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ABSTRACT Block frames called directional analytic discrete cosine frames (DADCFs) are proposed for
sparse image representation. In contrast to conventional overlapped frames, the proposed DADCFs require
a reduced amount of 1) computational complexity, 2) memory usage, and 3) global memory access. These
characteristics are strongly required for current high-resolution image processing. Specifically, we propose
twoDADCFs based on discrete cosine transform (DCT) and discrete sine transform (DST). The first DADCF
is constructed from parallel separable transforms of DCT and DST, where the DST is permuted by row. The
secondDADCF is also designed based onDCT andDST, while the DST is customized to have noDC leakage
property which is a desirable property for image processing. Both DADCFs have rich directional selectivity
with slightly different characteristics each other and they can be implemented as non-overlapping block-
based transforms, especially they form Parseval block frames with low transform redundancy. We perform
experiments to evaluate our DADCFs and compare them with conventional directional block transforms in
image recovery.

INDEX TERMS Block frame, discrete cosine transform, directional selectivity, sparse image representation.

I. INTRODUCTION
Sparse representation by frames has been an essential tech-
nique for image analysis and processing [1], [2]. Various
kinds of signal recovery tasks, e.g., denoising, deblurring, and
restoration from compressive samples, can also be realized by
incorporating sparse image representation in convex and non-
convex optimization algorithms [3], [4].

Significant efforts have been made to construct effi-
cient frames for sparse image representation. Of particu-
lar focus has been directional frames, such as curvelet [5],
contourlet [6], directional filter banks (FBs) [7]–[11], and
dual-tree complex wavelet transforms (DTCWTs) [12]–[16]
for 2D signals. Directional atoms1 are crucial for sparse
image representation since images usually contain edges
and textures lying along oblique directions. Extended ver-
sions of these frames for higher-dimensional signals, such
as videos, have also been proposed [18]–[21]. In addition to
directional frames, more general systems such as dictionary
[22], [23] and graph WTs/FBs [24] that capture highly
complex structures and non-local similarity have been

The associate editor coordinating the review of this manuscript and
approving it for publication was Lorenzo Mucchi.

1In this paper, atom is referred to as an element dn (n = 0, . . . ,N − 1) of
a frame D =

[
d0 · · · dN−1

]
∈ RM×N [17].

proposed. Those transforms can provide sparse image rep-
resentation for various fine components.

Although these existing frames and dictionaries have been
successfully applied to image processing, problems and lim-
itations have been recognized in practical situations. First,
computational complexity for calculating sparse coefficients
is typically high due to the complicated algorithms involved,
such as 2D filtering [6], sparse coding with various iterative
schemes [22], [23], and eigenvalue decomposition of a large-
scale graph Laplacian [24]. Second, they typically require
high transform redundancy which leads to a large amount of
memory usage to store the coefficients. Third, since the sup-
ports of their atoms in those frames are overlapped with each
other, they require global memory access, which disrupts
parallel computation. Although recent digital devices have
been increasing their computational power, the resolution
of captured images has also been increasing and sometimes
multiple images will also be taken at once for producing
visually pleasant images like those having low-noise and/or
high-dynamic range. Hence, the computational cost for image
processing has to be kept as small as possible for avoiding
installing extra hard/software modules in such devices.

Block-based bases and frames, whose supports are iden-
tical or disjoint, are thus highly desired due to their
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computational efficiency. They are still a key for many image
processing applications like video coding. In addition, patch-
based techniques based on block-based transforms, such as
BM3D and redundant (type-II) discrete cosine transform
(DCT) [25]–[27], show their effectiveness in image recovery.
Nevertheless, directional block frames have received less
attention compared with overlapped frames and, unfortu-
nately, they have been believed that they cannot provide rich
directional selectivity.2 However, we can realize such block-
based transforms by carefully choosing their building blocks.

In this paper, we focus on directional block frames
and propose directional analytic discrete cosine frames
(DADCFs) based on DCT [28] and (type-II) discrete sine
transform (DST) [29]. They have the following advantages
against alternative directional block frames:
• Directional selectivity of the DADCFs is much richer
than that of existing directional block frames.

• DADCFs can be designed by appending the DST (or a
DST-like transform) and simple extra operations to the
DCT, and thus are compatible with the DCT.

We introduce two types of DADCF, both forming Parseval
frames. The first DADCF contains the DCT and a row-
wise permuted version of the DST, and the second DADCF
contains the DCT and a DST without DC leakage. The sec-
ond one is called regularity-constrained DADCF (RDADCF).
In order to realize RDADCF, we propose the DST without
DC leakage, regularity-constrained DST (RDST), for the
first time. The DADCF and the RDADCF have different
advantages. The DADCF provides richer directional selec-
tivity while the DC energy will be distributed over several
subbands. As it will be described later, the DC leakage can be
avoided by integrating the DADCF with Laplacian pyramid
at the expense of redundancy. In contrast, the RDADCF can
structurally avoid the DC leakage problem by incorporating
the proposed RDST as its building block instead of the row-
wise permuted DST. We numerically compare two DADCFs
with some existing approaches in compressive sensing
reconstruction.

The rest of this paper is organized as follows. Section II
summarizes related works. Section III reviews the conven-
tional directional block bases and the analyticity for images.
Section IV explains the definition and a customization for
preventing DC leakage of the DADCF. Section V introduces
the RDADCF. Section VI evaluates the proposed DADCFs
in compressive sensing reconstruction. Section VII concludes
with a brief summary.

A. NOTATIONS
Bold-faced lower-case letters and upper-case letters are vec-
tors and matrices, respectively. The subscripts h and v are
used to indicate variables corresponding to horizontal and
vertical directions, respectively. The othermathematical nota-
tions are summarized in Table 1.

2In this paper, ‘‘directional selectivity’’ is measured by the number of
distinguishable directional subbands for an M -channel 2D transform.

II. RELATED WORKS
Directional block bases and frames can be classified into two
categories. One is the fixed class, i.e., transforms equipped
with directionally oriented bases. This class of transforms
includes discrete Fourier transform (DFT) [30], discrete
Hartley transform (DHT) [31], and real-valued conjugate-
symmetric Hadamard transform [32]. The other is the adap-
tive class, i.e., the application of a non-directional block
transform (e.g., the DCT) along suitable oblique directions
provided by preprocessing (e.g., edge analysis) for each
block [33], [34]. Applications of the latter class are relatively
limited because transform directions have to be determined
from an input signal in advance. For example, in signal recov-
ery, degraded observations make it difficult to find suitable
directions. Our directional block frames correspond to the
fixed class.

The main problem with DFT and its variants is that they
contain duplicated atoms along the same direction in their
basis and hence cannot provide rich directional selectivity
(i.e., the number of directional orientations in a basis or a
frame). This degrades the efficiency of signal analysis and
processing. In order to achieve richer directional selectivity,
in this paper, we extend the DCT to the DADCF. Defi-
nitely, the DCT is one of the most effective block transforms
for image processing tasks and is already integrated into
many digital devices. For example, video coding standards,
e.g. HEVC [35] and VVC [36], employ the various sizes
of the (integer) DCT. However, since it does not contain
obliquely oriented atoms in its basis, it cannot achieve rich
directional selectivity.

In this paper, we reveal that by appending some extra
modules, i.e., DST and scaling/addition (and subtrac-
tion)/permutation (SAP) operations, to the DCT, the result-
ing transform provides directionally oriented atoms and thus
leads to rich directional selectivity. Furthermore, since the
DST can be designed by the (row-wise) flipped and sign-
altered version of the DCT, the implementation cost for the
proposed transform can be kept low, i.e., the total procedure
can be fully implemented by using the DCT and a few SAP
operations.

A preliminary version of this work was presented in [37],
which provides a basic structure of the DADCF. In this
paper, we newly introduce theory and design algorithm of the
RDADCF, and comprehensive experiments.

III. PRELIMINARIES
A. CONVENTIONAL BLOCK BASES
The DCT [28] is one of the most popular time-frequency
transforms. Its transform matrix F(C)

∈ RM×M (M = 2m,
m ≥ 1)3 is defined as

[F(C)]k,n = αk

√
2
M

cos(θk,n) (1)

3For simplicity, we restrict the sizes of all the block transforms toM = 2m

throughout this paper, but it is easily extended to the general M .
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TABLE 1. Notations.

where k and n are subband and time indices (k, n ∈ �M−1),
θk,n =

π
M k

(
n+ 1

2

)
, αk = 1

√
2
for k = 0 and αk = 1

for otherwise. For x = vec(X) (X ∈ RM×M ), the 2D DCT

is given by F(C)
⊗ F(C)

∈ RM2
×M2

. Since the DCT is the
approximation of the Karhunen-Loève transform for a first-
order Markov process with a correlation coefficient ρ when
ρ → 1, the 2D DCT coefficients of natural images tend to
be sparse (i.e., its `1 norm ‖(F(C)

⊗ F(C))x‖1 is small). Thus,
the DCT is widely applied to many applications, especially
for source coding. However, it is a separable transform and
hence it lacks directional selectivity. Formally, its 2D atom
B(kv,kh) ∈ RM×M in the DCT basis forms

B(kv,kh)nv,nh = αkvαkh
2
M

cos
(
θkv,nv

)
cos

(
θkh,nh

)
, (2)

where kd and nd (d ∈ {h, v}) denote subband and spatial
indices, respectively (kd , nd ∈ �M−1). Fig. 1(a) shows an
example of the 2D DCT atoms.4 Clearly, they ‘‘mix’’ two
diagonal components along 45◦ and −45◦ which reduce
directional selectivity.

The 2D DFT can be regarded as a block transform with
directional selectivity because it is a complex-valued trans-
form. Its 2D atoms B(kv,kh) ∈ RM×M are represented as

B(kv,kh)nv,nh =
1
M
ej
(
ϕkv,nv+ϕkh,nh

)
, (3)

where ϕk,n = 2π
M kn. As shown in Fig. 1(b), the DFT bases can

decompose diagonal components into different subbands.
There are some real-valued variants of the DFT

[31], [32] that provide directionally oriented atoms. For
example, the DHT [31] can form a directionally oriented

4In Figs. 1, 4, and 8, each atom is enlarged for visualization.

FIGURE 1. Atoms B
(kv ,kh)
nv ,nh

in basis (M = 4).

basis bymodifying some of the original DFT atoms B(kv,kh)nv,nh =
1
M cas(ϕkv,nv )cas(ϕkh,nh ), (cas(ϕk,n) = cos(ϕk,n) + sin(ϕk,n))
to B(kv,kh,±1)nv,nh as

B(kv,kh,±1)nv,nh =
1
2

(
B(kv,kh)nv,nh ± B

(M−kv,M−kh)
nv,nh

)
=

1
M

{
cos(ϕkv,nv − ϕkh,nh )
sin(ϕkv,nv + ϕkh,nh ),

(4)

where we assumeM ≥ 4 and kv, kh 6= 0,M/2.
One problem shared by these conventional directional

block transforms is that they contain multiple atoms along
the same direction in their basis. For the M × M DFT and

DHT, the number of distinguishable subbands is 2
(
M−2
2

)2
compared to the number of atoms M2. They cannot provide
rich directional selectivity, as shown in Fig. 1(b).

B. ANALYTICITY FOR DIRECTIONAL SELECTIVITY
As explained in Section III-A, the 2D DCT cannot provide
a directional image representation. We explain this phe-
nomenon in the 2D frequency domain. Let Hk (ω) be a fre-
quency spectrum of the k-th row of the DCT, i.e., Hk (ω) =
F[[FC ]k,·]. Since Hk (ω) is the frequency response of a real-
valued filter, its spectrum symmetrically distributes in both
positive and negative ω (Fig. 2(a)). Thus, the frequency spec-
trum of the 2D separable DCT Hkv,kh (ω) always has nonzero
frequency responses in four quadrants, as in Fig. 2(c), and it
mixes ±45◦ frequency spectra for example.
In contrast, any spectrum of the DFT Uk (ω) =

1
√
M
F[e−jϕk,· ] (complex-valued filter) has a frequency

response in only positive (or negative) ω, as in Fig. 2(b). This
property is referred to as analyticity [12], i.e., |Uk (ω)| ≈ 0
for ω < 0 (or ω > 0). Thus, frequency spectra of the
2D separable DFT Ukv,kh (ω) are localized in one quadrant
(Fig. 2(d)), which indicates the directional subband.
Conventional separable directional WTs/FBs utilize ana-

lyticity. For example, DTCWTs consist of twoM -channel fil-
ter banks {Hk (ω)}

M−1
k=0 and {Gk (ω)}

M−1
k=0 , where those complex

combination satisfies analyticity as follows:

Hk (ω) =
1
2

(
Uk (ω)+ Uk (ω)

)
,

Gk (ω) =
1
2j

(
Uk (ω)− Uk (ω)

)
,

Uk (ω) = Hk (ω)+ jGk (ω), |Uk (ω)| ≈ 0 (ω < 0) (5)
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FIGURE 2. Example of frequency spectra (analytic and non-analytic
filters).

FIGURE 3. Configurations for 2D DTCWTs. For M = 4, 32 directional
subbands can be distinguished.

Here, we assume that the frequency spectrum Uk (ω) dis-
tributes in the positive frequency domain (Fig. 2(b)). Then,
by using the 2D frequency spectra of the complex-valued
filters Ukv,kh (ω) = Ukv (ωv)Ukh (ωh) and Ukv,kh (ω) :=
Ukv (ωv)Ukh (ωh), the 2D directional frequency spectrum of the
real-valued filter can be designed as follows:

1
2

(
Ukv,kh (ω)+ Ukv,kh (ω)

)
= Hkv (ωv)Hkh (ωh)− Gkv (ωv)Gkh (ωh),
1
2

(
Ukv,kh (ω)+ Ukv,kh (ω)

)
= Hkv (ωv)Hkh (ωh)+ Gkv (ωv)Gkh (ωh). (6)

Considering (6), a directional frequency decomposition can
be realized by two 2D separable FBs followed by addi-
tion/subtraction, as in Fig. 3. M -channel DTCWTs can dis-
tinguish 2M2 directional subbands.

IV. DIRECTIONAL ANALYTIC DISCRETE COSINE FRAMES
This section introduces the DADCF. The definition of the
DADCF is given in Section IV-A. Directional selectivity
of the DADCF is then discussed by analyzing its atoms
in Section IV-B. As it will be shown in Section IV-D, the
DADCF suffers from the DC leakage problem. One solution
is given by constructing the DADCF pyramid (the DADCF
with Laplacian pyramid) in Section IV-D.

A. DEFINITION OF DIRECTIONAL ANALYTIC DISCRETE
COSINE FRAME
This section introduces DADCFs for 2D signals by extending
the conventional DCT.
Definition 1: The analysis operator of the DADCF F(D)

∈

R2M2
×M2

is defined as

F(D)
: = P(I)>W(I)P(I)

[
F(C)
⊗ F(C)

F(S)
⊗ F(S)

]
,

W(I)
= diag

(
1
√
2
I2M−1,

1
2

[
I(M−1)2 −I(M−1)2
I(M−1)2 I(M−1)2

])
, (7)

where F(C) is defined in (1) and P(I)
∈ RM2

×M2
is a permu-

tation matrix that places the 2M − 1 DCT and 2M − 1 DST
coefficients associated with the subband indices kv = 0 or
kh = 0 to the first part, and the other 2(M − 1)2 coefficients
associated with the subband indices kv 6= 0 and kh 6= 0 to the
last (see Fig. 4(a)). F(S)

∈ RM×M is defined as

[F(S)]k,n =


√

1
M

sin
(
π

(
n+

1
2

))
, (k = 0)√

2
M

sin
(
π

M
k
(
n+

1
2

))
, (k 6= 0).

(8)

F(S) is nothing but the row-wise permuted version of the
DST. In this paper, we simply denote the row-wise permuted
DST as the DST. Because the DCT (F(C)) and the DST (F(S))
are orthogonal matrices, the DADCF is a Parseval block
frame: F(D)>F(D)

= IM2 .
The construction flow of the DADCF is illustrated in

Fig. 4(a). The DADCF requires two block transforms, addi-
tions and subtractions between two transforms, and scal-
ing operations. Its computational cost is slightly higher
than conventional block transforms due to the SAP oper-
ations but much lower than other overlapped frames and
dictionaries, as mentioned in Section I. Its redundancy ratio
is 2: It is the same as the DFT and the DTCWTs [12], [14],
[15], [32], and thus it can reduce the amount of memory usage
compared with highly redundant frames and dictionaries like
those in [22], [23].
Remark 1: According to the basic knowledge on the

DCT/DST, the DST F(S)
∈ RM×M can be implemented as

the permuted and sign-altered version of the DCT F(C)
∈

RM×M , i.e., F(S)
= P(II)F(C)diag(1,−1, . . . , 1,−1), where

P(II)
∈ RM×M denotes the permutation matrix that arranges

the rows of matrices in reverse order. Thus, the DADCF can
be implemented by the DCTwith a few trivial SAP operations.

B. DIRECTIONAL ATOMS IN DADCF
Here, we examine the directional selectivity of the DADCF
defined in (7). The frequency spectra of the k-th rows of
the DCT (1) and the DST (8) are given by Hk (ω) :=
F[[F(C)]k,·],Gk (ω) := F[[F(S)]k,·], where k ≥ 1. Their
complex combination

Hk (ω)+ jGk (ω) =

√
2
M

M−1∑
n=0

ejθk,ne−jωn, (9)
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FIGURE 4. (a) Procedure of the DADCF (M = 4). (b) and (c): Atoms

C
(kv ,kh,1)
nv ,nh

, S
(kv ,kh,1)
nv ,nh

(red), and B
(kv ,kh,±1)
nv ,nh

(blue and green) in the
DADCF. The numbers indicate the rightmost subband indices in (a).

which is the spectra of (9), approximately satisfies the ana-
lyticity, as shown in Fig. 5(c). As a result, the DADCF is a
directional transform with real coefficients from the 2D DCT
and DST followed by addition/subtraction operations. Note
that the frequency spectrum of H0(ω) + jG0(ω), i.e., low-
pass spectrum, does not satisfy the analyticity. As a result,
the DADCF can distinguish 2(M − 1)2 directional subbands.
Next, we show the atoms of the DADCF. Because the

DADCF forms a Parseval block frame, it is enough to exam-
ine the synthesis transform

[
f0 . . . f2M2−1

]>
:= F(D)>.

From (7), F(D)> is composed of 1) an atom in the 2D DCT
basis, 2) an atom in the 2D DST basis, or 3) directional atoms
arising from the addition/subtraction of 2D DCT/DST atoms.
Let B(kv,kh,1), B(kv,kh,−1) ∈ RM×M be two directional atoms
of the DADCF that correspond to the subband (kv, kh) ∈
�1,M−1 ×�1,M−1. These atoms can be represented as

B(kv,kh,±1)nv,nh = C (kv,kh)
nv,nh ± S

(kv,kh)
nv,nh

=
2
M

cos
(
θkv,nv ∓ θkh,nh

)
, (10)

where C (kv,kh)
nv,nh = [F(C)]kv,nv [F

(C)]kh,nh and S(kv,kh)nv,nh =

[F(S)]kv,nv [F
(S)]kh,nh . In contrast to the DFT and the DHT

bases (3) and (4), these 2D atoms lie along various oblique
directions, as illustrated in Figs. 4(b) and (c).

C. LACK OF REGULARITY OF DADCF
As previously shown, some 2D frequency responses
Ukv,kh (ω)+Ukv,kh (ω) andUkv,kh (ω)+Ukv,kh (ω) obtained from

FIGURE 5. Frequency spectra (frequency: [0,2π ], M = 8): (a) DCT, (b) DST,
(c) the complex combination (1 ≤ k ≤ 7).

the DADCF do not decay at ω = (0, 0) which leads to DC
leakage.

Figs. 6(a) and (b) show an image decomposition example.
The image used is Zoneplate {X(i,j)

}i,j∈�31 (X ∈ R256×256)
and its (half of the arranged) DADCF coefficients {x2}i,j∈�31

withM = 8, where [x>1 x>2 ]
>
= F(D) vec(X(i,j)) are shown in

Fig. 6(b). We observe that the DC leakage has been appeared
and it leads to the reduction of the sparsity.

The DC leakage is due to the fact that the DST F(S) loses
regularity, as mathematically explained in the following. For
a block transform F ∈ RM×M , regularity condition [38] is
formulated as [

c 0 · · · 0
]>
= F1, (11)

where c is some constant and 1 =
[
1 1 . . . 1

]>. As shown
Fig. 5(b), the DST F(S) leads to the DC leakage. It can be
theoretically verified as in the following proposition.
Proposition 1: Let vectors {sk}M−1k=0 be the basis of M ×M

DST, i.e.,
[
s0 . . . sM−1

]
= F(S)>. Then,

〈sk , 1〉 =


√
2

√
M sin

(
π
2M k

) , (k = 2`+ 1)

0, (otherwise)

,

where ` ∈ �M
2 −1

.
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FIGURE 6. (a): Zoneplate, (b) (Half of) DADCF coefficients (M = 8),
(c) (Half of) DADCF coefficients in the DADCF pyramid ones (M = 8).

Proof: It is clear that 〈s0, 1〉 = 0. For the other cases,

〈sk , 1〉 =

√
2
M

M−1∑
n=0

sin
(
π

M
k
(
n+

1
2

))

=

√
2
M

I
[
M−1∑
n=0

e
j πM k

(
n+ 1

2

)]
=

(1− (−1)k )
√
2M sin

(
π
2M k

) ,
where I takes the imaginary part of a complex number.

From the above proposition, the odd rows (k = 2` + 1)
of the DST produce nonzero responses for a constant-valued
signal, i.e., DC leakage.

D. DADCF PYRAMID
To obtain sparser coefficients, we introduce the DADCF
pyramid inspired by [6]. The analysis operator of the DADCF
pyramid F(DP) is defined as:

F(DP)
=
[
(DM)> (F(D)(I− M̃D>DM))>

]>
, (12)

where D =
[
1 0 · · · 0

]
is the downsampling operator (and

thus D> corresponds to the upsampling operator), M =

M(0)
⊗ M(0)

∈ RM2
×M2

is the averaging operator, where
[M(0)]k,n = 1

M , M̃ = MM. By applying the DADCF
pyramid to the input block vec(X(i,j)), we can obtain its
average value (denoted as xL) and the DADCF coefficients
of the DC-subtracted input block (denoted as x1 and x2) as[
xL x>1 x>2

]>
= F(DP)vec(X(i,j)).

For example, Fig. 6(c) shows the (half of) the transformed
coefficients {x2}i,j∈�31 . It is clear that sparser coefficients can
be obtained and the DADCF pyramid F(DP) is still invertible.
By this operation, however, the number of transformed coef-
ficients is slightly increased from 2N 2 to 2N 2

+ (N/M )2 for
N × N input images.

V. REGULARITY-CONSTRAINED DADCF
In this section, we introduce another DADCF, called
RDADCF. We introduce a RDST in Section V-A and V-B.
Then, in Section V-C, we propose the RDADCF, which over-
comes the problem of the DADCF, i.e., DC leakage, and saves
the number of the transformed coefficients fewer than the
DADCF pyramid.

Algorithm 1 Design Procedure for RDST
1: Set S is as in (13).
2: for k = 0 to M/2− 1 do
3: Set S̃(k) =

[
. . . s2k 0 s2k+2 . . .

]>.
4: Find the right-singular vector v(k) corresponding to

zero singular value.
5: Set S(k) =

[
. . . s2k v(k) s2k+2 . . .

]>.
6: end for
7: Output S(M/2−1).

A. DESIGN OF RDST
This section introduces a modified DST without DC leak-
age for constructing RDADCF. For notation simplicity,
we present steps for constructing the RDST matrix F(RS).
Step 1: First, we define a modified DST S ∈ RM×M .

[S]k,n =


√

1
M
, (k = 0)√

2
M

sin
(
π

M
k
(
n+

1
2

))
, (k 6= 0)

=
[
s0 s1 · · · sM−1

]>
. (13)

In short, it is constructed by replacing the 0-th row of the
DST with that of the DCT. The modified DST satisfies the
following property (see Appendix A for its proof).
Proposition 2: rank(S) = M − 1.

Then, we further modify S in (13). From (11), in order to
impose the regularity condition on S, {sk}M−1k=1 should be
orthogonal to s0. Now, we orthogonalize the odd rows of S
in the following way.

Step 2: Set S̃(0) =
[
s0 0 s2 . . . sM−1

]>.
Here, S̃(0) satisfies the following proposition (see Appendix B
for its proof).
Proposition 3: rank(̃S(0)) = M − 1.

From Proposition 3, there is only one zero singular value
and its corresponding right-singular vector (denoted as v(0))
belongs to the null space of S̃(0). It implies that S̃(0)v(0) = 0,
i.e., v(0) satisfies the regularity condition. S̃(0) is updated by
replacing 0 to v(0).
Step 3: Set S(0) =

[
s0 v(0) s2 . . . sM−1

]>.
Note that v(0) can be explicitly represented as [v(0)]n =√

1
M (−1)n = [F(S)]0,n

(
=

√
1
M sin

(
π
(
n+ 1

2

)))
because

the row of the DST [F(S)]0,n corresponding to the highest
frequency subband is orthogonal to {s0, s2, . . . , sM−1}.
It clearly follows that rank(S(0)) = M .
Consequently, by repeating Steps 2 and 3, we can obtain

the orthogonal matrix S(M/2−1) whose odd rows are replaced
by the different ones from the initial S(0). A summary of
the algorithm is given in Algorithm 1. Hereafter F(RS)

:=

S(M/2−1) is termed as a RDST.
The RDST satisfies the following properties (see

Appendix C for its proof).
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FIGURE 7. Frequency spectra (frequency: [0,2π ], M = 8): (a) red lines:
F [[F(RS)]k,·], dashed gray lines: F [[F(S)]k,·] (k = 0,3,5,7), (b) red lines:
F [[F(C)]k,·]+ jF [[F(RS)]k,·], dashed gray lines: F [[F(C)]k,·]+ jF [[F(S)]k,·]
(k = 3,5,7).

Proposition 4: Let F(RS)
∈ RM×M be the RDST.

1) This satisfies the regularity condition, i.e.,[
c 0 · · · 0

]>
= F(RS)1.

2) Some rows of F(RS)
∈ RM×M are identical with those

in the DST matrix F(S): [F(RS)]0,n =
√

1
M , [F

(RS)]1,n =
[F(S)]0,n, [F(RS)]2`,n = [F(S)]2`,n, where F(S)

∈ RM×M

is the DST matrix and ` ∈ �M
2 −1

.

3) The passband of the spectrum F[[F(RS)]2`+1,·] is the
same as that of the DST F[[F(S)]2`+1,·] (` ≥ 2).

In Fig. 7(a), the red lines show the frequency spectra of the
newly updated rows (k = 0, 3, 5, 7) in the RDST (M = 8)
and the dashed gray lines show those of the corresponding
rows in the DST (the rest frequency spectra of the RDST are
identical to those of the DST). The frequency spectra of the
RDST approximate those of the original DST, but decay at
zero frequency.

B. IMPLEMENTATION OF RDST
From Proposition 4, the M

2 rows of the RDST F(RS)
∈ RM×M

are the same as the rows of the original DST F(S)
∈ RM×M ,

and bothmatrices are orthogonal. Thus, we can derive that the
RDST can be implemented by the cascade of the DST and an
orthogonal matrix as in the following.

Let F(S,e), F(S,o)
∈ R

M
2 ×M be the even and odd rows of the

F(S)
∈ RM×M , respectively. Then, the RDST F(RS)

∈ RM×M

can be expressed as:

F(RS)
= P(III)

[
F(S,e)

F̃(S,o)

]
= P(III)diag(IM

2
, 0M

2
)
[
F(S,e)

F(S,o)

]
= P(III)diag(IM

2
, 0M

2
)P(IV)F(S), (14)

where P(III), P(IV)
∈ RM×M are the permutation matrices,

and the matrix 0M
2
is guaranteed to be an orthogonal matrix

because of orthogonality of the RDST and the DST. Since
0M

2
is an orthogonal matrix, it can be factorized into M (M−2)

8
rotation matrices. Thus, the RDST is still a hardware-friendly
transform that can be implemented by the F(C) with some
trivial operations.

C. DESIGN OF RDADCF
Finally, a RDADCF F(RD) is defined using the RDST as
follows.
Definition 2: Let F(RD)

∈ R2M2
×M2

be the analysis oper-
ator of the RDADCF defined as:

F(RD)
:= P(V)>W(II)P(V)

[
F(C)
⊗ F(C)

F(RS)
⊗ F(RS)

]
,

W(II)
= diag

(
1
√
2
I4M−4,

1
2

[
I(M−2)2 −I(M−2)2
I(M−2)2 I(M−2)2

])
,

(15)

where P(V)
∈ R2M2

×2M2
is a permutation matrix. P(V) places

the 4M − 4 DCT and DST coefficients associated with the
subband indices kv ∈ {0, 1} or kh ∈ {0, 1} to the first part,
and the other 2(M−2)2 coefficients to the last (see Fig. 8(a)).
Due to the orthogonality of the RDST, the RDADCF clearly
forms a Parseval block frame, i.e., F(RD)>F(RD)

= IM .
Now, we discuss the capability of the directional sub-

band decomposition based on the DCT and the RDST. Let
F(C), F(RS)

∈ RM×M be the DCT and the RDST matri-
ces. As discussed in Section III-B, the complex combination
[F(C)]k,·±j[F(RS)]k,· should have a one-sided frequency spec-
trum for directional subband decomposition. In the case of
even k (≥ 2), the rows of [F(RS)]k,· are identical to those of the
DST. Therefore, the frequency spectrum [F(C)]k,·±j[F(RS)]k,·
is one-sided. In the case of odd k (≥ 3), where the rows
[F(RS)]k,· are newly designed in Algorithm 1, the frequency
spectrum [F(C)]k,· ± j[F(RS)]k,· can be one-sided (Fig. 7(b)).
Analyticity of the RDADCF can be explained as follows.

Let {s(s)` } and {s
(r)
` } be the rows of the DST and the RDST,

respectively. For any odd k (≥ 3), s(r)k can be obtained by
applying orthogonal projection to s(s)k onto the orthogonal
complement of {s(s)` }�M−1\{k}, as

s(r)k =
±1
ηk

s(s)k −
∑

`∈�M−1\{k}

〈s(r)` , s
(s)
k 〉s

(r)
`

 , (16)

where ηk is the normalization factor for s(r)k having unit
norm. Let [F(W)]k,n = 1

√
M
e−j

2π
M kn denote the DFT. Because

F(W)s(r)` and F(W)s(s)k have different passbands, |〈s(r)` , s
(s)
k 〉| =

|〈F(W)s(r)` ,F
(W)s(s)k 〉| is small. Therefore, the spectrum of the

s(r)k can approximate s(s)k over the passband of s(s)k .
The atoms of the RDADCF lie along the 2(M − 2)2

frequency directions, as shown in Figs. 8(b) and (c),
where C (kv,kh)

nv,nh = [F(C)]kv,nv [F
(C)]kh,nh , S(kv,kh)nv,nh =

[F(RS)]kv,nv [F
(RS)]kh,nh , and B

(kv,kh,±1)
nv,nh = C (kv,kh)

nv,nh ± S(kv,kh)nv,nh .
The number of directional selectivities of the RDADCF is
slightly less than the original DADCF. Since the RDADCF
with M = 2 cannot ensure directional selectivity, we recom-
mend M = 2m where m ≥ 2.

VI. EXPERIMENTAL RESULTS
We evaluated the performance of the proposed DADCF pyra-
mid (Section IV-D) and RDADCF in compressive image
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TABLE 2. Numerical results of compressive sensing reconstruction.

sensing reconstruction [4], as an example of image processing
applications. 512×512 pixel images in Fig. 9 were used as the
test set. Each incomplete observation (y = vec(Y) ∈ R5122 )
is obtained by Noiselet transform [39] (8 ∈ R5122×5122 )
followed by random sampling of 30%, 40%, 50%, and 60%
pixels (Rsamp ∈ RR(5122p)×5122 where R is the rounding
operator and p = 0.3, 0.4, 0.5, 0.6) in the presence of
additive white Gaussian noise (n ∈ R5122 ) with the standard
derivation σ = 0.1 as y = Rsamp8x + n, (x = vec(X) ∈
R5122 ). Figs. 9(a)–(d) indicate the estimated latent images by
using the Moore-Penrose pseudo inverse of 8̃†

= 8>R>samp
(8̃ = Rsamp8) in the case of p = 0.3.

Up to now,many block transform-basedmethods for image
recovery have been proposed, such as BM3D, patch-based
redundant DCT approaches, and so on [25]–[27]. For fair
comparison, we simply evaluate directional block transforms
in two image recovery problems:
• Problem 1: image recovery based on sparsity of block-
wise transformed coefficients.

• Problem 2: image recovery based on sparsity of
block-wise transformed coefficients and weighted total

variation (WTV) for block boundaries as presented
in [40].

The cost function for these two problems is described as
follows:

x? = argmin
x∈R5122

‖FPv2bvx‖1 + ρ‖W̃bDhvx‖1,2

+ιC[0,1](x)+ Fy(8̃x), (17)

where Pv2bv is the permutation matrix permuting a vectorized
version of a matrix to a block-wise-vectorized one Pv2bvx =
bvec(X), F = I(V) ⊗ F(DP) or F = I(V) ⊗ F(RD) (I(V) =
I5122/M2 ), and ιA(x) is the indicator function5 of a set A.C[0,1]
is the set of vectors whose entries are within [0, 1]. The data-
fidelity function was set as Fy = ιB(y,ε) (B(y, ε) := {x ∈
RM
|‖x − y‖2 ≤ ε}) is the indicator function defined by the

`2-norm ball. The radius was set as ε = ‖xo − y‖2, where
xo is an original image. Dhv =

[
D>v D>h

]>
∈ R(2·5122)×5122

denotes the vertical and horizontal difference operator.

5Indicator function of set A is defined as ιA(x) = 0, (x ∈ A),
ιA(x) = ∞, (x /∈ A).
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FIGURE 8. (a) Procedure of the RDADCF (M = 4). (b) and (c): Atoms

C
(kv ,kh)
nv ,nh

, S
(kv ,kh)
nv ,nh

(red), and B
(kv ,kh,±1)
nv ,nh

(blue and green) in the RDADCF.
The numbers indicate the rightmost subband indices in (a).

FIGURE 9. (a)–(d): Original images (256 × 256) and recovered images by
8̃† (sampling rate p = 0.3).

W̃b = I(V) ⊗Wb, where Wb ∈ RM2
×M2

is the weighting
matrix for block boundary as [Wb]m,n = 0 (if n corresponds
to the 2D index in the interior of the block), [Wb]m,n = 1
(if n corresponds the 2D index at the boundary of the block).
The cost functions with ρ = 0 and ρ = 1 correspond to
Problem 1 and 2, respectively. The detailed algorithm used in
the experiments is given in Appendix E.
For comparison, we also used the DCT, the DFT, and the

DHT in (17). The block size is set toM = 8, 16, 32.
Fig. 10 shows the resulting images of the proposed and

conventional transforms obtained in the case of sampling rate
p = 0.4. As these figures show (particularly in the dashed
red boxes), the DCT cannot recover directional textures pre-
cisely. Table 2 shows the numerical results. In most cases, the
DADCF pyramid or the RDADCF outperformed the DCT,
the DFT, and the DHT in terms of the reconstruction error
(PSNR). The RDADCF recovers the images better than the
DADCF pyramid, especially forMonarch andParrot (smooth
images), due to its regularity property. In fact, the DCT is
superior to the DADCF pyramid and the RDADCF in some
cases. However, since the DADCF pyramid and the RDADCF
are compatible with the DCT, we can select the DCT, the
DADCF pyramid, or the RDADCF by using or bypassing the

FIGURE 10. Zoomed resulting images reconstructed from 60% noiselet
coefficients ((a)–(d)) and 30% noiselet coefficients ((e)–(h)). The size and
the decomposition level of the transforms is M = 8 and J = 2,
respectively.

DST/RDST and the SAP operations, depending on the input
image.

VII. CONCLUDING REMARKS
In this paper, we proposed the DADCF and the RDADCF
for directional image representation by extending the DCT.
Since they are Parseval block frames with low redundancy,
they can deliver computational efficiency for practical situa-
tions. Furthermore, unlike the conventional directional block
transforms, they can finely decompose the frequency plane
and provide richer directional atoms. Comparing both the
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DADCF and the RDADCF, the DADCF provides richer
directional selectivity than the RDADCF. However, in prac-
tice, the slightly redundant DADCF pyramid should be used
instead of the DADCF to avoid the DC leakage and per-
form good image processing, i.e., the RDADCF can save
more amount of memory usage than the DADCF (pyramid).
Also, they can be easily implemented by appending triv-
ial operations (the DST or the RDST, and the SAP opera-
tions) to the DCT. Moreover, the DST can be implemented
based on the DCT with the permutation and sign-alternation
operations and the RDST based on the DST and one addi-
tional orthogonal matrix with the size of the half. Since the
DCT is integrated into many existing digital devices, the
system modification for the proposed method is minimal.
Note that the DADCF and the RDADCF are compatible
with the DCT. Depending on applications, we can switch the
DCT/DADCF/RDADCF by using the DST/RDST and SAP
operations.

We evaluated the DADCF pyramid and the RDADCF
in compressive image sensing reconstruction as a practical
application. The experimental results showed that, for both
fine textures and smooth images, they could achieve higher
numerical qualities than the DCT, the DFT, and the DHT.
Furthermore, it was shown that the RDADCF could recover
smooth regions better than the DADCF pyramid due to its
regularity property.

APPENDIX A
PROOF FOR PROPOSITION 2

Proof: We first introduce the following lemma.
Lemma 1:
1) The elements in the upper-right triangle [SS>]kv,kh =

[〈skv , skh〉]kv,kh are expressed as

〈skv , skh〉

=


√
2

M sin
(
π
2M kh

) , (kv = 0 and kh = 2`+ 1)

1, (kv = kh)
0, (otherwise),

where ` ∈ �M
2 −1

. For example, for M = 4,

SS> ≈


1 0.9239 0 0.3827

0.9239 1 0 0
0 0 1 0

0.3827 0 0 1

 . (18)

2)
∑M/2−1
`=0 〈s0, s2`+1〉2 = 1.

Proof:
1) It is clear that 〈s0, s0〉 = 1 and 〈skv , skh〉 = δ(kv − kh)

for kv, kh ∈ �1,M−1 because {sk}M−1k=1 are the rows
of the DST F(S). In the other cases, it is clear from
Proposition 1.

2)
∑M/2−1
`=0 〈s0, s2`+1〉2 =

∥∥∥F(S) 1
√
M
1
∥∥∥2
2
= 1.

Let Ŝ be Ŝ = SS> =
[̂
s0 ŝ1 · · · ŝM−1

]>. From Lemma 1
2), ŝ0 −

∑M/2−1
`=0 〈s0, s2`+1〉̂s2`+1 = 0. This implies that

rank(̂S) = M − 1, and so rank(S) = M − 1.

APPENDIX B
PROOF FOR PROPOSITION 3

Proof: From Proposition 1, the elements in the upper-

right triangle of Ŝ(0) = S̃(0)̃S(0)> =
[̂
s(0)0 · · · ŝ

(0)
M−1

]>
are as

follows:

[̂S(0)]kv,kh =


√
2

M sin
(
π
2M kh

) , (kv = 0 and kh = 2`+ 1)

1, (kv = kh and kv 6= 1)
0, (otherwise),

where 1 ≤ ` ≤ M
2 − 1. For example, forM = 4,

Ŝ(0) ≈


1 0 0 0.3827
0 0 0 0
0 0 1 0

0.3827 0 0 1.

 (19)

Then, we can derive that

ŝ(0)0 −

M/2−1∑
`=1

〈s0, s2`+1〉̂s
(0)
2`+1 6= 0. (20)

Thus, it can be concluded that rank(̃S(0)) = M − 1.

APPENDIX C
PROOF FOR PROPOSITION 4

Proof: The statements 1) and 2) are clearly true.We only
show the proof for 3).

For any even row 2k ≥ 2,F[[F(RS)]2k,·] is exactly the same
as F[[F(S)]2k,·]. Thus, it is enough to show the case of odd
rows [F(RS)]2k+1,· (2k + 1 ≥ 3).
[F(RS)]2k+1,n is the same as [s(k+1)2k+1 ]n of S(k+1) =[

s(k+1)0 . . . s(k+1)M−1

]>
in the 5th line of Algorithm 1. LetT(k)

=[
t(k)0 . . . t(k)M−1

]
be the inverse matrix of S(k). Since s(k+1)2k+1

is designed to be orthogonal to {s(k)n }�M−1\{2k+1} in Algo-
rithm 1, s(k+1)2k+1 can be expressed with a linear combination
of {t(k)n }�M−1 as:

s(k+1)2k+1 = T(k)S(k)s(k+1)2k+1 =

M−1∑
m=0

〈s(k)m , s
(k+1)
2k+1 〉t

(k)
m

= 〈s(k)2k+1, s
(k+1)
2k+1 〉t

(k)
2k+1. (21)

Here, we use the following lemma (see its proof in
Appendix D).
Lemma 2: The passband of the frequency response of t(k)`

of T(k)
=

[
t(k)0 . . . t(k)M−1

]
is the same as that of s(k)` of S(k) =[

s(k)0 . . . s(k)M−1

]>
.

From Lemma 2, the passband of the frequency response
of s(k+1)2k+1 is located at the same position as that of t(k)2k+1 and
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s(k)2k+1 = ([F(S)]2k+1,·)>. Consequently, we conclude that
statement 3) is true.

APPENDIX D
PROOF FOR LEMMA 2

Proof: First, consider the case of k = 1. Since T(0)
=[

t(0)0 . . . t(0)M−1

]
is the inverse of S(0) =

[
s(0)0 . . . s(0)M−1

]>
,

each t(0)m can be represented as t(0)m =
∑M−1

n=0 〈t
(0)
n , t

(0)
m 〉s

(0)
n .

Therefore, it is enough to show that |[(T(0))>T(0)]m,n| =
|〈t(0)m , t

(0)
n 〉| � |〈t

(0)
m , t

(0)
m 〉|.

For that, we consider the eigenvalue decomposition of
S(0)S(0)> = U(0)D(0)U(0)>, then calculate T(0)>T(0)

=

U(0)(D(0))−1U(0)>, where U(0)
=
[
u0 . . . uM−1

]
and D(0)

=

diag(λ0, . . . , λM−1) are some orthogonal and diagonal matri-
ces consisting of eigenvectors and eigenvalues, respectively.
Similar to Lemma 1, we can derive Ŝ(0) = S(0)S(0)> forms

Ŝ(0) =



1 0 0 ŝ3 0 ŝ5 · · ·

0 1 0 0 0 0 · · ·

0 0 1 0 0 0 · · ·

ŝ3 0 0 1 0 0 · · ·

0 0 0 0 1 0 · · ·

ŝ5 0 0 0 0 1 · · ·

...
...

...
...

...
...

. . . ,


(22)

where ŝ2`+1 =
√
2

M sin( π
2M (2`+1))

(` ≥ 1). Let us consider some

eigenvalue λ and its corresponding eigenvectors u of Ŝ(0).
Note that all the eigenvalues are positive λn > 0, since
rank(̂S(0)) = M . Suppose an eigenvalue λ = 1, then its
eigenvector u =

[
u0 . . . uM−1

]> should satisfy

Ŝ(0)
[
u0 . . . uM−1

]>
=
[
u0 . . . uM−1

]>
⇒

 u3 = −
∑M/2−1

`=2

ŝ2`+1
ŝ3

u2`+1

u0 = 0

⇒ u =
[
0 u1 u2 −

∑M/2−1
`=2

ŝ2`+1
ŝ3

u2`+1 u4 · · ·
]>

⇒ u ∈ span {u1, . . . ,uM−2} , (23)

where

um =


δm, (m = 1, 2)
δm+1, (m = 2`+ 1,m ≥ 3)

δm+1 −
ŝm+1
ŝ3

δ3, (m = 2`,m ≥ 3),
(24)

where δm ∈ RM (m ∈ �M−1) consists of [δm]m = 1 and
[δm]n = 0 (m 6= n). Since U(0) should be an orthogonal
matrix, but the vectors {um}m=2`,m≥3 are not orthogonal yet,
Gram-Schmidt orthonormalization is applied to them.

Next, we consider the case of λ 6= 1.

Ŝ(0)
[
u0 . . . uM−1

]>
= λ

[
u0 . . . uM−1

]>

⇒


∑M/2−1

`=1
ŝ2`+1u2`+1 = (λ− 1)u0 (u0 6= 0)

ŝ2`+1u0 = (λ− 1)u2`+1
(λ− 1)u` = 0

⇒ λ2 − 2λ+

1−
M/2−1∑
`=1

ŝ22`+1

 = 0 (25)

Thus, λ0 = 1 +
√∑M/2−1

`=1 ŝ22`+1, λM−1 = 1 −√∑M/2−1
`=1 ŝ22`+1. For λ0 and λM−1, the eigenvectors u0 and

uM−1 can be found as

u(0)0 =
1
√
2
δ0 +

M/2−1∑
`=1

ŝ2`+1
√
2
√∑M/2−1

`=1 ŝ22`+1

δ2`+1,

u(0)M−1 =
1
√
2
δ0 −

M/2−1∑
`=1

ŝ2`+1
√
2
√∑M/2−1

`=1 ŝ22`+1

δ2`+1. (26)

{λn} and {u(0)n } give us the eigenvalue decomposi-
tion of Ŝ(0). For example, when M = 8, D(0)

=

diag(λ0, 1, 1, 1, 1, 1, 1, λM−1) and

U(0)
=



1
√
2

0 0 0 0 0 0 1
√
2

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
A3√
2

0 0 0 u3,4 0 u3,6 −
A3√
2

0 0 0 1 0 0 0 0
A5√
2

0 0 0 u5,4 0 0 −
A5√
2

0 0 0 0 0 1 0 0
A7√
2

0 0 0 0 0 u7,6 −
A7√
2


,

(27)

where A2`+1 =
ŝ2`+1√̂
s23+̂s

2
5+̂s

2
7

(< 1) and u3,4, u3,6, u5,4, u7,6

are the elements after orthogonalization. Then, the elements
in the upper-right triangle of Ŝ(0) are

[̂S(0)]m,n
= [U(0)D(0)U(0)>]m,n

=



1
2
(λ0 + λM−1) (m = n = 1)

An
2
(λ0 − λM−1) (m = 0, n = 2`+ 1 ≥ 3)

A2m
2
(λ0 + λM−1)+1m,m (m = n = 2`+ 1 ≥ 3)

AmAn
2

(λ0 + λM−1)+1m,n

(m = 2`m + 1, n = 2`n + 1, `m 6= `n, m, n ≥ 3)
1 (m = n = 1, 2, 2` (` ≥ 2))
0 otherwise,

(28)
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where 1m,n contains the result of multiplication. The upper-
right triangle elements of T̂(0)

= U(0)(D(0))−1U(0)> are

[T̂(0)]m,n
= [U(0)(D(0))−1U(0)>]m,n

=



1
2
(
1
λ0
+

1
λM−1

), (m = n = 1)

An
2
(
1
λ0
−

1
λM−1

), (m = 0, n = 2`+ 1 ≥ 3)

A2m
2
(
1
λ0
+

1
λM−1

)+1m,m, (m=n=2`+1 ≥ 3)

AmAn
2

(
1
λ0
+

1
λM−1

)+1m,n

(m=2`m + 1, n = 2`n + 1, `m 6= `n, m, n ≥ 3)
1, (m = n = 1, 2, 2` (` ≥ 2))
0, otherwise.

(29)

From Lemma 1, it follows that

1
λ0λM−1

=
1

1− (
∑M/2−1
`=1 ŝ22`+1)

=
1

ŝ21
=

(M sin( π2M ))2

2
.(30)

Since M sin( π2M ) = π
2
2M
π

sin( 1
2M
π

), x sin( 1x ) monotonically

increases over [ 4
π
,∞) and x sin( 1x )

x→∞
−−−→ 1, then

1.1716 ≈
(4 sin(π8 ))

2

2
<

(M sin( π2M ))2

2
M→∞
−−−−→

π2

8
≈ 1.2337,

1
λ0λM−1

= 1+ ε (ε <
1
4
), (31)

and 1
λ0
+

1
λM−1

=
λ0+λM−1
λ0λM−1

= (λ0 + λM−1)(1 + ε),
1
λ0
−

1
λM−1

= −
λ0−λM−1
λ0λM−1

= −(λ0 − λM−1)(1 + ε). Thus,

by substituting (22), (28), and (31) into (29), we can derive

[T̂(0)]m,n
= [U(0)(D(0))−1U(0)>]m,n

=



1+ ε > 1 (m = n = 1)
−̂sn(1+ ε) (m = 0, n = 2`+ 1 ≥ 3)

1+
A2m
2
ε > 1 (m = n = 2`+ 1 ≥ 3)

AmAn
2

ε <
1
8

(m=2`m+1, n = 2`n+1, `m 6= `n, m, n≥3)
1, (m = n = 1, 2, 2` (` ≥ 2))
0, otherwise.

(32)

Here, let ρ(M , n) = ŝn =
√
2

(M sin( π2M n)) . Since we assume that
the size M for the RDADCF isM ≥ 4,

2
5
> 0.3827 ≈ ρ(4, 3) > ρ(M , n) > ρ(M + 1, n),

2
5
> 0.3827 ≈ ρ(4, 3) > ρ(M , n) > ρ(M , n+ 1), (33)

Algorithm 2 Solver for (17)

1: set n = 0 and choose x(0), z(0)1 , z(0)2 , γ1, γ2.
2: while stop criterion is not satisfied do
3: x(n+1) = proxγ1ιC[0,1] (x

(n)
− γ1((FPv2bv)>z

(n)
1 +

(W̃bDhv)>z
(n)
2 + 8̃

>z(n)3 ))
4: t(n)1 = z(n)1 + γ2FPv2bv(2x(n+1) − x(n)).
5: t(n)2 = z(n)2 + γ2W̃bDhv(2x(n+1) − x(n)).
6: t(n)3 = z(n)3 + γ28̃(2x

(n+1)
− x(n)).

7: t̂(n)1 = prox 1
γ2
‖·‖1

(
1
γ2
t(n)1

)
.

8: t̂(n)2 = prox 1
γ2
‖·‖1,2

(
1
γ2
t(n)2

)
.

9: t̂(n)3 = prox 1
γ2
ι{y}

(
1
γ2
t(n)3

)
.

10: z(n+1)k = t(n)k − γ2 t̂
(n)
k (k = 1, 2, 3).

11: n = n+ 1.
12: end while
13: Output u(n).

thus | − ŝn(1 + ε)| < 2
5
5
4 =

1
2 . Finally, we conclude that

|[T(0)>T(0)]m,n| = |〈t
(0)
m , t

(0)
n 〉| � |〈t

(0)
m , t

(0)
m 〉|, which implies

the passband of each t(0)m is the same as s(0)m .
For k = 2, S(1) forms as in (22) with ŝ3 = 0. With the same

discussion when k = 1, it can be derived that lower bounds of
the diagonal elements of |[T̂(1)]m,m| are 1 and upper bounds
of the elements |[T̂(1)]m,n| (m 6= n) are 1

2 or 1
8 , as in (32).

Thus, |〈t(1)m , t
(1)
n 〉| � |〈t

(1)
m , t

(1)
m 〉|. This is the end of proof for

Lemma 2.

APPENDIX E
DETAILED ALGORITHM OF IMAGE RECOVERY USED IN
EXPERIMENTS
To solve (17), the primal-dual splitting (PDS) algorithm
[41], [42] is used. Consider the following convex optimiza-
tion problem to find

x? ∈ argmin
x∈RN1

f (x)+ g(Lx), (34)

where f ∈ 00(RN1 ), g ∈ 00(RN2 ) (00(RN2 ) is the set of
proper lower semicontinuous convex functions [43] on RN ),
and L ∈ RN2×N1 . Then, the optimal solution x?, can be
obtained as{

x(n+1) := proxγ1f [x
(n)
− γ1L>z(n)]

z(n+1) := proxγ2g∗ [z
(n)
+ γ2L(2x(n+1) − x(n))],

(35)

where prox denotes the proximal operator [43], g∗ is the con-
jugate function [43] of g. In the experiments, the parameters
γ1 and γ2 in (35), are chosen as 0.01 and 1

12γ1
. For Problem 2

(ρ = 1 in (17)), the functions f and g, and the matrix L
in (34), are set as

f (x) = ιC[0,1] (x),

g([z>1 z>2 z>3 ]
>) = ‖z1‖1 + ‖z2‖1,2 + ι{y}(z3),

z1 = FPv2bvx, z2 = W̃bDhvx, z3 = 8̃x,

L =
[
(FPv2bv)> (W̃bDhv)> 8̃>

]>
. (36)
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The resulting solver for (17) is described inAlgorithm 2.6 The
stopping criterion is ‖x(n+1) − x(n)‖2 ≤ 0.01. The algorithm
fof Problem 1 (ρ = 0 in (17)) can be designed by removing
the terms and steps (Step 5, 8, and 10) relating to z2, t2, t

(n)
2 ,

and t̂(n)2 from Algorithm 2.
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