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ABSTRACT Block frames called directional analytic discrete cosine frames (DADCEFs) are proposed for
sparse image representation. In contrast to conventional overlapped frames, the proposed DADCFs require
a reduced amount of 1) computational complexity, 2) memory usage, and 3) global memory access. These
characteristics are strongly required for current high-resolution image processing. Specifically, we propose
two DADCEFs based on discrete cosine transform (DCT) and discrete sine transform (DST). The first DADCF
is constructed from parallel separable transforms of DCT and DST, where the DST is permuted by row. The
second DADCF is also designed based on DCT and DST, while the DST is customized to have no DC leakage
property which is a desirable property for image processing. Both DADCFs have rich directional selectivity
with slightly different characteristics each other and they can be implemented as non-overlapping block-
based transforms, especially they form Parseval block frames with low transform redundancy. We perform
experiments to evaluate our DADCFs and compare them with conventional directional block transforms in
image recovery.

INDEX TERMS Block frame, discrete cosine transform, directional selectivity, sparse image representation.

I. INTRODUCTION

Sparse representation by frames has been an essential tech-
nique for image analysis and processing [1], [2]. Various
kinds of signal recovery tasks, e.g., denoising, deblurring, and
restoration from compressive samples, can also be realized by
incorporating sparse image representation in convex and non-
convex optimization algorithms [3], [4].

Significant efforts have been made to construct effi-
cient frames for sparse image representation. Of particu-
lar focus has been directional frames, such as curvelet [5],
contourlet [6], directional filter banks (FBs) [7]-[11], and
dual-tree complex wavelet transforms (DTCWTs) [12]-[16]
for 2D signals. Directional atoms' are crucial for sparse
image representation since images usually contain edges
and textures lying along oblique directions. Extended ver-
sions of these frames for higher-dimensional signals, such
as videos, have also been proposed [18]—[21]. In addition to
directional frames, more general systems such as dictionary
[22], [23] and graph WTs/FBs [24] that capture highly
complex structures and non-local similarity have been
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proposed. Those transforms can provide sparse image rep-
resentation for various fine components.

Although these existing frames and dictionaries have been
successfully applied to image processing, problems and lim-
itations have been recognized in practical situations. First,
computational complexity for calculating sparse coefficients
is typically high due to the complicated algorithms involved,
such as 2D filtering [6], sparse coding with various iterative
schemes [22], [23], and eigenvalue decomposition of a large-
scale graph Laplacian [24]. Second, they typically require
high transform redundancy which leads to a large amount of
memory usage to store the coefficients. Third, since the sup-
ports of their atoms in those frames are overlapped with each
other, they require global memory access, which disrupts
parallel computation. Although recent digital devices have
been increasing their computational power, the resolution
of captured images has also been increasing and sometimes
multiple images will also be taken at once for producing
visually pleasant images like those having low-noise and/or
high-dynamic range. Hence, the computational cost for image
processing has to be kept as small as possible for avoiding
installing extra hard/software modules in such devices.

Block-based bases and frames, whose supports are iden-
tical or disjoint, are thus highly desired due to their
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computational efficiency. They are still a key for many image
processing applications like video coding. In addition, patch-
based techniques based on block-based transforms, such as
BM3D and redundant (type-II) discrete cosine transform
(DCT) [25]-[27], show their effectiveness in image recovery.
Nevertheless, directional block frames have received less
attention compared with overlapped frames and, unfortu-
nately, they have been believed that they cannot provide rich
directional selectivity.2 However, we can realize such block-
based transforms by carefully choosing their building blocks.

In this paper, we focus on directional block frames
and propose directional analytic discrete cosine frames
(DADCFs) based on DCT [28] and (type-II) discrete sine
transform (DST) [29]. They have the following advantages
against alternative directional block frames:

« Directional selectivity of the DADCFs is much richer

than that of existing directional block frames.

« DADCEFs can be designed by appending the DST (or a
DST-like transform) and simple extra operations to the
DCT, and thus are compatible with the DCT.

We introduce two types of DADCE, both forming Parseval
frames. The first DADCF contains the DCT and a row-
wise permuted version of the DST, and the second DADCF
contains the DCT and a DST without DC leakage. The sec-
ond one is called regularity-constrained DADCF (RDADCEF).
In order to realize RDADCEF, we propose the DST without
DC leakage, regularity-constrained DST (RDST), for the
first time. The DADCF and the RDADCF have different
advantages. The DADCF provides richer directional selec-
tivity while the DC energy will be distributed over several
subbands. As it will be described later, the DC leakage can be
avoided by integrating the DADCF with Laplacian pyramid
at the expense of redundancy. In contrast, the RDADCF can
structurally avoid the DC leakage problem by incorporating
the proposed RDST as its building block instead of the row-
wise permuted DST. We numerically compare two DADCFs
with some existing approaches in compressive sensing
reconstruction.

The rest of this paper is organized as follows. Section II
summarizes related works. Section III reviews the conven-
tional directional block bases and the analyticity for images.
Section IV explains the definition and a customization for
preventing DC leakage of the DADCEF. Section V introduces
the RDADCE. Section VI evaluates the proposed DADCFs
in compressive sensing reconstruction. Section VII concludes
with a brief summary.

A. NOTATIONS

Bold-faced lower-case letters and upper-case letters are vec-
tors and matrices, respectively. The subscripts # and v are
used to indicate variables corresponding to horizontal and
vertical directions, respectively. The other mathematical nota-
tions are summarized in Table 1.

2In this paper, “directional selectivity”’ is measured by the number of
distinguishable directional subbands for an M-channel 2D transform.
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Il. RELATED WORKS

Directional block bases and frames can be classified into two
categories. One is the fixed class, i.e., transforms equipped
with directionally oriented bases. This class of transforms
includes discrete Fourier transform (DFT) [30], discrete
Hartley transform (DHT) [31], and real-valued conjugate-
symmetric Hadamard transform [32]. The other is the adap-
tive class, i.e., the application of a non-directional block
transform (e.g., the DCT) along suitable oblique directions
provided by preprocessing (e.g., edge analysis) for each
block [33], [34]. Applications of the latter class are relatively
limited because transform directions have to be determined
from an input signal in advance. For example, in signal recov-
ery, degraded observations make it difficult to find suitable
directions. Our directional block frames correspond to the
fixed class.

The main problem with DFT and its variants is that they
contain duplicated atoms along the same direction in their
basis and hence cannot provide rich directional selectivity
(i.e., the number of directional orientations in a basis or a
frame). This degrades the efficiency of signal analysis and
processing. In order to achieve richer directional selectivity,
in this paper, we extend the DCT to the DADCF. Defi-
nitely, the DCT is one of the most effective block transforms
for image processing tasks and is already integrated into
many digital devices. For example, video coding standards,
e.g. HEVC [35] and VVC [36], employ the various sizes
of the (integer) DCT. However, since it does not contain
obliquely oriented atoms in its basis, it cannot achieve rich
directional selectivity.

In this paper, we reveal that by appending some extra
modules, i.e., DST and scaling/addition (and subtrac-
tion)/permutation (SAP) operations, to the DCT, the result-
ing transform provides directionally oriented atoms and thus
leads to rich directional selectivity. Furthermore, since the
DST can be designed by the (row-wise) flipped and sign-
altered version of the DCT, the implementation cost for the
proposed transform can be kept low, i.e., the total procedure
can be fully implemented by using the DCT and a few SAP
operations.

A preliminary version of this work was presented in [37],
which provides a basic structure of the DADCEF. In this
paper, we newly introduce theory and design algorithm of the
RDADCEF, and comprehensive experiments.

lll. PRELIMINARIES

A. CONVENTIONAL BLOCK BASES

The DCT [28] is one of the most popular time-frequency
transforms. Its transform matrix F©© e RM*M (pf = 27,
m > 1)3 is defined as

[FOY., = ak\/% cos(6k.n) (1

3For simplicity, we restrict the sizes of all the block transforms to M = 2"
throughout this paper, but it is easily extended to the general M.
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TABLE 1. Notations.

Notation Terminology
R Real numbers
J V-1
Qn, QN N, {0,.. .., N}. {Ny,...,Na}
R N-dimensional real-valued vector space
RNvXNn N, x Ny, real-valued matrices
IO Identity matrix, zero matrix
AN N x N square matrix
AT Transpose of A
zn and [X], n-th element of a vector x
Xom,n and [X]m.n (m, n)-th element of a matrix X

X(m.n) ¢ RMxM

(m,n)-th M x M subblock of X € RMEvxMLy,

vec(X) € RNv Nk

Vectorization of X € RVv*Nn
TNy ntm = Xm,n

Block-wise vectorization of X € RMLv XMLy,

bvec(X) [vec(X©@©NT . vee(X(Ev=1.Ln=1)T]T
® Kronecker product
N(A) Null space of a matrix: A
di e _
dldgl?i(g]()): o :aAI\(/N 1_)1)) Diagonal/block-diagonal matrices.
H(z) z-transform: } 0 h(n)z™"

H(w), H(e’), F[h]

Discrete-time Fourier transform: > h(n)e 7“"

He(z) k=0, .., M—1)

M -channel subband filters

H(w)

ICEERCED)

Hp, iy (W)
Ixllp x € RN, p € [1,00))

Hy, (W?f>Hkh, (wnr)

N-1 P
tnom [xlp = (SN [eal?) P

£1,2-mixed norm,

K-1 N-—1 p
Ixlls2 = SASy (EN5 lenksnl®)

lIxll1,2 x € REN)

[N

where k and n are subband and time indices (k, n € Qp7_1),
On = A%k(n+%), o = Lfork = 0and oy = 1
for otherwise. For x = vec(X) (X € RM*M) the 2D DCT
is given by F© @ F© ¢ RM**M? Gince the DCT is the
approximation of the Karhunen-Logve transform for a first-
order Markov process with a correlation coefficient p when
p — 1, the 2D DCT coefficients of natural images tend to
be sparse (i.e., its £; norm ||(F©© @ F©)x||; is small). Thus,
the DCT is widely applied to many applications, especially
for source coding. However, it is a separable transform and
hence it lacks directional selectivity. Formally, its 2D atom
Bkvkn) ¢ RM*M iy the DCT basis forms

2
B;ﬁv}lﬁh) = otg, Ok, 1\_4 cos (kanv) coS (ekh,nh) , 2)

where k; and ny (d € {h,v}) denote subband and spatial
indices, respectively (kg,ng € Qp—1). Fig. 1(a) shows an
example of the 2D DCT atoms.* Clearly, they “mix” two
diagonal components along 45° and —45° which reduce
directional selectivity.

The 2D DFT can be regarded as a block transform with
directional selectivity because it is a complex-valued trans-
form. Its 2D atoms B%»%») ¢ RM*M are represented as

1 .
B = 3¢ o), )

where ¢y , = 2ﬁ”kn. As shown in Fig. 1(b), the DFT bases can
decompose diagonal components into different subbands.
There are some real-valued variants of the DFT
[31], [32] that provide directionally oriented atoms. For
example, the DHT [31] can form a directionally oriented

4In Figs. 1, 4, and 8, each atom is enlarged for visualization.
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(a) DCT (b) DFT (real part)
FIGURE 1. Atoms Bf,'f,‘(;,’;") in basis (M = 4).
basis by modifying some of the original DFT atoms Bﬁl’i‘,’ ;,k,fl) =

37 €88(Pk, 1, )C2S( Pl )5 (CAS(Pk ) = COS(@k ) + SIN(Pk 1))

ky,kp,£1
to Bglvt’;lhhv ) as

ny,np ny,Np ny,Np

plknxn) _ 1 (B(kv,km n B(M—kv,M—km)
2

= 7 s (4)
SIH((pkv,nv + (pkh,nh),
where we assume M > 4 and k,,, k, # 0, M /2.
One problem shared by these conventional directional
block transforms is that they contain multiple atoms along
the same direction in their basis. For the M x M DFT and

2
DHT, the number of distinguishable subbands is 2 (MT_z)

compared to the number of atoms M?2. They cannot provide
rich directional selectivity, as shown in Fig. 1(b).

i { cos(@r,,n, — Pkyny)

B. ANALYTICITY FOR DIRECTIONAL SELECTIVITY

As explained in Section III-A, the 2D DCT cannot provide
a directional image representation. We explain this phe-
nomenon in the 2D frequency domain. Let Hy(w) be a fre-
quency spectrum of the k-th row of the DCT, i.e., Hy(w) =
FI[Fclk..]. Since Hi(w) is the frequency response of a real-
valued filter, its spectrum symmetrically distributes in both
positive and negative w (Fig. 2(a)). Thus, the frequency spec-
trum of the 2D separable DCT Hj, i, (w) always has nonzero
frequency responses in four quadrants, as in Fig. 2(c), and it
mixes £45° frequency spectra for example.

In contrast, any spectrum of the DFT Ui(w) =
\/LM]: [e7/#:] (complex-valued filter) has a frequency
response in only positive (or negative) w, as in Fig. 2(b). This
property is referred to as analyticity [12], i.e., |Ux(w)| = 0
for o < 0 (or ® > 0). Thus, frequency spectra of the
2D separable DFT Uy, i, (@) are localized in one quadrant
(Fig. 2(d)), which indicates the directional subband.

Conventional separable directional WTs/FBs utilize ana-
lyticity. For example, DTCWTs consist of two M -channel fil-
ter banks {H}, (“))}2/[;01 and {Gy, (a))}yz_ol, where those complex
combination satisfies analyticity as follows:

1
Hi(w) = 2 (Ur(®) + Ur(w))

1 -
Gr(w) = 2 (Ur(@) — U(w)),
Ur(w) = Hi(w) +jGir(w), |Ur(@)]| =0 (@ <0) (5)
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[ Hi(w)] |Uk (w)]
A aw
- of L = ol png
(a) Real-valued filter (b) Complex-valued filter
va (Tr,.Tr) va (71—..7r) TN’U (777.77)
| | | |
Wh Wh Wh
(0,0) (0,0) (0,0
| | |
(:’”a —) ! (:777 —m) ‘ (—.‘n'7 —) ‘

(©) Hiy iy, (W) (d) Uy, &y, (@)

FIGURE 2. Example of frequency spectra (analytic and non-analytic
filters).

©) Uk, ,ky, + Uky e,

First FB Ctiv (m, )

{Hg(w)}

Separable 2D :
transform

Second FB

{Gr(w)}
Separable 2D | :
transform

FIGURE 3. Configurations for 2D DTCWTs. For M = 4, 32 directional
subbands can be distinguished.

Here, we assume that the frequency spectrum Ug(w) dis-
tributes in the positive frequency domain (Fig. 2(b)). Then,
by using the 2D frequency spectra of the complex-valued
filters U, i, (@) = Uk (0,)Uy,(wr) and Ukv,H(“’) =
Uy, (w,) Uy, (wp), the 2D directional frequency spectrum of the
real-valued filter can be designed as follows:

1
> (U, (@) + Up, 1, (@)

= Hy,(wy)Hy,(wp) — G, (0y) Gy, (wp),

1 -
5 (U @) + T (@)

= Hy, (wy)Hy, (wp) + Gy, (0,) Gy, (wp). (6)

Considering (6), a directional frequency decomposition can
be realized by two 2D separable FBs followed by addi-
tion/subtraction, as in Fig. 3. M -channel DTCWTs can dis-
tinguish 2M? directional subbands.

IV. DIRECTIONAL ANALYTIC DISCRETE COSINE FRAMES
This section introduces the DADCF. The definition of the
DADCEF is given in Section IV-A. Directional selectivity
of the DADCEF is then discussed by analyzing its atoms
in Section IV-B. As it will be shown in Section IV-D, the
DADOCEF suffers from the DC leakage problem. One solution
is given by constructing the DADCF pyramid (the DADCF
with Laplacian pyramid) in Section IV-D.
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A. DEFINITION OF DIRECTIONAL ANALYTIC DISCRETE
COSINE FRAME
This section introduces DADCEFs for 2D signals by extending
the conventional DCT.

Definition 1: The analysis operator of the DADCFFP) ¢

2 2, .
R2M“XM” s defined as

FO g F©O
D) . _ pOTwDpD
.= PV WP |:F(S)®F(S) )

O _ gige (-1 1 Har-1yp —I<M—1>2])

W diae (ﬁIZMl’ 2 [I(sz torie )7
where F© is defined in (1) and PV ¢ RM* <M s g permu-
tation matrix that places the 2M — 1 DCT and 2M — 1 DST
coefficients associated with the subband indices k, = 0 or
ky = O to the first part, and the other 2(M — 1)? coefficients
associated with the subband indices k, # 0 and k, # 0 to the
last (see Fig. 4(a)). FS e RM*M s defined as

,/isin(n(n—i—l)), k=0

M 2

[2 . nk 1 k
MSHI (M (n—|— E)) s ( #0)

F® is nothing but the row-wise permuted version of the
DST. In this paper, we simply denote the row-wise permuted
DST as the DST. Because the DCT (F©) and the DST (F®)
are orthogonal matrices, the DADCEF is a Parseval block
frame: FOTF® =1, 5.

The construction flow of the DADCEF is illustrated in
Fig. 4(a). The DADCEF requires two block transforms, addi-
tions and subtractions between two transforms, and scal-
ing operations. Its computational cost is slightly higher
than conventional block transforms due to the SAP oper-
ations but much lower than other overlapped frames and
dictionaries, as mentioned in Section I. Its redundancy ratio
is 2: It is the same as the DFT and the DTCWTs [12], [14],
[15], [32], and thus it can reduce the amount of memory usage
compared with highly redundant frames and dictionaries like
those in [22], [23].

Remark 1: According to the basic knowledge on the
DCT/DST, the DST F® ¢ RM*M cqp pe implemented as
the permuted and sign-altered version of the DCT F© ¢
RMXM e F® = POFOdijag(1, —1,..., 1, —1), where
PO e RMXM denotes the permutation matrix that arranges
the rows of matrices in reverse order. Thus, the DADCF can
be implemented by the DCT with a few trivial SAP operations.

[FOY., = ®)

B. DIRECTIONAL ATOMS IN DADCF

Here, we examine the directional selectivity of the DADCF
defined in (7). The frequency spectra of the k-th rows of
the DCT (1) and the DST (8) are given by Hi(w) :=
FIFOL 1, Gr(w) = FI[F®]; .1, where k > 1. Their
complex combination

M—1
/2 . .
Hy(w) + jGr(w) = ]\_4 § e]9k.ne—]a)n’ )
n=0
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Analysis ettt T, 1‘
operator 1 2D DCT _ PO w) - [0 !
of DADCF ! FO g F©Of C g—= |
=FPx ‘ y “ — !
y ! DOO® ]
: DOOG ) ———
I P> ) ———
| ;< 514 —>
! DODY,
4x4 block X
000K
<
GG 2D DST R 3
9,0,@,@ | FGO) @ FO) ! 3
GO | g >
X = veo(X) G 3
I 172125029 >
‘ () >
! 19123)27)31 >
I s
! 2
0
1
2
3
ky
(ko kp,1)  pky,kp,—1) (kokn,1) p(ko,kp,1)
(b) Cnui:nhL s Bn,fjhh“ (c) SnuzjnhL s anlj;lh“

FIGURE 4. (a) Procedure of the DADCF (M = 4). (b) and (c): Atoms
C,(,I;'f;,l;"’l), S,(,I",V,;,l;h’l) (red), and BS,’;V”,,,Z"*I) (blue and green) in the

DADCF. The numbers indicate the rightmost subband indices in (a).

which is the spectra of (9), approximately satisfies the ana-
lyticity, as shown in Fig. 5(c). As a result, the DADCEF is a
directional transform with real coefficients from the 2D DCT
and DST followed by addition/subtraction operations. Note
that the frequency spectrum of Hy(w) + jGo(w), i.e., low-
pass spectrum, does not satisfy the analyticity. As a result,
the DADCEF can distinguish 2(M — 1)? directional subbands.
Next, we show the atoms of the DADCF. Because the
DADCEF forms a Parseval block frame, it is enough to exam-
ine the synthesis transform [fo szLl]T = FOT,
From (7), FPT is composed of 1) an atom in the 2D DCT
basis, 2) an atom in the 2D DST basis, or 3) directional atoms
arising from the addition/subtraction of 2D DCT/DST atoms.
Let Bvkn D) Bkvkn—1) ¢ RMXM pe two directional atoms
of the DADCEF that correspond to the subband (k, k) €
Q1 m—1 X Q1,m—1. These atoms can be represented as
Blrknl) - clki) 4 glh k)

Ny,np

2
= m cos (kanv F ekh,nh) , (10)
where Ci%" = [FOY , [FO, ,, and Sy
[F(S)]kv,m, [F(S)]kh,nh. In contrast to the DFT and the DHT
bases (3) and (4), these 2D atoms lie along various oblique
directions, as illustrated in Figs. 4(b) and (c).

C. LACK OF REGULARITY OF DADCF
As previously shown, some 2D frequency responses
Uk, i, (@)+ Uy, 1, (@) and U, 0 5@+ U (@) obtained from
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FIGURE 5. Frequency spectra (frequency: [0, 2], M = 8): (a) DCT, (b) DST,
(c) the complex combination (1 < k < 7).

the DADCF do not decay at @ = (0, 0) which leads to DC
leakage.

Figs. 6(a) and (b) show an image decomposition example.
The image used is Zoneplate {XU)}; jeq,, (X € R?6x256)
and its (half of the arranged) DADCEF coefficients {X2}; jeq;,
with M = 8, where [x;r x;—]T = F® vec(X@)) are shown in
Fig. 6(b). We observe that the DC leakage has been appeared
and it leads to the reduction of the sparsity.

The DC leakage is due to the fact that the DST F® loses
regularity, as mathematically explained in the following. For
a block transform F € RM*M regularity condition [38] is
formulated as

[cO---0]" =F1, (11)

where ¢ is some constant and 1 = [1 1 ... I]T. As shown

Fig. 5(b), the DST F® leads to the DC leakage. It can be

theoretically verified as in the following proposition.
Proposition 1: Let vectors {sk}f[:_()1 be the basis of M x M

DST, i, [so ... su—1] =FST. Then,
V2
—— (k=2¢4+1)
(sk, 1) = { /M sin (57k) ,
0, (otherwise)

where £ € Qu_,.
2
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Low freq High freq.

>
»

(a) (b) (©

FIGURE 6. (a): Zoneplate, (b) (Half of) DADCF coefficients (W = 8),
(c) (Half of) DADCF coefficients in the DADCF pyramid ones (W = 8).

Proof: Ttis clear that (sg, 1) = 0. For the other cases,

s (o)
- {25 )]V(zl_M_si(ril;kw

where 7 takes the imaginary part of a complex number. H

From the above proposition, the odd rows (k = 2¢ + 1)
of the DST produce nonzero responses for a constant-valued
signal, i.e., DC leakage.

D. DADCF PYRAMID

To obtain sparser coefficients, we introduce the DADCF

pyramid inspired by [6]. The analysis operator of the DADCF

pyramid FP) is defined as:
FOP = [(DM)T (FO(I - DTDM))T] (12)

where D = [1 0--- 0] is the downsampling operator (and

thus DT corresponds to the upsampling operator), M =

MO @ MO ¢ Rf’ XM g the averaging operator, where
MO),, = . M = MM. By applying the DADCF

pyramid to the input block vec(X?/), we can obtain its
average value (denoted as x7) and the DADCEF coefficients
of the DC- subtracted input block (denoted as x; and x») as
[xL XT ;—] = FOPlyec(X),

For example, Fig. 6(c) shows the (half of) the transformed
coefficients {X2}; jeq;, - Itis clear that sparser coefficients can
be obtained and the DADCF pyramid F(PP) s still invertible.
By this operation, however, the number of transformed coef-
ficients is slightly increased from 2N? to 2N? + (N /M)? for
N x N input images.

V. REGULARITY-CONSTRAINED DADCF

In this section, we introduce another DADCEF, called
RDADCEF. We introduce a RDST in Section V-A and V-B.
Then, in Section V-C, we propose the RDADCEF, which over-
comes the problem of the DADCE, i.e., DC leakage, and saves
the number of the transformed coefficients fewer than the
DADCEF pyramid.
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Algorithm 1 Design Procedure for RDST
1: SetSisasin (13).
2: fork =0toM/2—1do
3: Set g(k) = [ .80k 0 sopy2 - .]T.
4:  Find the right-singular vector v*) corresponding to
zero singular value.
5. SetS® = [ .. SOk v®) Sok42 .- .]T.
6: end for
7: Output SM/2=D,

A. DESIGN OF RDST
This section introduces a modified DST without DC leak-
age for constructing RDADCEF. For notation simplicity,

we present steps for constructing the RDST matrix FRS),
Step 1: First, we define a modified DST S € RMxM

1
L k = 0)
Sha= ' |
\/;sm (A_/Ik (n-l—i)), (k #0)
= [SO St - SM_1]—r . (13)

In short, it is constructed by replacing the O-th row of the
DST with that of the DCT. The modified DST satisfies the
following property (see Appendix A for its proof).

Proposition 2: rank(S) =M — 1.
Then, we further modify S in (13). From (11), in order to
impose the regularity condition on S, {sk}i’i—ll should be
orthogonal to syp. Now, we orthogonalize the odd rows of S
in the following way.

Step 2: Set S© = [s00s; ... sM_l]T.
Here, S© satisfies the following proposition (see Appendix B
for its proof). _

Proposition 3: rank(S©®) = M — 1.
From Proposition 3, there is only one zero singular value
and its corresponding right-singular vector (denoted as vy
belongs to the null space of S©. It implies s that SOy — ¢,
i.e., v satisfies the regularity condition. S© is updated by
replacing 0 to v(©.

Step 3:Set SO = [s) v@'s; ... sM_l]T.
Note that v(O can be explicitly represented as [v(?], =

\/g(_l)n — [F(S)]o,n <= \/Al:sin (71 (n + %))) because

the row of the DST [F(S)]o,n corresponding to the highest
frequency subband is orthogonal to {sp, s2, ..., Sy—1}-
It clearly follows that rank(S©) = M

Consequently, by repeating Steps 2 and 3, we can obtain
the orthogonal matrix S/2~1 whose odd rows are replaced
by the different ones from the initial S©. A summary of
the algorithm is given in Algorithm 1. Hereafter FRS) .=
SM/2=1D is termed as a RDST.

The RDST satisfies the following properties (see
Appendix C for its proof).
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Proposition 4: Let FRS) € RM*M pe the RDST.
1) This satisfies the regularity condition, i.e.,

[cO---0]" =F®1.

2) Some rows of FRS) € RM*M qre identical with those
in the DST matrix F®: [FRS), , = /L [FRS =
[FOon, [F®¢ y = [FOag,, where F® ¢ RMM
is the DST matrix and £ € 9%71.

3) The passband of the spectrum F [[F(RS)]MH,.] is the
same as that of the DST F[[F®]5041.] (£ > 2).

In Fig. 7(a), the red lines show the frequency spectra of the
newly updated rows (k = 0,3,5,7) in the RDST (M = 8)
and the dashed gray lines show those of the corresponding
rows in the DST (the rest frequency spectra of the RDST are
identical to those of the DST). The frequency spectra of the
RDST approximate those of the original DST, but decay at
zero frequency.

B. IMPLEMENTATION OF RDST
From Proposition 4, the % rows of the RDST FRRS) ¢ RMxM
are the same as the rows of the original DST F®®) ¢ RM*M
and both matrices are orthogonal. Thus, we can derive that the
RDST can be implemented by the cascade of the DST and an
orthogonal matrix as in the following.

Let FS:© FGS0 ¢ }R% *M pe the even and odd rows of the
F® ¢ RM*M respectively. Then, the RDST FRRS) ¢ RM*M
can be expressed as:

K FS.0
RS m m i
FRS — p( )[F(S )} = Pt )dlag(I/\g,Fzg)[F(s’o)
= PWdiag(Iy, Ty )PNVEFS), (14)
2 2
where PM PIV) ¢ RM*M are the permutation matrices,

and the matrix FM is guaranteed to be an orthogonal matrix
because of orthogonallty of the RDST and the DST. Since
" is an orthogonal matrix, it can be factorized into /‘M
rotzation matrices. Thus, the RDST is still a hardware—friendly
transform that can be implemented by the F© with some
trivial operations.
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C. DESIGN OF RDADCF
Finally, a RDADCF F®RD) is defined using the RDST as
follows.

Definition 2: Let FRP) ¢ R2M* M po the analysis oper-
ator of the RDADCF defined as:

© g FO
®D) ._ pWTywhpv) | F'®F
Fo= PWTP [F(RS)@)F(RS)]

1 111 > —I 2

wh — 4 Liyss. — | or-2) W-22 1)
e 2 M2 (o Taoap

(15)

where PV) € R2M*x2M7 ¢ permutation matrix. PN) places
the 4M — 4 DCT and DST coefficients associated with the
subband indices k, € {0, 1} or kj, € {0, 1} to the first part,
and the other 2(M —2)* coefficients to the last (see Fig. 8(a)).
Due to the orthogonality of the RDST, the RDADCF clearly

forms a Parseval block frame, i.e., FRDTERD) — y,

Now, we discuss the capability of the directional sub-
band decomposition based on the DCT and the RDST. Let
FO, FRS ¢ RM*M be the DCT and the RDST matri-
ces. As discussed in Section III-B, the complex combination
[F(C)]k,. +j [F®RS) k.- should have a one-sided frequency spec-
trum for directional subband decomposition. In the case of
even k (> 2), the rows of [FRS)]; . are identical to those of the
DST. Therefore, the frequency spectrum [F©) k-E j[F(RS)] k.-
is one-sided. In the case of odd k (> 3), where the rows
[F(RS)]k). are newly designed in Algorithm 1, the frequency
spectrum [F©7; . 4 jIFR]; . can be one-sided (Fig. 7(b)).

Analyticity of the RDADCEF can be explained as follows.

Let {S?)} and {sg)} be the rows of the DST and the RDST,
respectively. For any odd k (> 3), st can be obtained by

(s

applying orthogonal projection to s, onto the orthogonal

complement of {s@ }QM_l\{k}: as

+1
s)=—1[s'— > 6 s | a6
Tk eQy\ k)

where 7 is the normahzatlon factor for sk) having unit
norm. Let [FW)]; , = \/I—Me =ik denote the DFT. Because

F(W)sg) and F(W)sf) have different passbands, |(sy), s](f))| =

|(F(W>s(r) F(W)s(s))| is small. Therefore, the spectrum of the

s(k ") can approximate s,(c) over the passband of s,(f).

The atoms of the RDADCEF lie along the 2(M — 2)?
frequency directions, as shown in Figs. 8(b) and (c),
where Ci = [FOYL , [FOY, . Siah =
(FES)], TFRSY,  and gkt b gt
The number of directional selectivities of the RDADCEF is
slightly less than the original DADCEF. Since the RDADCF
with M = 2 cannot ensure directional selectivity, we recom-
mend M = 2™ where m > 2.

VI. EXPERIMENTAL RESULTS
We evaluated the performance of the proposed DADCEF pyra-
mid (Section IV-D) and RDADCF in compressive image
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TABLE 2. Numerical results of compressive sensing reconstruction.

Problem 1: Image recovery based on sparsity of transformed coefficients

Block size: M = 8

[ Block size: M = 16

Block size: M = 32

\
RDADCF | DCT

PSNR[dB] | DCT _ DFT___DHT _ DADCFP__RDADCF | DCT__ DFT__ DHT _ DADCEP DFT___ DHT _DADCFP__RDADCF
Image: Barbara
60%: 10.77 | 32.76 31.76 _31.00 3251 3297 | 3381 3254 3171 33.14 3389 | 3381 33.06 3217 3361 34.19
50%:10.22 | 30.10 29.63 28.84  30.40 30.69 | 3143 3047 2961 3116 3185 | 3145 3096 30.14 3157 32.14
40%:9.689 | 27.59 27.58 2678 2847 2862 | 29.10 2844 2762 2925 2991 | 2926 2887 2804  29.75 30.25
30%:9.255 | 25.11 2546 2466 2651 2646 | 2670 2638 2558  27.25 2778 | 27.02 2679 2595  27.70 28.24
Image: Mandrill
60%: 10.77 | 2568 2505 2529 26,64 2654 | 2599 2647 2506  27.04 2705 | 2599 2666 2594 2725 27.32
50%: 1022 | 23.89 2421 2355  25.05 2488 | 2427 2478 2408 2544 2543 | 2432 2491 2425 2566 25.70
40%:9.689 | 22.18 2257 2197 2359 2334 | 2268 2316 2255  23.94 2391 | 2277 2330 2268  24.15 2420
30%:9.255 | 2054 2101 2040 2221 2187 | 2120 2168 21.15  22.56 2251 | 2139 2182 2125 2276 22.80
Image: Monach
60%: 10.77 | 3743 3540 3437 3631 3722 | 3723 3514 3409 3600 3677 | 3652 3539 3436  36.10 3659
50%:10.22 | 3470 3272 3166  33.99 3473 | 3461 3262 3152 3378 3441 | 3410 3293 3191 3394 3431
40%:9.689 | 31.65 29.88 2877 3161 3206 | 3193 3010 2903 3153 3204 | 3166 3060 2957  31.88 3221
30%:9.255 | 2823 2692 2579  29.05 20.19 | 29.04 2744 2644 2907 2944 | 2892 2809 2715  29.49 29.77
Image: Parrot
60%: 10.77 | 3925 38.03 3728 3846 39.40 | 39.46 3794 3715 3805 3935 | 39.10 3796 3711  37.98 39.11
50%: 1022 | 37.13 3591 3495  36.67 3758 | 3747 3584 3491 3627 3758 | 3707 3585 3490  36.13 37.30
40%:9.689 | 3457 3348 3249  34.54 3535 | 3519 3357 3257 3423 3556 | 3478 3363 3262 34l 35.28
30%:9.255 | 31.60 3079 29.69 3230 3285 | 3247 3110 3011 3204 3326 | 3221 3109 3007 3188 33.09
Problem 2: Image recovery based on sparsity of transformed coefficients and weighted total variation for block boundaries
[ Block size: M = 8 [ Block size: M = 16 Block size: M = 32
PSNR [dB] | DCT__DFT__ DHT _DADCFP__ RDADCF | DCT___DFT__ DHT _DADCFP _RDADCF | DCT__ DFT__ DHT _ DADCFP__ RDADCF
Image: Barbara
60%: 10.77 | 3227 3198 3148 3232 3262 | 33.15 3260 3193 3296 3347 | 3338 3315 3230 3349 3397
50%:10.22 | 29.95 3000 2952  30.29 3053 | 3089 3069 2998  31.07 3154 | 3109 3114 3032 3153 31.99
40%:9.689 | 2791 28.17 2770 2849 2864 | 2876 2889 2822 2927 29.69 | 2905 2924 2845  29.78 30.16
30%:9.255 | 2606 2642 2601 2674 2682 | 2688 2711 2649 2742 2782 | 27.11 2730 2653  27.86 28.30
Image: Mandrill
60%: 10.77 | 26.85 2695 2630  27.23 2721 | 2646 2691 2637  27.26 2725 | 2620 2686 2620  27.29 27.34
50%:10.22 | 2524 2542 2507  25.68 2565 | 2489 2535 2482  25.67 2567 | 2461 2522 2463 2576 25.79
40%:9.689 | 23.84 2403 2371 2431 2425 | 2347 2390 2343 2425 2426 | 2321 2373 2319 2429 2433
30%: 9.255 | 2246 2267 2241  22.96 2286 | 2216 2258 2218  22.92 2290 | 2191 2238 2192 2295 22.99
Image: Monach
60%: 10.77 | 40.60 3955 39.18 3949 4010 | 39.26 3801 3729  38.08 3867 | 37.63 3696 3600  37.20 3759
50%: 1022 | 3870 37.49 37.04 3750 3813 | 3701 3568 3489 3587 3648 | 3534 3458 33.66 3495 3534
40%:9.689 | 3649 3512 3462 3521 3582 | 3469 3327 3246  33.56 3412 | 33.04 3223 3137 3285 33.17
30%:9.255 | 33.76 3233 3184 3258 3313 | 3197 3040 29.64  30.89 3144 | 3039 2959 2871  30.34 30.64
Image: Parrot
60%: 10.77 | 40.83 4024 3991 4020 2071 | 4034 3956 3900 3935 3019 | 39.66 39.07 3837 3884 39.69
50%:10.22 | 39.33 3873 3834 3868 3927 | 3872 3785 37.19 3772 3862 | 37.89 3721 3640  37.09 38.02
40%:9.689 | 3743 3683 3641  36.84 3745 | 3677 3591 3521 3577 3677 | 3577 3517 3432 3509 36.07
30%:9.255 | 3532 3469 3425 3470 3532 | 3455 3371 3300 3364 3464 | 3347 3277 3191 3285 33.95
sensing reconstruction [4], as an example of image processing variation (WTV) for block boundaries as presented
applications. 512 x 512 pixel images in Fig. 9 were used as tI%e in [40].
test set. Each incomplete observation (y = vec(Y) € R>!?) The cost function for these two problems is described as
. . . 2 2
is obtained by Noiselet transform [39] (® € R31273127)  follows:

followed by random sampling of 30%, 40%, 50%, and 60%
pixels (Rgamp € RRGIZPx5122 Ghere R is the rounding
operator and p = 0.3, 0.4, 0.5, 0.6) in the presence of
additive white Gaussian noise (n € R5122) with the standard
derivation 0 = 0.1 asy = Rgmp®x + n, (x = vec(X) €
R3 122). Figs. 9(a)—(d) indicate the estimated latent images by
using the Moore-Penrose pseudo inverse of of = CDTRllmp
(ED = Rgump®) in the case of p = 0.3.

Up to now, many block transform-based methods for image
recovery have been proposed, such as BM3D, patch-based
redundant DCT approaches, and so on [25]-[27]. For fair
comparison, we simply evaluate directional block transforms
in two image recovery problems:

o Problem 1: image recovery based on sparsity of block-

wise transformed coefficients.

o Problem 2: image recovery based on sparsity of

block-wise transformed coefficients and weighted total

VOLUME 10, 2022

x* = argmin ||[FPyopy X1 + o[ WpDnyX|l1 2
xeR5122

+ico, X + Fy(®x),  (17)

where Pyopy is the permutation matrix permuting a vectorized
version of a matrix to a block-wise-vectorized one PyopyX =
bvec(X), F = IV @ FOP or F = IV) @ FRD) @V

Is5122/32), and () is the indicator function’ of a set A. Cjo, 1
is the set of vectors whose entries are within [0, 1]. The data-
fidelity function was set as Fy = tp(y,¢) (B(y, €) := {x €
RM|||x — y|l» < €}) is the indicator function defined by the
£>-norm ball. The radius was set as € = ||x, — y||2, where
X, is an original image. Dy, = [DI DI]T e R25129)x5122
denotes the vertical and horizontal difference operator.

SIndicator function of set A is defined as ux) = 0, x € A,

tA(x) =00, (x ¢ A).
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FIGURE 9. (a)—(d): Original images (256 x 256) and recovered images by
&1 (sampling rate p = 0.3).

W, = IV ® W, where W, € RM**M is the weighting
matrix for block boundary as [Wp],,., = O (if n corresponds
to the 2D index in the interior of the block), [Wplm, = 1
(if n corresponds the 2D index at the boundary of the block).
The cost functions with p = 0 and p = 1 correspond to
Problem 1 and 2, respectively. The detailed algorithm used in
the experiments is given in Appendix E.

For comparison, we also used the DCT, the DFT, and the
DHT in (17). The block size is set to M = 8, 16, 32.

Fig. 10 shows the resulting images of the proposed and
conventional transforms obtained in the case of sampling rate
p = 0.4. As these figures show (particularly in the dashed
red boxes), the DCT cannot recover directional textures pre-
cisely. Table 2 shows the numerical results. In most cases, the
DADCEF pyramid or the RDADCEF outperformed the DCT,
the DFT, and the DHT in terms of the reconstruction error
(PSNR). The RDADCEF recovers the images better than the
DADCEF pyramid, especially for Monarch and Parrot (smooth
images), due to its regularity property. In fact, the DCT is
superior to the DADCF pyramid and the RDADCEF in some
cases. However, since the DADCF pyramid and the RDADCF
are compatible with the DCT, we can select the DCT, the
DADCEF pyramid, or the RDADCEF by using or bypassing the
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(a) DCT

(c) DADCF

(h) RDADCF+WTV

(2) DADCF+WTV

FIGURE 10. Zoomed resulting images reconstructed from 60% noiselet
coefficients ((a)-(d)) and 30% noiselet coefficients ((e)-(h)). The size and
the decomposition level of the transforms is i =8 and J = 2,
respectively.

DST/RDST and the SAP operations, depending on the input
image.

VIl. CONCLUDING REMARKS

In this paper, we proposed the DADCF and the RDADCF
for directional image representation by extending the DCT.
Since they are Parseval block frames with low redundancy,
they can deliver computational efficiency for practical situa-
tions. Furthermore, unlike the conventional directional block
transforms, they can finely decompose the frequency plane
and provide richer directional atoms. Comparing both the
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DADCF and the RDADCF, the DADCF provides richer
directional selectivity than the RDADCE. However, in prac-
tice, the slightly redundant DADCF pyramid should be used
instead of the DADCF to avoid the DC leakage and per-
form good image processing, i.e., the RDADCF can save
more amount of memory usage than the DADCF (pyramid).
Also, they can be easily implemented by appending triv-
ial operations (the DST or the RDST, and the SAP opera-
tions) to the DCT. Moreover, the DST can be implemented
based on the DCT with the permutation and sign-alternation
operations and the RDST based on the DST and one addi-
tional orthogonal matrix with the size of the half. Since the
DCT is integrated into many existing digital devices, the
system modification for the proposed method is minimal.
Note that the DADCF and the RDADCF are compatible
with the DCT. Depending on applications, we can switch the
DCT/DADCF/RDADCEF by using the DST/RDST and SAP
operations.

We evaluated the DADCF pyramid and the RDADCF
in compressive image sensing reconstruction as a practical
application. The experimental results showed that, for both
fine textures and smooth images, they could achieve higher
numerical qualities than the DCT, the DFT, and the DHT.
Furthermore, it was shown that the RDADCEF could recover
smooth regions better than the DADCF pyramid due to its
regularity property.

APPENDIX A
PROOF FOR PROPOSITION 2
Proof: We first introduce the following lemma.
Lemma 1:
1) The elements in the upper-right triangle [SST]kv,kh =
[(Sk,, Sk, ) Ik, .k, are expressed as

(Sky» Sky)
2
,L, (ky = 0 and kj = 2 + 1)
) Msin (ﬁkh)
1, (kv = kh)
0, (otherwise),

where £ € Q%_l. For example, for M = 4,

1 0.9239 0 0.3827
0.9239 1 0 0

SST ~ 0 0 | 0 . (18)
0.3827 0 0 1

2) Yoo s0. sae41)? = 1.
Proof:

1) Itis clear that (sg, so) = 1 and (s, sg,) = 8(k, — kp)
for ky, kp, € € m—1 because {sk}kﬂ'lz_l1 are the rows
of the DST F® ), In the other cases, it is clear from
Proposition 1.

2
M/2—1
2) Y o s = “F(S)ﬁl“z =1.
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LetSbeS = SST = Fo S -~-§M_1]T. From Lemma 1

2), §0 — Zﬁg_l(80,52g+1>§25+1 = 0. This implies that
rank(S) = M — 1, and so rank(S) = M — 1. |
APPENDIX B

PROOF FOR PROPOSITION 3
Proof: From Proposition 1, the elements in the upper-

N ~ T
right triangle of S©@ = SOSOT — [’s"g)) ~-~’§(A2)_1] are as
follows:

2
.L, (ky,=0and kp, =20+ 1)
=) M sin (ﬁkh)
STk kn =
’ 1, (ky = kp and k,, # 1)
0, (otherwise),
where 1 < ¢ < %’[ — 1. For example, for M = 4,
1 0 0 0.3827
ROP 0 0 0 0
S 0 0 1 0 (19)
03827 0 O 1.
Then, we can derive that
M/2—1
50— D7 (s0.saes1)8S,, #0. (20)
=1
Thus, it can be concluded that rank(g(o)) =M —1. |

APPENDIX C
PROOF FOR PROPOSITION 4

Proof: The statements 1) and 2) are clearly true. We only
show the proof for 3).

For any evenrow 2k > 2, F [[F(RS)]zk,.] is exactly the same
as F [[F(S)]z;{,.]. Thus, it is enough to show the case of odd
rows [FRS ] 2k +1 > 3).

[FRS]y 41, is the same as [S(zl;ci]l)]n of S*+D

:
[sg‘“) . s§f,tll>] in the 5th line of Algorithm 1. Let T®) =

(k) (k) : . k) g (k+1)
[to oty 1] be the inverse matrix of S*. Since s,
is designed to be orthogonal to {S;(/lk)}QM_l\{zk+l} in Algo-

rithm 1, 5(2’;;11) can be expressed with a linear combination

of {tff()}gzlml as:

M—1
(k+1) k) Q(k) (k+1) k) (k1) (k
Syt = TOS®s 1) = Z<s£n)’s2k+l i)
m=0
(9] (k+1)\ (k)
= (Sop10 Sopt1 ) bops- 21

Here, we use the following lemma (see its proof in
Appendix D).
Lemma 2: The passband of the frequency response of tgk)

of T®) = [tg{) . tgl;ll] is the same as that ofs(gk) of S®) =

T
(k) (k)
[50 Sy

From Lemma 2, the passband of the frequency response

of sgg_ll) is located at the same position as that of t(z? 41 and
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(k)

Syl = ([F(S)]zkﬂ,.)—r. Consequently, we conclude that
statement 3) is true. [ |
APPENDIX D

PROOF FOR LEMMA 2
Proof: First, consider the case of k = 1. Since T® =

=
[t(o) t(o)_ ] is the inverse of S© = [SBO) 51(3) 1] ,

each tﬁ,,) can be represented as ( ) — Zan_ol (tﬁ,o), tﬁ,?))sﬁlo).
Therefore, it is enough to show that |[[(T©)TT©®],, | =
(85 6] < () )],

For that, we consider the eigenvalue decomposition of
SOSOT — yOpOUOT then calculate TOTTO
UOD)~1uOT, where U = [ug ... uy—1] and DO =
diag(Xo, - . . , Ayr—1) are some orthogonal and diagonal matri-
ces consisting of eigenvectors and eigenvalues, respectively.
Similar to Lemma 1, we can derive S©@ = SOSOT forms

1 0 0 5 O

w

(22)

cocoo~o
co~oco
oc—~ococo
—cococo&

1
0
SO _ 5300
0
0

M

where syp41 = > 1). Let us consider some
+

/R >
M sin( 557 (264+1))
eigenvalue A and its corresponding eigenvectors u of SO,
Note that all the eigenvalues are positive A, > 0, since
rank(S(O)) = M. Suppose an eigenvalue A = 1, then its
eigenvector u = [uo UM I]T should satisfy

§(0) [M() . MM_l]T
= [uo up—1]"
M/2—15
N uz = — Ze:z SZ,S{—:lezH
up =0

M/2—175; Szz+1

T
:>u=[0u1u2— —p T U2e41 U4 - ]

= u € span {uy, ...,uM_z}, (23)
where
S (m=1,2)
u, = 5m+1, R m=20+1,m=>3) (24)
St — gy, (m=26,m = 3),

where 8,, € RM (m € Qu_1) consists of [8,,], = | and
[6x]n = 0 (m # n). Since U© should be an orthogonal
matrix, but the vectors {u,,},,=2¢,m>3 are not orthogonal yet,
Gram-Schmidt orthonormalization is applied to them.

Next, we consider the case of A # 1.

§<0) [bt() . I/tM_l]T
= A [u() MM_l]T

20974

M/2-1_
> s2e+1u2e+1 = (A — Duo (uo # 0)

=1
=\ S2eq1uo = (A — Dugeyi
(b — Dug =0
M/2-1
=1
Thus, 2o = 1 + X0 3, ma = 1 -
M2 12

=1 S241- For 1¢ and Aps—1, the eigenvectors ug and
uy/—1 can be found as

M/2—1

0 S2041
uf)) = 50+ Z a 82041,
M/2 1w
=1 2 S20+1
1 M/2—1 -
©) 20+1
uy ;= —=80 - Z 821 (26)
2 M/2 1~
V2 V2 Szz+1

{An} and {u )} give us the eigenvalue decomposi-

tion of S©. For example, when M = 8, DO =
diag(ro, 1,1,1,1,1, 1, Apy—1) and
— 1 -
Wi 0 0 O 0 0 0 i
0 1 0 O 0 0 0 0
0O 0 1 0 0 0 0 0
A3 _A
Vo _ | 0 0 O wuzqa 0 wu3g 7
0O 0 0 1 0 0o |’
As _As
7 0 0 0 wusga O 0 7
0O 0 0 0 0 1 0 0
A7 _A
5 0 0 O 0 0 wue 7
(27)

S2e41
are the elements after orthogonahzatlon Then, the elements
in the upper-right triangle of SO are

where Ayey1 = (< 1)and u3 4, uze, us4, U6

SO
— [U@pOYOTY,

1
(Ao +Ay—1) (m=n=1)
—"(AO—AM_l) m=0,n=20+1>3)

A2
_()‘O +Am- 1) + Am m

Wl n

m=n=20+1=>3)

(Ao +Am—1) + Amn

(m_ZEm—i—l, n=2,+1, £y #L,, m, n>3)
1 (m=n=1, 2, 20 =2))

0 otherwise,

(28)
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where A, , contains the result of multiplication. The upper-
right triangle elements of T = UQM)~1gOT are

[T
= OO U,
1(1 ! ), (m=n=1)
220 Am—1’ m=n=
A"(1 ), (m=0,n=20+1>23)
2 5 T m=0,n= >
A%l(l + ! )+ A ( 20+1 > 3)
(= +— , (m=n= >
= 2 M Am—1 -
ApmAn
— A
) ()\O+)\M—1)+ mn
m=20,+1, n=2¢,+1, €y, #L,, m, n>3)
I, m=n=1,2, 20(>2))
0, otherwise.

(29)
From Lemma 1, it follows that
1 1 1 (Msin(Z;))?
AoAM—1 M2 1o 2 ( 2(2M)) 30)
OAM=1 1= Ly S4) 51
Since M sin(5j;) = %ZTM sin(ﬁ), x sin()]—c) monotonically

be
. . X—>00
increases over [%, 00) and x s1n()lc) — 1, then

4sin(Z)? (M sin(Z))? yo ’
L1716 ~ ASENT (M sin(i))” Moo 7
2 ) 3
~ 1.2337,
! 14 ( 1) 31
= € €< —),
hoAm—1 4
and 710 + )\Ml—l x:,\ AX’WJI = (ko + Am-DU + ),
BT = st = —Go = An-)( + €). Thus,

by substituting (22), (28), and (31) into (29), we can derive

[T,
— [U(O)(D(O))—IU(O)T]m u
l+e>1 (m=n=1)
—Sp(l+¢€) (m=0,n=20+12>3)
A2
l+Ze>1 m=n=20+1>3)
= { AnAn 1 (32)
)
m=20,+1, n=20,+1, £, #£,, m, n>3)
1, (Im=n=1, 2,20 =>2))
0, otherwise.

Here, let p(M,n) =5, = V2 Since we assume that

2
(M sin(Fzn))
the size M for the RDADCF is M > 4,

2
3 > 0.3827 =~ p(4,3) > p(M,n) > p(M + 1, n),

2
S > 03827~ p(4.3) > p(M.n) > p(M.n+1). (33)
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Algorithm 2 Solver for (17)

1 setn = 0 and choose x©, 2", 2, y1, 2.

2: while stop criterion is not satisfied do
noxrth = PIOXyiic0.) & — p(FPyy) 2" +
(WoDpy) 72" + 720"
) =" 4 FPyay, 2x" D) - x),
t%'” =12, + Wy Dy 2x"+D — x),
t)) = 20"+ dx D — x™),
2(n) 1 ,(n)
t, = prOX%”,||1 (Ztl )

Lo _ 14

8 L =proxiy,, (yth )

2(n) 1 ()

9: 3’ = prOX%L(y) (zt3 )
10 2" =6 — i (k=1,2,3).
11: n=n+1.

12: end while
13: Output u®™.

A

thus | —5,(1 + €)| < %% = % Finally, we conclude that
ITOTTOY, | = |ty ) < [(t . t;)], which implies
the passband of each tsq)) is the same as s;;,”.

For k = 2, SV forms as in (22) with53 = 0. With the same
discussion when k = 1, it can be derived that lower bounds of
the diagonal elements of |[T(1)]m’m| are 1 and upper bounds
of the elements I[IT\(I)]m,,,l (m # n) are % or %, as in (32).
Thus, |(t£,p, tf,l))| < |(t,(,1), tﬁ,{)) |. This is the end of proof for
Lemma 2. ]

APPENDIX E

DETAILED ALGORITHM OF IMAGE RECOVERY USED IN
EXPERIMENTS

To solve (17), the primal-dual splitting (PDS) algorithm
[41], [42] is used. Consider the following convex optimiza-
tion problem to find

x* € argminf(x) + g(Lx), (34)
xeRM
where f € To(RM), g € To(RM) (I'o(RM) is the set of
proper lower semicontinuous convex functions [43] on RY),
and L € RM2*N Then, the optimal solution x*, can be
obtained as

{ x D . — prox,, s x™ — ylLTz<”)]

35
2D = prox o[£ + yrL@x"TD — x™)], 53

where prox denotes the proximal operator [43], g* is the con-
jugate function [43] of g. In the experiments, the parameters
y1 and y» in (35), are chosen as 0.01 and %Vl For Problem 2
(p = 1 1in (17)), the functions f and g, and the matrix L
in (34), are set as

f(X) = LC[(),l](X)a

g(z{ z; 2317) = llz1lh + Iz2l1 2 + t(y)(23),
21 = FPynX, 2o = WypDyyX, 73 = @x,
i~ =TT
L = [(FPyy)" (WpDpy) T @] . (36)
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The resulting solver for (17) is described in Algorithm 2.5 The
stopping criterion is [|x"*D — x|, < 0.01. The algorithm
fof Problem 1 (p = 0 in (17)) can be designed by removing
the terms and steps (Step 5, 8, and 10) relating to zy, t», t(zn),
and f(zn) from Algorithm 2.
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