure
of the Daxing database to be suitable for a machine learning
approach, the videos need to be divided into training, testing
and validation sets. If we consider 26 videos for each device
as the average of the database and use our structure to split the
database, we have 15, 7 and 4 videos for training, testing and
validation respectively. Therefore, it is obvious that it can be
less to compare the machine learning methods fairly. It should
be noted that the Daxing database may be more suitable for
machine learning methods for the SCMI scenario for more
models.

Finally, it should be noted that a new database can be
connected to other databases such as Daxing to obtain more
data and deal with new challenges.

IV. QUFVD DESCRIPTION

In this section, we discuss the features and structure of
QUFVD. For describing a database, the following options are
important: number of videos and camera, resolution, codec,
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suitable for SCMI or ISCI. The options are described in more
detail in this subsection. Table 3 summarizes our database
with its features. The QUFVD is publicly available.®

A. DEVICES

There are several popular manufacturers that produce differ-
ent smartphone brands. Among them, there are few brands
that are widely used by people. In order to have a variety of
brands, we collected the devices to be used for video record-
ing and selected 5 popular brands: iPhone, Samsung, Huawei,
Xioami and Nokia. For each brand, we selected two differ-
ent models, and for each model, we selected two devices.
Therefore, four devices are considered for each brand. The
total number of devices used to collect this database should
be 20 devices.

B. SIZE PROPERTIES

With the development of deep learning methods in this area,
a large number of videos or frame can improve the results
in this area, as shown in this article. Therefore, a database
with suitable size can be considered for both traditional
methods such as PRNU and deep learning methods. In our
database, 300 videos are collected for each device, making
a total of 6000 videos available. The length of the videos is
between 11 and 15 seconds at a frame rate of 30 frames per
second. Since I-frames play an important role in identifying
the source [12], [14], these types of frames are also extracted.
Depending on the length and content of each video, they are

6https://www.dropbox.com/sh/an43na9qq0wlaz/
AAAc5N8ecjawk2KIVF8kfkrya?dl=0
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TABLE 2. Number of videos captured based on Daxing database for each device.

Smartph Number of videos Smartph Number of videos
martphone for each device (separated by comma) martphone for each device (separated by comma)

Huawei P20 (5 devices) 26, 24, 24, 30, 17 iPhone 7 Plus (5 devices) 20, 22,21, 24,24

Huawei Mate 9 (3 devices) 29,21,25 iPhone 8 Plus (2 devices) 24,4

Huawei Mate 9 Plus (1 device) | 24 OPPO R9 (6 devices) 24,24, 24,24, 24,20

Huawei P9 (5 devices) 24,24,24,24,25 OPPO ROS Plus (1 device) | 23

Huawei P10 (3 devices) 22,16, 24 OPPO R11 (5 devices) 18, 24, 26, 25, 19

Huawei 10 Plus (4 devices) 24,24,23,24 OPPO R 11T (1 device) 24

iPhone 9 (5 devices) 21,24,22,24,27 VIVO X9 (4 devices) 21, 25, 24,24

iPhone 6 Plus (4 devices) 106, 24, 24,22 VIVO X9 Plus (1 devices) | 24

. . 24, 23,24, 26, 24, 25, 25, 27, .

iPhone 6S (12 devices) 24,24, 24, 24 VIVO XO9I (1 devices) 8

iPhone 6S plus (9 devices) ég’ 25,24,22,24,24, 24,24, VIVO Y85 (1 device) 12

iPhone 7 (2 devices) 24,27 Xiaomi 4A (5 devices) 12,12,12,12, 12

TABLE 3. The devices of our database with their characteristics.

Brand Model Resolution Number of videos  Number of I-frame  Length in Secs  Operating system
Samsung Galaxy AS0 (device #1) 1080 x 1920 300 3654 11-15 Android 10.0
Samsung Galaxy A50 (device #2) 1080 x 1920 300 3782 11-15 Android 10.0
Samsung Note9 (device #1) 1080 x 1920 300 3956 11-15 Android 10.0
Samsung Note9 (device #2) 1080 x 1920 300 3962 12-15 Android 10.0
Huawei Y7 (device #1) 720 x 1280 300 3630 11-15 Android 9.0
Huawei Y7 (device #2) 720 x 1280 300 3642 11-15 Android 9.0
Huawei Y9 (device #1) 720 x 1280 300 4146 11-14 Android 9.0
Huawei Y9 (device #2) 720 x 1280 300 4011 11-15 Android 9.0
iPhone 8 Plus (device #1) 1080 x 1920 300 3991 11-15 iO0S 13
iPhone 8 Plus (device #2) 1080 x 1920 300 4080 11-14 iO0S 13
iPhone XS Max (device #1) 1080 x 1920 300 3893 11-15 iO0S 13
iPhone XS Max (device #2) 1080 x 1920 300 4074 11-15 iOS 13
Nokia 5.4 (device #1) 1080 x 1920 300 3350 11-13 Android 10.0
Nokia 5.4 (device #2) 1080 x 1920 300 3531 11-14 Android 10.0
Nokia 7.1 (device #1) 1080 x 1920 300 3904 11-13 Android 10.0
Nokia 7.1 (device #2) 1080 x 1920 300 3819 11-14 Android 10.0
Xiaomi Redmi Note8 (device #1) 1080 x 1920 300 3776 11-14 Android 11.0
Xiaomi Redmi Note8 (device #2) 1080 x 1920 300 3598 11 Android 11.0
Xiaomi Redmi Note9 Pro (device #1) 1080 x 1920 300 3888 11-15 Android 11.0
Xiaomi Redmi Note9 Pro (device #2) 1080 x 1920 300 3838 11-13 Android 11.0

different. A total of 76531 I-frames are extracted by FFmpeg’
software. Finally, to test Deep Learning methods, 500 patches
of 350 x 350 are extracted from each I-frame. A total of
980,580 Patches are extracted for train set.

C. CONTENT PROPERTIES

In this database collection, we rely mainly on the static
camera despite the static and moving state of the camera
when recording. This database contains very diverse video
collections of different scenes, either outdoor, indoor, moving
or still objects, mainly gardens, sky, streets, shops, domestic
staff and sea. Figure 2 shows samples of the data based on
each device.

D. ISCI PROPERTIES
One way to challenge the identification of the source camera
is that the captured videos are from smartphones with the

7 https://www.ffmpeg.org/
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same camera model. In the database, two devices are consid-
ered for each smartphone. For example, for Samsung Galaxy
AS50, the videos were captured from two devices. Moreover,
the challenge is studied in the evaluation section. Therefore,
our database contains both SCMI and ISCI scenarios for all
models defining two 10- and 20-class problems.

E. CODEC PROPERTIES

Video files are compressed with codecs, which are always
a tradeoff between quality and size (better quality vs. larger
file size). Video files can be compressed to reduce their size,
which can reduce bandwidth usage and increase streaming
speed. For encoding high-definition video, AVC is the stan-
dard codec used by several online video services, including
YouTube and Vimeo. The MPEG-4 and the H.264 standards
are implemented by the library ’libx264° in FFmpeg. All
smartphones used for our database recorded videos according
to the H.264 video encoding standard, except for the iPhone
Xs Max and the Samsung Note9 (H.265).
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F. I-FRAME PROPERTIES

Group of Pictures (GOP) consists of I-frames, P-frames and
B-frames as intra-coded picture, predictive-coded picture and
bi-predictive coded picture respectively in coding standards
like MPEG series and H.264. I-frames are the least com-
pressible and do not require other video frames for decoding.
P-frames can be decompressed with data from previous
frames and are more compressible than I-frames. For
B-frames, previous and forward frames can also be used
as data references to achieve the highest compression. The
I-frame is generally more detailed than the P- and B-frames.
The GOP size, generally divided into fixed and unfixed,
is the number of B- and P-frames between two consecu-
tive I-frames. Several studies have demonstrated that meth-
ods based on I-frames give better results compared to other
frames [26]-[28].

G. VIDEO NAMING

All videos are renamed according to the following rule:
“Brand_Model_device No._Video No.” for example: We
have “iPhone_XS Max_1_(1)”, which refers to the first
video from the first device of the model XS Max of the iPhone
mobile brand, another example: “Samsung_AS50_2_(30)”,
refers to the video number 30 from the second device of the
model Galaxy A50 of the mobile brand Samsung, and so on.
Also, for I-frames, the frame number and type are appended
to the video name, e.g., “Huawei-Y7Prime2019-1(14)-31-1”
indicates the 31st frame with the type I-frame of the device.

H. RESOLUTION AND COLOR MODE

The resolution of a video is the width and height of the video
in pixels. All videos recorded in the database are based on
the rear camera of smartphones. There are two types of reso-
lutions in the database, namely 720 x 1280 and 1080 x 1920.
Also, the frames are stored in two modes: Color (True Color)
and Grayscale. It can be tested whether the resolution and
color mode affect the results.

I. STRUCTURE OF THE DATABASE

The overall structure of QUFVD is shown in Figure 3. The
structure can be modified by researchers according to their
methods and facilities. Moreover, the database can be com-
bined with other databases (e.g. the Daxing database) to
address new scenarios and challenges and to have a wider
choice of brands.

V. QUFVD EVALUATION

The quality of our database is evaluated in this section by
experimenting with ISCI and SCMI scenarios with different
settings based on a Deep Learning method. We divide the
experiments into different scenarios showing the influence of
some conditions on the results. This result provides a base-
line for the accuracy of camera model identification in the
QUFVD database and can be used for comparison with other
methods. The division of the database for the experiments is
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FIGURE 3. Structure of the folders in the database.

that 80% of these videos are considered as training set and the
remaining 20% are considered as test set. Also, 20% of the
training data is considered as validation data. The structure
can be used for both classical (like PRNU) and machine
learning methods. For example, in PRNU methods, reference
patterns can be obtained from videos in the training data and
query patterns in the test data. Since, as mentioned earlier, the
I-frames lead to better results, the I-frames of the videos are
extracted to evaluate the database. The statistics for training,
testing, and validation at both the video and frame levels are
shown in Table 4. For each video in each experimental series,
we selected all I-frames related to the videos in the training,
testing, and validation series. A total of 76531 I-frames were
extracted.

The method presented in [29] is used to evaluate our
database. Also, in references [30], [31] and [22], the CNN
method (MISLnet CNN architecture [29]) was used to iden-
tify the source camera, using frames to train the network.
The network used a constrained convolutional layer that was
added as the first layer that used three kernels with size 5. This
layer is constructed in such a way that there are relationships
between adjacent pixels that are independent of the content of
the scene. The methods was tested on VISION database [21].
The experiments showed that the layer can improve results
compared with deep learning architectures without the layer.
The structure of the CNN for the three studies is shown in
Figure 4. As shown in the figure, a constrained convolutional
layer is added to a simple CNN.

Our database is evaluated against two main scenarios of
ISCI and SCMLI. A 10-class problem should be considered for
SCMI and a 20-class problem for ISCI. For each, the effect
of the number and size of patches is examined, as well as the
effect of the color mode, i.e., gray and true color modes. All
videos were encoded according to the respective device codec
using the H.264 or H.265 video encoding standard, and no
video was edited or re-encoded.

To identify a video based on its I-frames, all I-frames in
the test set are considered. The scores obtained by the CNN
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based on the highest probability show which I-frames belong
to which classes. At the video level, a majority vote then
decides all the frames that belong to a video.

A 64-bit operating system (Ubuntu 18) with a CPU
E5-2650 v4 @ 2.20 GHz, 128.0 GB RAM, and four NVIDIA
GTX TITAN X. was used in order to run our experiments.

A. ISCI VS sCmi

The performance of the network is measured by comput-
ing the accuracy based on frame-level and video-level in
both scenarios ISCI and SCMLI. In classification stage, each
frame/video in the test data is classified into one of the
10-class (SCMI) or 20-class (ISCI). The frame-level and
video-level results for SCMI scenarios for each smartphone
model are shown in Table 5.

To investigate the effects of device dependency, the ISCI
scenario is considered. The results of the frame and video
levels in terms of accuracy for the ISCI scenario for each
device are shown in Table 6. The result is based on the
accuracy for each device.

Also overall accuracy, precision, recall and F1-score based
on frame-level for both scenarios ISCI and SCMI are reported
in Table 7. Precision is also called Positive Predictive
Value (PPV) which is a measure of the closeness of the set
of predicted results. Recall is also known as True Positive
Rate (TPR) and F1-score is the harmonic average of the pre-
cision and recall, where it is at its best at a value of 1 meaning
perfect precision and recall.

Tables 5 and 6 also list the effects of color mode,
i.e., grayscale and true color. With this premise, Figure 5 and 6
provide a more comprehensive picture of camera identifica-
tion performance to check the quality of the CNN by present-
ing the Receiver Operating Characteristic (ROC) curves for a
selected group of ten and twenty cameras from our database.
Two values are calculated for each threshold: True Positive
Ratio (TPR) and False Positive Ratio (FPR). The TPR of
a given class, e.g. Huawei Y7, is the number of outputs
whose actual and predicted class is Huawei Y7 divided by the
number of outputs whose predicted class is Huawei Y7. The
FPR is calculated by dividing the number of outputs whose
actual class is not Huawei Y7, but whose predicted class was
Huawei Y7 by the number of outputs whose predicted class
is not Huawei Y7.

One of the most important factors in machine learning is
how much training data the model needs to perform well.
To show how it works, a series of experiments were conducted
with increasing training data for the SCMI scenario for both
gray and color modes. Table 8 shows the effect of the factor.

In addition, the size of the patches can affect the per-
formance of the CNN methods. For the experiment, four
different sizes were considered for the SCMI scenario based
on 10000 greyscale patches (see Table 9).

For a more detailed analysis of the error detections, the
confusion matrix for the ISCI scenario in grayscale mode is
given in Table 10.

20086

Also, the processing time for patch, frame and a video
with 11 I-frames is shown in Table 11, which is performed
by processing frame size of 1920 x 1080.

B. RESULT DISCUSSION

State-of-the-art source camera identification methods have
faced challenges such as compression, stabilization, and
ISCI. Various methods have been presented to overcome
these challenges. Recently, Deep Learning methods have
been introduced to solve these challenges. As mentioned ear-
lier, our database is also evaluated using deep learning method
developed to solve these problems. Overall, the results in
frame and video levels show that the method is successful
for the SCMI problem, but it does not work well for the ISCI
challenge. For both scenarios, when the results are reported
at the video level, improvement can be seen. The results are
discussed in more detail below.

As shown in Table 5 in frame level, all devices except
the Y7, 8 Plus, and Redmi Note9 Pro achieve more than
70 % accuracy in grayscale mode. The biggest improvement
in the mode is for the Note 9 compared to the color mode.
The best results are reported for the Note 9 and Xs Max,
which have the same codec (H.265). At the video level,
an overall improvement is seen for all devices. The best
result with 95% is also obtained for the Note 9. However,
its codec is similar to that of Xs Max, so Xs Max cannot
see an improvement like the Note 9. In general, we cannot
make the decision that the codec has a direct effect on the
results. Moreover, we can see that the resolution does not
affect the results, since Y7 and Y9 have the lowest resolution,
but their results are not worse. Therefore, as a result of this
work, the two cases cannot confirm that codec and resolution
are two effective factors in this area. However, in grayscale
mode, it can be seen that the results are better than in color
mode.

Based on Table 6 (ISCI scenario), although only 3 devices
have an accuracy of less than 65%;, half of the devices achieve
an accuracy of less than 50% at the frame level. Even though
Note 9 for Device 1 scores the best among all devices, similar
to the SCMI scenario, Device 2 scores only 66.7%, which
means the fifth place. There are no meaningful results in the
table, except that grayscale mode still performs better than
color mode for both frame and video levels.

Figures 5 and 6 show the TPR compared to the FPR
for the two scenarios SCMI and ISCI in two modes (color
and grayscale) at different frame-level thresholds. As can
be seen from the figures, we have different analysis for the
devices in terms of TPR and FPR. The best performance is
shown by Nokia 5.4 with Area Under Curve (AUC=0.989)
compared to the second ranked Note 9 with AUC=0.987
in grayscale mode (Figure 5 (b)). Moreover, as shown in
Figure 6 (a and b), RedmiNote9Pro performs significantly
better in grayscale mode. From the figure, it can be seen that
Note 9 device 1 has the best performance with AUC=0.989.

As shown in Table 7, all metrics are better in the SCMI
scenario than in the ISCI scenario. Based on the results,
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TABLE 4. The statistics for training, testing, and validation at both the video and frame levels.

Brand Model Video I-frame
Training Testing Validation Training Testing Validation
Samsung Galaxy A50 (device #1) 192 60 48 2335 726 593
Samsung Galaxy A50 (device #2) 192 60 48 2476 727 579
Samsung Note9 (device #1) 192 60 48 2546 788 628
Samsung Note9 (device #2) 192 60 48 2534 790 638
Huawei Y7 (device #1) 192 60 48 2307 723 600
Huawei Y7 (device #2) 192 60 48 2342 724 576
Huawei Y9 (device #1) 192 60 48 2662 826 658
Huawei Y9 (device #2) 192 60 48 2562 815 634
iPhone 8 Plus (device #1) 192 60 48 2534 827 630
iPhone 8 Plus (device #2) 192 60 48 2597 816 667
iPhone XS Max (device #1) 192 60 48 2469 788 636
iPhone XS Max (device #2) 192 60 48 2626 806 642
Nokia 5.4 (device #1) 192 60 48 2142 671 537
Nokia 5.4 (device #2) 192 60 48 2272 702 557
Nokia 7.1 (device #1) 192 60 48 2502 787 615
Nokia 7.1 (device #2) 192 60 48 2447 763 609
Xiaomi Redmi Note8 (device #1) 192 60 48 2420 764 592
Xiaomi Redmi Note8 (device #2) 192 60 48 2304 721 573
Xiaomi Redmi Note9 Pro (device #1) 192 60 48 2492 778 618
Xiaomi Redmi Note9 Pro (device #2) 192 60 48 2460 769 609
Total 3840 1200 960 49029 15311 12191
TABLE 5. The results of the frame and video levels in terms of accuracy TABLE 6. The results of the frame and video levels in terms of
(%) for the SCMI scenario for each smartphone model. accuracy (%) for the ISCI scenario for each device.
Model I-frame Video Model I-frame Video
Gray Color Gray Color Gray Color Gray Color
Galaxy A50 72.8 68.8 73.3 70.0 Galaxy AS50 (#1) 35.8 36.9 48.3 56.7
Note9 78.7 72.0 95.8 87.6 Galaxy A50 (#2) 29.3 29.2 46.7 25.0
Y7 68.0 70.4 84.2 75.8 Note9 (#1) 67.1 57.6 95.0 80.0
Y9 76.9 76.9 86.7 90.8 Note9 (#2) 58.8 44 .4 66.7 63.3
8 Plus 67.8 69.6 84.2 68.3 Y7 (#1) 44.1 47.8 53.3 45.0
XS Max 76.8 69.3 68.3 70.0 Y7 (#2) 51.5 52.2 68.3 75.0
54 81.8 81.6 90.8 91.7 YO (#1) 79.2 78.2 65.0 83.3
7.1 75.5 76.7 90.0 79.8 YO (#2) 59.4 62.4 63.3 66.7
Redmi Note8 75.8 72.8 80.8 84.2 8 Plus (#1) 35.6 47.5 60.0 36.7
Redmi Note9 Pro 66.4 65.0 65.8 70.0 8 Plus (#2) 30.0 25.3 25.0 20.0
Overall accuracy 74.0 72.5 82.0 78.8 XS Max (#1) 59.2 61.8 60.0 53.3
XS Max (#2) 47.6 47.8 71.7 53.3
5.4 (#1) 39.2 30.8 58.3 31.7
. . . . . . 5.4 (#2) 35.7 37.5 28.3 35.0
it is essential to improve the scenario in machine learning 71 1) 549 138 617 533
approaches. 7.1 (#2) 48.1 413 467 400
Table 8 shows that increasing the number of patches to Redmi Noteg (#1) 70.8 51.8 78.3 50.0
be trained can improve the results in both gray scale and Redmi Note8 (#2) 53.5 60.4 88.3 63.3
color modes for SCMI at frame level. 37.3% is improved Redmi Note9 Pro (#1) ~ 45.9 512 633 483

Redmi Note9 Pro (#2) 51.1 39.8 433 433

from 5000 patches to all patches (about 90000) trained Overall accuracy 199 79 506 512

for each class. In the ISCI scenario, the improvement is
49.9% if all patches (about 45000) are trained, which is an patches are trained, the results are 2 % higher than in color
improvement of about 6%. Also in gray mode, when all mode.
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TABLE 7. The results of the frame level in terms of accuracy, PPV, TPV and
F-score (%) for the SCMI and ISCI scenario.

Accuracy PPV TPR  Fl-score

SCMI 74.00 74.04 74.01 74.03
(Gray)
ISCI 49.90 49.84  49.76 49.80
(Gray)
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FIGURE 5. True and false positive rates (ROC) obtained in SCMI scenario
(a) 10 classes with color mode (b) 10 classes with gray scale mode.

Table 9 shows that while the size of each patch can
improve performance, it is limited by the size of the 350 x
350. It should be noted that the experiment was conducted
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FIGURE 6. True and false positive rates (ROC) obtained in ISCI scenario
(a) 20 classes with color mode (b) 20 classes with gray scale mode.

TABLE 8. The impact of training data set on performance.

5000 10000 30000 60000  All patches
SCMI 41.5 54.1 63.4 69.8 74.0
(Gray)
SCMI 35.4 55.3 63.0 69.5 72.5
(Color)
ISCI 434 44.0 47.5 - 49.9
(Gray)
ISCI 41.2 432 46.4 - 47.9
(Color)
TABLE 9. The impact of patch size on performance.
128 x 128 256 x 256 350 x 350 512 x 512
SCMI 40.8 51.0 54.1 52.8

(Gray)

with 10000 patches for each class. For sizes over 350 x 350,
a drop in performance is indicated. Therefore, we chose this
size for all experiments in the evaluation.
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TABLE 10. Confusion matrix of ISCI scenario in grayscale mode. Classes 1 to 20 are Y7 (device 1), Nokia 5.4 (device 2), Nokia 7.1 (device 1), Nokia 7.1
(device 2), A50 (device 1), A50 (device 2), Note 9 (device 1), Note 9 (device 2), RedmiNote8 (device 1), RedmiNote8 (device 2), RedmiNote9Pro (device 1),
Y7 (device 2), RedmiNote9Pro (device 2), Y9 (device 1), Y9 (device 2), 8 Plus (device 1), 8 Plus (device 2), Xs Max (device 1), Xs Max (device 2), Nokia 5.4

(device 1), respectively.

303 2 4 42 26 20 1 1 11 4 33 64 16 32 23 33 22 25 18 7 ?:7‘0')1
14 174 14 11 4 6 0 2 17 0 17 1 22 1 8 0 0 1 0 196 ZOS/(:
11 25 375 142 16 13 0 12 10 17 9 8 14 4 0 0 5 1 9 12 (5;?
%
19 17 136 284 12 1 3 9 7 11 15 8 13 0 10 8 6 6 11 15 ?;_')]
36 18 14 23 291 193 1 12 10 9 22 17 57 7 21 7 17 30 0 27 (3;0)8
38 23 18 12 159 232 3 21 23 7 52 5 66 4 24 29 11 34 5 26 (2‘2)3
2 11 2 3 8 7 703 133 0 9 17 1 4 1 20 29 28 17 51 2 (();t')l
14 6 1 20 47 30 23 487 0 10 0 2 5 35 31 35 17 24 29 12 :;)8
10 17 10 2 13 31 0 1 529 16 18 22 26 11 8 4 3 12 1 13 (70(7)5)8
36 5 96 60 8 8 4 5 56 573 54 79 44 3 4 6 5 8 9 9 (5;0)5
14 13 45 67 10 48 6 3 15 16 385 12 89 12 17 7 5 12 38 24 ?LS/(;;
97 8 33 46 15 23 7 3 25 8 14 437 33 10 26 23 17 15 2 6 (591,)5
b
34 12 8 23 13 16 2 3 24 3 25 15 242 5 12 1 5 11 8 12 (50;)1
79.2
5 2 1 1 1 2 0 3 3 0 0 1 12 457 79 3 3 2 2 0
(%)
59.4
1 1 0 0 8 24 0 6 1 2 5 0 11 165 431 4 44 20 0 2 (%)
9 9 6 7 34 35 12 51 3 9 12 8 30 16 35 407 355 45 60 1 f;f
12 2 3 0 10 4 1 15 6 4 17 14 15 23 28 116 154 65 25 0 33_)0
20 0 2 3 11 15 0 4 1 13 5 12 21 15 23 23 45 388 52 2 (S;G)Z
27 3 8 14 34 11 22 19 5 8 69 17 26 24 6 92 73 72 486 4 ?07/0)6
39.2
21 354 11 3 6 8 0 0 18 2 9 1 23 1 9 0 1 0 0 301 (%)
41.9 24.8 47.6 372 40.1 31.9 89.2 61.6 69.2 79.5 49.5 60.4 31.5 553 529 492 18.9 49.2 60.3 449 499
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
TABLE 11. The processing time (second) for patch, frame and a video with 11 I-frames.
128 x 128 256 x 256 350 x 350 512 x 512
Patch | Frame | Video | Patch | Frame | Video | Patch | Frame | Video | Patch | Frame | Video

Table 10 shows the confusion matrix obtained for the
ISCI scenario in grey scale mode. As mentioned earlier, the
scenario is more challenging than SCMI and the results can
be improved in the next studies. The confusion matrix can
show misclassifications between all classes. As shown in the
table, misclassifications between devices of the same brand
occur in most cases, e.g., classes 14 and 15 (two devices Y9)
have the most misclassifications when they misidentify each
other.

As can be seen in Table 11, the time increases in all patch,
frame and video levels as the patch size increases.

VI. CONCLUSION

This paper presents a new video database (QUFVD) based on
smartphones for source camera identification. The database
includes five popular smartphone brands with two models per
brand with two devices for each model, 6000 original videos,
and 76531 I-frames. The entire database is provided with
an evaluation analysis for use by the research community.
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The database is suitable for new challenges such as ISCI
and for use by deep learning methods. The results show that
improvement is essential for ISCI. Although it is not a fair
comparison, the Deep Learning method used in our study
achieves promising results compared to the results reported
by Daxing, which are based on the PRNU method.

In order to improve the video level results, different deci-
sion making approaches such as fusion methods based on
weighting the score of the classifiers can be applied in the
future. We will add a few more tasks to the database where
we transfer videos over social media such as WhatsApp
and Facebook to study the impact of compression on source
camera identification. To detect video tampering, another task
adds forged videos to the database. To get more data and new
challenges, our database can be attached to other databases.
A augmentation method can be applied on the database to
have more data to train them. Although we cannot clearly see
the effects of codec and resolution in the method, it can be
studied by other methods.
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