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ABSTRACT Our goal is to solve the complexity of laying down wiring for traditional monitoring systems
for mine water, while taking into account the poor timeliness of sampling and continuous monitoring, based
on the processing and reuse of mine water. In this article, we focus on the theory of multi-sensor networks
to estimate mine water quality, quantity monitoring equipment, and mine water Internet of Things (hereafter
denoted ‘‘IoT’’) communication systems. We designed a mine water IoT monitoring system for the wireless
monitoring of water quantity and quality, developed an experimental platform for the wireless monitoring of
mine water. This platform has the advantages of simple wiring and strong expandability. Finally, we tested
and analyzed the system operation effects. To solve the problem of partial data abnormalities caused by
problems of sensing equipment, we propose a data abnormality detection method based on an isolated
forest that combines the characteristics of the sufficient timeliness of mine water monitoring data, and
we offer experimental verification and analysis. The experimental results show that the system can realize
the real-time wireless monitoring of mine water quality and quantity information with stable and fast data
transmission capability. Furthermore, the system can quickly discover, analyze, and process abnormal data,
has sufficient timeliness while guaranteeing the validity of the data output from the monitoring platform.

INDEX TERMS Mine water, sensor networks, communication, wireless monitoring, isolated forests,
anomaly monitoring, Internet of Things.

I. INTRODUCTION
Mine water is underground gushing water produced during
the mineral mining process. Influenced by human activi-
ties such as underground coal mining, mine water is highly
susceptible to pollution, and if discharged directly without
treatment, it inevitably pollutes the environment and wastes
resources. Hence, in the production of coal, it is of strong
practical significance to ensure the coordination of produc-
tion and environmental conservation to monitor and treat
mine water for reuse to achieve environmental and economic
benefits [1]. Traditional monitoring technology is relatively
independent of each testing node, the water quality data
it obtains cannot be managed quickly and centrally (‘‘data
silos’’), and the testing data used by dispatching systems
are lagging. Due to the harsh production environment under-
ground, it is difficult to achieve rapid unified and centralized
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management of monitoring data as well as to provide timely
data support for the dispatching system [2]. In particular,
traditional mine water treatment systems use wired cable
communications, and as mining operations move deeper
underground, the communications and mine water treatment
equipment required involves expansion and upgrading. This
increases the cost of a full-scale mine water monitoring
system and limits its effectiveness. Furthermore, due to the
lack of fast and accurate real-time monitoring, the reuse of
mine water starts at a relatively late stage in the treatment
process. This stage is usually the last clear water tank with
stable water quality (much higher than the water quality
required at the point of use). This means that the treatment
and reuse processes are independent and hence mine water
reuse currently has a poor recycling rate. In fact, the water
quality requirements in coal production are not the strictest
in terms of meeting direct discharge standards but rather, they
are undergoing progressive shift. This trend is similar to that
of the mine water treatment process, where the quality of
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the mine water improves as the treatment process progresses
in a stepwise manner. This means that the mine water in
the treatment process can meet the needs of some water
usage scenarios [3]. If the nodal water quality and the water
demand at the point of use can be detected in time and the
corresponding water pathway can be set up, rapid deployment
can achieve the in situ reuse of mine water underground.
This will largely increase the reuse rate of mine water and
reduce energy consumption for water treatment. Therefore,
the establishment of comprehensive, real-time and effective
mine water quality and quantity monitoring technology is
the key to achieving efficient utilization and comprehensive
management of mine water.

Benefiting from the development of IoT technology, it is
possible to obtain data directly from devices for centralized
processing and distribution to other locations where data are
required [4]. IoT technology connects various sensing devices
and control devices with monitoring systems and mobile
terminals and thus providing a reasonable solution for data
sharing and unifiedmanagement of various equipment supply
chains. This can help achieve a variety of functions, such as
real-time online monitoring and remote control, as well as
intelligent optimization [5]. China is in the initial stage of
smart mine construction, in which IoT plays an important
role [6]. In addition, keeping communications open and fast
is important in online real-time monitoring. Existing wireless
mine communication technologiesmainly involve leaky com-
munication such as ZigBee, and Wi-Fi [7], which are applied
to mine monitoring [8], transportation scheduling [9], and
signal contact [10]. However, this leads to problems such as
complicated installation requirements and high-power con-
sumption [11]. Hence the application of these existing meth-
ods is not ideal in areas with relatively harsh environments
and low data transmission rate requirements due to fac-
tors such as communication distance, power consumption,
and the number of access points [12]. LoRa communication
technology is a long-range wireless communication technol-
ogy that uses a direct-sequence spread spectrum [13] and it
has started to flourish in recent years. It possesses strong
anti-interference and high reception sensitivity [14]. It is an
ideal technology for long-range, low-power, large-scale net-
work communication. It has been applied in scenarios requir-
ing stringent real time and accuracy [15] properties, such as
highly reliable sensor networks [16]. Based on the stable and
efficient sensor networks built using this technology, ensuring
that data acquired by the sensors truly reflect the actual
changes of detected objects and ensuring data validity are
key issues for an effective online monitoring system. In this
context, for anomaly detection, there are three basic methods,
namely, supervised, semisupervised, and unsupervised [17].
Supervised and semisupervised methods need to obtain a
large number of training sets with labels, which in turn
requires considerable labeling time and training time [18].
However, the anomaly data detection of sensor networks for
online monitoring systems has the characteristics of timely
data processing and result outputs [19]. Therefore, anomaly

monitoring of mine water quality data should not use learn-
ing algorithms that require a large amount of learning time.
Thus it should be accomplished by unsupervised learning
algorithms.

Turning to previous work in this context, [20] presents the
design a data acquisition systemwith aMySQLWeb database
based on a Web interface. [21] designed an IoT-based renew-
able energy monitoring system while [22] proposed a low-
cost real-time IoT without cables for monitoring photovoltaic
systems. [23] describes an online generator temperature mon-
itoring system built by a sensor network based on open-source
hardware and software. However, these studies were aimed
at surface communications and did not consider the require-
ments of underground coal production. Here it is worth men-
tioning that [6] points out that the integration of IoT with the
coal industry is key to to enhancing the intelligence of China’s
coal mines. In addition, [13] developed a management and
emergency rescue system for mine employees based on LoRa
technology and validated the system’s safety and depend-
ability. [24] analyzed the role and application scenarios of
LoRa for communication in the complex environment of
underground mines, where underground data communication
has sufficient timeliness and accuracy in addition to sup-
porting audio/video mega data streams. [25] researched the
framework and application of IoT in coal mines for precise
early warning of catastrophic power events. In [26], an IoT
monitoring system for mining truck tires was designed to
monitor tire temperature, pressure and provide early warning,
and positioning, with the management of opencast mining
truck tires as the target. [27] designed an IoT system based
on ZigBee transmission and tested web browsers to device
IP access. [28] established an underground coal mine
dynamic information platform based on the IoT for safety
monitoring in coal mines, and [29] studied the basic frame-
work of the IoT in the context of underground ambient air
quality monitoring systems. [30] studied the IoT system for
mine water flood monitoring with the objective of mine water
washout disaster early warning, acquiring water quality and
water pressure data of each aquifer. The current research on
IoT in coal mines is thus mainly focused on solving the safety
problems of personnel during production, monitoring with
one of the main goals being to produce early warning of var-
ious catastrophic power events in mines. There is relatively
less research on IoT technology for the efficient use of mine
water treatment that takes into account the high construction
cost of underground water treatment systems. Thus, it is a
relevant research goal to study the construction of mine water
IoT platforms by simulating the actual production process
to design an experimental platform for system testing and
optimization.

The key for improvement is obtaining water quality and
quantity data quickly and accurately from the monitored
tanks for comparison with water quality at the point of use
and to provide data support for the blending system. With
these objectives in mind, we carried out the work reported
below: The Section.II analyzes the requirements of the online
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monitoring system combined with the IoT, solved the prob-
lem of direct access to sensor equipment data utilization,
and completed the collaborative structure design of online
monitoring. The Section.III builds a simulation experimen-
tal platform of a mine water online monitoring system,and
completes experimental tests on the simulation experimental
platform. The Section.IV proposes an isolated forest anomaly
detection algorithm to identify anomalous data, which based
on mine water quality and quantity. The Section.V provides
an experimental validation of the proposed algorithm The
Section. VI is a summary of the research and future outlook

II. DESIGN OF AN IOT-BASED ONLINE MONITORING
SYSTEM FOR MINE WATER
In this paper, we take the Narim River mine, located in the
Inner Mongolia Autonomous Region, China, as the object
of study. We have based our study on the comprehensive
utilization system of mine water and the graded stratification
theory of water quality forminewater utilization [31]. Guided
by this work, we improved the water use pathway of mine
water and designed a mine water simulation and monitoring
platform based on the improved pathway. The treatment and
reuse process of mine water is shown in Fig.1. From the
figure, we can see that the original mine water treatment
consists of a full process treatment followed by a partial
reuse method. It has the drawbacks of being a simple process
and single reuse, and its reuse rate is only 36.5%. The mine
water treatment process is improved according to the water
balance of themine areawith the objective of efficiently using
water resources. The improved process adds a coagulation
and sedimentation device and a mechanical filtration device
underground so that the water from the clear water tank meets
the standard for in situ reuse. In the surface section, an inter-
mediate pond is added between the high-efficiency cyclone
and the high-density sedimentation tank, and the water from
the V-filter enters the high-level pond so that the effluent is
graded and utilized. This improvement can increase the reuse
rate of mine water to over 80%.

Due to the differences in the sensors [32] and the nonuni-
form standards of equipment suppliers [33], it is difficult
to form a standardized sharing of sensing information [34].
In this study, we first address the problem of centralizing
and standardizing the processing of data frommultiple sensor
devices, i.e., online data collection and unified management.
The devices communicate with the data center on the surface
via an underground communication network. In some indus-
trial IoT application scenarios, reliance on gateway coordi-
nation nodes to form sensor networks can enable sensing and
sensing of different devices [35]. Therefore, we propose an
online monitoring system for mine water based on an indus-
trial IoT system. The system comprises three parts: a percep-
tual layer, a communication network layer, and an application
layer [36]. The overall framework for the monitoring system
is shown in Fig.2.

The perceptual layer in is defined as a sensor network
built by networking multiple detection units. The function of

this is to network devices and interconnect people, devices,
and communication systems. In the communication system,
each device in the sensing layer has a unique node identifier
and an independent communication address after joining the
network. Furthermore, it can establish stable communication
with the adaptor node. Each detection unit is made up of
sensors to detect water quality and quantity information.

The communication network layer is composed of an adap-
tation layer and a communication network that allows for
remote communication between the equipment on the work
surface and the control center. Here, each node is a communi-
cation base station supports the detection unit’s communica-
tion protocol which establishes a stable wireless connection
with several sensors via TCP (transmission control protocol)
communication. It also forwards data upwards to the data ser-
vice center and downwards to the equipment for propagating
application layer operation instructions. Underground wire-
less communication base stations, communication cables,
signal repeaters, and network switches comprise the commu-
nication network.Wireless communication base stationsmust
adapt to the radio propagation environment in the special
underground space. Communication cables connect multiple
underground base stations to the data service center server
while signal repeaters are signal enhancement devices used to
avoid signal weakness in long-distance transmission. Finally,
network switches are suitable for connecting devices with
multiple protocol communication to the communication net-
work in a network. For example, using a network switch,
wireless base stations with two communication protocols,
Wi-Fi and LoRa, can be standardized in the communication
system, and sensor devices with different communication
protocols can be managed in a unified manner.

The data service center and the mine water application
make up the application layer. The mine water application
enables online monitoring of mine water and includes appli-
cations such as sensor equipment data monitoring and data
processing, while the data service center shares the sensing
layer’s basic data. The Mysql database is a widely used
relational database with low cost, high security, fast running
speed, open source programs and support for at least 20 cross-
platform developments. It stores various data on mine water
in different tables, provides fast access and enables flexibile
shared data operations for various applications. The data
service center cleans and distributes the data uploaded by
the sensory layer and sends it to relevant applications, such
as visual monitoring on large-screens, computation centers
for data processing, and remote servers for off-site opera-
tions. In addition, the acquisition commands sent by the mine
water application to the sensory layer equipment must be sent
through the data service center.

The wireless collection system consists of quantity and
quality sensors, multiplex signal collectors, and wireless
communication nodes to achieve on-site water quality and
quantity information collection. The IoT communication sys-
tem consists of communication base stations with indus-
trial routers and local communication servers to provide a
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FIGURE 1. Mine water treatment processes and efficient uses pathway diagram.

FIGURE 2. The framework for an online mine water monitoring system
based on IoT.

communication guarantee for information interaction. The
online monitoring terminal contains a monitoring platform
for the dispatch center, which can provide remote monitoring
and monitoring of other mobile devices and servers for data
cleaning. The server cleans, stores, backs up, and distributes

data for use by monitoring hosts, users, and other mobile
terminals.

A. DESIGN OF PERCEPTUAL LAYER: ACQUISITION SYSTEM
Data acquisition is the basis of the online mine water moni-
toring system. With the help of gateway coordination nodes,
wireless routers realize IoT sensing and interactive communi-
cation. This reduces the complexity of hardware design while
improving the scalability of the system [37].

Based on the relevant requirements of China for water
quality at each water point, we use the following quality
indicators to characterize water quality: (1) suspended solids
(hereafter called ‘‘SS’’), which detect solids suspended in
water, including inorganic and organic substances insoluble
in water, mud, sand, clay, and microorganisms. The amount
of SS in water is one of the indicators of the degree of
water pollution; (2) hydrogen ion concentration (hereafter
called ‘‘pH’’), which detects and characterizes the acidity and
alkalinity strength of mine water; (3) conductivity (hereafter
called ‘‘Cond’’), which characterizes the electrical Cond of
mine water; and (4) water oil (hereafter called ‘‘Oil’’), which
is lighter than water and floats on the water surface, is insolu-
ble inwater and reduces dissolved oxygen in thewater when it
enters the water body. It characterizes the amount of dissolved
oxygen in the mine water and the degree of deterioration.
In addition, the volume of water is characterized as the liquid
level (hereafter called the ‘‘Level’’), which detects the level
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FIGURE 3. Quantity and quality sensors.

FIGURE 4. Multichannel signal collector.

of water and characterizes the volume of water in the mine
water.

Therefore, the quantity and quality sensors selected in this
paper consist of pH, SS, Level, Oil, and Cond, as shown
in Fig.3.

The sensor output signals are current and voltage signals
after temperature compensation and linear calibration. The
multiplex signal collector is shown in Fig.4 and it collects the
sensor signals according to the communication commands
issued by the IoT.

VS = α
ic
Ie
∗ Ld (1)

α is the calibration error.
Vs indicates the actual value of the tested water quality

object.
Ic denotes the sensor output current.
Ie indicates the rated current range of the sensor; and
Ld denotes the water quality parameter corresponding to

the full range of the sensor.
After this, the collected data are integrated, compressed,

packaged, and sent to the target communication server. In the
acquisition work, the sensor is connected to and powered by
the collector, as shown in Fig.5.

FIGURE 5. Connection between the collector and the sensor.

B. DESIGN OF COMMUNICATION NETWORK LAYER:
WIRELESS COMMUNICATION MODULE
The communication base station and wireless nodes establish
a star network wireless collection system. We note that a star
network has strong fault resistance [38], as shown in Fig.6.
Wireless communication nodes of multiple signal collectors
and multiple sensors or multiple equipment relays form a
wired star network, and wireless communication nodes and
communication base stations form a wireless star network.
The monitoring platform by the dispatch center through the
communication base station sends collection instructions to
wireless communication nodes. Water quality information or
equipment status information is reported and collected by the
node, forming a stable and fast IoT sensing and transmission
network.

FIGURE 6. Connection between the collector and the sensor.

The communication protocol between the communica-
tion network devices uses the Modbus TCP protocol, which
is widely used in field automatic control systems and has
become the de facto communication standard for industrial
devices [39]. Taking the LoRa private communication pro-
tocol networking acquisition communication as an example,
the wireless acquisition process is shown in Fig.7. After the
system is powered on, the LoRa concentrator first initializes
the device communication base station (gateway concentra-
tor) and then polls the LoRa nodes under the LoRa star net-
work at regular intervals according to the number of terminal
nodes and information. The concentrator then receives the
synchronized data, and the nodes are passively polled; after
the set conditions are reached, the nodes report the data.

VOLUME 10, 2022 18747



L. Bo et al.: Research on Online Monitoring System for Efficient and Accurate Monitoring of Mine Water

FIGURE 7. Work process of LoRa wireless acquisition system.

C. DESIGN OF APPLICATION LAYER: ONLINE
MONITORING PLATFORM
Based on the mine water treatment process, an online
monitoring platform for mine water was built to visualize
quantitative and qualitative changes, scheduling information,
equipment status, and other information in the process of
mine water treatment.

The online monitoring platform takes the actual coal mine
water treatment process as the theoretical basis and the sci-
entifically selected treatment nodes of Fig.1 as monitoring
nodes to realize the visualization and monitoring of the water
treatment process. The online monitoring platform should
satisfy the following four design principles.

Dynamism: the monitoring system interface should be
dynamic, with a real-time dynamic simulation of water
quantity, water destination, pump switching status, and
real-time changes in water quality in the water treatment
process.

Diversity: the monitoring system should realize the
dynamic simulation display of multiple data, be able to moni-
tor multiple subsystems, and have functions to help producers
make decisions, such as fault alarms.

Interactivity: a monitoring system should support human-
computer interaction, with the ability to take over some or all
of the operating privileges.

Commonality: the monitoring system should be designed
to enable coordination under the premise of meeting the
above three functions. In addition, to give the mine water
monitoring information a more intuitive display, the system
interface was divided into a main interface and eight sec-
ondary interfaces. The main interface dynamically displays
the mine water treatment process, the real-time data changes
of important monitoring indicators (level, oil, Cond, SS, pH),
and information such as the status of the opening and closing
valves. The eight secondary interfaces consist of five moni-
toring tank interfaces and three data analysis interfaces. They
canmonitor each tank and display historical curves, historical
reports, and threshold alarms.

FIGURE 8. Work process of LoRa wireless acquisition system.

III. IMPLEMENTATION AND TESTING OF THE ONLINE
MONITORING SYSTEM FOR MINE WATER
A. HARDWARE DESIGN OF ONLINE MONITORING
SYSTEM
This section describes building an online monitoring system
with LoRa as the networking protocol. An underground clear
tank (DBT) and the surface intermediate tank (OAT) were
designed as monitoring nodes as also nine water points, and
water volume monitoring nodes. They are transmitted to
the analog data collector with LoRa node function through
RS485/232 communication. The IoT gateway is a star-shaped
network environment monitoring transmission system estab-
lished by the LoRa concentrator and nodes. The hardware
system is shown in Fig.9. It is divided into five parts. From
the perspective of spatial layout, it is locally divided into
three parts: (1) LoRa node: connected with on-site sensing
equipment and the IoT to realize the online detection of
water quality and quantity information; (2) IoT gateway:
the LoRa concentrator and node establish a star-shaped net-
work environment monitoring transmission system, which is
connected to the Internet through the IoT router; (3) Local
monitoring platform: includes a communication server and
local monitoring host for local data cleaning, storage, and
backup as well as system operation configuration monitoring.
It is then remotely divided into two parts: (4) Data servers and
databases: data storage and backup for big data operations
and providing data and channel support for remote services;
(5) Remotely monitoring the host: the remote monitoring
water treatment system can be logged into via mobile phones,
laptops, computers, and other devices.

It consists of a communication system, power supply sys-
tem, an exhaust system, etc. In the communication system, the
multichannel signal collector (HUADIAN AUTOMATION
AI-12) collects the analog signal output from the sensors and
connects to the LoRa node via RS485. The LoRa node (usr-
LG206-L-C) and the LoRa concentrator (USR-LG220-L)
form a star-shaped sensing network, and the LoRa concentra-
tor is wired to a WiFi router. The LoRa concentrator is wired
to a WiFi router, providing a channel for data interaction
between other networks and the sensing network. Fig.10
shows some of the communication devices of the online
monitoring platform, where two LoRa nodes are shown in the

18748 VOLUME 10, 2022



L. Bo et al.: Research on Online Monitoring System for Efficient and Accurate Monitoring of Mine Water

FIGURE 9. Hardware composition of the online monitoring system.

FIGURE 10. Online monitoring system hardware (behind the
experimental platform).

FIGURE 11. Physical diagram of a power adapter.

upper right corner and a multiplexed signal collector is shown
in the lower left corner.

In addition, the power supply system has three power
adapters with different output voltages. The 24 V power
adapter supplies power to the Multichannel Signal Collector.

FIGURE 12. Physical diagram of the distribution box.

The 12 V power adapter supplies power to the Lora nodes.
The 5V power adapter powers the status indicators. As for the
relay protection in the low-voltage distribution network and
power system, the various voltage levels are separated and
their operating status is monitored using smart meters. The
installation equipment for the power supply system is shown
in Fig.11 and Fig.12.

Specific information on the models, functions and com-
munication protocols of the abovementioned devices can be
found in Table1.

B. SOFTWARE DESIGN OF THE ONLINE MONITORING
SYSTEM
The program flowchart for functional realization of the IoT
communication system is shown in Fig.13. The dispatch
center server issues data collection instructions through the
established connection with the wireless acquisition system
and the IoT gateway. The acquisition system responds to
acquisition instructions to upload data. There are two types of
water quality and quantity data in addition to other data: mon-
itoring objects and system status information. The returned
data are stored in the local database after data cleaning. The
local database provides online monitoring data support for
the dispatch center. Local databases are simultaneously used
for cloud database backups, while cloud server computing
centers are used for big data calculations and provide online
monitoring data support for remote and mobile devices.

C. EXPERIMENTAL PLATFORM CONSTRUCTION AND
TESTING
According to the mine water reuse method in the actual
mining area, we built a mine water online monitoring exper-
iment platform, and the physical map is shown in Fig.14.
We then tested the mine water online monitoring system.
The reuse, high-level, intermediate, pre-sedimentation, and
clean tanks were selected in the mine water treatment process
as the online monitoring objects; information on Cond, SS,
pH, and the level were monitored; and the monitoring time
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FIGURE 13. Program flowchart.

was 1 hour. Pure water was added before the experiment,
high-concentration mine water was added after the experi-
ment, and changes in the interface of the mine water online
monitoring platform were observed.

Table1 contains the equipment list for the online mine
water monitoring experimental platform, with information
about the equipment discussed in this study.

The test results in Table2 show that the online monitoring
system could reflect changes in the quantity and quality of
mine water in real time. The real-time data display section in
Fig.15 shows the real-time data of multiplexed and interme-
diate tanks.

The local dispatch center monitoring platform provides
a real-time display of mine water quantity and quality data
information. The communication server cleans, stores, and
backs up local data. It also carries out unified data man-
agement; and transmits data to the remote cloud server
for analysis, computing work, and remote auxiliary work.
Table2 represents the server’s unified and standardized stor-
age of various data after cleaning. As shown in Fig.16,
the server data are real-time monitoring data, visualized in
the monitoring platform in Fig.15. (Mysql database, viewed

FIGURE 14. Physical map of the mine water online monitoring
experimental platform.

FIGURE 15. Mine water monitoring platform.

by Navicat15). The timestamp (15:11:18) in the top right
corner of the monitoring screen indicates that the data cur-
rently displayed are the latest data available from the data
center (marked section in Table2). Table2 shows a steady
update frequency of 1 s/time for the data center data (some of
the 2 s intervals are where there are fluctuations in detection;
anomalies in fluctuations are examined later). These results
show that the monitoring system continuously monitored the
mine water with sufficient timeliness.

Fig.16 shows the real-time change graph of the detec-
tion platform at a specific time. It is representative of
abnormal fluctuation scenarios taken from the monitoring
interface/history curve interface. In particular, it shows the
variation in the intermediate tank level using two sets of
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TABLE 1. Equipment list for the online mine water monitoring experimental platform.

FIGURE 16. Background monitoring data for a certain period.

data collected by the level sensor. The two obtained variation
curves are represented by Level and Level 1. At time t1, the
intermediate tank was supplied with water from outside, the
level, and the values of Level and Level 1 increased, but
Level 1 had a short and obvious decrease. At time t2, the

intermediate tank was supplied with water from outside and
the values of Level and Level 1 decreased. While Level had
a slowly decreasing trend, Level 1 had a sharp decreasing
trend. This is due to the difference in sensor accuracy that
led to the difference in the speed of change. In the actual
measurement process, the data directly detected by the sensor
could abruptly change at unspecified times, and these abrupt
changes do not reflect objective changes in the monitored
object but rather due to the detection principle and accuracy
of the sensing. To obtain accurate changes in various quanti-
tative and qualitative data, it is necessary to eliminate invalid
data.

IV. ABNORMAL DETECTION OF MINE WATER QUANTITY
AND QUALITY DATA
A. ABNORMAL DATA FROM THE MINE WATER
MONITORING SYSTEM
Due to the high accuracy and timeliness of sensor detection,
changes in the external environment can affect the accuracy
of the detection data. For example, the level sensor detects
the liquid level by detecting hydraulic pressure. A pump
turning on induces sudden hydraulic pressure changes which
then causes sudden changes in the system monitoring signal.
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TABLE 2. Accumulated server data.

Individual values in a sample that significantly deviate from
the vast majority of observations in the sample to which
they belong form anomalous ‘‘noise points’’ in the data,
also known as outliers. This noise does not represent actual
changes in the monitored object and does not contribute to
the monitoring task. In fact, they are useless data and must
be disposed off. In general, outliers in the data should be
dealt with before analysis in order to prevent interference. For
example, outliers can distort the correlation between X and Y
and regression relationships and lead to wrong conclusions.
Other research methods are also subject to interference from
outliers, which can distort conclusions.

B. PRINCIPLES OF ISOLATED FOREST-BASED ANOMALY
DETECTION FOR MINE WATER QUALITY DATA
1) ISOLATED FOREST CONSTRUCTION BASED ON MINE
WATER QUALITY DATA
An isolated forest is an anomaly detection algorithm based
on random binary trees for the fast detection of outliers. It is
applied to feature-continuous mine water time series data and
has linear time complexity and high accuracy. The core task
of the algorithm is to select samples for random partitioning,
construct amultiset binary tree structure iTree until all sample
points are isolated, andmeasure the anomaly index by the dis-
tance from each sample point to the root node [40]. iForest’s
implementation consists of the construction of an n element
isolated forest and the anomaly detection of the data.

Let there be a large-scale mine water quality datasetDwith
randomly sampled ψ training data x as a subsampled set D′

and a binary tree describing the mine water quality data, with
a node set N :

Nijd ⊆ D′, d = l or r (2)

where i denotes the number of levels of the node in the binary
tree, j denotes the number of node bits from left to right in the
level above the node, d denotes the direction of nodes at the

same level, l denotes the left node, and r denotes the right
node. In particular, N0 denotes the root node, which is equal
to the data set as D′ on data inclusion.
For dataset D′ij contained in layer i, sample attribute q

and its value domain are randomly chosen to take the spatial
value p to divide the corresponding node set:

h(D) =

{
D′(i+1)j∗ , q < p

D′(i+1)(j∗+1)r , q ≥ p
(3)

where j∗ denotes the left to right node position at layer i+ 1.
The basis for determining a complete binary tree is as follows:
(1) the mine water quality data tree reaches a set maximal
value of log2(9); and (2) nodes contain only one data point
or the same data points. If the above conditions are met and
splitting is stopped, an iTree is constructed. If n iTrees are
constructed according to the above method, an isolated forest
containing n iTrees based on mine water quality data can be
constructed.

2) ABNORMAL DATA DETECTION
The iTree depth established above is normalized and the
training data x of each iTree are iteratively retrieved. Then the
number of layers x that falls in each iTree, i.e., the distance
function h(x) from x to the root node (also as a depth function)
is calculated. Finally, the average of all distance functions is
set to E(h(x)).
Let the average value of the path length for a given number

of training samples ψbec(ψ) be:

c(ψ) =


2 H ((ψ − 1)− 2(ψ − 1)/n), ψ > 2
1, ψ = 2
0, ψ < 2

(4)

H (k) = ln(k)+ ξ (5)

where H (k) = ln(k) + ξ and ξ is Euler’s constant, taken as
ξ = 0.5772156649.
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FIGURE 17. Flowchart of an anomaly detection algorithm for mine water quantity and quality information based on
isolated forest.

The anomaly score s is calculated as follows:

s(x, ψ) = 2−
E(h(x))
c(ψ) (6)

The larger the anomaly score s is, the more likely it is that
the data are anomalous and the smaller s is, the more likely
it is that the data are normal. From the formulas: E(h(x))→
0, s → 1: the more s tends to 1, the higher the probability
of anomaly; E(h(x)) → ψ − 1, s → 0: the more s tends
to 0, the higher the probability of the data being normal;
and E(h(x)) → c(ψ), s → 0.5: no abnormal data when the
majority is 0.5.

C. ISOLATED FOREST-BASED ANOMALY DETECTION FOR
MINE WATER QUALITY DATA
The process of detecting anomalies in mine water quality
data based on the isolated forest is shown in Fig.17. The
data for the detection come from the monitoring data of the
experimental platform designed in this paper. The first step
is to construct an isolated forest according to the method
in Section.IV-B2. Then the anomaly score for each point is
separately calculated, and the outliers are filtered out. In prac-
tice, a score of 0 is used as the cut-off point, and any score
below 0 is judged as abnormal, while the rest is judged as
normal.

V. EXPERIMENTAL DESIGN AND VALIDATION
The experimental object is the experimental platform of ten
groups of sensor detection data totaling 3080 data points col-
lected on 4 July 2021 at 21 : 30− 22 : 33. The experimental
computing environment was Windows10, 2.60 GHz/
16.0 GB(CPU/RAM ), and the computing tool was Pycharm
(an environment for developers with an inclination for open
source software).

FIGURE 18. Cond sensor anomaly monitoring results.

FIGURE 19. Abnormal pH sensor monitoring results.

FIGURE 20. Oil sensor anomaly monitoring results.

Five sensors were set up for collecting the above detection
data; each sensor detected two sets of data, and the continuous
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FIGURE 21. SS sensor anomaly monitoring results.

FIGURE 22. Level sensor anomaly monitoring results.

collection time was 1 hour to detect the abnormal value of
each sensor. The detection results of the experimental plat-
form are shown in figures below:Fig.18 shows the abnormal
monitoring results of the Cond sensor, Fig.19 shows the
abnormal monitoring results of the pH sensor, Fig.20 shows
the abnormal monitoring results of the oil sensor, Fig.21
shows the abnormal monitoring results of the suspended
solids sensor, and Fig.22 shows the abnormal monitoring
results of the level sensor.

The iForest prediction part of each graph represents the
content of the isolated forest anomaly detection algorithm,
and the yellow line indicates the assigned score for each data
point according to the isolated forest, where a positive number
is the normal fluctuation range. The larger the score is, the
higher the normal probability. A negative number is an abnor-
mal value; the smaller the score is, the larger the abnormal
fluctuation. The blue line indicates the abnormal detection
results based on the assigned scores, where 1 indicates the
final identification as normal data, and −1 indicates the final
identification as abnormal data. The scattered part indicates
the abnormal points detected by the algorithm. The Realdatas
part represents the actual sensor detection data, and ‘‘x’’
marks the actual time when the abnormal points occurred.
These marked anomalies and the anomalies detected by the
algorithm fit well, which verified the effectiveness of the
isolated forest-based anomaly detection algorithm for mine
water quality data.

Fig.18 shows that the number of abnormal points of Cond
sensor 0 (without number) was 34, and the percentage of
abnormality was 11.04%; the number of abnormal points of
Cond sensor No. 1 (with number) was 68, and the percentage
of abnormality was 19.48%. Fig.19 shows that the number
of abnormal pH sensor points for No. 0 (without number)

TABLE 3. Sensor data anomaly statistics and effect evaluation.

FIGURE 23. Number of anomalies.

was 29, and the percentage of abnormality was 9.42%; the
number of abnormal pH sensor points for No. 1 (with number)
was 10, and the percentage of abnormality was 3.25%. Fig.20
shows that there were four oil sensor anomalies in No. 0
(without number), with an anomaly ratio of 1.30%; there were
153 oil sensor anomalies in No. 1 (with number), with an
anomaly ratio of 49.68%. Fig.21 shows that the number of
SS sensor anomalies in No. 0 (without number) was 29, and
the percentage of anomalies was 9.42%; the number of SS
sensor anomalies in No. 1 (with number) was 10, and the
percentage of anomalies was 3.25%. Fig.22 shows that there
were 29 level sensor anomalies in No. 0 (without number),
with an abnormality ratio of 9.42%, and 10 level sensor
anomalies in No. 1 (with number), with an abnormality ratio
of 3.25%.

Abnormal sensor detection data are further analyzed as
follows. Table3 shows the number of abnormal points and the
percentage of abnormalities for the five groups of data. Fig.23
and Fig.24 show that the number of abnormalities discovered
in mine water quality data using an isolated forest-based
anomaly detection method was not much different from
actual tagging. With a detection accuracy of up to 100% and
an average accuracy of 86.03% for the ten-sensor data, the
accuracy of the online mine water monitoring data is ensured.
Most abnormal fluctuations of the sensors were within the
lower range of 5%, which is particularly stable; a small
number were between 5% and 20%, which is stable; and a
small number were close to 50%, which indicates that the
sensor is less stable or has more stringent requirements for
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FIGURE 24. Effectiveness of isolated forest anomaly detection.

the detection object. The detection results can be used as a ref-
erence factor to test the stability of the sensor, and combined
with the time andworking station that generated the abnormal
data, they can provide an important reference for the practical
application of mine water quality information monitoring and
the optimization of the experimental platform.

VI. CONCLUSION
This paper combines the industrial IoT framework with the
efficient and comprehensive utilization pathway of mine
water. It deeply integrates the IoT theory with the mine
water treatment scenario, and solves the technical problems
associated with the scenario such as the difficulty of data
centralization and sharing faced by the collaborative and
efficient utilization of mine water up-hole-surface.

In this study, we first established a fast and effective online
monitoring system for mine water based on isolated forests
and the IoT. Starting from the actual process requirements of
mine water, we studied the sensing and detection network,
communication system and abnormal data detection of the
mine water online monitoring platform. We then used the
LoRa network as an example and combined it with process
design to produce a simulation experimental platform for the
online monitoring system of mine water IoT. Finally, we used
unsupervised learning methods to improve the effective-
ness of the collected data by isolated forest-based anomaly
detection of mine water quality data. Online monitoring and
anomaly detection experiments were carried out for five types
of water quality in the actual mine water treatment system.
The experimental results show that the frequency of updating
various types of data is approximately 1 s/time. The detection
rate of the pH value can reach 100%, and the average detec-
tion rate, 86.03%. The system can detectmost of the abnormal
data of mine water and meet the requirements of mine water
treatment and utilization scenarios for detection timeliness.
In addition, the experimental platform is able to collect, trans-
mit and store real-time quantity and quality information of
mine water. It can quickly and accurately reflect the dynamic
changes of mine water properties. Furthermore, it meets the
requirements of mine water treatment and utilization with

high speed and robustness, low time delay, high accuracy, low
power consumption and high permeability.

The experimental platform, through data cleaning and
distribution, can provide data support for inductive training
of dispatching mine water big data and provide an effec-
tive data driven construction of digital mines and smart
mines.

In addition, we have also conducted production scenario
based simulation experiments to enhance our feasibility study
of efficient mine water utilization pathways and technologies.
Subsequent research will be carried out on water point preci-
sion control systems and to eventually realize the integration
of mine water treatment and monitoring and even expand into
intelligent systems.
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