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ABSTRACT To handle relentlessly emerging Android malware, deep learning has been widely adopted in
the research community. Prior work proposed deep learning-based approaches that use different features
of malware, and reported a high accuracy in malware detection, i.e., classifying malware from benign
applications. However, familial analysis of real-world Android malware has not been extensively studied yet.
Familial analysis refers to the process of classifying a given malware into a family (or a set of families), which
can greatly accelerate malware analysis as the analysis gives their fine-grained behavioral characteristics.
In this work, we shed light on deep learning-based familial analysis by studying different features of Android
malware and how effectively they can represent their (malicious) behaviors. We focus on string features of
Android malware, namely the Abstract Syntax Trees (AST) of all functions extracted from each malware,
which faithfully represent all string features of Android malware. We thoroughly study how different string
features, such as how security-sensitive APIs are used in malware, affect the performance of our deep
learning-based familial analysis model. A convolutional neural network was trained and tested in various
configurations on 28,179 real-world malware dataset appeared in the wild from 2018 to 2020, where each
malware has one or more labels assigned based on their behaviors. Our evaluation reveals how different
features contribute to the performance of familial analysis. Notably, with all features combined, we were able
to produce up to an accuracy of 98% and a micro F1-score of 0.82, a result on par with the state-of-the-art.

INDEX TERMS Malware classification, deep learning, Android security, abstract syntax tree.

I. INTRODUCTION

Life on the mobile device is still full of danger—one wrong
click can send your device a malicious application that would
execute malware on your device and turn your machine into
an unwitting participant in a botnet. Albeit the security for
the mobile ecosystem has matured and the prevalence of
drive-by-downloads seems decreased, the number of reported
Android malware is increasing [15].

To tame an ever-increasing number of malware, the secu-
rity community have proposed various machine learning or
deep learning-based approaches to analyze malware, and
reported promising results. In particular, a large body of
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research work exist aimed at detecting Android malware by
using machine learning and deep learning algorithms [6], [8],
[14], [15], [18]-[20], [26]-{28], [30], [33], [34], [37], [40],
[41], [43]-[45], [48]. The proposed techniques differ in fea-
tures and algorithms used, but most of prior work formulate
malware analysis as malware detection, which is a binary
classification problem—classifying a given application into
malware or a benign one. Even though prior work reported
a high accuracy in detecting Android malware, their analysis
result is limited in that such approaches are unable to cluster
or classify malware into various families that describe spe-
cific malicious behavior.

To address this problem, familial analysis has been pro-
posed [12], [13], [46], the process which classifies a given
malware into families based on their behavior and, therefore,
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their potential impact on victims. Similar to malware detec-
tion approaches, prior familial analysis approaches employ
various deep neural network models and use various fea-
tures of malware, but aim to produce a more fine-grained
and descriptive analysis result than malware detection
approaches. A line of work use string features of malware,
but, using those features in isolation without considering the
context can yield low accuracy [13], [46]. Another line of
work use graph features of malware such as function call
graphs and control flow graphs. Recently, Fan ef al. proposed
an approach using a graph embedding technique to efficiently
find similar graphs [12].

A common limitation of prior work is that their analy-
sis results are still not fine-grained and descriptive enough.
Most of prior work formulate the problem as classifying
a given malware into a single family. Fan et al. [12], for
example, propose unsupervised clustering, which means that
their approach can only give a test sample a single label.
This is less than ideal, because real-world malware can-
not easily be described in a single, concise label. Another
limitation of prior familial analysis approaches is that they
employ old datasets whose representativeness nowadays is
questionable. Moreover, the split between the training and
test data of prior work was often arbitrary, which, arguably,
does not reflect real-world analysis scenarios. A malware
classification model is most useful when it predicts the
behavior of future malware based on historical malware
dataset.

This paper formulates the problem of familial analysis
as a multi-label classification problem, in which the model
is trained to predict multiple behavioral characteristics of a
given malware. By using multiple yet concise labels, such
a model can provide a fine-grained description of a given
malware. Our work also distinguishes from prior work in that
we use up-to-date real-world Android malware, a more rep-
resentative dataset than prior work. We also study, in addition
to a standard 80%-20% training and test data split, a split
between years in which malware appeared. This split allows
us to test whether the model can classify future malware based
on historical data, which is arguably a more useful scenario.
Using this formulation and the dataset for familial analysis,
we study how different features affect the performance of
neural networks designed to perform such familial analysis of
malware. Through our study, we propose a set of features that
can most effectively describe malicious behavior of malware.
We use a standard deep neural network, convolutional neural
network (CNN), with different sets of features extracted from
malware, to train them to eventually generate a multi-label
classification model. We thoroughly evaluate the model with
the in-the-wild dataset that consists of real-world Android
malware appeared from 2018 to 2020. Our evaluation results
clearly demonstrate that the best-performing features can
effectively classify recent, real-world malware (an accuracy
up to 98% and a micro Fl-score 0.82). Our major contribu-
tions are, thus, as follows.
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o We first conduct a thorough study of familial analysis
for Android malware by modeling it as a multi-label
classification problem.

o We thoroughly study how different string features of
malware could affect the performance of a neural net-
work model trained for multi-label familial analysis.

« We conduct a large-scale evaluation using real-world
malware in realistic deployment scenarios. We also con-
duct a comparative study, and demonstrate that our
model performs familial analysis with the high accuracy
(98%) and micro F1-score (0.822).

Il. RELATED WORK

There exists a large body of research aimed at familial anal-
ysis of Android malware. Overall, previous research efforts
focussing on the multi-class classification could not accu-
rately represent behaviors of malicious applications and the
multi-label classification has not been extensively studied
yet. While, in this work, we conducted an in-depth study on
the multi-label classification by finding and characterizing
functions which perform malicious behaviors.

DroidSIFT [46] constructs the weighted contextual API
dependency graph for each malware and conducts the familial
analysis by calculating the graph edit distance between mali-
cious applications. However, the computational complexity
of graph edit distance is exponential in the number of nodes
and graphs, and thus, DroidSIFT is feasible for the limited
size of dataset. Feng et al. [13] proposed Astroid to discover
the shared functionality between multiple malicious applica-
tions by using inter-component call relations and data-flow
properties. They used the shared functionality as a signa-
ture to perform the familial analysis. Because the quality
of the signatures relies on the static analysis techniques the
employed, the effectiveness of Astroid had to be limited
by the precision of the techniques. GefDroid [12] aimed to
overcome the limitation of previous graph-based approaches
by using a graph embedding technique for efficiently conduct
the familial analysis. However, since GefDroid focuses on
the unsupervised clustering, it can only output singly labelled
results. Similarly, GSFDroid [24] also uses graph-based fea-
tures using the function call graph to analyze app behavior
with a graph embedding technique. Li ef al. [25] also cluster
by checking whether malware samples are shared among mal-
ware. For this purpose, fingerprint based library removal tech-
nology was used. Use the feature representing the application
using the bit vector format. Fan et al. [10] proposed FalDroid,
a system that automatically classifies malicious codes by
implementing fregraphs, which are graphs related to API
calls, from function call graphs to express the behavior of the
same family sample. The similarity between the two graphs
is calculated using the cosine similarity. It performs malig-
nant family classification, but because it performs multi-
class classification, it cannot classify unlearned classes. Also,
since it implements fregraphs that use sensitive API calls,
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malicious actions that do not use API calls cannot be detected.
CTDroid [11] proposed a method for automatically select-
ing useful features for malware analysis using the corpus
of Android malware-related technical blogs. To this end,
two semantic matching rules were proposed to bridge the
gap between natural language and programming language.
Malicious code detection and family classification are per-
formed using this rule. We used technical blogs collected
from 2011 to 2017, and may not be effective for malware
samples after 2017. DREBIN [8] proposed a lightweight
detection method that can directly identify malicious appli-
cations on mobile devices. Malicious application detection is
performed by combining many features such as privileges and
API calls extracted through static analysis. Also, the detection
results are explained using features. However, it is difficult
to expect an accurate interpretation of the actual operation
performed by the application. GroupDroid [29] only focuses
on repackaged malicious applications that inject malicious
code into benign applications. To identify the syntactical
similarity of each application, 3D-CFG centroids and API
vectors are utilized to identify the similarity of the code.
Aktas and Sen [7] provide UpDroid, a dataset that uses an
update attacks that adds malicious payloads to the applica-
tion runtime. To overcome the limitations of existing mal-
ware detection and family classification studies using static
analysis, features using static and dynamic analysis were
used, and a family classification algorithm strong against
obfuscation was proposed. To overcome the low accuracy
problem of existing deep learning by converting malicious
codes to gray images, Yuan et al. [44] proposed MDMC,
a malicious code classification model. MDMC is converting
malware binaries into Markov images according to the bytes
transfer probability matrix. Existing machine learning-based
malware detection approaches use features extracted from
malicious and normal samples, which has been proven to be
ineffective against complex malware in real world. On the
other hand, deep learning approaches have shown promising
results due to their automatic feature extraction from raw
data. Sihag et al. [40] proposed De-LADY, a malware detec-
tion framework based on deep learning and dynamic analysis
for Android. De-LADY utilizes the behavioral characteristics
of the application by using the log extracted by running the
application. However, since De-LADY uses an emulator to
run the application, it cannot detect malicious applications
equipped with the ant-emulation technique.

lll. BACKGROUND
A. MALWARE DETECTION

Motivated by an ever-increasing number of Android malware,
a surge of research work proposed different machine learn-
ing approaches for detecting malware. Typically, machine
learning-based malware detection systems use static features
such as APIs, permissions, and function call graphs [6], [8],
[14], [30], [41]. While, Gong et al. used APIs invoked while
an application is running as a feature [15].
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On the other hand, there exists a large body of deep
learning-based malware detection systems [18], [20], [34],
[43], [45], [48]. Because deep learning-based systems gen-
erally do not require a manual feature selection process, the
proposed approaches use not only APIs, permissions, and
function call graphs, but also, opcode and bytecode as inputs
to deep learning models.

Those machine learning- and deep learning-based malware
detection systems showed a high accuracy in the binary clas-
sification problem—classifying applications into malware or
benign applications. However, they lack a capability to cluster
malware into various families based on their features. Despite
advances in automated analysis techniques, to completely
analyze new malware for discovering its malicious behaviors
and impacts on victim users, security analysts should perform
detailed analysis. Classifying Android malware into known
families can accelerate this process, considerably helping
analysts.

B. MALWARE FAMILIAL ANALYSIS

Adversaries tend to create new malware by injecting pre-
viously used malicious code (with or without modifica-
tions) into a benign application, disguising itself as a benign
application. A study showed that Android malware has
distinguishable behaviors and they can be categorized into
families based on their behaviors [47]. Therefore, if we can
automatically classify the family of unknown malware based
on their behavioral characteristics, it can greatly help security
analysts to efficiently and effectively analyze malware.

Recently, deep learning-based approaches have been pro-
posed for a familial analysis of Android malware. To train a
model that can be used for a familial analysis, they extract
various features from malware. A line of work use string
features, e.g., APIs and permissions, of malware, but simply
using these features can yield low accuracy [46]. Another line
of work propose using graph-based features such as function
call graphs and control flow graphs [10], [12], [24]. Based
on the observation that graph matching algorithms are costly,
GefDroid [12], for example, proposed using a graph embed-
ding technique, struct2vec, for a more efficient matching.
GefDroid, however, uses unsupervised clustering which only
gives a test sample a single label only [12].

Moreover, acommon limitation of the previous approaches
is that they used existing open-source datasets whose rep-
resentativeness is questionable. Although such open-source
dataset is well-, singly-labeled and relatively balanced for
training a model, but limited in size and old. It is, therefore,
uncertain whether previous approaches also work effectively
on the recent real-world malware. In addition, as recent
malware possess multiple malicious behaviors as shown in
Table 3, it is difficult to assign malware a single label in
many cases. Hence, in order to obtain more accurate, descrip-
tive, and representative familial analysis results, multi-label
classification analysis needs to be performed and on recent,
in-the-wild malware dataset.

VOLUME 10, 2022



Y. Ban et al.: FAM: Featuring Android Malware for Deep Learning-Based Familial Analysis

IEEE Access

TABLE 1. Advantages and disadvantages of malware familial analysis approaches.

Name Advantages

Disadvantages

They performed malware detection using
the weighted contextual API dependency graph to
counter the transformation attack.

DroidSIFT [46]

Since they feature graphs, they are suitable for limited data
due to the computational complexity of the graph editing distance for similarity
they proposed. In addition, since the data used in the experiment uses outdated data,
it is difficult to respond to the latest malware.

They performed family analysis by constructing

Because they focus on unsupervised clustering to performed

GefDroid [12] a subgraph from FCG for malware family analysis and measuring the similarity. family analysis, they only output singly labeled results.
Thye performed automatic malicious code localization Because Droidtec uses API call sequences as features
Droidtec [27] using depth-first invocation traversal it is difficult to analyze the exact behavior.
using bytecode instructions to understand the behavior of the application. Also, the dataset used for the experiment is old data.
De-LADY [40] De-LADY Using the log extracted by running the application, Malicious applications that detect the
the behavioral characteristics of the application are utilized. emulated environment cannot be detected and perform binary classification.
FAM ‘We perform multi-label family analysis by extracting new string features Since we label the data ourselves, data bias occurs

representing malicious behavior from the real-world dataset.

and there is an Out-of-vocabulary problem.

TABLE 2. The number of malware dataset after labeling with their
malicious behaviors.

Year 2018 2019 2020 Total
#of Malware 16,345 5,126 6,707 28,179

TABLE 3. The histogram of malware behaviors in our dataset.

# of Behaviors 1 2 3 4 Total
# of Malware 21,277 6,765 136 1 28,179

IV. OVERVIEW

We aim to understand how different features of Android
malware affect the performance of machine learning algo-
rithms, and identify features that can most effectively repre-
sent different malicious behaviors of malware. To this end,
we perform malware familial analysis with a standard neural
network, Convolutional Neural Network (CNN) [21], with
varying sets of features, and evaluate the effectiveness of each
set of features. Among various features of Android appli-
cations, we focus on evaluating string features, which can
be obtained from tokenizing abstract syntax trees (AST) of
functions found in malware, a faithful string representation of
an Android application. An example of such string feature are
security-sensitive APIs used in malware, which many prior
work considered as an important feature, as they indicate how
an application interacts with the Android framework and the
rest of the system.

In the following sections, we show how we collected
dataset for our study (subsection V-A), how we generate
the implentational features of malware (subsection V-B and
subsection V-C), and how we use the features with a convo-
lutional neural network for familial analysis (section VI).

V. DATA GENERATION

A. DATASET

To perform an extensive study with real-world data, we col-
lected 189,847 malware that appeared from 2018 to 2020
in the wild by using VirusShare [3]. The malware pro-
vided by VirusTotal does not have any label. Therefore,
we obtained analysis reports for each malware from various
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antivirus product through VirusTotal [4]. Next, we used an
automatic malware tagging tool, AVclass2, that categorize
malware samples according to their malware class, behaviors,
etc [39]. Among the tags, we label each malware with their
malicious behaviors. When we labeled malware, if the num-
ber of malicious behaviors aggregated by AVclass2 exceeds
one, we use the behaviors as labels of the malware so
that malware can be assigned multiple labels. If any vendor
cannot find a malicious behavior of malware, we label the
malware as “Undefined.” Table 2 shows the result of labeling
189,847 malicious applications that we collected. We labelled
each malware according to its malicious behavior. In total,
we obtained 28,179 labelled malware that perform one or
more malicious behaviors identified. Table 3 shows the his-
togram of malware based on the number malicious behaviors
of them. As a result, we found that the rate of malware per-
forming two or more complex malicious behaviors is about
24.5%, which indicates that it is difficult to assign a single
behavior label to malware. Also, the number of single labels
is 21 and the total number of labels used to describe all
malware is 84.

It is worth noting that our dataset is not balanced: the num-
ber of malicious applications in some behavioral categories
is less than 10 because we use in-the-wild malware. Hence,
the unbalanced dataset may not be an optimal to show the
maximum performance of our system. However, we believe
that our evaluation results can demonstrate the realistic effec-
tiveness when we launch a malware classification system
in real-world. In addition, we did not exclude obfuscated
malware for demonstrating for the same reason.

B. PRE-PROCESSING

In this pre-processing step, we remove known, benign func-
tions provided by common third-party libraries such as
Gson [5] and functions in Android libraries in each malware.
Consequently, remain functions of the malware can be can-
didates that perform malicious behaviors. Next, we generate
string features of a given malicious application of by extract-
ing Abstract Syntax Trees (AST) of all functions found in the
application. Finally, the extracted ASTs are further distilled
into a more compact set of ASTs based on whether they use
sensitive APIs or not.
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FIGURE 1. Overview of our string feature generation process.

1) THIRD-PARTY LIBRARY FUNCTION COLLECTION

Third-party libraries are widely used in Android applications
including malware to avoid reimplementing common func-
tionalities. In this work, we are interested in finding and
characterizing functions which perform malicious behaviors.
Therefore, known and benign third-party libraries can intro-
duce significant noise to analysis results, and thus, we should
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TABLE 4. The number of known third-party libraries collected.

Up2Dep [35]
18,507

Libd [23] Lietal. [22]
11,458 5,926

De-duplicated Total
35,555

detect and remove them. To this end, we identify 35,555
benign libraries used in Android applications, which are
obtained (i) by crawling with Up2Dep [35] and (ii) from well-
curated lists of third-party libraries [22], [23]. The collected
third-party libraries are used to filter out benign functions
in malware, which substantially contributes to the improve-
ment of the efficiency and effectiveness of our familial
analysis.

2) ABSTRACT SYNTAX TREE EXTRACTION

The Abstract Syntax Tree (AST) of a given function is a
faithful string representation of the function, which is nor-
mally created as a result of parsing during the compilation
process. An AST of a given function includes not only all
syntactic elements but also the names of the identifiers (e.g.,
function and variable names) and compile-time constants
(e.g., numeric constants and string literals). Android malware
are available in Java bytecode, which can be decompiled into
ASTs of functions found in a given malware [17]. The decom-
piled ASTs lack the names of local variables. We decompile
all malware in our dataset to obtain ASTs of all functions
in each malware by using AndroGuard [2]. In this process,
we filter out the ASTs of known functions using the list of
third-party libraries collected in the previous step; we only
compile unknown functions into ASTs and thus potentially
malicious functions in each malware.

3) SENSITIVE API-BASED DISTILLATION

Even after filtering out benign functions from each malware,
there are still a large number of ASTs extracted in each
malware. In our dataset, for example, we observe that there
are on average 600 ASTs, after excluding the third-party
libraries from a malicious application. Therefore, after we
obtain ASTs from each malware, we further pick out poten-
tially malicious functions by using the list of the sensi-
tive APIs studied by previous work [1], [9]. SuSi [1] and
FlowDroid [9] provide a set of source APIs (i.e., APIs used
to read sensitive information) and sink APIs (i.e., APIs
used to send and store sensitive information to somewhere)
commonly used by malware, from which we obtain 25,308
sensitve APIs. We distill ASTs extracted from the prior step
into a more compact set of ASTs by eliminating all ASTs that
do not contain any sensitive API calls.

C. FEATURE GENERATION

To study how different features contribute to the classification
performance of a neural network, in this section, we identify
string features that can be obtained from a given AST. For
each identified feature, we describe how each feature can be
removed through normalization. This effectively allows us to
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perform an ablation study of each feature. We then present an
encoding procedure that can convert each AST into a numeric
feature vector, which can be fed into a neural network
model.

1) AST NORMALIZATION

From an AST that may contribute to malicious behaviors of
malware, we identify five string features, which are described
in the following normalization steps, which effectively elim-
inates a potentially useful feature after each step: (i) we
remove the name of the function that corresponds to the
given AST; (ii) we remove all local variables whose names
are assigned arbitrarily by the decompiler; (iii) we replace
the names of all user-defined functions called within the
given AST to a predefined token ‘“User_Defined_Func”;
(iv) we replace all string literals with a token “STRING”;
and (v) we replace all numeric constants with a token
“NUMBER”. An example of the normalization process is
shown in Figure 2. By conducting this normalization process,
we effectively remove features of an AST one after another;
by comparing the performance of a classification model
trained on datasets before and after each normalization step,
we can better understand each feature’s role in classifying
malware into its families.

2) MALWARE ENCODING

After the AST normalization process, we encode each mal-
ware with its normalized ASTs, such that the malware is
represented as a sequence of tokens. To this end, we first
traverse each decompiled and normalized AST in a depth-
first manner, such that we can reconstruct a representation of
each function in a lexical order, i.e., the order in which the
original source code would have appeared. Next, we index
all ASTs which are going to be used in the training step with
deep learning algorithms. In our dataset, we found 954,039
unique ASTs in total. With the indexed ASTs, we generate
a string for each malware using the following procedure:
(i) we sort ASTs of a malicious application to arrange ASTs
which have the source APIs before ASTs which have the sink
type APIs—this sorting process helps us have a consistent
representation of all malware; (ii) we find the index assigned
to each AST found in the malicious application; and (iii) we
generate a vector of indices for each malicious application.
Finally, we add paddings to make the generated vectors the
same length for all malware. This encoded malware is directly
used for training a neural network. If we encounter, in the
validation or testing phase, an AST unseen in the training
phase, we assign a token “UNK™ to it.

VI. MODEL

FAM takes the architecture of a standard convolutional neural
network (CNN) [21]. The input features of a given malware
are represented as a sequence of encoded ASTs. These input
features first go through an embedding layer which maps each
AST into a vector in the embedding space. The embedding
vectors then go through one-dimensional convolutional layers
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Dpublic String postData () {
String urlString ="www.website.com";
OutputStream out = null;
®if (1 == call_my func()) (@
URL url = new URL(urlString);
HttpURLConnection urlConnection = url.openConnection();
out = newBufferedOutputStream(urlConnection.getOutputStream());
BufferedWriter writer =
new BufferedWriter (new OutputStreamWriter (out, "UTF-8")) ?@
writer.write (“Hello!”) ;@
urlConnection.connect () ;

-
Func() {

if (NUMBER == User_Defined Func()) {
new URL (STRING) ;
url.openConnection();
newBufferedOutputStream(urlConnection.getOutputStream()) ;
new BufferedWriter (new OutputStreamWriter (OutputStream, STRING)) ;
writer.write (STRING) ;
urlConnection.connect () ;

}

}

FIGURE 2. An example of the normalization process.

(Conv1D) with ReLu activations, and dense layers stacked
on top. We chose ConvlD to capture the spatial locality
of our encoded ASTs sorted to put sensitive—source and
sink—APIs spatially close. The last layer is flattened into a
vector whose dimension is the number of classes. As we for-
mulate our problem as a multi-label classification problem,
we use Sigmoid as the activation function of the last dense
layers. The neural network is trained on a given dataset by
minimizing the standard binary cross entropy loss. Figure 3
depicts the CNN architecture used in FAM.

VII. EVALUATION

In this section, we evaluate our system, FAM, using
the real-world malware dataset (subsection V-A) and
open-source dataset (Drebin [8]). The deep learning model
used in our experiment used the standard convolutional neural
network (CNN) mentioned in (section VI).

A. EXPERIMENT SETUP

We conducted our experiments on Ubuntu 18.04 using four
GPUs of NVIDIA GeForce RTX 2080 Ti, and 256 GB RAM.
We implemented FAM by using tensorflow-gpu v1.14.0,
Keras v2.2.4, CUDA v11.2, and Androguard v3.4.0al for
extracting ASTs. For the parameters of the two ConvlD
layers of FAM, we apply (1, 3) filter with ReLU activation
function. In the two dense layers of FAM, we set the the
dimension of hidden states as 32 and 4 respectively. We use
the Adam optimizer with learning rate 0.001 and batch size
64. We randomly shuffle data of each label in the dataset and
split 80% for training and the rest 20% for testing. We trained
our model for 6 epochs for each experiment.

B. EVALUATION METRICS

To measure the classification performance of our neural
network mode using the string feature of malware, we use
the following metrics: micro-recall(1), micro-precision(2),
micro-F1(3), and accuracy(4). Accuracy is the most intuitive
indicator of the model performance, but since the dataset used
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FIGURE 3. The CNN model architecture of FAM.

Micro-recall | Micro-precision Micro-F1 Accuracy
Proposed Feature 0.751 0.908 0.822 0.981
Nomalization Option 1 0.687 0.779 0.702 0.973
Nomalization Option 2 0.697 0.767 0.713 0.974

FIGURE 4. The effectiveness of the proposed features. The normalization
option 1 is when we did not normalize string constants. The normalization
option 2 is when we did not normalize string and numeric constants.

1
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0.3

Micro-recall | Micro-precision|  Micro-F1 Accuracy
CNN 0.751 0.908 0.822 0.981
DecisionTree 0.74 0.741 0.741 0.6
RandomForest 0.707 0.854 0.773 0.604
KNN 0.604 0.684 0.642 0.453

FIGURE 5. Comparison result between our CNN model and the machine
learning algorithms.

in our experiments is unbalanced for each class, F1 Score and
micro average were additionally used as evaluation metrics.
We believe that these metrics clearly show the effective-
ness of multi-label classification analysis results. The eval-
uation metrics we used can be mathematically expressed as
follows:

> y TP
recallpicro = Casses (1
mere chasses TP + chasses FN
.. chasses e
precisionyicrp = )
e chasses TP+ chasses FpP
Flyon = 2% prec.isorzm,tm * recallyicro 3)
precisonicro + recallyicro
TP + TN
Accuracy = 4
TP+ TN + FP + FN
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TABLE 5. Confusion matrix for the evaluation result of the real-word
dataset.

Predicted Classes
Positive | Negative
Positive 5,681 1,875
Negative 573 84,698

Actual Classes

C. EFFECTIVENESS USING THE REAL-WORLD DATASET

To demonstrate the effectiveness of each string feature,
we first evaluate the CNN model’s performance by using the
metrics as in subsection VII-B. Also, we compare it with
other models generated by the same dataset, but, when we
did not completely normalize ASTs (we removed third-party
libraries and potentially benign functions as discussed in
subsection V-B).

Figure 4, Table 5 shows the results. Our neural net-
work’s micro-F1 score (0.822) and the accuracy (0.981)
demonstrate that the proposed implementational feature can
be importantly used to classify multi-labelled in-the-wild
malware. In addition, as the other models’ performance
results show, the normalization process considerably affects
to the model’s performance (especially on the micro-F1
score). In the other words, local variables, numeric constants
and string constants are not very important to construct the
implementational feature of Android malware, and to identify
malicious behaviors based on the feature, because they can
vary depending on each malware’s environmental factors.
Finally, We compared the effectiveness of our CNN model
with three machine learning algorithms (Decision Tree,
Random Forest, and KNN) by using the proposed feature as
input. Figure 5 shows that our CNN model has higher scores
in all four evaluation metrics than the three machine learning
algorithms.

D. EFFECTIVENESS USING REFINED DATASET

Figure 6 shows experimental results when we did not use
labels which have less than 10 applications. In our dataset,
there are 6 such labels out of 21 kinds of single labels and
we have 74 labels left in total after deleting the 6 labels.
As the Figure 6 illustrates, even though we deleted the labels,
the performance difference between the original dataset and
the refined dataset is negligible. This result indicates that our
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0.9

0.8

0.7

0.6

Micro-recall Micro-precision Micro-F1 Accuracy
| Original Dataset 0.751 0.908 0.822 0.981
| Refined Dataset 0.767 0.899 0.828 0.973

FIGURE 6. Comparison of the DNN model’s performance between when
we used the original dataset and when we deleted labels which has less
than 10 applications.

0.9

0.8

0.7
0.6 " n — -
Micro-recall Micro-precision Micro-F1 Accuracy
‘ Our Dataset 0.751 0.908 0.822 0.981
[ Drebin 0.769 0.957 0.853 0.994

FIGURE 7. The evaluation result on a popular, public Android malware
dataset, Drebin [8].

string feature can be effectively used when the number of data
is low.

E. EFFECTIVENESS USING OPEN SOURCE DATASET

To compare the effectiveness of FAM with state-of-the-art
approaches (GSFDroid [24], FalDroid [10], Xiao et al. [42]
and Yuan et al. [44]), we evaluated FAM on a popular, public
Android malware dataset, Drebin [8], that contains 5,560
singly-labelled malware samples.

Figure 7 shows that the evaluation result on Drebin dataset
using FAM. Overall, the effectiveness of FAM increased
when we used Drebin dataset; it achieved 99.4% of accuracy
with 0.853 of micro-F1 score. On the other hand, as Fig-
ure 8 illustrates, FAM showed the highest accuracy among
three approaches. Unfortunately, the other approaches did
not report micro-recall, -precision, and -F1 scores, we could
not concisely compare the performance of FAM with them.
Also, because the Android Genome project! widely-used in
previous research projects stopped data sharing, we could not
conduct more comparisons with the other work.

F. EFFECTIVENESS USING FUTURE MALWARE

We performed another evaluation to check whether FAM can
classify future malware based on malware sampled appeared
in a previous year in our dataset. In this evaluation, we first

1 http://www.malgenomeproject.org/
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0.98

0.96

0.94

0.92

0.9

Accuracy

FAM 0.994
Yuan et al. 0.973
FalDroid 0.953
Xiao et al. 0.936
GSFDroid 0.911

FIGURE 8. Comparison of the accuracy with four previous approaches.

1

0.9

0.8

0.7

0.6

0.5

0.4

Micro-recall Micro-precision Micro-F1 Accuracy

Option 1 0.627 0.841 0.696 0.961
Option 2 0.467 0.699 0.543 0.938
Option 3 0.478 0.602 0.451 0.915
Option 4 0.399 0.597 0.354 0.904

FIGURE 9. The evaluation results on classifying future malware. Each
option is described in subsection VII-F.

divided our dataset by year. We, then, generated a DNN model
and evaluated it as follows.

Option 1: Trained a DNN model using datain 2018 and 2019,
and tested it against malware samples in 2020.

Option 2: Trained a DNN model using data in 2019, and
tested it against malware samples in 2020.

Option 3: Trained a DNN model using data in 2018, and
tested it against malware samples in 2019.

Option 4: Trained a DNN model using data in 2018, and
tested it against malware samples in 2020.

Figure 9 illustrates the evaluation results and Table 6 shows
the ratio of out-of-vocabulary ASTs in each experiment.
Across all the options, we could achieve the acceptable accu-
racy (higher than 90%) but the micro-F1 scores are not high.
Especially, in the case of option 4 and option 3, the micro-
F1 scores are less than 0.5 due to the high ratio of out-of-
vocabulary ASTs. This evaluation reveals that malware tends
to change APIs and its implementation structures over time as
the Android framework is updated and to evade anti-malware
tools [31].

On the other hand, in this work, we did not employ a
embedding method to handle unknown data, and thus, the
classification performance is expected to decrease in pro-
portion to the ratio of unknown data. However, since the
goal of this work is to find features that can effectively
represent different malicious behaviors of malware, we leave
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TABLE 6. The ratio of Out-of-Vocabulary (OoV) ASTs in each experiment
of subsection VII-F.

Option 1
OoV Ratio 4% 5% 48% 58%

Option2  Option3  Option 4

this limitation as future work. We discuss this limitation in
section VIII as well.

VIil. DISCUSSION

A. OUT-OF-VOCABULARY

In this work, we define the out-of-vocabulary problem as a sit-
uation where a DNN model meets an AST that did not appear
in the training dataset. This problem can happen frequently
when analyzing malware, as they evolve over time [31].
To remedy the OOV problem, one could decompose each
AST into tokens, akin to decomposing a sentence into words
for natural language processing tasks, and use tokens as input
features. This way, it is less likely, during the testing phase,
that we encounter tokens that are unseen in the training
phase.

B. PRE-TRAINED EMBEDDING

One could use a pre-trained embedding to initialize the
embedding layer in our neural network. Word2Vec and
Struc2Vec are the among the most popular embedding gener-
ation techniques [32], [38]. Whether these embedding tech-
niques can generate a representation of an AST suitable for
malware analysis, or what corpus of Android applications
to use for training an embedding model, is an orthogonal
question, which merits further research on its own. Once an
embedding is learned, the embedding can easily be tested
with different neural network architectures including our
CNN, by initializing the embedding layer with pre-trained
ones. We performed a preliminary experiment by learning the
representations of individual tokens found in each AST using
a Word2Vec. Initializing the AST embedding layer with the
sum of the token embedding did not, however, yield any better
result. Finding an appropriate pre-training objective that is
effective on embedding ASTs would be a key to solving this
problem.

C. IMBALANCED DATA

In this work, we used an in-the-wild dataset in which there
are various types of malicious applications and the num-
ber of malware belonged in each type is uneven, and thus,
the deep learning model can be biased. To address the
biased model, we need to use a data augmentation method
such as Generative Adversarial Network (GAN) [16] to
generate insufficient number of data in specific classes.
Also, we can assign different weights when learning data
belonged in a class where the number of samples is small,
or we can perform K-fold Cross-Validation when training a
model.

20016

D. DATA UPDATE AND MODEL RE-TRAINING

In general, malware detection approaches using machine
learning and deep learning models require frequent
re-training of models and updating the training dataset with
new samples to reflect trends of emerging malware [31], [36].
If the detection model is not updated, the prediction result of
malware detection models can yield wrong decisions—it will
not be able to detect unknown zero-day malware. Therefore,
periodic re-training of the detection models through updat-
ing the training dataset is inevitable. Also, as the Android
framework is updated and to evade anti-malware tools [31],
Android malware tends to change APIs and its implemen-
tation structures over time. Another challenge for building
a reliable malware detection model that can detect zero-day
malware is to detect malware using evasion and obfuscation
techniques to avoid detection from the anti-malware systems.
We intend to address this challenge in our future work.

IX. CONCLUSION
In this work, we studied how effectively we can represent

malicious behaviors of Android malware by formulating
the problem of familial analysis as a multi-label classifi-
cation problem. To this end, we proposed string features
extracted by tokenizing abstract syntax trees (AST) of func-
tions in malware. Our evaluation results demonstrate that
the best-performing features can effectively classify recent,
real-world malware, with an accuracy up to 98% and a micro
F1-score of 0.82.
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