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ABSTRACT Deep learning has obtained wide attention in various fields enabling systems to derive essential
information from digital inputs. Lately, the use of deep learning in remote sensing applications has also been
motivated and applied, wherein considerable improvements in the results are witnessed. Synthetic aperture
radar images have been used in various earth observation systems because of their all-day imaging capacity
and self-illuminating nature. Various works concentrating on extracting meaningful information from SAR
data for various other applications have been proposed in the literature. Classification of SAR images has
been one of the utmost steps in numerous SAR applications. Therefore, this work focuses on studying several
existing techniques that use deep learning for SAR image classification by examining the architectures
involved. Based on the study, crucial observations are made, highlighting the merits and demerits of several
approaches, allowing researchers to better understand how the methods can impact the performance of the
deep learningmodels for SAR image classification in the future. Potential hybridmodels for the classification
of SAR images are also presented in this paper.

INDEX TERMS Deep learning, image classification, image processing, remote sensing, synthetic aperture
radar.

I. INTRODUCTION
With enormous volumes of data produced from Synthetic
Aperture Radar (SAR) and many other SAR carrying satel-
lites, the processing and interpretation of SAR data have
become immediate for a wide range of applications. The
SAR data are worth processing because of the advantages
it offers. SAR is a radar attached to air-crafts or any other
moving platforms and is used to construct images from the
returned signals of the electromagnetic waves that it transmits
to the earth’s surface. SAR can operate regardless of weather
situations and with no time constraints. The images obtained
from SAR have been applied to numerous applications that
include military surveillance, disaster management, maritime
vigilance, inspection of illegal mining activities [1], etc. With
more SAR sensors mounted satellites emerging in the coming
years, gigantic data needs to be processed, archived and
analyzed. Accessibility of such SAR data is challenging as
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they are difficult to interpret. One of the major processing
steps of SAR images is classification since classification is
profitable in categorizing the detected targets based on their
classes and can be applied in real-world scenarios.

Recently, machine learning methods, notably deep
learning, have adequately improved the performances of
various SAR image processing methods wherein they out-
perform traditional methods [2]–[8], but the existence of
speckle noise in SAR images makes the interpretation chal-
lenging and hence difficult for posterior processing such
as classification. Numerous methods have been explored
in the literature for performance improvement in SAR
image interpretation [9]–[12]. Despite SAR having advanta-
geous characteristics, various issues referring to the adop-
tion of SAR images in several applications still needs
attention. Issues include inaccurate classification of objects
due to inappropriate recognition of features associated
with a particular target. The grainy features present in
SAR images are one of the major causes of issues such
as misinterpretation [13], [14]. Enhancing SAR images by
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removal of such unwanted features also gave rise to another
issue that is the unintentional removal of relevant features
during the noise removal process resulting in a misclassifica-
tion issue.

Several works on SAR image classification focusing on
various issues have been proposed in the literature, especially
using the prominent deep learningmodels. A study on various
existing SAR image classification approaches concentrating
on the techniques adopted, including architectures involved,
along with the advantages and various disadvantages, would
help researchers to get insights about capable approaches to
be adopted in the future for SAR image classification. Several
informative surveys have been done in the literature regarding
the processing of SAR images, including classification giving
constructive conclusions. The comparisons of the different
surveys are shown in Table 1. El-Darymli et al. [15] have
surveyed and introduced classificationmethodologies in SAR
analysis. In a different survey, El-Darymli et al. [16] have
assessed the different methods in SAR target interpretations.
The work by Zhu et al. [17] analyses the different challenges
faced when deep learning meets remote sensing. Another
work by Yao et al. [18] focuses on the different classification
methods in remote sensing along with their configurations
by also highlighting the existing problems and future works.
Wang et al. [19] reviewed the different SAR image classifi-
cation algorithms from traditional methods to deep learning
methods. It may be mentioned that all the aforementioned
surveys have helped researchers in the field of SAR image
analysis. However, it would be more helpful if the different
deep learning architectures used in the literature for SAR
image classification along with the future models were also
highlighted. Therefore this has motivated us in conducting a
study on various works related to SAR image interpretation
by focusing mainly on one of the major processing steps
of SAR image interpretation called classification by going
in-depth the techniques and architectures involved with an
aim to ease researchers and those who are new to the field
of SAR imaging, enabling them to be at par with recent
advances in this area. The main contributions of the paper
are as follows:

1) State-of-the-art works related to SAR image classifica-
tion are discussed.

2) The deep learning models adopted for SAR image clas-
sification, along with the different parameter settings,
are also discussed.

3) The advantages and disadvantages of the different
approaches are highlighted, along with different issues
and challenges.

4) Future approaches obtained from the study for improv-
ing the performances in the future are also discussed.

5) Based on the study, potential hybrid models for future
adoption are also highlighted.

This paper considers the performances of various SAR
image classification approaches, and a comparison of the
different methods has also been made, which will help in
understanding and solving existing issues bagged with SAR

image classification. The rest of the paper is organized as
follows. Section II discusses the background study, compris-
ing SAR image processing, deep learning and convolutional
neural networks. The study on SAR image classification is
discussed in Section III. Section IV discusses the research
issues and challenges, followed by a discussion on future
approaches in Section V and a conclusion in Section VI.

TABLE 1. Different survey works on SAR image analysis.

II. BACKGROUND
This section presents the background study by introduc-
ing SAR image processing followed by explanations on
deep learning in SAR processing and convolutional neural
networks.

A. SAR IMAGE PROCESSING
SAR is a radar that is used for constructing two-dimensional
images by transmitting electromagnetic waves to the surface
of the earth with the help of a transmitter. These waves get
reflected from the earth’s surface in the form of echos to the
receiver of the radar, and images are constructed with respect
to the received signals [13]. Figure 1 shows the basic block
diagram of a typical radar system [21].

FIGURE 1. The basic block diagram of a radar [21].

The flight path of the platform in which SAR is mounted
determines the large antenna. Because of this simulated
antenna, it is possible to regenerate the signal which would
have been attained by an antenna of length v × T , where v
is the platform speed, and T is the period traveled by the
radar from one position to another [22]. Typically, with a
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larger aperture and bandwidth, the resolution of the image
becomes high. This enables SAR to generate images of higher
resolution even with smaller physical antennas. However,
images obtained from SAR are usually distorted and highly
corrupted due to the ability to function in various conditions,
making the system more susceptible to speckle noises. This
is because the reflected signals may not be in phase due to the
coarseness of the objects or targets and the pathway in which
the signal navigates towards the receiver. The occurrence
of speckle noise in SAR images makes understanding the
images difficult and complicated even by humans. Therefore
to make machines understand the complex SAR images is
very challenging. Despite the projection of various algorithms
in the literature [2], [23], [24], loss of information during the
process is still a concern, and this leads to erroneous interpre-
tation in subsequent stages such as SAR image classification.

B. DEEP LEARNING IN SAR PROCESSING
One of the prominent branches of machine learning, called
deep learning, is discussed in this section. Deep learning,
whose working is a mimicry of the human brain, is comprised
of multi-layered neural networks to learn high-level features
from raw data [25] successively. By multi-layered neural net-
works, it means that the lower layers extract low-level infor-
mation or features such as edges, and higher layers extract
high-level information such as faces, letters or digits [26].
Unlike primitive methods where features are extracted man-
ually, feature extraction in deep learning appears to be auto-
matic inside the network. Another major advantage of deep
learning compared to other algorithms is that it can learn
automatically from unlabeled data [27]. Deeper networks
can train large volumes of data giving better accuracy than
traditional methods. The work in [28] have shown that deep
learning could substantially reduce the error rates in image
classification [29], [30]. Therefore researchers have started
applying deep learning in various other fields including
SAR image applications [3], [4], [31], [32]. The adoption of
deep learning approaches for various SAR image processing
tasks has resulted in considerable improvement in the perfor-
mances [5], [33], [34]. However, the presence of noise in SAR
images weakens the ability of deep learning to make accu-
rate predictions and hence reduces the applicability of SAR
images in potential fields of remote sensing. Research on
boosting the performance of SAR interpretations like image
classification using deep learning for future applications is
still being carried out. Existing works for various SAR image
classifications will be discussed in the later sections. The
most widely used deep learning network called convolutional
neural network is briefly discussed in the next section.

C. CONVOLUTIONAL NEURAL NETWORKS
The Convolutional Neural Network, also known as CNN,
is one of themost widely used deep learning algorithms that is
being adopted for various computer vision tasks since the wit-
ness of their capabilities in the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) [35]. The CNN consists

of an input layer, convolutional layers, sampling layers and
fully connected layers [36], [37]. In the case of image appli-
cations, the CNN takes in input and allocates weights and
biases to various patterns of the objects present in the input
image, resulting in the capability to differentiate between the
different objects in the image. With adequate training, the
CNN automatically learns the relevant filter values without
human-engineered filters. The configurations of CNNdepend
upon the application domain, and hence the performance
differs from one application to another. Because of its effi-
ciency, CNN has been adopted in numerous research areas
showing commendable outcomes. It has also been adopted
for various SAR image analysis such as denoising for noise
suppression, detecting SAR targets, and even for SAR image
classification.

Some of the well known CNN architectures from the
ILSVRC event [35] that are being applied to various applica-
tions comprise of the LeNet [38], Alexnet [28], ZFNet [39],
Inception [40], VggNet [41], ResNet [42]. LeNet architecture
is made up of 7 layers and has an error rate below 1% on
theMNIST dataset. Alexnet has a more profound architecture
similar to LeNet and has 60 million parameters with an error
rate 15.3%. On the other hand, the structure of ZFNet is
identical to Alexnet but differs in the size of the filter and the
convolutional stride of the first layer. ZFNet obtained an error
rate of 14.8%. The Inception architecture consists of 22 layers
and is an improvement of Alexnet as it reduces the parameters
from 60 million to only 4 million. However, the architecture
used in Inception was influenced by the LeNet model. Incep-
tion achieved 6.67% error rate. An orderly placed architec-
ture consisting of 16 convolutional layers forms the VggNet.
VggNet consists of 138 million parameters with 7.3% error
rate. The residual network popularly known as ResNet is
made up of 152 layers with skip connections. The complexity
of ResNet is lower than that of VggNet, and it achieved an
error rate of 3.57%. The adoption of this architecture in vari-
ous applications using optical images has been of great help in
improving the performances [43]–[46]. In SAR images analy-
sis, the use of the aforementioned architectures is still limited,
hence leaving research space in this area. While this has
encouraged researchers to adopt CNN in SAR image analysis,
it is observed that the classification and interpretation of SAR
images is still challenging because of the complex and noisy
characteristics of SAR. Therefore the main focus of this paper
is to study recent existing works, especially the deep learning-
based approaches in the field of SAR image classification
addressing different issues and challenges along with their
advantages and disadvantages, and are discussed in the next
section.

III. SAR IMAGE CLASSIFICATION
This section discussed the classification of SAR images,
followed by the literature survey on various works related
to SAR image classification. Classification is a process of
categorizing a given set of data into classes based on the
features observed on the training set of data. Hence, SAR
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image classification refers to the process of categorizing the
objects or targets present in the image into their respective
classes. For instance, categorizing the different marine targets
present in a given SAR image based on the target features is
called classification.

Classification of SAR targets is a challenging field of
research. Even with the identity of deep learning to be one of
the best target classifiers, as is proved by the ILSVRC compe-
tition [35], misclassification of targets in SAR is still a major
issue that is being researched to date. The deteriorating qual-
ity of SAR images makes the classification algorithm hard
to differentiate between relevant and non-relevant features in
order to understand the target type for proper classification.
On the other hand, similar-looking targets are also hard to dis-
tinguish because features that differentiate between the two
might have been suppressed or ignored by a classifier during
the process of noise suppression [47]. Therefore, classifying
similar-looking SAR targets is also an open field of research
at present. Various works on SAR image classification con-
sidering several issues have been proposed in the literature,
each having its own advantages and disadvantages, whose
details are discussed in the following subsections.

A. DNN-DAE-CONV
Even with the increase in SAR satellites resulting in the
need to process more remote sensing data, there is insuf-
ficient labeled SAR data to enable the use of automated
models like deep learning for various applications such
as the classification of oceanographic objects from SAR
images. The aim of the work in [48] is to apply deep neural
networks for oceanographic object classification with less
labeled data. The authors in [48] have incorporated two
models wherein the first model comprised of the Deep Neu-
ral Networks with denoising auto-encoder (DNN-DAE) and
the other model is called the classification model wherein
it uses DNN with convolutional layers (DNN-Conv). We,
therefore, refer to this work as DNN-DAE-Conv (DNN with
Denoising Auto Encoder and Convolution). The reason for
incorporating denoising auto-encoder is to enable the learn-
ing of higher-level representation of features. The flowchart
of the DNN-DAE-Conv [48] is shown in Figure 2. The
noisy SAR input image is first passed through a constant
false alarm rate (CFAR) for object detection. The detected
regions are extracted, normalized, and then used as input
to the unsupervised block of the DNN-DAE. The output
of the unsupervised block then enters the supervised block
wherein training was performed using labeled data from
a database containing targets that are identified manually
and labels generated from Automated Identification System
(AIS). TheDNN-DAEmodel could then produce labeled data
with the help of only relevant features and hence use the
labeled data for classification in DNN-Conv. In conclusion,
the DNN-DAE-Conv [48] was able to learn only the higher-
level representation of features because of the stacked auto-
encoder layers in the unsupervised block [49]–[51]. As future
work, denoising the input image before detecting targets may

be helpful. Incorporating the DNN-DAE with deeper CNNs
clubbed together, forming a hybridized model can be worked
upon experimentally and may improve the network perfor-
mance as a whole.

FIGURE 2. Flowchart depicting the technique used in DNN-DAE-Conv [48].

B. A-CONVNET
When convolutional neural networks are applied to
SAR-Automatic Target Recognition (SAR-ATR), it results
in severe overfitting due to the availability of limited SAR
datasets. Also, the classification performance on the Moving
and Stationary Target Acquisition and Recognition (MSTAR)
targets usually degrades, especially in Extended Operating
Conditions (EOC), because of the change in position of
the target features like the turret or fuel drums, leading to
the differences in the target configurations from those in the
database. With the advances of deep learning, the application
of networks such as CNN to SAR-ATR tasks resulted in
severe overfitting because SARdata are not large enough. The
work in [31] proposes an all convolutional neural network
called A-Convnet that focuses on mitigating the overfitting
issue as well as limited dataset issue while applying CNN to
MSTAR target classification. The novelty of the A-ConvNet
architecture is the non-inclusion of the fully connected lay-
ers allowing fewer degrees of freedom in the model, and
the architecture along with its hyperparameter settings are
shown in Figure 3 and Table 2 respectively. It may be noted
that data augmentation was also performed to enlarge the
dataset for training the A-ConvNet. Classification results
of experiments tested under EOC and Standard Operating
Conditions (SOC) showed improvements but resulted in few
misclassifications. Though A-ConvNet outperforms several
existing methods [52]–[57], its performance dropped approx-
imately by 7% when used for images with even just 1%
of noise [31]. This shows that the antinoise performance of
A-ConvNet is low. An end-to-end based experiment was also
conducted, where detection of MSTAR targets from a clut-
tered environment was also considered before classification.
Two stages of A-ConvNet were used in which the first stage
consists of a binary classifier in order to classify target and
clutter, followed by the second stage, which is the A-ConvNet
itself. Results show 98% accuracy with few false alarms and
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false recognition in images containing no noise. A-ConvNet
can be trained further for noisy images, or a preprocessing
stage may be added to its model to improve performance and
make it adaptable to noisy images.

FIGURE 3. Architecture used in A-ConvNet [31].

TABLE 2. Hyperparameters used in A-ConvNet [31].

C. CNN-MR
Classification of maritime targets has become an apple of
the eye for many researchers in SAR imaging. Therefore
numerous works have been done to classify maritime targets
from challenging SAR images [31], [48], [58], [59]. How-
ever, there still lies concerns about misclassification issues
faced by the existing works. Therefore to mitigate the mis-
classification issue, the authors in [47] have come up with
the multiple resolutions convolutional neural network model
named CNN-MR (Multiple Resolution CNN). As the name
suggests, this model learns a mapping from inputs with mul-
tiple resolutions (3m, 12m, 24m) to the corresponding targets.
The intention of involving multiple resolution inputs was
to enable the model to learn more related features in order
to result in better classification accuracy. The architecture
of the CNN-MR model shown in Figure 4 was designed
by collectively observing four different networks, namely
DNN-DAE-Conv [48], all-in-one CNN [58], A-ConvNet [31]
and CNN-A [59] proposed in the literature and comparing
them with a baseline classifier which is the SVM-PCA (Sup-
port Vector Machine based on Principle Component Analy-
sis) since it is an efficient classifier [60]. The CNN-MRmodel
uses targets from the TerraSAR-X data detected using the
Constant False Alarm Rate (CFAR). Experimentally it was
observed that the all-in-oneCNN [58]model performs similar

to SVM-PCA but yet suffers from misclassification. This
is because the model was too complex, and larger datasets
may improve the performance of such complex networks.
Also, models DNN-DAE-Conv [48], A-ConvNet [31] and
CNN-A [59] balanced well with the internal parameters. The
activation ReLU (Rectified Linear Unit) [61] is preferable
for internal layers, whereas, for dense layers, either ReLU or
Softmax works. Based on these observations, the CNN-MR
was modeled, resulting in further performance improvement
due to multiple resolution inputs and well-tuned architecture.
Table 3 shows the f1-score comparisons between networks
DNN-DAE-Conv, all-in-one CNN, A-ConvNet, CNN-A and
CNN-MR.

FIGURE 4. Architecture used in CNN-MR [47].

TABLE 3. Table showing average f1-scores of [31], [48], [58], [59] and [47].

D. SI-CNN
SAR images are predominantly used in sea ice monitor-
ing [62], [63]. Of the aforementioned techniques, the work
in [32], hereafter known as SI-CNN, aims at classifying the
different types of sea ice and sea from the SENTINEL-1
SCANSAR image with the help of a convolutional neural net-
work. The SENTINEL-1 product is first pre-processed using
the ESA SNAP tool in SI-CNN. Pre-processing includes
radiometric correction, thermal noise removal and Lee fil-
tering. The image is then classified manually into ice and
sea-ice, resulting in a series of class layers. Chips with
three spatial scales 32 × 32, 64 × 64, 128 × 128 are then
extracted from the class layers for training and validation.
This is achieved by checking each pixel, and if matched
with the true class layer, chips with the checked pixel at the
center are cropped. Before feeding and training the CNN,
the chips with size 64 × 64 and 128 × 128 are resized to
32 × 32 since images fed to the CNN are required to be
of uniform sizes. The CNN architecture used in SI-CNN is
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basically the traditional convnet architecture and is shown in
Figure 5. It consists of 3 convolutional layers, each followed
by a pooling and normalization layer. It also consists of 2 fully
connected layers, followed by a dropout layer. A softmax
layer is appended at the end of the model to produce the final
output.

FIGURE 5. Architecture used in SI-CNN [32].

The hyper-parameters used are shown in Table 4.

TABLE 4. Hyperparameters used in SI-CNN [32].

The results show that the classification of grained ice,
striped ice, rough sea and smooth sea is promising and
achieved a precision of 0.945 − 0.922. However, in some
cases, massive ice is wrongly classified as the rough sea, and
smooth ice is wrongly classified as the smooth sea. The rea-
son for misclassification is due to the fact that fewer features
are learned by the model in each scale of the wrongly clas-
sified classes. The performance of SI-CNN [32] can further
be improved if various window sizes for finding the optimal
feature scale used for feature description are explored. The
next aim is to reduce the need to classify the class layers
manually.

E. M-NET
Various works have shown considerable improvements with
the advancement of deep learning and its application in vari-
ous SAR image processing problems. But the non-availability
of the SAR dataset is causing an issue, and therefore training
deep learning models with a limited dataset usually results
in over-fitting. To mitigate the issue of over-fitting caused
by a limited dataset, the authors in [3] proposed a deep
memory network called M-Net that aimed at classifying sev-
eral MSTAR targets using a limited dataset. An information
recorder whose format is shown in Figure 5, was designed
along with a mapping matrix in order to save and remember

the spatial features of samples and use these features to
predict the unseen samples with the help of spatial similarity
measure. The CNN part of M-Net first extracts the features of
an input SAR image, and the resulting vector gets multiplied
with a mapping matrix resulting in another vector that serves
as a query to the memory. The system will match the query
with the feature records stored in the information recorder,
and the features that match the most will select their corre-
sponding label as the final classification output. The mapping
matrix keeps the information recorder’s size unchanged as the
vector size changes, thereby reducing the dimensions when
the feature vectors have large dimensions.

TABLE 5. Table showing information recorder adopted in M-Net [3].

On the other hand, the convergence of the M-Net model
turned out to be problematic because of the involvement of an
information recorder and a matrix amidst the model, which
results in unstable and slow convergence. However, consid-
ering this issue, the authors have used pre-tuned parameters
trained on a CNN model same as the CNN used in M-Net
except that it uses softmax as a classifier instead of matrix
and information recorder and a cross-entropy loss [64] as a
loss function instead of hinge loss [65]. The M-net is then
trained using the pre-tuned parameters. The entire process is
shown in Figure 6. The architecture of the CNN used inMNet
is shown in Figure 7.

FIGURE 6. Flowchart summarizing the technique in M-Net [3].

Simulation results on the augmented MSTAR dataset
show that M-Net outperforms other methods, namely
SAEED (SAR Auto-Encoder based on Euclidean Dis-
tance) [66], A-Convnet [31] and SVM [67] but yet suffers
few misclassifications, especially under extended operating
conditions. However, MNet [3] worked better than the other
comparing algorithms when there were variations in the num-
ber of training samples. Table 6 shows comparison results of
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FIGURE 7. Architecture used in M-Net [3].

M-Net with other methods. The major advantage of MNet is
that it can extract more relevant features from fewer training
samples and are better separated than conventional CNN.
Several improvements can be worked upon related toMNet to
solve themisclassification issue, and the information recorder
can be modified to enable it to output probabilistic values
rather than deterministic ones.

TABLE 6. Comparison table showing average accuracy of the well-known
algorithms [3].

F. SM-CNN
With the increase in the application of SAR image scene
matching technology in airplane navigation guidance, var-
ious works have been proposed in the literature [68]–[70].
The work in [4], hereafter referred to as SM-CNN (Scene
Matching using CNN), is one of the most recent in this field
and is the first to use CNN for classifying the suitability
of areas for scene matching in SAR images into suitable
or unsuitable. Considering the characteristics of SAR, scene
matching is challenging because it may be affected by topo-
graphic variances [71]. Also, a single feature is not enough to
analyze the similarity between two scenes. On the contrary,
a combination of several indicators as a feature descriptor
could not properly reflect the matching suitability and results
in redundancies between features [70]. In SM-CNN, a ref-
erence image and a candidate image were taken over the
same region at different angles were selected and are matched
using cross-correlation coefficient and matching error with
respect to certain thresholds, generating the training labels for
a set of images. Two Digital Elevation Model (DEM) data
of the images are then formed and appended on the SAR

image, forming a three-channel image to provide the ele-
vation information that includes undulating terrain features,
which helps determine the matching suitability. Input images
of size 228× 228 are extracted from the DEM included SAR
image and fed the CNN along with the respective generated
labels. Figure 8 shows the overall flow of the SM-CNN [4]
method and Table 8 shows the configuration of its CNN.
The CNN used by SM-CNN [4] for classification is the
same as the fully convolutional network model proposed in
A-ConvNet [31]. However, the model was first pretrained
on large networks like CaffeNet [72]. The SM-CNN has
achieved an improved classification accuracy compared to
SVM. The author in SM-CNN also verifies the performance
of pretrained models such as VggNet [73] and CaffeNet,
whose results are shown in Table 7. It was observed that
A-ConvNet [31] has the lowest number of parameters and
thus is preferable when time and storage are a concern. On the
other hand, CaffeNet outperforms the other models in terms
of accuracy. The SM-CNN [4] however, suffers the misclas-
sification issue, especially in regions where there are high-
rise buildings. This is because the DEM cannot differentiate
between high-rise and low-rise buildings. The Digital Surface
Model (DSM) provides the 3D representation of the terrain
surface. Therefore, including DSM in the input data might
reduce the misclassification results and improve classifica-
tion accuracy.

TABLE 7. Table showing performances of pretrained models tested in
SM-CNN [4].

FIGURE 8. Flowchart summarizing the technique in SM-CNN [4].

G. AN-CNN
In the CNN paradigm, the neighboring pixels in an image are
not given much consideration, and this may be one reason
why image classification models face the misclassification
issue. To address this issue, the work in [74], referred to
as AN-CNN (Adaptive Neighbourhood based Convolutional
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TABLE 8. Hyperparameters used in SM-CNN [4].

Neural Network) introduced an adaptive CNN based on
neighboring pixels for SAR image classification. AN-CNN
uses the bilateral spatial and feature-based distance from the
central pixel to adapt weights to the neighboring pixels. The
feature-based weighting was done to improve the classifica-
tion of boundary regions, whereas the spatial-based weight-
ing was done to minimize the misclassification error. The
architecture of AN-CNN is shown in Figure 9. The AN-CNN
architecture is comprised of two convolutional layers, each
followed by pooling layers. It also has one fully connected
layer before the final classification layer. The adaptive neigh-
borhood of the input imagewas first generated and behaved as
input to the convolutional layers. The CNN was trained using
a customized cost function. The AN-CNN model was tested
on real SAR images, namely the San Francisco Bay dataset
and the Flevoland dataset and achieved an overall accuracy
of 83.90% and 87.13%, respectively. The AN-CNN achieved
better performance in boundary as well as homogeneous
regions due to the importance it gave to neighboring pixels
by incorporating both spatial and feature distance-based pixel
weighting mechanisms. However, when a certain percentage
of labeled samples were used as training data, the AN-CNN
became less effective on real SAR data when compared to
traditional CNN. This is because a limited training sample
makes the model generate less discriminating features.

FIGURE 9. Architecture used in AN-CNN [74].

H. SSR-TC
Since the application of deep learning in SAR images requires
sufficient data and since processed SAR data are limited, the
work in [75] hereafter known as SSR-TC (Sample Spectral
Regularization based Target Classification) aims at classify-
ing SAR targets by regularizing the singular values of each

feature associated with the SAR image giving rise to better
distinguishable features. The regularization method is done
by lessening the variation between small and large singu-
lar values of features. This way, the performance improve-
ment for classification using CNN with limited data is also
achieved. It may be mentioned that SSR-TC uses transfer
learning by first training the CNN on substantial simulated
SAR data and fine-tuning the network on real SAR data.
SSR-TC outperforms other recent works [76]–[79].

I. RCC-MRF
The RCC-MFR (Region Category Confidence degree-based
Markov Random Field) [80] is another recent approach that
uses deep learning for the classification of SAR images.
The RCC-MFR was proposed by emphasizing the spatial
constraints between the super-pixel regions in SAR images.
It claimed that the super-pixel regions might improve SAR
image classification performance when considered. There-
fore, the RCC-MRF uses the detailed features and the neces-
sary constraints between super-pixels in their algorithm. The
role of CNN comes into play during the production of region
labels. The CNN used for region label generation consists of
only two convolutional layers and a fully connected layer.
Since misclassification is a common drawback faced by most
classification models, the RCC-MRF uses an energy function
that clubbed together unary and binary energy to rectify the
misclassification of regions and enable region predictions
based on their categories. The unary energy function uses the
RCC term based on probability distributions over entire pix-
els, which helps the RCC-MRF make improved predictions
of regions concerning various categories. The RCC-MRF
achieved an overall accuracy of 88.85% on the Radarsat-2
San Francisco Bay and 89.56% on the Radarsat-2 Flevoland
image. However, for regions that the CNN misclassifies, the
RCC-MRF loses its effect, especially for regions that are
adjacent to each other.

J. MFFN-CPMN
The Deep Feature Fusion and Covariance Pooling Manifold
Network (MFFN-CPMN) [81] was recently proposed in the
literature for classification of SAR images by combining the
merits of both local and global features. The MFFN-CPMN
also takes advantage of multiple feature fusion in their net-
work. The MFFN was first designed using Gabor filtering to
retrieve crucial spatial information and relevant deep features.
The MFFN is comprised of CNN, whereby the weight opti-
mization is done using the unsupervised dual-sparse encoder.
Next, a CPMN was designed to retrieve the global statisti-
cal information using the fused features, which are finally
used to distinguish between various classes associated with
a SAR scene using a softmax classifier. The flowchart of
MFFN-CPMN is shown in Figure 10. The CNN used in
MFFN was trained in a greedy unsupervised learning manner
by excavating the hidden spatial information and high-level
global information with the help of different filters. Therefore
MFFN becomes an effective model for retrieving the most
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relevant features with respect to high-resolution SAR data
without using deeper networks. The MFFN-CPMN could
attain an overall accuracy of 89.33% on TerraSAR-X SAR
image, 90.03% on GF-3 SAR image, 88.37% on Airborne
SAR image and 96.61% on F-SAR image.

FIGURE 10. Flowchart of MFFN-CPMN [81].

K. CNNE-ML
The work in [82], hereafter referred to as CNNE-ML incor-
porated two stages in their network for classification of ships
andmilitary trucks using theOpenSARShip data andMSTAR
data, respectively. In the first stage, a standard CNN was
trained for the classification of SAR targets. Features are then
extracted and flattened from the trained CNN. The flattened
feature vector is then fed to a non-linear classifier containing
three fully connected layers followed by a softmax classifier.
In the second stage, a metric network is designed mainly
for clustering of the feature vectors in the respective feature
space. This is achieved with the help of prototypes calculated
based on feature vector moderation in every class. The dis-
tance between the sample query and support sample is calcu-
lated in order to predict the class it belongs to. Classification
results show that the incorporation of metric learning in the
target classification approach helps improve the performance
by attaining accuracy of 99.79% on the MSTAR dataset and
83.67% on the OpenSARShip dataset.

L. OSL-HSN
The OSL-HSN (One-Shot Learning-based classification
using Hybrid Siamese Network) [83] uses an innovative
approach for classification of SAR targets by exploiting deep
learning and aims at determining information from only a
limited amount of training samples. The OSL-HSN uses

a Siamese network whose training is based on the triplet
approach, in the sense that it is trained using three types
of images: random image (anchor), image from a common
class (positive), and an image from a different class (neg-
ative). The Siamese network produces a single vector of
a certain length known as embeddings as the output. The
embeddings of all three types of images are then compared
using a distance measure in order to check their similarity.
The network is trained so that it possesses minimum dis-
tance between the anchor and positive andmaximum distance
between the anchor and negative. While training the network,
each iteration undergoes two stages. The triplet selection is
made in the first stage, followed by network training using
the selected triplets in the second stage. It may be mentioned
that the image used in this work was pre-processed such that
it forms a 3-channeled image with the original image as the
first channel, Lee filtered image as the second channel and
inverted filtered image as the third channel. The architecture
of the OSL-HSN is shown in Figure 11. The OSL-HSN also
incorporated feature fusion in their model. The overall archi-
tecture is lightweight and attained a classification accuracy
superior to other classifiers [73], [84]–[86] on the OpenSAR
Ship dataset.

FIGURE 11. Architecture used in OSL-HSN [83].

M. OBSERVATIONS
This section briefly discusses the observations that can be
concluded from various SAR image classification works.
Firstly, as observed from SI-CNN [32], few convolutional
layers caused the model to learn fewer features, espe-
cially on targets with similar characteristics, thereby caus-
ing misclassification. On the other hand, as seen from
DNN-DAE-Conv [48], higher-level features can be learned
with the help of stack auto-encoder and from less-labeled
data since labeled SAR data is not readily available. The
idea of collaborating two architectures in DNN-DAE-Conv
has also helped produce high-level feature-based labeled data
for training CNN. Similar to DNN-DAE-Conv, the MNet [3]
could also learn more features but from less data, meaning
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that only seed data that are labeled are used. But the MNet
requires an information recorder that records every data the
model learns for subsequent comparisons. Also, the model
suffers from a few misclassifications that may be improved
when an optimized approach is adopted for comparing the
data with that from the information recorder to produce
the output. While MNet works poorly under EOC condi-
tions of the MSTAR targets, the A-ConvNet [31] showed
improvement in the performance under EOC conditions. The
A-ConvNet has omitted the fully connected layers in its
model and simultaneously mitigates the over-fitting problem.
However, A-ConvNet causes few false alarms, and the anti-
noise performance is also low. Influenced by the model of
A-ConvNet, the SM-CNN [4] have also omitted the fully con-
nected layers in itsmodel for scenematching recognition. The
exclusion of fully connected layers has also reduced the num-
ber of parameters in the model. Since the SM-CNN model
is meant to classify matching and non-matching regions, the
DEM data clubbing in the inputs has helped classify scene
matching regions except for scenes with high-rise buildings.
This issue can be solved by clubbing DSM data along with
DEMas inputs. Apart from scene-matching, the classification
of most confused targets in SAR images has also improved
when inputs are channeled with different image resolutions
as observed from CNN-MR [47], although few misclassi-
fications still exist. It is also observed that most of the
recent works like AN-CNN, RCC-MRF and MFFN-CPMN
have concentrated on extracting spatial information in their
approach. This shows that emphasizing spatial features is a
recent trend as this seems to benefit the classification per-
formances in SAR images. Also, the blending of multiple
feature types plays a role in bringing up the performance. This
is because a model that learns multiple feature information
has better representation capability. It may also be noted that
different filter sizes reduce the parameters of a model while
simultaneously enabling the model to learn distinct features
associated with a particular input. Despite all the aforemen-
tioned innovative approaches adopted by recent methods,
the misclassification issue persists. Therefore, it is noticed
that misclassification is still a major concern in most cases.
Hence, incorporating the ideas from each method discussed
above in order to form a hybridized model can be explored
and tuned to improve the SAR image classification perfor-
mance in the future. A comparison summary of the different
classificationmethods discussed in this review paper is shown
in Table 10. At the same time, Table 9 summarizes the average
classification results of the different methods.

IV. RESEARCH ISSUES AND CHALLENGES
One of the major issues associated with the classification
of SAR images, be it a scene or target classification, is the
misclassification issue, which means a part or entire image
is being predicted incorrectly by the model or the algorithm.
Despite having several beneficial characteristics, such issues
hesitate the application of SAR images in real-life applica-
tions. The misclassification is caused mainly due to the high

TABLE 9. Average classification results of different methods.

complexity and coarseness of the images obtained from SAR,
along with the presence of unwanted features called speckle
noise. The features present in SAR images are very hard to
distinguish in the sense that clutter and targets are hard to
discriminate even by the human eye because of their resem-
blance. Therefore identifying which target or image scene
falls under which class is complex and hence challenging.
Even though substantial noise suppression techniques have
been brought forward to remove noise from SAR images,
another issue arises during the process. The noise removal
techniques tend to remove even some of the important fea-
tures that may have contributed to the proper prediction by
the model. This again gives rise to improper classification of
SAR images. The noise filtering technique also results in the
blurriness of the images and the occurrence of artifacts. These
issues lead to improper subsequent processing of SAR images
such as detection, segmentation and even classification. The
advancement of deep learning has caught the attention of
researchers working in SAR image analysis, and another
issue was faced in the application of deep learning to SAR
analysis. The unavailability of sufficient labeled SAR data
resulting in overfitting issues poses an immense challenge
in using deep learning models for SAR image analysis [75],
[87]. Data augmentation methods to precisely enlarge the
SAR data to enable the smooth application of deep learning
in SAR image classification are still under research. Clas-
sification of similar-looking targets is yet another challenge
since targets with similar features are usually misinterpreted,
especially in the case of SAR images with sophisticated
backgrounds.

V. POTENTIAL MODELS AND FUTURE APPROACH
It is observed from this study that each SAR image classi-
fication method follows a unique approach and has advan-
tages and disadvantages associated with them, which we have
highlighted in this study in order to benefit the research
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TABLE 10. Summarizing the concept of different SAR target classification networks.
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FIGURE 12. A potential future model for SAR image classification based
on existing works.

community who are experimenting in the field of SAR image
analysis for use in the future. Efficient networks such as
VggNet [73], GoogleNet, EfficientNet [88], DenseNet [89]
are rarely being explored for the purpose of classification in
SAR images. The aforementioned networks may be adopted
in the future in the form of pretrained networks or param-
eter adoption and may result in better performances since
these networks outperform the classical networks for optical
images in terms of classification accuracy [35]. Based on the
observations made from this study, a hybrid architecture can
be implemented in the future for SAR image classification.
Inspired by MNet [3], the hybrid model can be trained using
a small number of labeled images as a startup and then even-
tually increased using update learning wherein an encoder-
decoder based network can be used since encoder-decoder
model gives better feature representations [34]. The recent
trend on feature aggregation is encouraged in the hybrid
model since aggregating features implies more information
learned by the model [78]. Therefore the features from the
encoder-decoder model can be clubbed with those from one
or more complementary classifiers to obtain better feature
learning which ultimately may improve the classification per-
formance in SAR images. It may be mentioned that assistant
classifiers also help in better decision-making by suggesting
the most probable result [87]. Therefore assistant classifiers
can also be added to the network. The pictorial representation
of the hybrid model discussed can be seen in Figure 12. Apart
from the potential hybrid model for classification shown in
Figure 12 discussed previously, another classification archi-
tecture can be implemented firstly using multi-resolution
inputs as inspired from CNN-MR [47] to enable detailed fea-
ture learning. Deeper models can be used adopting architec-
tures such as EfficientNet [88], auto-encoder, DenseNet [89]

FIGURE 13. A potential future model for SAR image classification using
recent networks.

FIGURE 14. A potential future model for SAR image classification
emphasizing spatial information.

or UNet [90]. It may be mentioned that the majority of the
models used in the literature do not have a prior denoising
model attached to them for noise reduction. Therefore a
hybrid model can be proposed in the future that clubbed
together denoising model followed by classification so that
the network is adaptable to noisy SAR images. Multiple
variants of the pooling layer, such as average and max-
pooling, are also encouraged to be used simultaneously in
the model as this may result in major feature learning by
the model. The model is depicted in Figure 13. Emphasizing
spatial information of the SAR images, another hybrid model
as shown in Figure 14 can be experimented in the future
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FIGURE 15. Existing research issues concerning SAR image
interpretations.

for classification purposes. Inspired by MFFN-CPMN, the
model blends together global and local features by consid-
ering spatial information. This will enable the model to learn
the most discriminating features, which would help improve
classification performance. It may be mentioned that the
spatial information can be extracted using the first convolu-
tional layer combined with adaptive neighborhood CNN from
the AN-CNN method, as the adaptive neighborhood strat-
egy gives good information for boundary and homogeneous
regions. On the other hand, global features can be obtained
by deeper layers convolved by multiple filter sizes. The com-
bined features are then passed through covariance pooling to
deeplymine the potential features from the combined features
and finally get the desired output. The three hybrid models
discussed here will be implemented as future works wherein
results will be evaluated accordingly.

VI. CONCLUSION
Since classification is the ultimate processing step for SAR
image interpretation in many real-world applications, and
because deep learning has shown advancements in various
computer vision efforts, we studied the various state-of-
the-art methods using the deep learning approach for the
classification of SAR images. This study also highlighted the
architectures involved in each method and their configura-
tions and parameter settings. It is observed from this study
that there lies several issues in processing and interpreting
SAR images, and these issues have also been pointed out in
this work and are briefly represented in Figure 15. However,
the major issue associated with SAR image classification
is misclassification. This issue still needs to be addressed
since misinterpretation of targets may lead to misinformation
in real-world scenarios. Based on the study, the advantages
and disadvantages of each work have also been discussed,
followed by the future directions to ease researchers in adopt-
ing several characteristics of the existing approach for appli-
cations in several other processing fields related to SAR
interpretations. Potential models for possible application in
the future have also been developed based on the study.
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