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ABSTRACT The preparation of a quantum superposition is the key to the success of many quantum
algorithms and quantum machine learning techniques. The preparation of an incomplete or a non-uniform
quantum superposition with certain properties is a non-trivial task. In this paper, an n-qubits variational
quantum circuit using partial negation and controlled partial negation operators is proposed to prepare
a quantum superposition from a given space of probability distributions. The speed of the preparation
process and the accuracy of the prepared superposition has special importance to the success of any quantum
algorithm. The proposed method can be used to prepare the required quantum superposition in O(n) steps
and with high accuracy when compared with relevant methods in literature.

INDEX TERMS Quantum superposition, quantum state, partial negation, data encoding, prepared
amplitudes, acquired amplitudes.

I. INTRODUCTION
Quantum computing [1] is a technology that uses the prop-
erties of quantum mechanics, including entanglement [2] and
superposition [3], [6]. The quantum computers can solve opti-
mization problems faster than classical computers, by using
quantum laws of entanglements and superposition [3], [6].
Qubit is the basic data unit in a quantum computer where
each qubit can hold states |0〉 and |1〉 simultaneously [2], and
this is called quantum superposition. The preparation of quan-
tum superposition is a prerequisite stage in building many
quantum algorithms in several domains [4], [26]. For exam-
ple, in data encoding [23], quantum machine learning [24],
the artificial neural networks (ANN) [5], Grover’s Search
algorithm [7], [8], quantum Fourier transform [14], quantum
linear system algorithms [18], quantum Image processing
[9], [25], quantum Cryptography [27], etc.

The problem of preparing a superposition of quantum
states over n-qubits using given amplitudes has been tackled
in many previous works [10], [13], [15], [19]–[22]. In [19],
a quantum circuit was described for the preparation of quan-
tum state distributions, however, it used an exponential num-
ber of elementary gates. The work in [21] developed the
quantum circuit in [19] by using quantum multiplexers in
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order to reduce the total number of elementary gates. This
technique was important for the preparation of incomplete
superpositions, however, the number of gates was still of
exponential complexity. A quantum circuit was introduced
in [22] to reduce the number of CNOT control gates in [19]
from 2n to 23

242
n by using quantum universal gates. In [13],

a quantum circuit was designed in order to prepare Prime
States. These states are highly entangled for n-qubits and used
in the twin primes distribution applications, where it only pre-
pares Prime distributions. A quantum circuit was proposed
in [10] to prepare an equal superposition state by applying
the Hadamard gate or the Y operator on each qubit, where
Y is a rotation with θ = π/2 angle along the y axis, where it
only preparesEqual States distributions. In [20], two different
approaches of quantum state preparation were introduced.
In the first approach, a sequential algorithm was proposed to
construct a quantum circuit with an exponential number of
gates having a linear number of auxiliary qubits. The second
approach suggested a parallel algorithm to build a quantum
circuit with a polynomial number of gates and an exponential
number of auxiliary qubits. A circuit optimization technique
was presented in [15] in order to reduce the complexity of the
state preparation circuit by using basic numerical integration.
The total number of gates in this circuit is linear with the
number of qubits, however, it also uses a linear number of
auxiliary qubits.
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The aim of this paper is to propose an n-qubits varia-
tional quantum circuit based on partial negation operators for
preparing a quantum superposition based on a given superpo-
sition from a given space of probability distributions. Given
the required quantum superposition (vector of amplitudes) to
be prepared, the parameters of the variational circuit are cal-
culated numerically using Levenberg-Marquardt algorithm
by transforming the vector of amplitudes to a system of
non-linear equations. The number of gates in the proposed
quantum circuit is linear with the number of qubits and is able
to prepare both complete and incomplete superpositions with
high accuracy.

The remainder of this paper is organized as follows.
Section II provides an overview on the standard formula-
tion of the partial negation operator that will be used in the
proposed quantum circuit. Section III explains the proposed
method. Section IV presents and discusses the experimental
of the proposed method. Section V compares the complexity
of this method with other related work in literature. Finally,
Section VI concludes the paper.

II. THE PARTIAL NEGATION OPERATOR
In order to prepare a superposition using the proposed varia-
tional quantum circuit, it is required to provide a background
about the partial negation operator used by this method.

The X gate [3] is the quantum gate which is equivalent to
the classical NOT gate and is represented as follows:

X =
[
0 1
1 0

]
. (1)

The partial negation operator K is the r th root of the X
gate [11] and can be calculated using the following equation,

K = r√X =
1
2

[
1+ s 1− s
1− s 1+ s

]
, (2)

where s = r
√
−1 is a parameter that decides the behavior of

the gate (the degree of negation).
The K gate will be used to introduce the operator Ck . The

Ck is an operator on the n + 1 qubits register that applies K
conditionally for n times on an auxiliary qubit denoted as |ak〉
and initialized to state |0〉. The number of times the K gate is
applied on |ak〉 is based on the number of qubits. In general,
Ck can be represented as follows,

Ck = Cont_K (x0; ak)Cont_K (x1; ak)

. . .Cont_K (xn−1; ak), (3)

where the Cont_K (xi; ak) gate is a 2-qubits controlled
gate with control qubit |xi〉 and target qubit |ak〉. The
Cont_K (xi; ak) gate applies K conditionally on |ak〉 if |xi〉 =
|1〉, so when Ck is applied on vector |x0x1 . . . x(n−1)〉 and
|ak〉 = |0〉 can be understood as follows,

Ck (|x0 . . . x(n−1)〉⊗|0〉)=|x0 . . . x(n−1)〉⊗(
1+s
2
|0〉+

1−s
2

1〉).

(4)

Finally, in order to measure the probabilities of finding the
auxiliary qubit |ak〉 in state |0〉 or |1〉, the following equations
are used

Pr(|ak〉 = |0〉) = |
1+ s
2
|
2,

Pr(|ak〉 = |1〉) = |
1− s
2
|
2 . (5)

III. PREPARATION OF QUANTUM SUPERPOSITION
In this section, the general quantum state method used in the
preparation of the quantum superposition is presented. The
general form of any quantum superposition can be presented
by the following equation:

|ψ〉 =

2n−1∑
i=0

ai|i〉, (6)

where n is the number of qubits and ai is the amplitudes of
each state. A state |i〉 can be represented as a binary form
|in . . . ..i1〉, where i ∈ {0, 1}n for n qubits.
The main idea of the method is to find the parameters for

the quantum circuit that prepares a superposition by intro-
ducing a novel approach for calculating the parameters of
its gates. The r th root gates are adopted in the design of the
circuit which contains n qubits in addition to an auxiliary
qubit |ak〉 in order to store the basis states. This method
represents the circuit as a system of non-linear equations
whose variables are the unknown parameters of the gates.
Finally, a method for evaluating the accuracy of the method
is described. However, we will first describe in the following
subsection the process of constructing the quantum circuit
used in the proposed method.

A. CONSTRUCTION OF THE VARIATIONAL QUANTUM
CIRCUIT
In order to construct the quantum circuit, a quantum register
of n+ 1 qubits all initialized to the state |0〉 in the form

|ψ0〉 = |0〉⊗n+1. (7)

By applying the Kt gates on the first n qubits, the following
superposition is produced

W1 = K1 ⊗ K2 ⊗ K3 ⊗ · · · ⊗ Kn ⊗ I , (8)

where Kt could be any partial negation operator with any
r th root and t is an index of the gate in range {1, . . . , 2n}.
Now, when applying W1 on |ψ0〉, the following state will be
produced

|ψ1〉 = W1|ψ0〉

= K1 ⊗ K2 ⊗ K3 ⊗ · · · ⊗ Kn ⊗ I |0〉. (9)

Finally, the n two qubits controlled operator Ck is applied
on the targets of the auxiliary qubit |ak〉 which have a
control on each qubit for the first n qubits. This will produce
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the following state

|ψ2〉 = Ck |ψ1〉

= (
n∏
l=1

Cont_k(xl; ak)⊗ I⊗n−1)(K1 ⊗ K2 ⊗ K3

⊗ · · · ⊗ Kn ⊗ I )|0〉⊗n+1

= a1|000..0〉+a2|000 . . . 1〉 + . . . . . .+ a2n |011 . . . 1〉,

(10)

where ai is the value of the amplitudes, as shown in fig. 1.

FIGURE 1. General quantum circuit for the proposed method.

B. THE PROPOSED METHOD
In this section, the proposed method for preparing the super-
position of any quantum system of a maximum of 3-qubits
will be described in detail. The input for this method is the
values of the exact amplitudes of some distribution repre-
sented as a vector of size 2n of the form (a1, a2, . . . , a2n ),
where n is the number of qubits and ai for i ∈ 1, 2, . . . , 2n is
a complex number from the given space of amplitudes. The
output of the method is the parameters of r th root gates in the
form

Kt =
r√X =

1
2

[
1+ s 1− s
1− s 1+ s

]
=

[
c2m−1 c2m
c2m c2m−1

]
,

(11)

wherem ∈ {1, . . . , 4n}, c2m−1 = 1
2 (1+s) and c2m =

1
2 (1−s)

are the unknown parameters of gates for s = r
√
−1. The

method will achieve this by solving a system of nonlinear
equations for the unknown parameters of the gates. This
system of equations is generated by eq. (10) for any n qubits
with maximum 3 qubits. The system of non-linear equations
can be represented using mathematical induction as

a1 =
n∏
l=0

c2(n−l)−1, (12)

a2 = (
n∏
l=0

c2n−3l+α)(c4n−1 + c4n), (13)

a3 = (
n∏
l=0

cn−l2+2)(c3n + c3n+1), (14)

a4 = (
n∏
l=0

c2(n−l)−α)(
3n+1∑
l=3n

4n∑
j=4n−1

clcj), (15)

a5 = (
n−1∏
l=0

cn+l2−α−1)(c2n+1 + c2(n+1)), (16)

a6 = (
n−1∏
l=0

cn+l2−1)(
2(n+1)∑
l=2n+1

4n∑
j=4n−1

clcj), (17)

a7 = (
n∏
l=0

c2n−l2−α−1)(
2(n+1)∑
l=2n+1

3n+1∑
j=3n

clcj), (18)

a8 = (
n∏
l=0

c2(n−1))(
2(n+1)∑
l=2n+1

3n+1∑
j=3n

4n∑
j=4n−1

clcj), (19)

where ai are the values of the exact amplitudes and ci are
the unknown parameters of the gate Kt , such that cy = 1 for
y ≤ 0 . For the eqs. (13),(15),(16) and (18), the variable α = 1
for l = 2 and α = 0 otherwise. This system of equations rep-
resents the case of 3-qubits. For a single qubit case eqs.(12)
and (13) will be used while for 2-qubits case eqs. (12) to (15)
will be used. This system of non-linear equations is solved
using Levenberg-Marquardt algorithm [12].

The complete method proposed in this paper is presented in
algorithm 1. The algorithm starts by preparing an n+ 1 qubit
quantum circuit as described in section III-A. A list, namely
AcquiredGates, is used to store the parameters of the gates
resulting from solving the system of non-linear equations
eqs. (12) to (19). These gates are then applied on |φ〉 to pro-
duce a new vector of amplitudes stored in the AquiredAmpli-
tude list. Finally, in order to measure the accuracy of the
proposed method, the relative error between the acquired
probability and the prepared probability is calculated using
eq. (22). The probability of the prepared amplitudes and the
probability of the acquired amplitudes are given by eqs. (20)
and (21), respectively.

Pr_prepared =| a |2, (20)

where a is the prepared amplitudes.

Pr_acquired =| a′ |2, (21)

where a′ is the acquired amplitudes.
The relative error is the difference between the prepared

probability and the acquired probability is given by the fol-
lowing equation.

relativeError =
| (Pr_prepared − Pr_acquired) |

Pr_prepared
. (22)

The parameters of the gates resulting from algorithm 1
must represent unitary gates (UU†

= I ) in order to preserve
the reversibility of the resulting quantum gates. To verify the
reversibility of the gates the following unitary test must be
applied:

4n∑
i=1

| c2i−1 |2 + | c2i |2 −1 = 0 (23)

4n∑
i=1

c2i−1c∗2i + c2ic
∗

2i−1 = 0, (24)

where c∗i is the complex conjugate transpose of ci.
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Algorithm 1 Quantum State Preparation Algorithm
Given a system |ψ〉, and the vector of amplitudes
(a1, a2, . . . , a2n )
1: Initialize |ak〉 in state |0〉
2: Prepare |φ〉 = (|ψ〉 ⊗ |ak〉)
3: Let AcquiredAmplitude = a′= []
4: Let AcquiredGates=[]
5: Apply K with unknown parameters on |ψ〉 6: Then apply
Ck on |φ〉
7: The amplitudes of |φ〉 is required to solve the system of
equations
8: Solve the system of non-linear equations generated by
steps 1 to 7 using Levenberg-Marquardt algorithm
9: Save the result from the system in AcquiredGates
10: Apply the gates on the state |φ〉
11: Calculate the AcquiredAmplitude using eq.(10)
12: Measure the accuracy of the method by using the relative
error

The following section shows a detailed example to illus-
trate the steps of algorithm 1 and it can be applied for the
case of 3-qubits as well as showing the resulting unitary test
is satisfied for the resulting gates.

C. DETAILED EXAMPLE
In this example a quantum circuit is prepared with a quantum
register of 3 qubits and one auxiliary qubit |ak〉, all initialized
with state |0〉, as follows,

|ψ0〉 = |0〉⊗4, (25)

then the operators K1,K2 and K3 are applied on each qubit as
shown in fig. 2, to produce the state |ψ1〉 as follows

|ψ1〉 = K1 ⊗ K2 ⊗ K3 ⊗ I |ψ0〉. (26)

where t ∈ {1, 2, 3}. Finally, the state |ψ1〉 is produced by
applying operators Ck taking the first 3 qubits as control |xi〉
and |ak〉 is the target qubit for each operatorCk .The following
is the resulting state:

|ψ2〉 = Ck |ψ1〉

= Cont_K (x0; ak)Cont_K (x1; ak)

Cont_K (x2; aK )(K1 ⊗ K2 ⊗ K3 ⊗ I )|0〉⊗4

= c1c3c5|0000〉 + c1c3c6(c11 + c12)|0001〉 + . . .

+c2c4c6(c7c9c11 + c7c10c11 + c7c9c12 + c7c10c12
+c8c9c11 + c8c10c11 + c8c9c12 + c8c10c12)|0111〉.

(27)

The ci values, for i ∈ {1, 2, . . . , 12}, resulting from eq.(27)
are the values of the amplitudes representing the entries of the
gates as shown in fig. 2.
For example, assume a vector of amplitudes: a =

[−0.1500 + 0.5100i, 0.4400 + 0.1200i, 0.3680 + 0.1110i,
0.0900−0.3200i, 0.2920+0.0920i, 0.0760−0.2500i, 0.0610
− 0.2130i,−0.1830− 0.0510i] given as input, the system of

FIGURE 2. Quantum circuit with unknown r th roots for 3 qubits.

non-linear equations in eq. (28) is produced. The values of
the AcquiredGates are calculated by solving this system of
non-linear equations.

a1 = −0.1500+ 0.5100i = c1c3c5,

a2 = 0.4400+ 0.1200i = c1c3c6(c11 + c12),

a3 = 0.3680+ 0.1110i = c1c4c5(c9 + c10),

a4 = 0.0900− 0.3200i = c1c4c6
×(c9c11 + c9c12 + c10c11 + c10c12),

a5 = 0.2920+ 0.0920i = c2c3c5(c7 + c8),

a6 = 0.0760− 0.2500i = c2c3c6
×(c7c11 + c7c12 + c8c11 + c8c12),

a7 = 0.0610− 0.2130i = c2c4c5
×(c7c9 + c7c10 + c8c9 + c8c10),

a8 = −0.1830− 0.0510i = c2c4c6
×(c7(c9c11 + c10c11 + c9c12 + c10c12)

+c8(c9c11 + c10c11 + c9c12 + c10c12)), (28)

where ci is the complex number of the parameters of the
gate Kt . Applying this system on 3 qubits returns 6 gates.
To verify the correctness of the parameters of the gates,
the unitary test must be applied. eq. (29) is an example of
applying the unitary test on the K1 gate and its complex
conjugate transpose K ′1.

K1 =

[
0.7784+ 0.3818i 0.2192− 0.4468i
0.2192− 0.4468i 0.7784+ 0.3818i

]
K ′1 =

[
0.7784− 0.3818i 0.2192+ 0.4468i
0.2192+ 0.4468i 0.7784− 0.3818i

]
(29)

where c1 = 0.7784 + 0.3818i, c2 = 0.2192 − 0.4468i, the
parameters of the gate K1, are the results from solving the
system of eq. (28). Obviously, the value from K1K

†
1 = I ,

where I is the unitary gate. This implies that the unitary
test is satisfied. Now, when applying the resulting gates after
passing the unitary test on the circuit in fig. 2, the results are
8 basis states from |0000〉 to |0111〉with acquired amplitudes
values [−0.1503 + 0.5103i, 0.4404 + 0.1222i, 0.3698 +
0.1089i, 0.0885 − 0.3190i, 0.2918 + 0.0900i, 0.0733 −
0.2519i, 0.0652 − 0.2114i,−0.1825 − 0.0531i]. Finally,
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to measure the accuracy of the method, the eqs. (20) and (21)
are calculated using the prepared and acquired amplitudes
to produce the following prepared and acquired probabili-
ties [0.2826, 0.2080, 0.1477, 0.1105, 0.0937, 0.0683, 0.0491,
0.0361] and [0.2831, 0.2088, 0.1486, 0.1096, 0.0933,
0.0688, 0.0490, 0.0361], respectively. The relative error
calculated between these 2 vectors using eq. (22) was
7.5342× 10−4.

The following section discusses other test cases with dif-
ferent values of amplitudes.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
This section presents the results from applying some test
cases adopted for evaluating the proposed method and also
comparing it with related algorithms in literature [10], [13]
and [15]. First, we discuss the results for test cases used in
preparing superpositions for n = 3 qubits and one auxiliary
qubit, where all qubits are initialized with state |0〉. The
prepared amplitudes for 7 different test cases are used in
the experiments. After each experiment, the relative error
between the prepared amplitudes and the acquired amplitudes
are calculated. Table 1 summarizes the results for the 7 test
cases.

As shown in table 1, the different distribution states are
represented as prepared amplitudes. The first 2 cases were
tested against related algorithms [10] and [13] with given real
and complex amplitudes. The other test cases were suggested
to cover the large spectrum of different distributions. More
than 100 random test cases, in addition to the 7 adopted test
cases, were used to evaluate the accuracy of the proposed
method. In general, the range of the relative error for all test
caseswas between 6.9593×10−11 and 0.0987. Themaximum
relative error occurred when the prepared amplitudes were
represented with real numbers, however, when it was rep-
resented using complex numbers, the relative error was less
than 0.0001 in various test cases such as the Decreasing and
Increasing States. The minimum relative error occurred with
the case of Equal States prepared amplitudes. This implies
that a large spectrum of distributions can be prepared accu-
rately using the proposed method. The Equal State test case
has been adopted for different quantum algorithms, such as
Fourier transform [14]. It is represented using the following
equation

|ψequal〉 =
1
√
2n

2n−1∑
i

|i〉, (30)

where i is the basis state, and n is the number of qubits.
The resulting parameters of the gates after applying the algo-
rithm has produced acquired amplitudes that are approxi-
mately equal to the prepared complex amplitudes (relative
error = 6.9593 × 10−11), but the relative error = 0.0093
when prepares Equal State with real amplitudes.

The Prime State distribution is well known of being
highly entangled and helped in the encoding of many
theoretical functions such as the distribution of twin

primes [13]. It is represented as

|ψprime〉 =
1

√
π (2n)

∑
i∈prime<2n

|i〉, (31)

where π (2n) is the amplitude of the number of prime States
between [0, 2n]. This test case gives a 0.0098 relative error
when prepares the complex amplitudes and the relative
error = 0.0461 for prepared real amplitudes.

Two other special test cases have been introduced in order
to evaluate the proposed method, namely, the Decreasing
and Increasing distributions. Both test cases used in many
applications, such as in risk analysis [16]. The distribution of
the Decreasing test case is represented by

|ψdec〉 =

2n−1∑
i=0

1
√

2i+1
|i〉, (32)

whereas the Increasing test case is represented by

|ψinc〉 =

2n−1∑
i=0

1
√

22n−i
|i〉, (33)

The relative error for both test cases is less than 10−4 by
using prepared complex amplitudes. However, the relative
error is less than 10−2 for preparing real amplitudes.

Another two special distributions adopted as test cases in
this paper are the Even and Odd States distributions. These
two distributions have many applications in the domain of
numerical integration [17]. The Even test case is represented
by the equation

|ψeven〉 =
1

√
2n/2

∑
i∈{0,2,...,2n−2}

|i〉, (34)

and the Odd distribution test case is represented by

|ψodd〉 =
1

√
2n/2

∑
i∈{1,3,...,2n−1}

|i〉. (35)

The resulting relative error for these two test cases is less than
10−6 when the values of the prepared amplitudes are complex
values and less than 10−2 when the values of the prepared
amplitudes are real amplitudes.

All other test cases adopted for evaluating the method are
randomly generated based on eq.(6). The calculated average
relative error for these test cases was 6.9912 × 10−04. The
result of one of these test cases is presented in table 1. All the
Random test cases give the relative error 6.4361 × 10−5 by
using complex values of amplitudes and the relative error is
0.0987 for real values of amplitudes.

The space of probability distributions that can be prepared
using the proposed quantum circuit is provided by the follow-
ing equations.

p1 =
n∏
l=0

c2(n−l)−1c∗2(n−l)−1, (36)
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TABLE 1. The relative error in superposition preparation for 3-qubit circuits in different distributions.
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TABLE 1. (Continued.) The relative error in superposition preparation for 3-qubit circuits in different distributions.

p2 = (
n∏
l=0

c2n−3l+αc∗2n−3l+α)(c4n−1c
∗

4n−1 + c4nc
∗

4n), (37)

p3 = (
n∏
l=0

cn−l2+2c
∗

n−l2+2)(c3nc
∗

3n + c3n+1c
∗

3n+1), (38)

p4 = (
n∏
l=0

c2(n−l)−αc∗2(n−l)−α)(
3n+1∑
l=3n

4n∑
j=4n−1

clcjc∗l c
∗
j ), (39)

p5 = (
n−1∏
l=0

cn+l2−α−1c
∗

n+l2−α−1)(c2n+1c
∗

2n+1

+c2(n+1)c∗2(n+1)∗), (40)

p6 = (
n−1∏
l=0

cn+l2−1c
∗

n+l2−1)(
2(n+1)∑
l=2n+1

4n∑
j=4n−1

clcjc∗l c
∗
j ), (41)

p7 = (
n∏
l=0

c2n−l2−α−1c
∗

2n−l2−α−1)(
2(n+1)∑
l=2n+1

3n+1∑
j=3n

clcjc∗l c
∗
j )

(42)

p8 = (
n∏
l=0

c2(n−1)c∗2(n−1))(
2(n+1)∑
l=2n+1

3n+1∑
j=3n

4n∑
j=4n−1

clcjc∗l c
∗
j )

(43)

where pi are the values of the probabilities in the distribution
and c∗i are the conjugate transpose of the unknown parameters
of the gate Kt .

The plots in figure 3 illustrate the relation between the
acquired probabilities and the prepared probabilities in each
of the different test cases. The blue line in the plots represents
the prepared probabilities while the red line represents the
acquired probabilities for complex prepared amplitudes and
the green line for real amplitudes. In figures 3a, 3c, 3d, 3e
and 3f the blue line matches the red line with relative error
between the two line in range between 10−4 and 10−11 when
the values of the prepared amplitudes are complex. On the
other hand, a noticeable difference between the blue and the
green plots has been shown in figures 3c, and 3d in the case of
using prepared amplitudes with real values. However, when
the prepared amplitudes complex values, the matching is less
than 10−6 as shown in figures 3c and 3d.
In summary, the experimental results showed that the pro-

posed method is capable to accurately prepare both complete
and incomplete superpositions. Complete superposition are
shown in figures 3a, 3c, 3d and 3g, whereas, incomplete
superpositions where some states have amplitudes zero as
shown in figures 3b, 3e and 3f.

Fig. 4a illustrates the space of the possible probability
distribution for 3 qubits by applying the different values of
the r th root gates in a range from 1 to 50. The space of
probability distributions can be extended by applying the
NOT gate on different qubits after applying the proposed
variational circuit. In figures 4b, 4c, and 4d the NOT gate
is appended on the first,second, and third qubit, respectively.
In fig. 4e, the NOT gate is appended on the first and second
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FIGURE 3. The different results for prepared and acquired probabilities where the blue line represents the prepared probabilities, the red
line represents the acquired probabilities for complex prepared amplitudes, and the green line represents the acquired probabilities for
real prepared amplitudes.

VOLUME 10, 2022 18951



S. Anwer et al.: Preparation of Quantum Superposition Using Partial Negation

FIGURE 4. The space of probability distributions using the r th root over 3 qubits that can be prepared using the proposed variational circuit.

qubits only. In fig. 4f, the NOT gate is appended on the first
and third qubits only. In fig. 4g, the NOT gate is appended on
the second and third qubits only. Finally, in fig. 4h, the NOT
gate is appended on all qubits.

V. COMPARISON WITH RELATED WORK
The complexity of a quantum circuit is measured by: the
circuit depth (total number of used gates), number of auxiliary
qubits, and the number of single two qubits controlled gates
in the circuit (e.g., CNOT and Ck ). Many related work
suggested different schemes for the preparation of quantum

states [10], [13], [15]–[17], [20], [22]. All circuits proposed
in [19], [21], [22] have circuit depths of exponential complex-
ity in the number of qubits. However, the circuits presented
in [10], [13], [15], [20] have circuit depths of polynomial
complexity in the number of qubits. In this paper, we pro-
pose a method that uses circuits with circuit depths of linear
complexity.

Regarding the complexity based on the number of auxiliary
qubits, [15], [20] introduced the method of complexity O(n)
of auxiliary qubits, whereas the proposed method required
only one auxiliary qubit with a complexity of O(1).
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When comparing the complexity of this method based on
the number of two qubits controlled gates, the work in [19]
presented a quantum circuit with 2n+2 − 4n − 4 CNOT
gates where n is the number of qubits. The quantum circuit
presented in [21], required 2n+1 − 2n CNOT gates. In [22],
a quantum circuit with Universal Gate was introduced with
23
242

n CNOT gates. In [15] the superposition for 2-qubits was
generated using 3 CNOT gates and using 13 CNOT gates for
3-qubits gates. The proposed method requires only n Ck for
n-qubits circuits.

TABLE 2. Comparison between the complexity of the proposed method
and the other algorithms where n is number of qubits.

Table 2 summarizes the complexity of the proposed circuit
compared to the complexity of other circuits introduced in
literature. It is obvious the complexity of the proposed circuit
does not exceed O(n) circuit depth and O(1) auxiliary qubit,
whereas the circuit depth of the circuits proposed in the
related work was at least of complexity O(n2) and number
of auxiliary qubits was O(n). However, the number of non-
linear equations generated by the system is exponential in the
number of qubits, which is considered to be a preprocessing
complexity while the preparation of the superposition using
the proposed variational circuit will be linear afterwords. Any
alternative method can be used to define the parameters such
as evolutionary algorithms or machine learning algorithms.

VI. CONCLUSION
Data Encoding is usually the first step in any quantum
algorithm, where the successful preparation of the required
quantum superposition leads to the success of the quantum
algorithms in terms of the speed-up over classical algorithms
and/or the probability of success to get the correct results.
Preparation of a uniform superposition is a trivial task using
Walsh-Hadamard transform, where all the quantum states
appear in the superposition with equal amplitude and so
probability. The preparation of a non-uniform superposition
where the quantum states have different amplitudes, namely
an incomplete superposition where certain states should be
missing, i.e. with zero probability, is a challenging problem.
Many methods have been proposed, where each method is
proposed to be used to prepare a certain superposition.

In this paper, an n-qubits variational quantum circuit has
been proposed that uses n partial negation operators and n
controlled partial negation operators to prepare a quantum
superposition. The proposed method can be used to prepare a
quantum superposition over specific probability distributions

space with high accuracy in O(n) steps. It has been shown
that the proposed method can successfully prepare special
quantum superpositions proposed in literature. The proposed
method takes the acquired amplitudes as an input, calculates
the unknown parameters of the variational quantum circuit
by solving a system of nonlinear equations using Levenberg-
Marquardt algorithm. The proposed method can be extended
to prepare a quantum superposition from a subspace of prob-
ability distribution that can be covered over n-qubits. This
work can be extended by exploring the benefits of using more
complex partial negation operators and enhance the speed
and accuracy of calculating the unknown parameters of the
variational quantum circuit.
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