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ABSTRACT This paper develops a multisensor data fusion-based deep learning algorithm to locate and
classify faults in a leader-following multiagent system. First, sequences of one-dimensional data collected
from multiple sensors of followers are fused into a two-dimensional image. Then, the image is employed
to train a convolution neural network with a batch normalisation layer. The trained network can locate and
classify three typical fault types: the actuator limitation fault, the sensor failure and the communication
failure. Moreover, faults can exist in both leaders and followers, and the faults in leaders can be identified
through data from followers, indicating that the developed deep learning fault diagnosis is distributed. The
effectiveness of the deep learning-based fault diagnosis algorithm is demonstrated via Quanser Servo 2
rotating inverted pendulums with a leader-follower protocol. From the experimental results, the fault
classification accuracy can reach 98.9%.

INDEX TERMS Deep learning, multisensor data fusion, fault diagnosis, leader-following system, con-
volution neural network, data-driven, distributed, batch normalization, image fusion, sliding window data
sampling.

I. INTRODUCTION
In recent years, multiagent systems have been widely used
in the fields of multiunmanned aerial vehicles [1], smart
grids [2], multirobot cooperative formation [3] and sensor
networks [4]. The reliability of multiagent systems depends
on the performance of each agent and their communications.
A fault in one agent can degrade the performance of its
neighbours via communication (e.g., [5]), which threatens
the whole multiagent system. Furthermore, abnormal com-
munication can cause agent loss control protocols from other
agents. Therefore, there is a stringent demand to locate and
identify the faults in multiagent systems at an early stage.
Accurate fault diagnosis approaches produce time to mitigate
the faults, save maintenance costs, and reduce the risk of a
breakdown of the whole system, which is crucial for improv-
ing the reliability of the system, e.g., [6]–[10]. In recent years,
fault diagnosis of multiagent systems has received extensive
attention and undergone rapid development [11]–[15].

The associate editor coordinating the review of this manuscript and
approving it for publication was Shen Yin.

Most existing results about fault diagnosis of multia-
gent systems are based on precise mathematical models and
communication information, such as an adjacency matrix.
Nevertheless, the model and communication are not always
available from real multiagent systems. Therefore, it is moti-
vated to develop alternative fault diagnosis techniques, such
as data-driven methods [16]–[19] for multiagent systems that
are independent of model and communication information.

Deep learning algorithms can obtain the system features
by training data collected from sensors and have been widely
used for fault diagnosis of a single system, e.g., [20]–[24].
Among various deep-learning algorithms that have been com-
prehensively reviewed in recent survey papers [25] and [26],
convolutional neural networks (CNNs) can automatically
learn features from datasets, especially large-scale datasets,
and generalise the results to the same type of unknown data.
Therefore, CNN-based fault diagnosis has achieved great suc-
cess in many research fields, such as rotating machinery [27],
wind turbine systems [28], power transmission systems [29],
and motor bearing systems [30].

In multiagent systems, the number of sensors increases
considerably, which brings challenges to the transmission and
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training of a great amount of data. Therefore, it is impor-
tant to reduce data transmission and design an appropriate
data preprocessing method in deep learning-based fault diag-
nosis of multiagent systems. To reduce data transmission,
distributed fault diagnosis has been a recent research inter-
est, e.g., [31]–[35]. Identifying faults in one agent through
training data using its neighbour is a crucial objective of
distributed fault diagnosis. However, multi-sensor data fusion
can reduce training complexity and training time. Image
fusion can transform a number of one-dimensional sensor
data into a two-dimensional image. The image keeps rich
information on the data; hence, the accuracy of fault diagnosis
can be guaranteed. Training the image rather than the one-
dimensional data repetitively can enhance the real-time per-
formance of the system. [27], [28] and [30] employed image
fusion for CNN data preprocessing. However, the systems
under consideration in the abovementioned work are single
systems. According to the authors’ knowledge, there is no
existing work about distributed fault diagnosis of multiagent
systems through image fusion-based CNNs.

Multiagent systems with leader-following protocols are
widely used in engineering fields, such as unmanned heli-
copters [36], [37], multi-inverted pendulums [38], battery
packs [39] and liquid-level systems [40]. In the abovemen-
tioned work, faults were not considered in [36], [38], [39].
Only communication fault was discussed in [37]. Distributed
fault detection was designed in [40]; however, fault classifi-
cation was not a concern. The objective of this paper is to
use an image fusion-based deep CNN to design distributed
fault classification for a leader-following multiagent system
considering actuator faults, sensor faults and communica-
tion faults. Specifically, the one-dimensional historical data
collected from followers are converted into two-dimensional
image information by a multisensor data fusion technique.
Then, a deep CNN is established to train the image data.
Through the training, the type and location of faults can be
identified. The faults under investigation include communi-
cation interruption faults, sensor failure faults and actuator
limitation faults. Furthermore, three types of faults can exist
in both the leader and the followers. Finally, a real experiment
on a leader-following inverted pendulum demonstrates the
effectiveness of the developed algorithms. The contribution
of this article can be summarised as follows: 1. Image fusion-
based deep learning for fault diagnosis of leader-following
systems is a novel topic. Compared with a one-dimensional
CNN, the relevance of different sensors can be preserved
through a two-dimensional image fusion-based CNN. There-
fore, the accuracy of fault diagnosis can be enhanced via
the developed technique. Actuator faults, sensor faults, and
communication faults in both leaders and followers are inves-
tigated in this article, which is a challenge for fault diagnosis.
Many existing results only consider actuator and sensor faults
or only communication faults. Classifying the three types of
faults together is another contribution of this paper. 3. The
developed fault diagnosis algorithms depend on data from
followers rather than from both leaders and followers. Prior

to existing work on distributed fault diagnosis, such as in
[24]–[27], communication among leaders and followers was
not required. Therefore, the designed fault diagnosis is fully
distributed.

The organization of the paper is as follows: The system and
faults under consideration are introduced in Section II. Mul-
tisensor fusion-based deep learning for the distributed fault
diagnosis algorithm is developed in Section III. Section IV
demonstrates real experimental work to apply the developed
technique to Quanser Servo 2 rotating inverted pendulums.
Section V presents the conclusion and future work.

II. THE SYSTEM DESCRIPTION AND THE PROBLEM
STATEMENT
A. MULTI-AGENT SYSTEMS WITH UNKNOWN
COMMUNICATION
The system under consideration is a networked homogeneous
multiagent system under the leader-follower control protocol,
and its topology is shown in FIGURE 1, where 0 represents
the leader and 1, 2, . . .N represents the followers. The com-
munication among N followers can be denoted by an undi-
rected graph G = {V, E,A}, where V = {vi, i = 1, 2, . . .N }
represents the set of followers, E ⊆ V × V denotes the set
of edges, and A = [aij] is the weighted adjacency matrix
of G. aij > 0 if and only if (vi, vj) ∈ E ; otherwise, aij = 0.
If (vi, vj) ∈ E , vi is named the neighbour of vj, and Nj =

{vi : (vi, vj) ∈ E} stands for the set of all neighbours
of vj. deg (vi) = di =

∑
j∈Ni aij denotes the degree of the

vertex of vj.D = diag{d1, d2 . . . dN } is the degree matrix, and
L = D−A represents the Laplacian matrix of G. The above
definitions are generally used in leader-following multiagent
systems, such as in [41], [42]. We assume that there is a
pre-existing control protocol such that the overall system is
stable with desired performance (e.g., consensus, robustness,
etc.) in the absence of faults, and the design of the control
protocol has been widely investigated in other works, such as
[41]–[44]. The aim of this paper is to design a fault diagnosis
technique to detect and classify faults accurately. The design
of the control protocol is not a concern of this article.

In the design of the fault diagnosis method, the physical
model and communication are unknown. In other words, the
physical model and communication are internal to agents but
are not available in fault classifiers.

FIGURE 1. Leader-follower control protocol.
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Remark 1: This method adopts distributed fault diagnosis,
and each follower has a fault diagnosis device (NNi, i =
1, 2, . . .N ), as shown in the FIGURE 1. In the authors previ-
ous work [49], a residual-triggered mechanism is proposed,
where each agent has a predictor and a fault classifier. The
designed predictor and the actual output form a residual.
When the residual value generated in a follower exceeds the
threshold, the fault diagnosis device on the corresponding fol-
lower can be triggered to classify the fault. When the residual
of the leader exceeds the threshold, the residual network in
follower1 is enabled by default. Therefore, the fault diagnosis
task with N agents can be divided into a leader-follower
distributed fault diagnosis mode with N − 1 pairs. Taking
the formation mode of artificial potential field as an example,
the strong repulsion field will be generated between followers
only at a very short distance. Under normal circumstances, the
influence is small, and only the leader will produce a large
gravitational field on the follower. Therefore, the objective of
this paper focus on enhancing fault classifier in the residual-
triggered fault diagnosis developed in [49], namely, when a
leader-follower pair is triggered.

B. THE TYPE OF FAULTS
Between agents can also be abnormal in networked systems,
e.g., the interruption of interactions or false data injection
between agents. Therefore, the identification and classifica-
tion of communication faults is crucial for leader-following
systems.

In this paper, the faults under consideration include sensor
failure, actuator limitation faults and communication inter-
ruption. Specifically, the sensor fault is moulded as follows:

fs(t) =

{
0, t ≤ t0
−y(t), t ≥ t0

(1)

where fs(t) represents the sensor fault, t0 denotes the time that
a sensor fault occurs, and y(t) is the system output without
a sensor fault. This type of fault indicates that the sensor
output remains zero, which can occur when the signal is open
circuited [45].

An actuator limitation fault fa(t) is modelled as follows:

fa(t) =

{
0, u (t) ≤ A
A− u (t) , u (t) > A

(2)

where u (t) is the real input of the actuator and A is a constant
that the actuator output cannot exceed due to abnormal hard-
ware or software conditions. This type of fault occurs due to
actuator stuck failures [46] and is recognised as one of the
most important factors that reduce system performance.

A communication fault fc(t) under investigation is an inter-
rupt fault, and can be calculated as follows:

fc(t) =

{
0, t < t1
−q(t), t ≥ t1

(3)

where t1 is the time that the interruption occurs and q(t)
is the normal communication signal. This type of fault can

occur due to a cyber-attack, which is also known as denial-
of-service [47].
Remark 2: This paper adopts a distributed fault diagnosis,

which is used to identify the fault between leader and fol-
lower. The main contribution of this paper is to investigate
the fault diagnosis of leader-follower tracking. Moreover, the
communication between followers is weak or no communica-
tion. As a result, the fault of communication between follow-
ers is not considered in this paper. ‘‘Follower communication
failure’’ means that the communication in which the follower
sends its status to the leader is interrupted.

The actual signal is formulated as follows:

Y (t) = y (t)+ fσ (t) σ ∈ {s, a, c} (4)

Y (t) represent the real signal of system, y (t) represent the
theoretical signal of system, fσ (t) represent three types of
fault. Take fs (t) as an example. When there is no fault,
fs (t) = 0. When a fault occurs, fs (t) = −y(t). As a result,
the really output of sensor equal 0.

FIGURE 2. Diagnosis flowchart when fault occurs.

Another challenge in fault diagnosis of multiagent systems
is that the amount of data to be trained is great. Moreover,
the relation of data from different sensors should be included
in the data collection. In the rest of the paper, a multisensor
fusion-based deep learning fault classification technique is
proposed to identify and locate sensor faults, actuator faults
and communication faults accurately. To further reduce data
transmission, the designed fault classifier can recognise the
fault of the leader through output of the follower without
requiring their communication information and precise math-
ematical model. A 2D image is generated throughmultisensor
fusion. Then, a deep-learning algorithm is designed to clas-
sify and locate faults. The diagnosis process can be described
in FIGURE 2. The diagram of the overall design can be found
in FIGURE 3.

VOLUME 10, 2022 18697



X. Liu et al.: Deep Learning-Based Fault Diagnosis of Leader-Following Systems

FIGURE 3. Multisensor fusion-based deep learning fault classifier.

III. DEEP LEARNING-BASED FAULT CLASSIFICATION
This section introduces the image-based sensor fusion
method and the main types of faults. The image-based sensor
fusion method takes advantage of the BP neural network in
feature extraction and fault recognition accuracy.

A. IMAGE FUSION BASED ON MULTI-SENSOR-SIGNALS
Data preprocessing is the premise for deep learning-based
fault diagnosis. Traditional data preprocessing methods for
deep learning are known as normalisation and regularisa-
tion. Many modern systems, especially multiagent systems,
have a number of sensors. Normalising and regularising
data from multiple sensors considerably increases compu-
tational complexity and the relation among sensors can be
missed. Therefore, this paper is motivated to develop an
image fusion technique to transform data from a number of
one-dimensional sensors into two-dimensional grey images.
The fusion of multisensor data into a grey image for deep
learning can improve the accuracy, richness, and efficiency of
fault diagnosis. FIGURE 4 illustrates the process of convert-
ing one-dimensional data into two-dimensional image grey
values.

Each sensor obtains M sampling points through sliding
window technology(in the section IV). Then M sampling
points are calculated and converted into pixel values through
formula (5). Finally, N sensor signals are fused into an image
of size N ×M . When the noise signal is incorporated into the
original signal, the influence to fault diagnosis depends on the
size of the noise. If the value of noise is small, it will not affect
the converted data into pixel values, because there is a round
operation in the process of converting data into pixel values.
If the noise is big, then it will result in a wrong pixel, which
reduces the performance of fault diagnosis. Normally, the
noises incorporated into data is in the former case. The grey
value of each pixel is obtained via Equation (5) as follows:

Value(i, j)= 255× Round

× (
signal(i, j)−min(signal(i, j))

max(signal(i, j)−min(signal(i, j)))
)

(5)

In Equation (4), i = 1,2, . . . stands for time iT , where
T is the sampling time and j represents the j-th sensor.

signal(i, j) is the data collected from the j-th sensor at time
iT . Meanwhile, i and j correspond to the number of rows
and the number of columns in the 2-D image, respectively;
Value(i, j) stands for the grey value of the image at i, j, and
Round(·) is a rounding function, which ensures that every
data point can be converted into the corresponding grey value,
and there is no case in which the decimal cannot generate the
corresponding grey value.

FIGURE 4. Conversion to 2D image process diagram.

B. CONVOLUTIONAL NEURAL NETWORK-BASED DEEP
LEARNING
Through the aforementioned image fusion, a 2-D image con-
taining rich information of the system can be generated.
Then, deep learning-based fault diagnosis can be designed
by the fused image. The existing deep learning method
for image recognition is to reshape the image to be nearly
square before recognition. However, the adjacent features
can be lost by reshaping. The sensor returns continuous
sequence data, and local visual field features are important
for feature extraction of convolution. The reshaping process
reduces the accuracy of fault diagnosis. Therefore, this paper
proposes a deep learning fault diagnosis algorithm with-
out reshaping the image to increase the accuracy of fault
diagnosis.

To train a large-scale dataset, a CNN is used for deep
learning. The CNN used in this paper is composed of an
input layer, a convolution layer, a pooling layer, a batch
normalisation layer, a full connection layer and an output
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layer. The main function of the input layer is to preprocess the
input data and convert the data of different sizes into the data
of the same format and size. The processed image is called
the feature map. Two methods of data preprocess are used,
i.e., padding and normalisation.

1) PADDING
Padding is used to fill in one or more circles of 0 value
around the image, which can ensure that the height or depth of
data will not decrease when convolution calculation is carried
out. More importantly, the image edge information can be
preserved. If there is no padding, the edge features of the next
layer disappear, which does not affect the subsequent convo-
lution. Generally, in convolutional neural networks, P is used
to represent the number of paddings. The schematic diagram
of padding is shown in FIGURE 5.

FIGURE 5. The schematic diagram of padding.

2) NORMALISATION
Normalisation reduces the value of each pixel to the range
from 0 to 1 after preprocessing the data, which is conducive
to data processing. The common normalisation methods are
function transformation, Z score standardisation andmaxmin
standardisation.

The convolution layer is composed of a number of convo-
lution kernels, which are also known as filters. The pixels of
the image after padding and normalisation are input to the
convolution layer.

FIGURE 6. Convolution calculation diagram.

A schematic diagram of the convolution calculation pro-
cess is presented in FIGURE 6 and Equation (6).

In FIGURE 6, the element in the upper left corner of filter
map a0,0 is calculated as follows:

a0,0 =
2∑

m=0

2∑
n=0

Wm,nxi+m,j+n +Wb

= W0,0x0,0 +W0,1x0,1 + . . .+W2,1x2,1 +W2

= 1+ 0+ 1+ 0+ 1+ 0+ 0+ 0+ 1+ 0

= 4 (6)

where xi,j represents the grey value of the pixel at row i and
column j; Wm,n represents the weight at row m and column
n and Wb represents the bias. f (·) is a leaky rectified linear
unit (leaky ReLU) activation function, which is shown in
Equation (7) and FIGURE 7. In Equation (7), c is a fixed
constant, and cε(1,+∞). The main function of leaky ReLU
is to add nonlinearities to the network model so that the
network has a better feature recognition ability. It has a broad
acceptance domain for solving the gradient disappearance
problem in the training process. Equation (7) is calculated as
follows:

f (x) =

{ x
c
, x ≤ 0

x, x > 0
(7)

FIGURE 7. Leaky ReLU activation function.

Remark 3: There are two common activation functions,
which are known as sigmoid and ReLU activation functions.
When the value of the convolution layer is large, the gradient
of the network disappears by using the sigmoid function,
which will cause the slow convergence speed of the model.
ReLU function remains linear at (0,+∞). Therefore, the
ReLU activation function solves the problem with a slow
learning convergence of the neural network caused by gra-
dient disappearance. However, the output of neurons can be
negative, and all negative activation becomes zero by the
ReLU function. Compared with traditional ReLU function,
which induces the disappearance of negative neurons, leaky
ReLU, a variant of ReLU, can preserve negative neurons,
hence enhancing the training performance.

To obtain a more obvious feature map, a batch normal-
isation layer [48] is added after the convolution layer. The
function of a batch normalisation layer is similar to the nor-
malisation of data in the input layer. It normalises the fea-
tures learned by the previous convolution layer, which is also
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conducive to feature learning by the next convolution layer.
However, the output of the convolution layer is different from
the input of the network. The output of the convolution layer
is the extracted feature, while the input of the network is the
non-extracted data. Therefore, the output of the convolution
layer cannot be normalised directly via the method of input.
For the aforementioned reason, batch normalisation, which
enables the network to learn and recover the characteristic
distribution, is employed in this paper.

Pooling is implemented for downsampling. Through pool-
ing, useless information from the calculated feature map
can be removed and the amount of data can be reduced to
enhance the operation speed. Among widely used pooling
methods, maximum pooling can effectively preserve and
enhance the feature information in downsampling. There-
fore, maximum pooling is used in the applied convo-
lutional networks. An example of the method is shown
in FIGURE 8.

FIGURE 8. Max pooling.

The function of the fully connected layer is to send the
feature map obtained after a series of operations, such as
convolution, into the fully connected layer through flattening.
Different feature planes can be mapped to the same feature
plane after full connection linear transformation, which is
conducive to combining features trained by different filters
for analysis.

The output layer applies the softmax activation function
to solve multiclassification problems. This layer maps the
outputs of multiple neurons into the (0,1) interval, which can
be regarded as the probability that the current output belongs
to a category. Then, multiclassification can be carried out.
The calculation method is given in (8), where ai is the value
of the ith input node of the output layer and Ai is the output
of the CNN. This is calculated as follows:

Ai =
eai∑
eai

(8)

All of the nodes in the previous layer are connected to the
next neuron node by a weight. The overall structure of the
convolutional neural network is shown in FIGURE 9.
Remark 4: For the convolution neural network, we use

the classical neural network LeNet-5 to modify the structural
parameters. i.e. the first layer is composed of six 3× 3 filters
where the stride is 1; the second layer consists sixteen 3 × 3
filters, where the stride is 1. In order to increase performance
of fault diagnosis, an additional layer with forty 3 × 3 filters
is added to LeNet-5 in the developed technique.

IV. EXPERIMENTAL RESULTS
A. SYSTEM AND FAULT DESCRIPTION
In this section, the developed deep learning fault diagnosis
is applied to Quanser Servo 2 rotating inverted pendulums
to demonstrate the effectiveness. The agents are connected
through a leader-follower control protocol. The hardware-
in-loop diagram is shown in FIGURE 10. We conduct fault
diagnosis by collecting the data of follower. The parameter
of sensor shown in TABLE 1. The categories of faults under
investigation include: fault-free, leader sensor failure, leader
actuator stuck, leader communication failure, follower sensor
failure, follower actuator stuck, and follower communication
failure, which is shown in TABLE 2.

TABLE 1. Parameter and meaning.

TABLE 2. The type of faults and category label.

B. DATA SAMPLE
The Quanser Servo 2 inverted pendulum is connected with
MATLAB Simulink through USB, and a hardware-in-loop
experiment can be implemented. The real-time data of the
inverted pendulum is collected from Simulink with a sam-
pling time of 0.005 s. The storage of software is limited,
which indicates that the maximum length of data is certain.
However, sufficient data should be obtained to train the neural
network such that the generalisability is satisfied. To gener-
ate sufficient data from limited software storage, a sliding
window data sampling approach is employed to amplify the
data. Specifically, a sampling window of length f moves on
the collected data of length L, and the moving step is S (see
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FIGURE 9. Structure of convolution neural network.

FIGURE 10. Leader-following system control diagram. (a) The
communication block simulates the communication between
agents (b) HIL write analog and HIL read encoder represent the input
of the actuator and the output of sensors, respectively.

FIGURE 11). As a result, n groups of data can be obtained in
the equation as follows:

n =
[
L− f
S

]
(9)

In each fault scenario, real inverted pendulum data is col-
lected over 29 s, and the sampling time is 0.005 s. The number
of sampling points is 5800, i.e., L = 5800. The number of
sampling points in the samplingwindow is 800, i.e., f = 800.
The sampling step S = 1. Therefore, 5000 groups of data
(n = 5000) are generated, which increases the amount of
data by 114.28 times. However, the calculation ability of
the software is limited. Therefore, the sampling time of the
sliding window after data expansion is extended to 0.1 s,
which indicates that the sample length is 40 [49].

C. EXPERIMENTAL RESULTS AND ANALYSIS
Different types of faults are injected to the system, and data
of 4 sensors in the follower is recorded. In each fault scenario,
data after expansion is used to train the neural network, and
the features of the fault can be exacted. The data is divided
into three parts: 80% (training set) of the data is used to train
the network and update the model weight parameters and
8% (validation set) of the data is used to evaluate the model
performance. The remaining 12% (test set) is used to test
the accuracy of final neural network. In this experiment, the
fault classification performances of the BP neural network,

FIGURE 11. Data expansion diagram.

the traditional CNN network with image fusion, and the batch
normalisation embedded CNN network with image fusion are
compared.
Remark 5: In this paper, 2-D is considered in the data con-

version. High dimensions are not considered because there
are only four sensors for data acquisition in the experimental
equipment, and it is difficult to increase the dimension of data.
Moreover, if the dimension of data is increased, the sensors
that obtain the data should have the same characteristics. For
example, if three channel RGB image (n × n ×3) is used,
fault characteristics in the three channels should be similar
with each other. Therefore, the increased dimension is not
applicable in this experiment.

1) BP NEURAL NETWORK FAULT DIAGNOSIS
BP neural network is used to train the original image. The
image of size 4∗40∗1 is flatted into 160 inputs. The physical
meaning of data form sensor 1 (θ), sensor 2 (α), sensor 3 (θ̇ )
and sensor 4 (α̇) can be found in TABLE 1. Sensor 1,3 and
2,4 are independent; Sensor 1 is the integral of sensor 3; and
sensor 2 is the integral of sensor 4. The structure of BP shows
in TABLE 3.

After 571 seconds’ training, we can draw the training
figures. The accuracy curve and loss function curve of BP
network-based fault classification are shown in FIGURE 12
and FIGURE 13, respectively. To illustrate the performance
of BP neural network-based fault diagnosis, the fault misclas-
sification matrix is drawn in FIGURE 14.

The coordinate values from 1 to 7 in FIGURE 14 are the
label numbers in TABLE 2, representing different fault types
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TABLE 3. The structure of the BP.

FIGURE 12. Loss function curve of BP neural network. (a) Training loss
represents the loss value curve of the training set obtained by the
gradient descent method of momentum. (b) Validation Loss represents
the loss value curve of the validation set obtained by the gradient
descent method of momentum. (c) Iteration represents update times of
neural network weight.

FIGURE 13. Fault accuracy curve of BP neural network. (a) Training
accuracy represents the recognition accuracy of the network to the fault
of the training set. (b) Validation accuracy represents the recognition
accuracy of the network to the fault of the validation set. (c) Iteration
represents update times of neural network weight.

of the leader-following system. The number in the shadow
is the number of actual sample tags that match the predicted
sample tags. The BP neural network can roughly identify the
seven types of faults, and the accuracy of types 3,4 and 6 is
good. Nevertheless, the accuracy of other faults is low, espe-
cially for type 2 faults. The overall identification accuracy is
only 85%.

FIGURE 14. Fault misclassification matrix trained by BP. (a) The number
of 1–7 in the picture represent the label of fault. (b) The value in the
lower right corner represents the final network accuracy.

2) CNN-BASED FAULT DIAGNOSIS
It can be seen that the fully connected network cannot have a
satisfactory diagnosis performance, especially when the char-
acteristics of faults are closed. Now, it is time to implement
the multisensor data fusion-based CNN algorithms to achieve
fault classification.

First, the one-dimensional time domain signal data of dif-
ferent fault types are converted into two-dimensional images,
and the different fault images are shown in Figure 15. The
converted image is divided into three parts: 80%, 8% and
12%. 80% (training set) of the data is used to train the network
and update the model weight parameters and 8%(validation
set) of the data is used to evaluate the model performance.
The remaining 12%(test set) is used to test the accuracy of
the final neural network.

FIGURE 15. The picture of fault types.

Then, we use the convolutional neural network, which has
outstanding performance in image recognition, as the training
network, and the specific network structure parameters are
shown in Table 4.

After 280 seconds’ training, the final network accu-
racy reaches 91.5%. The fault accuracy curve is shown
in FIGURE 16, and the loss function curve is shown in
FIGURE 17. By connecting the trained neural network to the
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inverted pendulum model for the experiment, the confusion
matrix can be generated in FIGURE 18.

TABLE 4. The structure of the CNN.

FIGURE 16. Fault accuracy curve of CNN.

FIGURE 17. Loss function curve of CNN.

Comparing FIGURE 18 with FIGURE 14, we find that the
convolution neural network has better fault diagnosis perfor-
mance than the fully connected neural network. There is a
certain misjudgment for individual faults, but the error rate
is in an acceptable range. Compared with the fully connected

FIGURE 18. Fault confusion matrix trained by the CNN.

neural network, the fault classification accuracy of the image
fusion-based CNN has improved substantially. The accuracy
is acceptable even for some faults with similar features.

3) CNN FAULT DIAGNOSIS WITH BATCH NORMALISATION
However, there are still fault data that cannot be identi-
fied accurately by utilising traditional convolutional neural
networks. To improve the accuracy of recognition, we are
motivated to further improve the feature extractability of the
convolution network. Therefore, we add a layer of batch
normalisation after each convolution layer, which is intro-
duced in part III. The hierarchy of the network is docu-
mented in TABLE 5. The fault accuracy curve, loss function
curve, and fault misclassification matrix are demonstrated
in FIGUREs 19-21.

FIGURE 19. Fault accuracy curve of the CNN with batch normalisation.

It can be seen from FIGURE 21 that, after 318 seconds’
training, the recognition accuracy of the network has reached
99%, which is a considerable improvement compared with
the BP and the traditional CNN. Based on the developed
image fusion-based CNN with batch normalisation, the
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TABLE 5. The structure of the CNN with batch normalisation.

FIGURE 20. Loss function curve of the CNN with batch normalisation.

fault classification accuracy of the seven types of faults is
satisfactory.
Remark 6: The time complexity can be reflected in Figures

12-20, and the space complexity can be reflected in TABLEs
3-5 as follows:

time ∼ O
(∑D

l=1
M2
l · K

2
l · Cl−1 · Cl

)
(10)

space ∼ O
(∑D

l=1
K 2
l · Cl−1 · Cl +

∑D

l=1
M2
· Cl

)
(11)

where M represents the edge length of the feature map and
K represents the side length of each filter. C represents the
number of outputs of the current layer, and l represents
the number of outputs of the current layer. D represents the
depth of network. We can conclude the following from the
experimental parameters:

timebp > timebn−cnn > timecnn;

spacebp > spacebn−cnn > spacecnn.

FIGURE 21. Fault misclassification matrix trained by the CNN with batch
normalisation.

The time complexity determines the training or prediction
time of the model, and the space complexity determines the
number of model parameters. The time complexity can be
reflected in Figures 12-17, and the space complexity can
be reflected in TABLE 2 and TABLE 3. The computation
complexity of the BN CNN is medium among the three
methods, and the accuracy is the best.

It should be noted that at present, only two rotating
inverted pendulums exist in our laboratory. Therefore, only
one leader and one follower are used in the experiment. How-
ever, we are recently employing heterogeneous manipulators
(robotic arms with 4-6 freedom) and multiunmanned aerial
vehicles, which will be used in future research. Moreover,
improvement of the network structure to enhance fault diag-
nosis accuracy is also under further investigation.

V. CONCLUSION
This research presents a distributed deep learning fault diag-
nosis technique for leader-following systems, where the
CNNs with batch normalisation and image fusion methods
are integrated to enhance training efficiency and accuracy.
Three typical faults, including communication faults, sensor
faults and actuator faults, are investigated in this article.
For the leader-following system with communication cou-
pling, the fault diagnosis of the leader can be achieved by
observing the follower. Real experimental work has illus-
trated that the recognition rate of the developed fault diagno-
sis method is important prior to the BP neuro network and the
traditional CNN. In future research, multiagent systems with
other topologies and the improvements made to the CNN to
enhance fault diagnosis accuracy will be considered.
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