
Received January 15, 2022, accepted February 6, 2022, date of publication February 14, 2022, date of current version February 28, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3151395

FineCodeAnalyzer: Multi-Perspective Source
Code Analysis Support for Software Developer
Through Fine-Granular Level Interactive
Code Visualization
ABDUL QAYUM 1, SAIF UR REHMAN KHAN 1, INAYAT-UR-REHMAN1,
AND ADNAN AKHUNZADA2, (Senior Member, IEEE)
1Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
2Faculty of Computing and Informatics, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia

Corresponding authors: Adnan Akhunzada (adnan.akhunzada@ums.edu.my) and Abdul Qayum (eng.abdul.qayum@gmail.com)

ABSTRACT Source code analysis is one of the important activities during the software maintenance phase
that focuses on performing the tasks including bug localization, feature location, bug/feature assignment,
and so on. However, handling the aforementioned tasks on a manual basis (i.e. finding the location of
buggy code from a large application) is an expensive, time-consuming, tedious, and challenging task. Thus,
the developers seek automated support in performing the software maintenance tasks through automated
tools and techniques. However, the majority of the reported techniques are limited to textual analysis where
the real developers’ concerns are not properly considered. Moreover, existing solutions seem less useful
for the developers. This work proposes a tool (called as FineCodeAnalyzer) that supports an interactive
source code analysis grounded on structural and historical relations at fine granular-level between the
source code elements. To evaluate the performance of FineCodeAnalyzer, we consider 74 developers
that assess three main facets: (i) usefulness, (ii) cognitive-load, and (iii) time efficiency. For usefulness
concern, the results show that FineCodeAnalyzer outperforms the developers’ self-adopted strategies in
locating the code elements in terms of Precision, Recall, and F1-Measure of accurately locating the code
elements. Specifically, FineCodeAnalyzer outperforms the developers’ strategies up to 47%, 76%, and
61% in terms of Precision, Recall, and F1-measure, respectively. Additionally, FineCodeAnalyzer takes
5% less time than developers’ strategies in terms of minutes of time. For cognitive-load, the developers
found FineCodeAnalyzer to be 72% less complicated than manual strategies, in terms of the NASA Tool
Load Index metric. Finally, the results indicate that FineCodeAnalyzer allows effectively locating the code
elements than the developer’s adopted strategies.

INDEX TERMS Source code analysis, bug localization, feature location, structural analysis, historical
analysis, software maintenance, usefulness, bug assignment, interactive tool.

I. INTRODUCTION
Source code analysis is a core process performed by a soft-
ware developer during the software maintenance phase [1].
For example, when developer intends to find a buggy code
element or feature-related code elements from a software sys-
tem, he needs to perform analysis on code. Mainly, software
maintenance includes adding a new feature and fixing the
existing one against a requested or reported by a user or other

The associate editor coordinating the review of this manuscript and
approving it for publication was Dongxiao Yu.

developer. A feature is requested a user observes that some
functionality is missing and should be the part of software
application. Whereas a bug/issue fixing request is mostly
reported a user found a bug in the application. A feature
is a functionality that can be observable from a software
system [2]. Whereas a defect or flaw in a software system is
known as a bug [3], which leads to producing an unexpected
result or behavior in a software system [4].

Source Code analysis is easy when the software system
is small, that is, having a few hundred to a few thousand

20496 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-3285-2692
https://orcid.org/0000-0002-9643-6858


A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

lines of code. A manual source code analysis is possible in
this case. However, it becomes a worst, hectic and much
time-consuming task when the software system is large, that
is, many thousands to a millions line of codes [5]. In this
case, practitioners demand some automatic tools or tech-
niques for code analysis, that will support them to find the
feature-related code elements or a buggy code element from
this large software system. For example, Zhang et al. [6] sug-
gested that developers spend more time fixing bugs than
developing software. Whereas in large systems, like an
eclipse, bugs/faults reported in a day may reach hundreds per
day [7]. This shows that such activities take a long time to
complete. For instance, Kim and Whitehead [8] reported in
the PostgreSQL project that most bugs need 100 to 200 days
to complete their resolution.

Consequently, the researchers proposed different tech-
niques to perform automatic code analysis. Generally,
software maintenance includes adding a new feature and
debugging the existing code. In both cases, current research
needs to perform an analysis of the source code. The
general types of analysis are textual, static, dynamic, and
historical [9].

A. TEXTUAL ANALYSIS
Textual analysis is the widely employed analysis in source
code analysis, as reported by Dit et al. survey [9]. Textual
analysis performs on the text present in the bug reports and
the comments and identifiers present in the source code.
In this way, textual analysis exploits the bug reports to for-
mulate a query and retrieve the results by matching this query
with available comments and identifiers in source code [10].
In such analysis, Information Retrieval (IR), Natural Lan-
guage Processing (NLP), and Pattern Matching (PM) are the
vital leveraging techniques [11], [12].

B. STATIC ANALYSIS
Static analysis is often based on the structure of code; hence,
it is also known as structural analysis. In structural analysis,
analysis has been performed based on call relations that exist
between the source code elements. For example, there must
be a relation between them if one method calls to another
method or if one class is inheriting with another class. More-
over, in the static analysis, analysis has been performed on
the code without executing the program [13].

C. DYNAMIC ANALYSIS
In dynamic analysis, the bug is identified or observed by
the time of execution of the program. Generally speaking,
dynamic analysis approach focused on bug localization by
analyzing the data flow, control flow, execution traces, and
breakpoints of the program. The dynamic methods examine
the pass or fail execution traces of the program under a certain
input condition and assign a suspicious score to each line of
code [14].

D. HISTORICAL ANALYSIS
Finally, in historical analysis, analysis has been performed
by mining the code change histories available in source code
repositories. In historical methods, bug reports and code
change histories were examined to find the bug location
in a program [15]. Besides, some hybrid approaches have
been observed in the literature based on the combination of
above-mentioned textual analysis techniques [9].

Despite the presence of a large number of such solutions,
Razzaq et al. [10] suggested that 172 different techniques for
feature location have been presented in the literature; how-
ever, the software industry still minimaly employed the pro-
posed feature localization techniques. For example, Parnin
and Orso [17] and Kochhar et al. [18] conducted extensive
surveys with the real developers to assess the relevance of
the existing solutions in the industry. Their results suggested
that the developers do not formally use any existing solution
in the industry. This is because the presented techniques are
evaluated with an effectiveness aspect. In other words, these
techniques typically return a list of the source code elements
which are ranked with their score of being buggy or related to
a feature. These ranked lists are compared with the gold set,
which is already known feature/bug-related code elements.

Hence, the effectiveness-based evaluations do not involve
real developers into the loop at the time of evaluation. More
recent research conducted with real developers, as proposed
by Parnin and Orso [17] and Kochhar et al. [18], sug-
gested that the techniques evaluated with effectiveness aspect
do not meet the usefulness expectations of practitioners,
and hence, are less adopted in software organizations. Also,
to the best of our knowledge, there is no state-of-the-art
source code analysis tool, general to feature and bug local-
ization, openly available to be used for usefulness evaluation
purposes.

Inspired by this, current research aims to support devel-
oper’s performing source code analysis while doing some
software maintenance-related task(s). This research present-
ing a UI based source code analysis tool that is more useful
than developers’ manual strategies to locate code. In addition,
the presented tool also supports doing source code analysis in
more than one context. Consequently, this research proposed
a tool named FineCodeAnalyzer that is based on interactive
code visualization. The proposed tool exploits the structural
and historical relations that exists in the source code, and
develops an interactive source code analysis interface that
permits the interaction between developers and source code
elements. This research has employed user studies and devel-
oper survey to evaluate the presented tool. This research has
employed triangulated method [33] to evaluate FineCodeAn-
alyzer tool where two user studies, assessing the usefulness,
are performed with developers. These studies are combined
with two developer surveys, each performed after each user
study. The purpose of these surveys is to assess the FineCode-
Analyzer for cognitive-load purposes. The time efficiency
of the presented tool is also assessed. The evaluation of

VOLUME 10, 2022 20497



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

the proposed tool has involved 74 developers/novices from
industry/academia.

As the feature/bug location is similar to information
retrieval where users locate/find the information they are
interested in, to evaluate the proposed tool for usefulness
aspect, this research has employed commonly used met-
rics in information retrievals, namely: precision, recall, and
f-measure [29], [39] [30], [31]. To assess FineCodeAn-
alyzer for cognitive-load, the most frequently used met-
ric TLX [34], [35]: NASA Task Load Index, is employed.
Finally, to assess the proposed tool for time efficiency, this
research has employed a number of minutes developers take
to locate the code related to a bug or feature. The results of
the presented evaluation indicate that developer performance
improves using the presented tool, for usefulness, cognitive-
load, and time-efficiency aspects of evaluations, as com-
pared to developer own strategies without using the presented
tool.

Overall, this research makes the following contributions:

• To allows source code analysis based on a hybrid
approach using structural and historical analysis.

• To propose a tool that allows developers to search the
methods information with various options including
callers-callee methods relations, method name, devel-
oper name who committed this method, date on which
the method was committed, and all the methods between
a range.

• To develop a dataset based on historical and structural
information of source code for a commonly used java
software system.

• To provide a user interface-based support to trace the
feature-related source code elements and find buggy
code elements.

In summary, the proposed tool works at a fine source-code
granularity level rather than a coarse level. In source code
analysis, there are 4 levels of granularity including pack-
age level, class level, method level, and statement level.
Package level and class level, after locating them, still
require manual endeavor to locate related code elements
because all the elements in a class are not necessarily part
of a feature [16]. Whereas, at a fine-granular level, e.g.,
statement level, also not conveying the context of the state-
ment until not go through the complete method that con-
tains this particular statement. Thus, this research considers
method-level granularity, as suggested by Zhang et al. [6]
and Kochhar et al. [18].
The remaining paper is organized as follows: Section III

describes the background and related work of the underlying
study. Whereas Section IV describes the adopted research
methodology. Section V illustrates the results and analysis
of the proposed technique. In addition, Section VI describes
about threats to validity and limitations of the study. Finally,
Section VII concludes the current work and also outlines
potential future research dimensions.

II. RESEARCH MOTIVATION
Source code analysis is a core process a software developer
needs to perform in the software maintenance phase [1]. Code
analysis is easy when a software system is small, i.e. having
a few hundred to a few thousand lines of code. A manual
source code analysis might be possible in this case. How-
ever, it becomes a worst, hectic and time-consuming task
when software system is large, that is, many thousands to
the millions line of codes, as suggested by Wong et al. [5].
In this case, practitioners seek some automatic tools or tech-
niques for code analysis, that will support them to find the
feature-related code elements or a buggy code element from
such a large software system. In providing the automated sup-
port, the researchers proposed different techniques to perform
automatic code analysis [15], [36] [38], [40].

Following are the three motivations for this research which
are driven by the three different challenges:

Challenge 1:The existing techniques are less user-friendly
in terms of requiring more cognitive effort from developers.
Such techniques only present a ranked list of the code ele-
ments (mostly the names of code components, files, classes)
which are hard to understand for the developers because this
does not allow developers to interact with code using those
elements as a pivot. For example, this might be possible that
the bug/feature-related code lies near to the located elements
and developers can reach those elements using their calls-
relationships, co-change relationships in code history, other
data, or control flow relationships.
Motivation 1: The first motivation is to effectively exploit

such relationships in order to provide a more interactive
source code analysis tool which will allow the developers to
utilize the Callers-Callees relations that exists between meth-
ods, methods that change by the same developer in history,
and so on.

Challenge 2: The current techniques mostly perform at a
coarser-granular level. In other words, at component, file,
or class level. Kochher et al. [18] suggested that conducted
with the developers, that such a high-level of granularity is not
a preferred choice of developers as these required developers
to exert further effort in locating the buggy/feature-related
code elements after locating the coarser component, file,
or class.
Motivation 2: The second motivation is to address this

concern of developers. In doing so, this research presents a
tool that operates on method-level granularity which is least
effort-intensive and more logical in terms of understanding
the context of the located code.

Challenge 3: The existing techniques presented as a solu-
tion are mostly not assessed for the usefulness concerns of
the practitioners and hence, their relevance to the software
industry is questionable.
Motivation 3: Therefore, the third motivation of this

research is to evaluate the presented tool involving real devel-
opers (or at-least novices) for the usefulness of the tool rather
than only effectiveness which is currently the main employed

20498 VOLUME 10, 2022



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

evaluation aspect, presented in 84% of the studies in a sys-
tematic literature survey conducted by Razzaq et al. [10].

III. BACKGROUND AND RELATED WORK
This section discusses the background and related work of the
presented research.

A. BACKGROUND
Source code analysis is a core process a software developer
needs to perform in the software maintenance phase [1]. The
developers perform source code analysis so frequently for
many different reasons [32]. For example, bug localization,
bug fixing, fault testing, feature location, feature/bug assign-
ment, and so forth [53]. These are the common tasks for
developers while software maintenance activities. A feature
is a functionality that has visible characteristics and can
be observable from a software system [2], [7]. Hence, the
feature location is a process of locating all the locations
that implement this observable functionality [8]. Besides,
a defect or flaw in a software system is known as a bug [3],
which leads to producing an unexpected result or behavior
in a software system [4]. Hence, bug localization is the
process of locating the buggy piece of code in a software
system. Moreover, Feature/Bug assignment is the process
of assigning a feature/bug to the relevant or appropriate
developer [11].

Generally, the Feature or Bug Localization process is start
when a user or developer request a feature or report a bug.
A Feature or Bug report is a documented form of a report,
which is created against a bug report or feature request, by a
user and developers themselves [54]. The developers rely
on these reports to fix the bugs. These reports are man-
aged by Bug Tracking Systems [55]. These reports are also
used in the formulation of queries. The queries are used to
extract the feature or bug-related code elements from the
software system [56]. The working of a query is it matches
the keywords passed in a query with comments and identi-
fiers present in a source code and return related found code
elements.

Moreover, to manage code versions, Version Control Sys-
tems (VCS) have been used. VSC help to manage and merge
code developed by different developers using different com-
puters [37]. VCS also manages the historical information
related to the source code. For example, it manages the infor-
mation such as date of code commit, name of a developer
who have committed the code, which component has been
changed in this commit, what was the reason for change, and
so forth. This information is also very helpful for developers
to perform source code analysis.

1) SOURCE CODE ANALYSIS TYPES
The researchers proposed four general types of source code
analysis that include textual, static, dynamic, and historical
analysis [9]. All of the four types are used in feature/bug
localization.

a: TEXTUAL ANALYSIS
The first component is textual analysis that is performed on
the text present in the bug reports and the comments and
identifiers present in the source code. In this way, textual
analysis exploits the bug reports to formulate a query and
retrieve the results by matching this query with available
comments and identifiers in source code [10].

b: DYNAMIC ANALYSIS
In dynamic analysis, the bug is identified or observed by
the time of execution of the program. Thus, this approach
performs bug localization by analyzing the data flow, control
flow, execution traces, and breakpoints of the program. The
dynamic methods examine the pass or fail execution traces
of the program under the certain input condition and assign a
suspicious score to each line of code [14].

c: STRUCTURAL ANALYSIS
Structural Analysis (also known as Static Analysis) is often
based on the structure of code. In structural analysis, analysis
has been performed based on call relations that exist between
the source code elements. For example, there must be a
relation between them if one method calls to another method
or if one class is inheriting with another class. For instance,
maybe an output of a method could be an input for another
method; therefore, the first method called the second method.
Moreover, in the static analysis, analysis has when performed
on the code without executing the program [13]. In other
words, this technique extracted the structural relationships
based on calling relationships that exists between source code
without running the project.

d: HISTORICAL ANALYSIS
In historical analysis, analysis is performed by mining the
code change histories available in source code repositories.
In historical methods, bug reports, and code change histories
are examined to identify the bug location in a program [15].
For instance, historical information that includes date of code
commit, name of the developer who commit the code, which
of the component has changed in this commit, what was the
reason of change, and so forth. Such information is also very
helpful for developers to perform source code analysis. For
example, all the methods committed in a single commit may
be part of a feature, or all the methods committed by the same
author on the same date may be a feature [40], [41].

2) TECHNIQUES OF SOURCE CODE ANALYSIS
Generally, there are various techniques presented by
researchers for source code analysis. For example, Infor-
mation Retrieval (IR), Natural Language Processing (NLP),
Knowledge Graph-based, Deep Learning, and PatternMatch-
ing (PM) are the vital leveraging techniques [11], [12] [19].
Some are combinations of these such as Lam et al. [20]
proposed a hybrid model of Deep Learning and Information
Retrieval. Information Retrieval technique further proposed

VOLUME 10, 2022 20499



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

multiple models that include Vector Space Model (VSM),
Latent Semantic Indexing (LSI), and Latent Dirichlet Anal-
ysis (LDA). These are the vital employing techniques for
feature location.

3) LEVEL OF GRANULARITY IN A SOURCE CODE
When performing bug/feature localization, techniques return
the ranked list according to the granularity level selected by
the researcher. Source code analysis supports four types of
granularities, which include module level, file level, class
level, method level, and statement level [42]. Module-level
granularity means ranked list contain modules of the project
and each module consists of many files. On the other hand,
file-level granularity means a file that may contains multiple
classes. Whereas class level means source code element that
consists of one class only. While in method-level granu-
larity each element of the ranked list consists of a single
method. Finally, statement-level granularity means a single
line of code-based elements. Notice that the researchers pre-
fer method-level granularity. This is because of the fact that
method-level granularity is least effort intensive compared to
the other source code analysis techniques [40].

B. RELATED WORK
Source code analysis is one of the most important activities in
software maintenance [1]. Different studies proposed differ-
ent techniques for source code analysis. Zhang et al. [57] pro-
posed a deep learning-based bug localization model named
as KGBugLocator, which is consisting of a knowledge graph
and keywords supervised bi-directional attention mechanism.
They employed knowledge graph nodes to represent code
entities and directed edges to represent various relationships.
Moreover, they have developed an NLP-based keywords
attention mechanism to capture the code element correspond-
ing to a bug report with more accurate semantics. They
employed 4 open-source datasets including AspectJ, AWS,
JDT, and Tomcat. To evaluate their model, they employed
three metrics including Top-K, Mean Average Precision
(MAP), andMean Reciprocal Rank (MRR). The results show
that the proposed model performs better than state-of-the-art
bug localization models. However, the reported study lacks
in handling the semantic gap that exists between the different
programming languages and natural languages present in bug
reports.Moreover, they unable to deal with large and complex
knowledge graphs. Most importantly, the existing model are
non-interactive for the users.

Rodriguez-Prieto et al. [21] proposed a Java-based source
code analysis platform (a compiler), namely ProgQuery.
Their proposed platform is mainly depending on the Neo4j
graph database. This platform allows developers to write a
modified program for analysis in a declarative way. Besides,
the compiler is also modified to compute 7 syntactic and
semantic links of the code elements. This allows the devel-
opers to extract different types of knowledge/features by
analyzing on the graph [22]. The authors evaluated with
the programs collected by the CUP research group of the

University of Edinburgh from GitHub [23]. Their research
shows significant improvement in terms of time and scalabil-
ity. However, their study is not providing a UI for interaction.

Abdelaziz et al. [24] presented the Graph4Code model
based on knowledge graphs. Graph4Code is helpful in pro-
gram search, refactoring, bug detection, and code understand-
ing. The authors employed 1.3 million python files, collected
from GitHub. Moreover, they considered various use cases
to evaluate the performance of the proposed model. Finally,
they mentioned that their proposed model attained promising
results; however, their proposed model is non-interactive.

Rahman et al. [25] proposed a Statement level Bug Local-
ization (SBL). Initially, the authors developed a Method
Statement Dependency Graph (MSDG) based on related
source code methods. Afterward, they developed a Node
Predecessor-node Dependency Graph (NPDG) in which they
combined the corpora of each node with their predeces-
sor node present in MSDG. They employed Vector Space
Model (VSM) to find the similarity between the bug report
and node(s) present in NPDG and suggest buggy statements.
They measured the effectiveness of their proposed system
by using 3 open-source systems which are Eclipse, SWT,
and Password Protector. Whereas, Mean Reciprocal Rank
(MRR), Mean Average Precision (MAP), and Top-N Rank
metrics are used as evaluation metrics. They reported that
their proposed model achieved sufficient accuracy of MRR
andMAPmetrics on given datasets. However, they only work
on the statement level of granularity, which is not enough to
convey the context of the bug to the developer. Hence, the
developer still needs to go through the code to understand the
context and fix the bug accurately.

Li et al. [26] proposed LaProb (a label propagation-based
bug localization method) model, which is mainly based on
two components including graph construction and label prop-
agation. They utilized inter and intra-relations exists between
bug reports and source files to build the graphs which they
call BHG (Biparty Hybrid Graph). Further, to propagate a
label, they developed an algorithm that works on BHG to
extract the cascading relations that exist between bug reports
and source files to localize the bugs. They performed a
large-scale experiment on nine open-source systems which
include SWT, AspectJ, Eclipse, ZXing, SEC, HIVE, HBASE,
WFLY, and ROO. They employed Mean Average Precision
(MAP), MRR, and Top-N rank metrics to measure the perfor-
mance of the model. They reported significant improvements
over state-of-the-art bug localization models. Although, their
presented model localized bugs in a good way; however, they
lacks in handling the scalability issue.

Huo et al. [27], proposed a novel approach named
Control-flow Graph embedding based Convolutional Neural
Network (CG-CNN) for bug localization. Their proposed
approach is based on a control flow graph of source code,
which is based on the structural and sequential dependency of
source code. Further, they applied the multi-instance decom-
position on the control flow graph to extract the semantic
feature. The proposed model can learn the unified features

20500 VOLUME 10, 2022



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

from the control flow graph and perform better bug local-
ization. The control flow graph may contain multiple paths,
but the path having the most similarity with the bug report,
labeled as a buggy file. They have employed 4 open-source
datasets (which are: PDE, PU, JU, and Tomcat) in their
research. They havemeasured the effectiveness of theirmodel
by using the three metrics which include, Top-K, MRR, and
MAP. The experimental results indicated that the proposed
model performs significantly better than the state-of-the-art
models. This study aims to indicate the researchers exploit the
control flow graphs to get improvement in bug localization
techniques. The study is focused on only the control flow
of the code, but some other flows also exist in code like
data flow, which will fail this system. Hence, it is the main
drawback of their proposed system. Moreover, CG-CNN is
based on file-level granularity.

Rahman et al. [28] proposed Information Retrieval based
framework named BugSRCH to create a model for bug local-
ization and relevant project component search. The major
contribution of this research was their proposed framework
automatically selects the most suitable information retrieval
model according to the assigned task. The authors employed
four datasets that include Birt, Eclipse-UI, JDT, and SWT.
They reported significant performance in terms of precision
and recall. The focus of this research is only to select the
appropriate technique for bug localization but not on bug’s
nature, characteristics and priorities. Which is the main limi-
tation of this research.

Dilshener et al. [58] also presented an IR-based model
which ranks the code element according to relevance with
the bug report. Their proposed model works fast because it
assigns relevancy score directly without looking past code.
The employed datasets are AspectJ, Eclipse, SWT, ZXing,
Tomcat, ArgoUML, Pillar 1 and Pillar 2. They evaluated their
research by using MRR, MAP, and Top-N evaluation mea-
sures. They concluded significantly better performance than
state-of-the-art models. Their tool generates the ranked list
only which is not usable for many practitioners, as proposed
by Parnin and Orso [17] and Kochhar et al. [18] research.

IV. RESEARCH METHODOLOGY
The objective of this research is to determine the impact of a
UI-based more interactive, fine-level tool support in terms of
its usefulness, cognitive load, and time efficiency while the
developers performing software maintenance tasks. In other
words, feature location and bug localization. The proposed
tool is compared with developers’ best using strategies to
locate feature/bug related code elements. Specifically, the fol-
lowing three research questions are addressed in this research:

RQ-1: How accurately does a developer locate buggy/
feature-related code elements using the presented tool in
comparison to not using the presented tool?

RQ-2:Which approach (using the presented tool vs Devel-
oper’s best using Strategy) leads to a lower cognitive effort,
as perceived by developers while performing feature/bug
location tasks?

RQ-3:Which approach (using the presented tool vs Devel-
oper’s best using Strategy) is more time-efficient in terms of
saving developers time while performing feature/bug location
tasks?

To address the devised research questions, we employed
a triangulation method [33] to evaluate FineCodeAnalyzer.
In this method, a developer survey is combined with a control
experiment. The following sections discuss the design of each
method and how data is gathered employing those methods.

A. PARTICIPANT CHARACTERISTICS
This research has recruited 74 participants from differ-
ent companies. For sake of consistency, the same partici-
pants were involved in each method of data collection. The
participants included 39 software developers and 35 Stu-
dents/novices belongs to the 06 to 08 semesters. This research
has only selected the participant who have coding experience
in java. Hence, the proposed selected participants had at least
one year of development experience using Java language. The
following are the demographic information collected from the
participants while evaluation.

Name— Full Name of the Participant
Current Role— Current Designation of the Participant
Age— Current Age of the Participant
Gender — Information about Gender in terms of Male,
Female and Prefer not to say
Overall Experience — Overall Programming Experience,
in years
Java Experience— Java Development Experience, in years
Code Maintenance Activities Frequency — Information
about how often Participants’ involve in code maintenance
Will you Recommend the proposed Solution? — After
using FineCodeAnalyzer (Proposed Tool), takes recommen-
dations from participants about the tool
Employee Email— Email of the Participant
CompanyName— Information about the company in which
Participant is currently doing employment
Address of the Company — Information about Address of
the company in which Participant is currently doing employ-
ment.

Notice that this research also noted the time taken by each
participant in locating the assigned feature/bug-related source
code elements, mentioned in the performed two user studies
in the following section.

B. EMPIRICAL DESIGN
This section illustrates the empirical settings adopted for
assessing the performance of FineCodeAnalyzer.

1) USER STUDY 1
This step belongs to the control experiment performed with
participants. Table 1 shows the features/bugs provided to the
developers to locate from SWT system. These features/bugs
are collected from SWT repository. In total, fifteen minutes
of time is given for locating each feature/bug. This time is

VOLUME 10, 2022 20501



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

TABLE 1. List of features/bugs provided to the developers. TABLE 1. (Continued.) List of features/bugs provided to the developers.

decided based on the gained experience, while the multiple
trials were performed before conducting this experiment.
Then, opened the source code of SWT in Eclipse Integrated
Development Environment (IDE) for the participants. The
participants were asked to use their best-known strategy to
locate the bugs/feature. For example, the developers may
use the internet for searching some solution related to the
feature/bug. In this case, they may search through the IDE
to perform any sort of searching (i.e. file or text search).
Additionally, they may use project explorer of call graphs
built-in Eclipse IDE.

For each feature/bug, first descriptions were provided
to the participants, and they were guided to fully under-
stand the bug/feature report before proceeding to locate the
bug/feature. Next, the developers were asked to make a list
of methods related to the found bug/report. In case of all
methods that belong to a class or file are buggy or related
to the feature, they were asked to point the file or class.
The experimentation also involves guiding the developers to
consider the complete method as related to the feature/bug if
only a portion of that they perceive as related. For example,
if they find only a variable used in a method or a statement

20502 VOLUME 10, 2022



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

used in a method is related to the feature/bug and other part
is not related, they were guided to consider the full method as
related in such cases. Finally, the participants were asked to
raise their hand once they complete locating each feature/bug.
Otherwise, they will be interrupted once the pre-decided time
to finish feature/bug localization is expired.

Once, the participants are ready for the experimentation.
They start performing feature/bug location tasks for the given
bug/feature report. The timer has been started to count the
time a participant takes to finish the localization task(s).
When the localization task is finished, the list of methods
from the participants is collected as well as the finishing time
is recorded. Consequently, the participants are directed to
proceed to the next bug/feature.

To remove the biases of feature/bug characteristics (for
example, the difference in the number of elements to locate,
the difference in distance of the methods to locate from the
main method, and so on.) that may impact their localization,
we have used the randomization strategy [38]. Notice that
the randomization strategy considers an equal number of
features/bugs are evenly allocated to each of the participants.
However, due to the non-availability of participants at a single
time, this experiment is performed in an iterative manner with
different groups of participants at different times.

2) SURVEY 1
After finishing User Study 1, we assessed the approach
adopted by the participants regarding their effort excreted
in locating feature/bug related elements. In other words, this
survey is performed to assess the usefulness of the presented
tool in terms of required effort as developers perceived when
locating features/bugs using FineCodeAnalyzer compared to
not using the presented tool. To perform this assessment,
we have conducted a survey guided by NASA Task Load
Index (TLX) measure [34], [35].

a: NASA TASK LOAD INDEX (TLX)
NASA-TLX is a multi-dimensional scale designed to obtain
the workload estimates from one or more operators while
performing a task or immediately afterward. The NASA Task
Load Index (TLX) consists of six sub-scales: (i) Mental
Demand, (ii) Physical Demand, (iii) Temporal Demand, (iv)
Frustration, (v) Effort, and (vi) Performance. Notice that
the TLX indexes represent the independent clusters of vari-
ables as highlighted in Table 2. The main assumption is that
some combination of TLX dimensions is likely to represent
the ‘‘workload’’ experienced by most people performing the
localization tasks. These dimensions were selected after an
extensive analysis of the primary factors that do (and do not)
define the subjective experience of workload for different
people performing a variety of activities ranging from simple
laboratory tasks to flying an aircraft [34], [35]. Coinciden-
tally, these dimensions also correspond to various theories
that equate workload with the magnitude of the demands
imposed on the operator, physical, mental, and emotional

TABLE 2. TLX indexes and questions asked from the developers.

responses to those demands, or the operator’s ability to meet
those demands.

Further, the data collected in this step is archived. Next,
frequency analysis is performed on this data, as presented
in Section V. In this evaluation, the selected participants
are the same as described in Section IV (A). The following
information has been collected from the participants.

Name— Full name of Participant
Mental Demand— How much mental and perceptual activ-
ity was required in feature/bug localization with FineCode-
Analyzer in respect to Developer’s best known/adopted
Strategy?
Frustration — How insecure, discouraged, irritated,
stressed and annoyed versus secure, gratified, content,
relaxed and complacent did you feel during the feature/bug
localization with FineCodeAnalyzer in respect to Developer’s
best known/adopted Strategy?
Effort Required—How hard did you have to work (mentally
or physically) to accomplish your level of performance in fea-
ture/bug localization by using FineCodeAnalyzer in respect
to Developer’s best known/adopted Strategy?

Physical Demand is not considered because since it is irrel-
evant to the targeted research context. In addition, Temporal

VOLUME 10, 2022 20503



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

and Performance is also not focused in this work because we
have evaluate both of Temporal and Performance separately.

3) USER STUDY 2
This study is specifically performed to collect the data essen-
tial for the evaluation of the proposed tool. In terms of a
study procedure, the task first gave a presentation to introduce
the proposed tool and its features to the participants. This
presentation included a twenty-minute live demo of how to
use the proposed tools for one/two real features/bugs. Notice
that the features/bugs used in the live demo were not consid-
ered during the experimentation process. To get accurate and
comprehensive data, the participants were then asked to use
the proposed tool to locate feature/bug-related code using the
proposed tool. To remove the carry-over effect bias [66] in
this step, it is important to make sure that the participants
get different bugs/features to locate than in user study 1.
However, we need to compare the performance using the
proposed tool and not using the proposed tool. Thus, we did
not change the dataset of user study 1. In other words, every
participant got different feature/bug sets to locate but overall
features/bugs were the same as of user study 1.

Similar to User Study 1, the participants were asked to
create a list of methods they found related to the assigned
feature/bugs. However, in addition to understanding the bug
report and searching through the source code of SWT soft-
ware system, the participants were also provided historic
information about the bug and code elements. Specifically,
this work has provided the date of the bug report actu-
ally reported on the issue tracking system. Moreover, for
each code element, we have provided information about
the dates when they change. Moreover, we have also pro-
vided information about the authors who changed the code
elements.

The participants were directed to must use the proposed
tool this time. Also, they were guided to follow the func-
tionalities supported in tools to explore the code and history
information when needed. Finally, they were informed that
functionalities to filter based on date and author/developer
informationmay reduce the required effort. Then, they started
their localization tasks and we keep noting the timer. Similar
to User study 1, they were informed to raise their hands when
finished or will let them knowwhen the given time is expired.
After, each localization of feature/bug, we have collected the
list of methods and noted the time taken by the participants
in completing the given task.

4) SURVEY 2
As like survey 1, the same survey is performed with the
proposed tool after participants finished user study 2. The
same questions were considered (as described in Table 2)
to assess the workload/cognitive effort participants excreted
while performing localization tasks using the proposed tool.
The data collected in this step is archived again for analysis
purposes.

a: ANALYSES AND EVALUATION METRICS
To analyse the data collected and to compare the results of
proposed tool with developers’ own strategies, this research
has employed different metrics for each research question.

b: RQ1: USEFULNESS EVALUATION
For RQ 1, we considered the commonly employed informa-
tion retrieval metrics to compare the developers’ performance
when using the proposed tool and when not using it. The
widely-employed metrics are described as follows:

1: Recall
Recall measures the fraction of feature/bug-related source

code elements that are correctly identified by developers.
Recall is defined in Equation 1:

‖CorrectElements ∩ IdentifiedElements‖

−CorrectElements| (1)

Equation 1 illustrates the formula to calculate the Recall
measure. In this work, the Identified Elements are those
elements, which are identified by a participant against a given
task. Whereas, Correct Elements are those elements that are
correctly identified.

2: Precision
Precision measures the fraction of developers’ identified

source code elements that are related to the feature/bug. It is
formally defined using Equation 2, as follows:

‖CorrectElements ∩ IdentifiedElements‖

−IdentifiedElements| (2)

Equation 2 illustrates the formula to calculate the Preci-
sion measure. In current work, Identified Elements are those
elements, identified by a participant against a given task.
Whereas, Correct Elements are those elements, which are
correctly identified.

Precision alone fails to measure the coverage of the results.
In other words, finding all of the feature/bug-related ele-
ments, by ignoring not retrieved feature/bug-related ele-
ments. In contrast, Recall, by ignoring the incorrectly
retrieved elements, fails to assess ranked-listing with lots
of (distracting) false positives. F-Measure is another measure
that gives a high value only in the case that both recall and
precision values are high.

3: F-Measure
F-measure is a harmonic mean of recall and precision and

is defined as in Equation 3:

2× ‖Recall ∗ Precision‖Recall + Precision| (3)

Equation 3 illustrates the formula to calculate the F1-
Measure. The identified Precision and Recall will help to
identify the F1-Score.

Regarding the Usefulness concern, we employed all three
measures, each having values in the range (0, 1). Specifically,
we compared the recall, precision and f-measure values for
the list of methods provided to us by the participants for both
approaches, i.e. when using the proposed tool and when not
using it.

20504 VOLUME 10, 2022



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

c: RQ2: COGNITIVE-LOAD (DIFFICULTY) EVALUATION
To assess both approaches (i.e. when using the proposed tool
vs. when not using it) for the effort required or cognitive load,
(high/low) frequencies for NASA Task Load Index (TLX)
related six attributes for each question are analyzed.

d: RQ3: TIME EFFICIENCY EVALUATION
The main hypothesis was that proposed tool would out-
perform the manual approach of the developer due to its
single-analysis scheme and simplicity. To answer RQ3,
we compared the time taken in minutes by the developers
when localizing each feature/bug from SWT system, when
using the proposed tool vs. when not employing the proposed
tool.

Generally speaking, the biases can occur during time effi-
ciency evaluation, which might be due to a change in the
hardware of a system that includes a change in the com-
putation, storage, capability of machines for the developers.
To control this moderating factor, it is required to ensure that a
participant who has performed user study 1 and user study 2,
should work on the same machine. Moreover, we also make
sure that while measuring the time efficiency, the developers
must close all other irrelevant applications.

C. PROPOSED FRAMEWORK
This section illustrates the proposed framework that supports
multi-perspective feature/bug localization.

1) DATASET AND BENCHMARK
We employ an SWT as a benchmark system. SWT system
is an open-source software system based on 28702 commits,
and 131 branches. SWT is an Eclipse-based Standard Widget
Toolkit (SWT) framework that helps to develop Graphical
User Interface (GUI) based applications in Java by using
built-in UI based components of Operating System (OS) [60].
This research choose SWT system because this is one of
the most commonly used system employed in bug/feature
location [61], [62] [15], [63] [56], [64]. In addition, it has a
built-in bug tracking system and easy to use from interaction
perspective [65].

This work proposes a hybrid framework for source code
analysis, as shown in Figure 1. The upper part of the frame-
work is Code Driller (CD) that helps in extracting the dataset.
CD has two further components including Code Parser (CP)
and Code History Miner (CHM). Whereas the second part
of framework is Interactive Code Maintainer (ICM) which
helps to create interactive tool (FineCodeAnalyzer). Notice
that we have extracted two types of code relations from the
SWT system including Structural and Historical. We have
developed a Code Parser to extract Structural Relationships
and Code History Miner to extract Historical Relationships
(Figure 1). Overall, we extracted seven tables considered as
a proposed dataset. The details of the extracted datasets is
shown in Table 3. The following section provides the details
about the components of the proposed framework.

FIGURE 1. FineCodeAnalyzer framework.

TABLE 3. Dataset developed for this research.

2) CODE PARSER
To extract Structural Relationships between code elements,
we have developed a Java based Code Parser (CP). Code
Parser takes a source code repository as an input and produces
all the methods in a system. Initially, Code Parser extracts
80,726 methods. We used these methods to create Callers
(i.e. a method who is the caller of some other method) and
Callees (i.e. a method who is being called by some other
method). We further drops the system built-in methods and
create Callers and Calleesmethods from the consideredmeth-
ods and obtained 28,760 Callers and Callees.

Afterward from the Callers and Callees, we further drops
all such methods who are not caller or callee of any other
method(s). Consequently, we attained 15,924 Callers and

VOLUME 10, 2022 20505



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

Callees. The final datasets are based on three attributes:
(i) Class Name, (ii) Method Name, (iii) Method Parameters.
Further, we considered three attributes to get the uniquemeth-
ods. This is due to the fact that if only method names were
taken, then this would exclude all of the overloaded and over-
ridden methods. Finally, the proposed framework combines
the Callers and Callees tables based on their call relation and
makes a final matched table. This table only contains method
id and method name. Consequently, we attained Structural
Relationships based methods from the Code Parser.

3) CODE HISTORY MINER
To extract the historical relations in the source code elements,
we developed a Python-based Code History Miner (CHM).
It takes a version control system-based library as input and
produced historical-based relations between methods as an
output (Figure 1). By using Code HistoryMiner, the proposed
framework produces five different tables that contain various
types of historical information related tomethods as extracted
from Code Parser. The following are the descriptions of
tables:

• Author Table: This table contains data related to
authors, such as, Author Name and Author ID. In total,
158 Authors are of the proposed subject system.

• Method Table: This table contains information related
to the method. The information includes Class from this
belongs to, Method Name, Method Parameters, Change
Type, Date of develop this method, and Author ID from
Author table.

• Changed Table: This table contains information about
the changes that have been done in the methods. The
attributes of this table are Commit ID, Author ID,
Method ID, Date of change, and Change Type.

• Commit Table: This table contains information related
to commits, such as, Commit Hash, Author name who
did a particular commit, and date of a particular commit.

• Modified Methods: This table contains information
related to modified methods only.

We have used both Structural andHistorical based datasets,
described above. Both of these types datasets are loaded in
Neo4j to create proposed databases, Table 3 illustrates the
dataset used by this research. Neo4j is a graph database
having advantages over regular databases. Such as it provides
flexible, easily scalable, responsiveness, and many other ben-
efits. This research has used Neo4j to create the developed
such databases for this research. Moreover, this research has
used Neo4j to create a relation between all of the proposed
tables.

4) GRAPH BUILDER
This component of the proposed model takes structural and
historical relationships as an input and then created a graph
(Figure 1). This graph is based on two components: (i) ver-
tices and (ii) edges. Vertices are presenting the source code
elements (methods in our case) of the project used as an

input and edges are presenting the correlations between the
considered code components. This research employed ver-
tices and edges in creating a graph oriented network from
datasets (code elements). Thus, graph networks provides an
easy analysis on the data, even on a complex networks [68]
while expressing the software applications in a connected
graphs shapes [69]. That includes nodes and edges which
helps to create different types of networks, for example code
classes networks [70].

Graph Builder is based on the Neo4j platform, which has
a D3 (a JavaScript) library on its top side. A Cypher Query
Language is used to perform operations on the dataset created
in Neo4j. It is essential to create a connection between D3
and Cypher to create graphs. This connection is made by
using Python language. Overall, this component takes rela-
tionship(s) data as an input and creates a graph grounded on
source code components, and also highlights the relationship
between them.

5) INTERACTIVE INTERFACE
This component is based on a User Interface (UI) that will
allow developers to interact with it and performmany types of
tracking on source code components (Figure 1). For example,
a developer will be able to see all the code components which
were changed in a specific single commit. This will help the
developer to find a particular feature. Likewise, the developer
will be able to see which particular developer had changed
the particular code components. This will help developers
to assign the bug to the same developer who had fixed this
bug before. In this way, this interface will help developers to
localize bugs by tracking the code entities. The proposed tool
can be download from the link.1

V. RESULTS AND ANALYSIS
This section presents the results and analysis with respect to
each of the devised research questions.

RQ1: How accurately does a developer locate buggy/
feature related code using the developed tool in comparison
to Developer’s best known/adopted strategy?

To answer RQ1, we performed a usefulness evaluation
of FineCodeAnalyzer and Developer’s best known/adopted
strategy. The following section provides the results and anal-
ysis about usefulness evaluation.

A. USEFULNESS
This is the first evaluation aspect performed to evaluate the
usefulness viewpoint of FineCodeAnalyzer. In this evalua-
tion aspect, we conducted 74 developers based assessments.
In this evaluation, each of the developers was assigned a
feature or bug and was asked to make a list of all the methods
related to a given feature or bug. In addition, each developer
was assigned an equal number of times that is, 15 minutes,

1https://drive.google.com/drive/folders/15UiW5xuW6KB0-EK-
XlXCPq2a4nyncXmc?usp=sharing

20506 VOLUME 10, 2022



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

to achieve the given task. This research has have collected
the following information against each given task:
• Developer’s name
• Assigned feature/bug id
• List of methods that are extracted by developer
• Time on which the developer has completed the task
Based on the extracted methods, we have calculated

some further information such as Relevant list methods and
unrelated list methods based on gold-set elements. Already
known feature/bug related code elements are known as Gold-
sets [52]. Finally, based on the attained values in this work,
we assess the performance of FineCodeAnalyzer in terms of
Precision, Recall, and F1-Measure.

FIGURE 2. Precision, Recall and F1-Measure results of developer’s best
known/adopted strategy.

Figure 2 illustrates the obtained results regarding the
usefulness evaluation with the developer’s best-known fea-
ture/bug localization strategy. It can be clearly observed from
Figure 2 that the Developer’s best strategy has achieved
59%, 46% and 52%, Precision, Recall, and F1-Measure,
respectively. However, using FineCodeAnalyzer, the devel-
oper’s attained 87%, 81% and 84%, Precision, Re-call, and

FIGURE 3. Precision, Recall and F1-Measure results of FineCodeAnalyzer.

F1-Measure, respectively, as shown in Figure 3. Evidently,
FineCodeAnalyzer outperformed the developer’s own meth-
ods of feature/bug location for 28%, 35% and 32% in Pre-
cision, Recall, and F1-Measure, respectively (as indicated in
Figure 4).

RQ2: Which approach (using the developed tool vs devel-
oper’s best known/adopted strategy) leads to a lower cog-
nitive effort, as perceived by developers while performing
feature/bug location tasks?

To answer RQ2, we performed Cognitive-Load based
evaluation of FineCodeAnalyzer and Developer’s best
known/adopted strategy. The results and analysis on
Cognitive-Load evaluation are described as follows:

B. COGNITIVE-LOAD
This is the second evaluation measure employed to assess the
performance of the proposed tool. We measured the cognitive
load of participants by employing the NASA based Task Load
Index (NASA-TLX). The NASA-TLX is a multi-dimensional
scale designed to obtain workload estimates from one or more

VOLUME 10, 2022 20507



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

FIGURE 4. Percentage of outperformed results of FineCodeAnalyzer than
developer’s best known/adopted strategy.

operators while they are performing a task or immediately
afterward. The NASA Task Load Index (TLX) consists of
six sub-classes that represent somewhat independent clus-
ters of variables including Mental, Physical, and Temporal
Demands, Frustration, Effort, and Performance. Notice that
we assumed that some combination of the considered dimen-
sions is likely to represent the ‘‘workload’’ experienced by
most people performing most tasks. The dimensions were
selected after an extensive analysis of the primary factors that
do (and do not) define the subjective experience of workload
for different people performing a variety of activities ranging
from simple laboratory tasks to flying an aircraft [34], [35].

Coincidentally, these dimensions also correspond to vari-
ous theories that equate workload with the magnitude of the
demands imposed on the operator, physical, mental, and emo-
tional responses to those demands, or the operator’s ability to
meet those demands. We have calculated the Cognitive Load
(from collected data) in three perspectives including Mental,
Frustration, and Effort Demand. For this purpose, we have
created a Google form, and asks each of the above-mentioned

question from the participants after finishing both of the
planned surveys. However, we did not calculate the Physical
demand since it is irrelevant to the current work. In addition,
the performance and Temporal Demand were not calculated
because we have calculated these concerns separately. The
questions and results of Cognitive-Load evaluations have
been presented in Figures 5, 6 and 7.

FIGURE 5. Mental Demand of FineCodeAnalyzer in comparison to not
using FineCodeAnalyzer.

FIGURE 6. Frustration level on FineCodeAnalyzer in comparison to not
using FineCodeAnalyzer.

FIGURE 7. Effort required in FineCodeAnalyzer in comparison to not
using FineCodeAnalyzer.

Figure 5 illustrates the Mental Demand of FineCodeAna-
lyzer in respect to the participant’s preferred method of fea-
ture/bug localization. The result indiactes 77% participants
feel FineCodeAnalyzer requires low Mental demand. While
23% participants feel that the prospoed framework demands
a high level of Mental power. On the other hand, 68.9%

20508 VOLUME 10, 2022



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

and 29.7% participants feel low and high frustration, respec-
tively, in finding feature/bug by using FineCodeAnalyzer
(Figure 6). However, 1.4% did not comment on frustration.
Finally, in Figure 7, 68.9% participants feel low effort level
is required in finding feature/bug by using FineCodeAna-
lyzer. Whereas 17.6% feel a high effort level is required in
finding feature/bug by using FineCodeAnalyzer. However,
13.5% participants did not suggest any effort level required
by FineCodeAnalyzer.

RQ3: Which approach (using the developed tool vs devel-
oper’s best known/adopted strategy) is more time-efficient
in terms of saving developers time while performing fea-
ture/bug location tasks?

To answer RQ3, we performed time evaluation of
FineCodeAnalyzer and the Developer’s best known/ adopted
strategy. The results and analysis on time evaluation are
presented in the following section.

C. TIME EFFICIENCY
This is the second evaluation measure performed to assess the
time efficiency of the proposed tool. In this evaluation mea-
sure, we assigned a feature or bug to each of the participant
and ask them tomake a list of the assigned feature/bug-related
source code elements (i.e. methods). To complete the task,
we assigned a constant number of minutes to each participant
(i.e 15 minutes). The given time (i.e. each developer taken
to complete the task) has been noted. The information of
each developer with the feature/bug id they have solved with
respect to time has been shown in Figure 8.

FIGURE 8. Time efficiency of FineCodeAnalyzer with each participant.

The results of the time evaluation of FineCodeAnalyzer
are also compared with the Developer’s best known/adopted
strategy. Figure 9 illustrates the time efficiency of find-
ing feature/bug-related methods with FineCodeAnalyzer vs
Developer’s best-known Strategy. The left part of figure
shows the time a developer took to find feature/bug related
code methods with Developer’s best known Strategy pre-
sented tool (Figure 9). Whereas the right side of the graph
shows the time a developer took to find feature/bug related
code methods with the presented tool. The darker color indi-
cates the highest time, whereas, the lighter color indicates the
lower time, as shown in the Figure legends. From Figure 9,
it can be clearly that finding a feature/bug using the presented
tool required significantly less computational time against not
using the proposed tool. Consequently, FineCodeAnalyzer
effectively performed all of 74 tasks in 1,018 minutes. How-
ever, the same tasks performed by the developers taken 1,058
minutes sing their most convenient technique.

FIGURE 9. Time efficiency with FineCodeAnalyzer vs Developer’s best
known/adopted strategy.

VI. THREATS TO VALIDITY AND LIMITATIONS
As with any empirical study, several threats to validity posed
to the current work. The potential threats are discussed in
terms of internal, construct, and external validity.

A. INTERNAL VALIDITY
The developers may have learnt some experience on fea-
tures/bugs while locating using some preferred strategy

VOLUME 10, 2022 20509



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

before locating them using the proposed tool. This experi-
ence gaining mechanism is called as carry over effect [66],
and may bias towards the later treatment. To address this
concern, we have used a randomization strategy [67], where
each participant is provided a different feature/bug in each of
both trials (i.e. without vs. with proposed tool). However, the
experience gains of watching the overall source code of SWT
(not for specific feature or bug) has not been controlled in this
research and may have impacted the results.

To assess the tool for industrial concern, we employed the
developers. However, due to the non-availability of highly
experienced developers, this research has employed partici-
pants with an average experience of 3 years. The involvement
of more experienced developers may impact the results of this
research.

The relative performance (i.e. percentage of the difference)
between the using the presented tool and not using presented
tool is calculated after rounding the values to two decimal
points for scores of evaluation metrics for all of the consid-
ered evaluation aspects. The relative performance calculated
using different numbers of decimals might change the results
slightly. The researchers interested in checking the results
with a different number of decimals are invited to use the
intermediate results provided with this research.

B. CONSTRUCT VALIDITY
Themain construct validity issue in the softwaremaintenance-
related tools and techniques evaluation is the benchmark
creation used for evaluation. In this case, the benchmarks are
created for SWT, a frequently used system, where the gold-set
is already available from the existing studies. However, the
frequent adoption of the system/benchmark does not guaran-
tee the accuracy and completeness of the benchmark. Hence,
like the other studies in this field, the result of this research
may also change with the change of benchmark employed.

This research has employed precision, recall, and
f-measure metrics, which are the commonly used metrics in
information retrievals. These all metrics capture a single con-
cern of evaluation: That is, accuracy in locating feature/bug
related code elements. However, these metrics may not fully
capture the developer’s intentions to locate the code elements.
For example, developer may be interesting in locating a
variable name in a located method rather than the complete
method. In this work, we have to focused on one granularity,
and we selected method level in the targeted research context.
This decision is driven by Kochhar’s work [18] performed
with the developers.

C. EXTERNAL VALIDITY
Because FineCodeAnalyzer is evaluated for usefulness aspect
rather than effectiveness. Due to this reason, we do not
compared FineCodeAnalyzer tool with the existing baseline
state-of-the-art techniques VSM, LSI or LDA [43], [44], [45],
which are evaluated using effectiveness aspect and has not
adopted in the industry, as suggested by the reported stud-
ies [46], [47], [48], [49]. This may have impacted on the

generalizability of the presented tool for effectiveness aspect.
However, it can be argued that our goal was to focus on the
developer’s concerns rather than the researchers.

Also, this research has only used SWT system which
is an open-source Java-based system. Although, we have
employed one of the commonly used systems in the field [46],
[50], [14], [51]. This may limit the generalizability of
the findings to only Java-based non-commercial software
systems.

Finally, the participants involved in this research aremostly
single city-based. Involving the participants from multiple
cities, and even from multiple countries, and of different
demography may produce a different result. Also, consider
that this research is limited to only bug/feature location activ-
ities under software maintenance and one cannot generalize
to other software maintenance activities such as bug severity
detection.

VII. CONCLUSION AND FUTURE WORK
This work proposed an interactive code visualization-based
tool names as FineCodeAnalyzer. The proposed tool is based
on hybrid analysis of software system source code that
exploits the structural and historical relations that exist in the
source code. Moreover, the proposed tool works on a fine
granularity level. In other words, FineCodeAnalyzer adopted
a method level of granularity to save the developers’ addi-
tional efforts to find the related code elements from large files.
In addition, FineCodeAnalyzer is a generic tool that can be
used in different contexts (tasks) related to software mainte-
nance. We also evaluated the performance of FineCodeAn-
alyzer by involving 74 developers including senior students
(i.e. considered as novices in this research context) and
industrial practitioners. For example, FineCodeAnalyzer is
assessed for feature and bug localization tasks. The results
indicated that FineCodeAnalyzer significantly outperformed
the manual strategies of the developers, which are usually
employed while performing bug/feature localization-related
tasks.

Following are the key findings of the proposed tool, which
are outlined based on the attained results:

1) The proposed tool, FineCodeAnalyzer, outperformed
the developers’ manual strategies in locating buggy and
feature-related elements in terms of usefulness, which
is measured using precision, recall, and f-measure.

2) FineCodeAnalyzer performed better than the devel-
opers’ manual strategies in locating code elements in
terms of required cognitive/mental effort.

3) FineCodeAnalyzer attained better results about the
execution time than the developers’ manual strategies
when locating code elements for features or bugs.

The practitioners can adopt the presented FineCodeAna-
lyzer in performing several softwaremaintenance tasks where
source code analysis is required. In contrast, the practitioners
can employ FineCodeAnalyzer for other software mainte-
nance related activities.

20510 VOLUME 10, 2022



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

In the future, Deep Learning based algorithm can be
adapted to further improve the performance of FineCodeAna-
lyzer. Surely, the adoption of a deep learning-based algorithm
can be helpful in making a fully automatic bug/feature local-
ization tools. Moreover, another potential research dimension
could be to incorporate the dynamic analysis in the proposed
tool. Consequently, it would support in fully automating the
process for the developers in terms of accurately locating the
source-code elements.

ACKNOWLEDGMENT
The authors are grateful to Software Reliability Engineering
Group (SREG) members at COMSATS University Islam-
abad (CUI) for their continuous support and feedback
throughout this research work. Moreover, they appreciate the
experts who have participated in the conducted survey and
provided their valuable responses.

REFERENCES

[1] V. Lenarduzzi, A. Sillitti, and D. Taibi, ‘‘A survey on code analy-
sis tools for software maintenance prediction,’’ in Advances in Intel-
ligent Systems and Computing. Cham, Switzerland: Springer, 2020,
pp. 165–175.

[2] A. Razzaq, A. LeGear, C. Exton, and J. Buckley, ‘‘An empirical assessment
of baseline feature location techniques,’’ Empirical Softw. Eng., vol. 25,
no. 1, pp. 266–321, Jan. 2020.

[3] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, ‘‘A survey
on bug prioritization,’’ Artif. Intell. Rev., vol. 47, no. 2, pp. 145–180,
Feb. 2017.

[4] N. K. Nagwani and S. Verma, ‘‘Software bug classification using suffix tree
clustering (STC) algorithm,’’ Int. J. Comput. Sci. Technol., vol. 2, no. 1,
pp. 36–41, 2011.

[5] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, ‘‘A survey on
software fault localization,’’ IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, Aug. 2016.

[6] W. Zhang, Z. Li, Q. Wang, and J. Li, ‘‘FineLocator: A novel approach to
method-level fine-grained bug localization by query expansion,’’ Inf. Softw.
Technol., vol. 110, pp. 121–135, Jun. 2019.

[7] W. Zhang, S. Wang, and Q. Wang, ‘‘BAHA: A novel approach to auto-
matic bug report assignment with topic modeling and heterogeneous
network analysis,’’ Chin. J. Electron., vol. 25, no. 6, pp. 1011–1018,
Nov. 2016.

[8] G. Jeong, S. Kim, and T. Zimmermann, ‘‘Improving bug triage with
bug tossing graphs,’’ in Proc. 7th Joint Meeting Eur. Softw. Eng.
Conf. ACM SIGSOFT Symp. Found. Softw. Eng. Eur. Softw. Eng.
Conf. Found. Softw. Eng. Symp., Amsterdam, The Netherlands, 2009,
pp. 111–120.

[9] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, ‘‘Feature location in
source code: A taxonomy and survey,’’ J. Softw., Evol. Process, vol. 25,
no. 1, pp. 53–95, 2013.

[10] A. Razzaq, A. Wasala, C. Exton, and J. Buckley, ‘‘The state of empirical
evaluation in static feature location,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 28, no. 1, pp. 1–58, Feb. 2019.

[11] S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan, ‘‘The impact
of classifier configuration and classifier combination on bug localization,’’
IEEE Trans. Softw. Eng., vol. 39, no. 10, pp. 1427–1443, Oct. 2013.

[12] A. Mahmoud and G. Bradshaw, ‘‘Estimating semantic relatedness in
source code,’’ ACM Trans. Softw. Eng. Methodol., vol. 25, no. 1, pp. 1–35,
Dec. 2015.

[13] S. Wang and D. Lo, ‘‘AmaLgam+: Composing rich information sources
for accurate bug localization,’’ J. Softw., Evol. Process, vol. 28, no. 10,
pp. 921–942, 2016.

[14] Z. Shi, J. Keung, K. E. Bennin, and X. Zhang, ‘‘Comparing learning to
rank techniques in hybrid bug localization,’’ Appl. Soft Comput., vol. 62,
pp. 636–648, Jan. 2018.

[15] K. C. Youm, J. Ahn, and E. Lee, ‘‘Improved bug localization based on
code change histories and bug reports,’’ Inf. Softw. Technol., vol. 82,
pp. 177–192, Feb. 2017.

[16] C. Tantithamthavorn, A. Ihara, H. Hata, and K. Matsumoto, ‘‘Impact anal-
ysis of granularity levels on feature location technique,’’ in Requirements
Engineering. Berlin, Germany: Springer, 2014, pp. 135–149.

[17] C. Parnin and A. Orso, ‘‘Are automated debugging techniques actually
helping programmers?’’ inProc. Int. Symp. Softw. Test. Anal., Toronto, ON,
Canada, 2011, pp. 199–209.

[18] P. S. Kochhar, X. Xia, D. Lo, and S. Li, ‘‘Practitioners’ expectations on
automated fault localization,’’ in Proc. 25th Int. Symp. Softw. Test. Anal.,
Saarbrücken, Germany, Jul. 2016, pp. 165–176.

[19] S. Polisetty, A. Miranskyy, and A. Başar, ‘‘On usefulness of the deep-
learning-based bug localization models to practitioners,’’ in Proc. 15th Int.
Conf. Predictive Models Data Anal. Softw. Eng., Recife, Brazil, Sep. 2019,
pp. 16–25.

[20] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Bug
localization with combination of deep learning and information retrieval,’’
in Proc. IEEE/ACM 25th Int. Conf. Program Comprehension (ICPC),
Buenos Aires, Argentina, May 2017, pp. 218–229.

[21] O. Rodriguez-Prieto, A. Mycroft, and F. Ortin, ‘‘An efficient and scalable
platform for Java source code analysis using overlaid graph representa-
tions,’’ IEEE Access, vol. 8, pp. 72239–72260, 2020.

[22] F. Ortin, O. Rodriguez-Prieto, N. Pascual, and M. Garcia, ‘‘Heterogeneous
tree structure classification to label Java programmers according to their
expertise level,’’ Future Gener. Comput. Syst., vol. 105, pp. 380–394,
Apr. 2020.

[23] (Dec. 6, 2021). Toegang Verkry. [Online]. Available: http://groups.inf.ed.
ac.U.K./cup/javaGithub

[24] I. Abdelaziz, J. Dolby, J. P. McCusker, and K. Srinivas, ‘‘Graph4code:
A machine interpretable knowledge graph for code,’’ 2020,
arXiv:2002.09440.

[25] S. Rahman, M. M. Rahman, and K. Sakib, ‘‘A statement level bug
localization technique using statement dependency graph,’’ in Proc. 12th
Int. Conf. Eval. Novel Approaches Softw. Eng., Porto, Portugal, 2017,
pp. 171–178.

[26] Z. Li, Z. Jiang, X. Chen, K. Cao, and Q. Gu, ‘‘Laprob: A label propagation-
based software bug localization method,’’ Inf. Softw. Technol., vol. 130,
Feb. 2021, Art. no. 106410.

[27] X. Huo, M. Li, and Z.-H. Zhou, ‘‘Control flow graph embedding based on
multi-instance decomposition for bug localization,’’ in Proc. Conf. AAAI
Artif. Intell., Apr. 2020, vol. 34, no. 4, pp. 4223–4230.

[28] M. M. Rahman, S. Chakraborty, G. Kaiser, and B. Ray, ‘‘Toward optimal
selection of information retrieval models for software engineering tasks,’’
in Proc. 19th Int. Work. Conf. Source Code Anal. Manipulation (SCAM),
Cleveland, OH, USA, Sep. 2019, pp. 127–138.

[29] B. Sisman, S. A. Akbar, and A. C. Kak, ‘‘Exploiting spatial code prox-
imity and order for improved source code retrieval for bug localization,’’
J. Softw., Evol. Process, vol. 29, no. 1, Jan. 2017, Art. no. e1805.

[30] R. Müller and U. Eisenecker, ‘‘A graph-based feature location approach
using set theory,’’ in Proc. 23rd Int. Syst. Softw. Product Line Conf., Paris,
France, Sep. 2019, pp. 88–92.

[31] G. K. Michelon, L. Linsbauer, W. K. G. Assunção, S. Fischer, and
A. Egyed, ‘‘A hybrid feature location technique for re-engineeringsingle
systems into software product lines,’’ in Proc. 15th Int. Work. Conf. Vari-
ability Model. Softw.-Intensive Syst., 2021, pp. 1–9.

[32] T. Sharma, M. Kechagia, S. Georgiou, R. Tiwari, and F. Sarro, ‘‘A sur-
vey on machine learning techniques for source code analysis,’’ 2021,
arXiv:2110.09610.

[33] D. S. Triangulation, ‘‘The use of triangulation in qualitative research,’’
Oncol. Nursing Forum, vol. 41, no. 5, pp. 545–547, 2014.

[34] S. G. Hart and L. E. Staveland, ‘‘Development of NASA-TLX
(task load index): Results of empirical and theoretical research,’’ in
Advances in Psychology. Amsterdam, The Netherlands: Elsevier, 1988,
pp. 139–183.

[35] S. G. Hart, ‘‘NASA-task load index (NASA-TLX); 20 years later,’’ in Proc.
Hum. Factors Ergonom. Soc. Annu. Meeting, Oct. 2006, vol. 50, no. 9,
pp. 904–908.

[36] R. Gharibi, A. H. Rasekh, M. H. Sadreddini, and S. M. Fakhrah-
mad, ‘‘Leveraging textual properties of bug reports to localize relevant
source files,’’ Inf. Process. Manage., vol. 54, no. 6, pp. 1058–1076,
Nov. 2018.

VOLUME 10, 2022 20511



A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

[37] B. Ledel and S. Herbold, ‘‘Broccoli: Bug localization with the help of text
search engines,’’ 2021, arXiv:2109.11902.

[38] F. Pérez, J. Font, L. Arcega, and C. Cetina, ‘‘Collaborative feature location
in models through automatic query expansion,’’ Automated Softw. Eng.,
vol. 26, no. 1, pp. 161–202, Mar. 2019.

[39] J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon, ‘‘Bench4BL:
Reproducibility study on the performance of IR-based bug localization,’’
in Proc. 27th ACM SIGSOFT Int. Symp. Softw. Test. Anal., Amsterdam,
Netherlands, Jul. 2018, pp. 61–72.

[40] M. Chochlov, M. English, and J. Buckley, ‘‘A historical, textual analysis
approach to feature location,’’ Inf. Softw. Technol., vol. 88, pp. 110–126,
Aug. 2017.

[41] S. Wang and D. Lo, ‘‘Version history, similar report, and struc-
ture: Putting them together for improved bug localization,’’ in Proc.
22nd Int. Conf. Program Comprehension, Hyderabad, India, 2014,
pp. 53–63.

[42] A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, and
H. Haghighi, ‘‘SLDeep: Statement-level software defect prediction using
deep-learning model on static code features,’’ Expert Syst. Appl., vol. 147,
Jun. 2020, Art. no. 113156.

[43] O. P. Sangwan, ‘‘Review of text mining techniques for software bug local-
ization,’’ in Proc. 9th Int. Conf. Cloud Comput., Data Sci. Eng., Jan. 2019,
pp. 208–211.

[44] K. Sharma and T. Sharma, ‘‘Software bug localization using pachinko allo-
cation model,’’ in Proc. 3rd Int. Conf. Comput. Sustain. Global Develop.,
2016, pp. 3603–3608.

[45] Y. Wang, Y. Yao, H. Tong, X. Huo, M. Li, F. Xu, and J. Lu, ‘‘Bug
localization via supervised topic modeling,’’ in Proc. IEEE Int. Conf. Data
Mining (ICDM), Singapore, Nov. 2018, pp. 607–616.

[46] T. D. B. Le, F. Thung, and D. Lo, ‘‘Will this localization tool be effec-
tive for this bug? Mitigating the impact of unreliability of information
retrieval based bug localization tools,’’ Empirical Softw. Eng., vol. 22,
no. 4, pp. 2237–2279, 2017.

[47] X. Huo, F. Thung, M. Li, D. Lo, and S.-T. Shi, ‘‘Deep transfer bug
localization,’’ IEEE Trans. Softw. Eng., vol. 47, no. 7, pp. 1368–1380,
Jul. 2021.

[48] X. Sun, W. Zhou, B. Li, Z. Ni, and J. Lu, ‘‘Bug localization for ver-
sion issues with defect patterns,’’ IEEE Access, vol. 7, pp. 18811–18820,
2019.

[49] M. Pradel, V. Murali, R. Qian, M. Machalica, E. Meijer, and S. Chan-
dra, ‘‘Scaffle: Bug localization on millions of files,’’ in Proc. 29th ACM
SIGSOFT Int. Symp. Softw. Test. Anal., New York, NY, USA, Jul. 2020,
pp. 225–236.

[50] G. Yang, K. Min, and B. Lee, ‘‘Applying deep learning algorithm
to automatic bug localization and repair,’’ in Proc. 35th Annu.
ACM Symp. Appl. Comput., Brno, Czech Republic, Mar. 2020,
pp. 1634–1641.

[51] Z. Zhu, Y. Li, Y. Wang, Y. Wang, and H. Tong, ‘‘A deep multimodal
model for bug localization,’’DataMining Knowl. Discovery, vol. 35, no. 4,
pp. 1369–1392, Apr. 2021.

[52] A. Qayum and A. Razzaq, ‘‘The impact of features on feature location,’’
in Proc. Int. Conf. Frontiers Inf. Technol. (FIT), Islamabad, Pakistan,
Dec. 2019, pp. 1–15.

[53] A. A. Seyam, A. Hamdy, and M. S. Farhan, ‘‘Code complexity and ver-
sion history for enhancing hybrid bug localization,’’ IEEE Access, vol. 9,
pp. 61101–61113, 2021.

[54] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, ‘‘How practitioners
perceive automated bug report management techniques,’’ IEEE Trans.
Softw. Eng., vol. 46, no. 8, pp. 836–862, Aug. 2020.

[55] J. He, L. Xu, M. Yan, X. Xia, and Y. Lei, ‘‘Duplicate bug report
detection using dual-channel convolutional neural networks,’’ in Proc.
28th Int. Conf. Program Comprehension, Seoul, South Korea, Jul. 2020,
pp. 117–127.

[56] K. E. E. Swe and H. M. Oo, ‘‘Source code retrieval for bug local-
ization using bug report,’’ in Proc. IEEE 15th Int. Conf. Intell. Com-
put. Commun. Process. (ICCP), Cluj-Napoca, Romania, Sep. 2019,
pp. 241–247.

[57] J. Zhang, R. Xie, W. Ye, Y. Zhang, and S. Zhang, ‘‘Exploiting code
knowledge graph for bug localization via bi-directional attention,’’ in Proc.
28th Int. Conf. Program Comprehension, Seoul, South Korea, Jul. 2020,
pp. 219–229.

[58] T. Dilshener, M. Wermelinger, and Y. Yu, ‘‘Locating bugs without
looking back,’’ Automated Softw. Eng., vol. 25, no. 3, pp. 383–434,
Sep. 2018.

[59] A. R. Chen, T.-H.-P. Chen, and S. Wang, ‘‘Pathidea: Improving informa-
tion retrieval-based bug localization by re-constructing execution paths
using logs,’’ IEEE Trans. Softw. Eng., early access, Apr. 6, 2021, doi:
10.1109/TSE.2021.3071473.

[60] P. Jitngernmadan and K. Miesenberger, ‘‘A comparative study on Java
technologies for focus and cursor handling in accessible dynamic
interactions,’’ Stud. Health Technol. Inform., vol. 217, pp. 267–273,
Jan. 2015.

[61] D. Kim, Y. Tao, S. Kim, and A. Zeller, ‘‘Where should we fix this bug?
A two-phase recommendation model,’’ IEEE Trans. Softw. Eng., vol. 39,
no. 11, pp. 1597–1610, Nov. 2013.

[62] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, ‘‘Improving
bug localization using structured information retrieval,’’ in Proc. 28th
IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Silicon Valley, CA,
USA, Nov. 2013, pp. 345–355.

[63] X. Ye, R. Bunescu, and C. Liu, ‘‘Mapping bug reports to rele-
vant files: A ranking model, a fine-grained benchmark, and feature
evaluation,’’ IEEE Trans. Softw. Eng., vol. 42, no. 4, pp. 379–402,
Apr. 2016.

[64] J. Zhou, H. Zhang, and D. Lo, ‘‘Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug
reports,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Zurich, Switzerland,
Jun. 2012, pp. 14–24.

[65] Q. Wang, C. Parnin, and A. Orso, ‘‘Evaluating the usefulness of IR-
based fault localization techniques,’’ in Proc. Int. Symp. Softw. Test. Anal.,
Baltimore, MD, USA, Jul. 2015, pp. 1–11.

[66] X. A. Harrison, J. D. Blount, R. Inger, D. R. Norris, and S. Bearhop,
‘‘Carry-over effects as drivers of fitness differences in animals,’’ J. Animal
Ecol., vol. 80, no. 1, pp. 4–18, Jan. 2011.

[67] K. Suresh, ‘‘An overview of randomization techniques: An unbiased
assessment of outcome in clinical research,’’ J. Hum. Reproductive Sci.,
vol. 4, no. 1, pp. 8–11, Jan. 2011.

[68] C. Y. Chong and S. P. Lee, ‘‘Analyzing maintainability and reliability of
object-oriented software using weighted complex network,’’ J. Syst. Softw.,
vol. 110, pp. 28–53, Dec. 2015.

[69] Y. Zhu, Y. Huang, N. Jiang, and L. Chen, ‘‘A new model of soft-
ware network for object-oriented software system,’’ in Proc. IEEE Int.
Conf. Syst., Man, Cybern. (SMC), Melbourne, VIC, Australia, Oct. 2021,
pp. 516–522.

[70] H. Li, T. Wang, W. Pan, M. Wang, C. Chai, P. Chen, J. Wang, and J. Wang,
‘‘Mining key classes in Java projects by examining a very small number
of classes: A complex network-based approach,’’ IEEE Access, vol. 9,
pp. 28076–28088, 2021.

ABDUL QAYUM received the bachelor’s degree
in information technology (IT) from the Univer-
sity of Sargodha, Gujranwala, Pakistan, in 2018.
He is currently pursuing the master’s degree
with COMSATS University Islamabad (CUI),
Islamabad, Pakistan. This publication is a part
of his thesis. His research interests include auto-
matic software maintenance, feature location, bug
localization, information retrieval models, human-
centric tools and techniques, and source code anal-

ysis. In addition, he has development experience in Java, Python, and mobile
application development.

20512 VOLUME 10, 2022

http://dx.doi.org/10.1109/TSE.2021.3071473


A. Qayum et al.: FineCodeAnalyzer: Multi-Perspective Source Code Analysis Support for Software Developer

SAIF UR REHMAN KHAN received the bach-
elor’s degree in computer science and the mas-
ter’s degree in software and system engineering
from Mohammad Ali Jinnah University (MAJU),
Islamabad, Pakistan, in 2005 and 2007, respec-
tively, and the Ph.D. degree in software engineer-
ing from the University of Malaya (UM), Kuala
Lumpur, Malaysia, in 2018. He has been with the
Faculty of the Department of Computer Science,
COMSATS University Islamabad (CUI), Islam-

abad, since 2005. He has more than 19 years experience of teaching,
research, and development. He has published numerous research articles in
high-impact journals and peer-reviewed conferences. His research interests
in software engineering include verification and validation, search-based
software engineering, cyber-physical systems, requirements engineering,
and software project management. He has been in several expert review
panels, both locally and internationally. He was a recipient of the Best Paper
Presentation Award from UM, in 2014, and a Certificate of Outstanding
Contribution in Reviewing from FGCS journal, in 2018.

INAYAT-UR-REHMAN received the Ph.D. degree
in computer science (e-learning) from COMSATS
University Islamabad (CUI), Islamabad, Pakistan,
in 2017. He has over 18 years of teaching expe-
rience and is currently working as an Assis-
tant Professor with the Department of Com-
puter Science, CUI. He is extensively involved in
conducting training for basic computing courses
for national and multinational companies. In the
e-learning domain, his research interests include

computer-assisted core in education, designing learning tools, computer ani-
mations for learning, HCI for design in learning tools, cognitive learning, and
the use of educational psychology for e-learning applications. His research
interests in software engineering domain include software testing, software
project management, and software reusability.

ADNAN AKHUNZADA (Senior Member, IEEE)
is currently working as an Associate Professor
with the Faculty of Computing and Informatics,
Universiti Malaysia Sabah, Malaysia. His experi-
ence as an Educator and a Researcher is diverse
that includes an Assistant Professor at COMSATS
University Islamabad (CUI); a Senior Researcher
at RISE SICs Vasteras AB, Sweden; a Research
Fellow and the Scientific Lead at DTU Com-
pute, Technical University of Denmark (DTU); the

Course Director of ethical hacking at The Knowledge Hub Universities
(TKH), Coventry University, U.K.; a Visiting Professor having mentorship
of graduate students; and a Supervisor of academic and research and devel-
opment projects both at UG and PG levels. He has a proven track record
of high-impact published research and commercial products. He has also
been involved in international accreditation, such as Accreditation Board for
Engineering and Technology (ABET) and curriculum development accord-
ing to the guidelines of ACM/IEEE. He is a PI of national and a Co-PI of
several Swedish andHorizon 2020 EU funded projects. His research interests
include cyber security, secure future internet, artificial intelligence, such as
machine learning, deep learning, and reinforcement learning, large scale
distributed systems, such as edge, fog, cloud, and SDNs, the IoT, industry 4.0,
and the Internet of Everything (IoE). He is a member of technical program
committee of varied reputable conferences, journals, and editorial boards.
He is also a ProfessionalMember of ACMwith extensive 13 years of research
and development (R&D) experience both in ICT industry and academia.

VOLUME 10, 2022 20513


