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ABSTRACT Side channel attack (SCA) is a class of crypt-analytic attacks for security evaluation of
cryptographic and embedded microprocessor implementations. Among several SCA approaches, the cor-
relation power analysis (CPA) is an efficient way to recover the secret key of the specific cryptographic
algorithms running on the target devices such as embeddedmicroprocessors. However, the evaluation process
is time-consuming since a large number of traces are required to overcome the impact of noise. Hence,
this paper proposes new methods to reduce the computation time by using Point of Interest (POI) extractor
with the power trace biasing technique and the correlation distribution for the low complexity correlation
power analysis (CPA). The theoretical explanations are provided and the experiments on different platforms
such as ASCAD and RISC-V processor based databases are conducted to justify the proposed techniques.
Especially, our experiments are performed with different protected schemes such as masking, hiding and
combined hiding-masking techniques. The experimental results indicate that our proposed methods provide
reliable results in comparison with the standard CPA. By using only a half of the power traces for taking the
POIs, our first proposal not only decreases the execution time approximately by half but also enhances the
success rate of the attack. Moreover, the second method based on power trace biasing technique is proposed
in order to achieve better results and reduce the number of traces needed for selecting the POIs. With only
28.9% of given power traces needed, our second proposed technique reduces the execution time to only
2.6 times of the standard CPA.

INDEX TERMS Correlation power analysis, side channel attack, embedded microprocessor security, power
trace biasing, correlation distribution.

I. INTRODUCTION
Cryptography is one of the key solutions to provide confi-
dentiality, integrity, and authenticity of data. However, the
implementation of cryptographic algorithms is facing vari-
ous security threats. Side channel attack (SCA) is a realistic
thread that maliciously deciphers the secret information by
exploiting the side channel information such as the power
consumption or electromagnetic radiation emanation [1].
In addition, SCA can be used as a promising tool for hardware
Trojan detection [2], [3]. Therefore, utilizing unintentional
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leakage from a cryptographic device is critical in secu-
rity evaluation for cryptographic implementations. Several
evaluation/certification implementations are running SCA
daily on devices under test to verify the security level.
To perform the SCA evaluation, the person usually switches
between the role of a designer and the role of an attacker. For
a wide range of SCA applications, in this paper, we consider
SCA as a tool of crypt-analysis which reveals the secret key
and we also refer to the word ‘‘attacker’’ for either attacker
or evaluator in the rest of this paper.

The evaluation process is time-consuming since a large
number of traces are required to overcome the impact of
noise. Especially, it becomes less efficient when the SCA
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countermeasures are applied to improve the desired security
level. In general, these countermeasures can be divided into
two groups. The first one is the so-called algorithmic coun-
termeasures [4], [5]. The main purpose of these techniques
is to randomize the intermediate values that are the target of
attackers. Masking is the most popular technique for this type
of countermeasures. This method exponentially increases the
number of samples on each power trace as shown in [6].
In other words, the evaluation process must implement the
high-order DPA. The second technique is the hiding coun-
termeasure. The goal of this method is to bury the leakage
position of the power consumption in a different kind of noise.
Several hiding countermeasures have been proposed, such as
a correlated power noise generator [7], randomly changing
clock frequency and supply voltage of circuits [8], wave
dynamic differential logic (WDDL) [9] or recently, random
dynamic back-gate biasing technique (RDBB) [10]. These
techniques lead to the reduction of the SNR metric or the
disarrangement of time at which the attacked intermediate
result is processed. Consequently, the number of power traces
for evaluation is increased significantly [11]. To accelerate
the certification process, a method to reduce the computation
complexity of the SCA technique is highly required.

A. RELATED WORKS
In literature, several techniques have been proposed to reduce
the computation complexity of the standard SCA method.
The most common method is selecting a small subset of
points where the leakage prevails. This issue has been dealt
previously by some researchers. In [12], Chari et al. proposed
to use the templates to profile the interesting time samples.
This method requires a great number of power traces to create
the templates T on n different sensitive values, i.e., Hamming
weight (HW ) values or simply, the values of a subkey. Then,
the points of interest (POIs) are found as the points which

maximize Di =
n∑

k1,k2=1

(
Tk1,i − Tk2,i

)
where Tk is calculated

as Tk,i = 1
nc

nc∑
j=1

tj,i and nc is the number of power traces

which belong to the class k . Two other improvements of
Chari’s method called SOSD and SOST were introduced by
Gierlichs et al. [13]. Recently, Rioja el al. [14] presented
a method based on Estimation of Distribution Algorithms
called EDA based profiled attack (EDA based PA) for SCA.
The authors have proved that EDA-PA outperforms all state-
of-the-art pre-processing and POI selection methods. Even
though the mentioned techniques are considered the most
powerful from the side channel attacks, they have a prac-
tical problem of requiring the access to a reference device.
Indeed, an evaluation process using a clone device is not
always available in practice. Furthermore, a huge number of
power traces with random inputs (plaintexts and keys) must
be collected and processed. Therefore, the evaluation process
based on profiled attacks may cause an increasing of the cost
(a reference device needed) and time-consuming. Thus, to

ease the evaluation process in general, a low complexity
SCA method without using a reference device needs to be
developed.

Fortunately, the non-profiled attack is suitable for SCA
evaluation in the case of reference device is not available.
Indeed, by computing the correlation of the ground-truth
models and the power traces recorded from the target device,
the non-profiled SCA can recover the secret key. There-
fore, evaluation process based on non-profiled attacks do
not require any reference device. To reduce the computation
complexity of the SCA technique in the non-profiled context,
several methods have proposed. Kim et al. [15] proposed a
method called power trace extractor. This method extracts a
small set of traces with a high signal-to-noise ratio (SNR)
distributed in both tails of the distribution range to enlarge
the variance of the exploitable consumption component in the
power trace. Similarly, an empirical method uses the adaptive
chosen-plaintext CPA attacks (ACP-CPA) [16]. The authors
tried to resolve the drawback of discarding too many traces
in the extractor proposed by Kim et al. [15]. However, this
technique requires many requests to chose adaptive plaintexts
for all bytes. This leads to the time-consuming computations.
Recently, an improvement of power traces extractor presented
by Ou et al. [17] called Maximizing Estimated SNR First
(MESF). Unlike the proposed in [15], the novelty of this work
is that this technique extracts the subset of power traces with
the smallest estimated noise and maximize the variance of the
data-dependent power consumption. Consequently, by using
the high SNR samples, the computation complexity of the
attacks can be reduced instead of increasing the success rate
(SR). However, Ou’s techniques are based on the mean power
consumption of plaintext byte values. This constraint limits
these techniques to the scenarios where the attacker has a
large number of traces to estimate the mean values. Hence,
it leads to the high computational cost to perform an attack
with a large number of power traces. When it comes to
powerful SCA techniques, it is indispensable to mention deep
learning (DL) based SCA. They can be used to break the
cryptographic implementation without any pre-processing
methods. However, most of studies have only focused on
applying DL to perform the profiled SCA [18]–[20]. Only
few DL based techniques have been proposed in the non-
profiled context [21], [22]. One of them is the state-of-
the-art non-profiled based technique called differential deep
learning analysis (DDLA). However, we have already shown
that it is sensitive with the additional Gaussian noise [23].
Despite attacking successfully the masking countermeasure,
this technique is less effective than the conventional second-
order DPA which can overcome the hiding countermeasure
by using a large enough number of power traces. In addition,
the DL based attack often requires a huge number of power
traces. This leads to a very high computation time for attack-
ing the combined hiding-masking method.

In summary, we provide Table 1 to compare use cases
of state-of-the-art SCA techniques. As stated previously, the
profiled SCA requires a copy version of the target device to
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TABLE 1. The state-of-the-art techniques for reducing complexity of SCA.

complete the evaluation process. Therefore, all methods using
reference device such as SOSD, SOST, SNR, EDA-based PA
and DL based profiled SCA, are out of the scope of this paper.
In the non-profiled scenario, the evaluation process requires
many steps to find the POI, the pre-processing to create a
new set of traces, and using a distinguisher such as CPA on
new traces to reveal the correct subkey. These steps must be
done for every subkey of the secret key. Hence, it leads to
a more expensive and time-consuming evaluation process.
From Table 1, we are more interested in methods like corre-
lation technique and DDLA. They can be used for both POI
selection and key recovery. However, due to the limitation of
DDLA for cases with the presence of the Gaussian noise, this
work focuses on providing an improved distinguished CPA
that automatically perform the tuning of POIs, together with
key recovering steps. We consider the attack scenario where
the attacker has enough power traces to guarantee successful
CPA attacks.

B. OUR CONTRIBUTIONS
To the best of our knowledge, there is not any paper in the
literature mentioning the implementation and optimization
of the POIs selection/tuning step together with key recov-
ery steps automatically. We will validate the efficiency of
the proposed method on the popular countermeasure tech-
niques including hiding, masking and combined masking-
hiding methods. For convenience in simulating multiple lev-
els of hiding countermeasure, we consider noise-generation
techniques as hiding countermeasures for the rest of this
paper. We will also demonstrate that our proposed method
outperforms the non-profiled machine learning based attacks
for cases with the presence of the Gaussian noise. In par-
ticular, the experimental results will clarify the efficiency
of our proposed on various countermeasures such as mask-
ing, hiding, and combined hiding-masking methods with the
dataset collected by the emerging open reduced instruction
set computer (RISC-V) processor platform and the ASCAD
database [18].

The main contributions of this paper are as follows:
- We provide a theoretical analysis of the correlation

distribution and propose a POI extractor method named
partial correlation power analysis (P-CPA). We perform
a standard CPA on a half of the given power traces to take
all candidates of the correct samples which have the highest
correlation value. The number of POIs is very small compared
to the length of the original power trace (i.e., 2446.5 times and
99.19 times smaller than in the cases of ASCAD database and
our RISC-V based data, respectively).

- We propose a novel POI extractor based on both cor-
relation distribution and power trace biasing technique
called power trace biasing based P-CPA (BP-CPA) in
order to improve the probability of taking the correct
samples and reduce the number of needed traces. It is
highly noted that in the proposed technique, the extractor
requires only 28.9% of the given power traces compared with
50% in the P-CPA technique.

- By using the proposed POI extractors, we provide
two auto-CPA algorithms that automatically perform the
POI selection, together with key recovering. As results,
the computation time is reduced by approximately 2.0 times
with P-CPA and 2.6 times with BP-CPA, compared to the
conventional CPA.

The rest of this paper is organized as follows. The leakage
characteristic of samples, CPA and the correlation distribu-
tion are briefly introduced in Section II. Next, in Section III,
we will present the computation complexity of CPA and the
proposed ideas to reduce the computational complexity and
an efficient CPA technique that allows recovering secret key
bytes faster than the conventional one. Then, the experimental
results clarifying the efficiency of the proposed methods
with different kinds of countermeasures will be shown in
Section IV. Finally, Section V concludes the paper.

II. GENERAL BACKGROUND
A. LEAKAGE CHARACTERISTICS OF SAMPLES
Let pi={1,n} denote the ith plain-text encrypted in AES-128
algorithm, where n is number of plain-texts. We denote
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kj={1,16} as the subkey number j of secret key. The power
traces that are recorded during the encryption are denoted
as t1...n,1...l , where l is the number of samples recorded per
encryption. According to [24], the power consumption of a
single sample t (τ ) can be express as the sum of a data-
dependent component td (τ ), an operation-dependent com-
ponent to (τ ), switching noise tsw.noise (τ ), electronic noise
tel.noise (τ ), and the constant component tconst (τ ). All com-
ponents are independent with each other as shown in (1).

t(τ )= to (τ )+td (τ )+ tsw.noise (τ )+ tel.noise (τ )+ tconst (τ )

(1)

Let texp (τ ) denote the exploitable component including the
operation-dependent component to (τ ) and data-dependent
component td (τ ), see 2. Let tnoise (τ ) denote the noise com-
ponent consist of the switching noise tsw.noise (τ ) and the
electronic noise tel.noise (τ ), as in (3).

texp (τ ) = td (τ )+ to (τ ) (2)

tnoise(τ ) = tsw.noise (τ )+ tel.noise (τ ) (3)

The SNR of the time sample t (τ ) is the ratio of the variance
of exploitable power consumption texp (τ ) to the variance of
noise component tnoise (τ ). Therefore, the formula of SNR
can be simplified as:

SNR =
σ 2
(
texp(τ )

)
σ 2 (tnoise(τ ))

(4)

As explained in [24], in term of one-bit DPA, the attacker
considers one of the 8-bit intermediate values. Therefore, the
power consumption of the other 7 bits is switching noise
and its variance is larger than 0. In term of CPA, all bits
of intermediate values are considered, the variance of the
switching noise is tsw.noise (τ ) = 0. The constant component
tconst (τ ) is also zero for a sample t (τ ).

B. CORRELATION POWER ANALYSIS (CPA)
Based on the plaintext and all possible values for the subkey,
hypothesis values for the intermediate results are calculated.
This lead to a matrix I1...K ,1...n of hypothetical intermediate
values, where K is the number of possible values for the
subkey k .
According to [25], CPA exploits the correlation between

the real power consumption t and the power consumption
model H of the running device at some certain points of
time which must depend on the fixed secret key k and the
plaintext p changed for each trace. In CPA attack, the Pearson
correlation coefficient is the common measure to determine
the linear relationship between two variables. The define of
the Pearson correlation coefficient r is shown in equation (5).

r estimates the correlation ρ between two variables based on
n power traces. hk and t i are the average values of the power
consumptionmodel and real power consumption at the instant
i (1 ≤ i ≤ l), respectively.

rk,i =

∑n
j=1 (hj,k − h̄k )(tj,i − t̄i)√∑n

j=1 (hj,k − h̄k )
2∑n

j=1 (tj,i − t̄i)2
(5)

The Pearson correlation between the power consumption
model and the power trace is calculated for every value of
k and t. It results in the matrix R = r1...K ,1...l of correlation
coefficients. There is an alternative form of the correlation
equation for online calculations and it allows us to add one
trace per time without re-summing all of the past data. This
form is presented in (10), as shown at the bottom of the page.

Further analysis of the correlation between the real power
consumption value and the power consumption model is
presented in [26]. The important Formula 6.5 given in this
work [26] can be expressed as:

ρ (hk , t) =
ρ
(
hk , texp

)√
1+ 1

SNR

(6)

For a conventional CPA, the correlation ρ
(
hk , texp

)
between the power consumption model and the data-
dependent component is a constant for a time sample. From
equation (6), it is clear that the SNR determines the correla-
tion ρ (hk , t), and ρ (hk , t) approaching a constant when the
number of power traces used in attack is large enough.

C. DISTRIBUTION OF CORRELATION
COEFFICIENTS IN CPA
In the previous section, we have shown that the correlation
coefficients are calculated at every point of every power trace.
Using the same notation in Section I.A, we can see that l
different values of r correspond to l points are calculated
using n power traces. Therefore, the distribution of values of
r on each point after repeated samples of n power traces is
the sampling distribution. According to [24], in SCA context,
if a sufficiently large number of traces can be measured
(n ≥ 30), the Fisher’s transformation can be used to map the
random variable R to a random variable Z that has a normal
distribution, as in the equation (7). The mean of Z is then
given by µ in (8) and the variance in (9).

R 7→ Z =
1
2
ln

1+ R
1− R

(7)

µ = E(Z ) =
1
2
· ln

1+ ρ
1− ρ

(8)

σ 2
= Var(Z ) =

1
n− 3

(9)

rk,i =
n
∑n

j=1 hj,k tj,i −
∑n

j=1 hj,k
∑n

j=1 tj,i√((∑n
j=1 hj,k

)2
− n

∑n
j=1 h

2
j,k

)((∑n
j=1 tj,i

)2
− n

∑n
j=1 t

2
j,i

) (10)
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In [24], the authors aim to calculate the lower bound for
the number of power traces needed to attack successfully.
Their observation depends on the ρmax which occurs between
the correct hypothesis power consumption and one of the
devices at the correct sample time t(τkc,tc). The number of
traces that are needed to take the correct key in practice
is mainly determined by the distance between the sampling
distribution with ρ = 0 and ρ = ρmax. All values of R are
drawn from one of these two sampling distributions. From (8)
and (9), we can clarify that the estimator values ρ = 0 and
ρ = ρmax are normally distributed withµρ0 = 0 andµρmax =
1
2 ln

1+ρmax
1−ρmax

, respectively. The more overlap there is between

these distributions, the less clearly a significant peak is in R.
In order to measure the distance between the distributions,

the authors calculate the probability that a value drawn from
the distribution with ρ = ρmax is bigger than the one that
is drawn from the distribution with ρ = 0. This calcu-
lation is given by formula (11) and can be transformed to
formula (12).

α = 8

 1
2 ln

1+ρmax
1−ρmax

−
1
2 ln

1+0
1−0√

2
n−3

 (11)

n = 3+ 8

 Zα

ln
(
1+ρmax
1−ρmax

)
2

(12)

In [26], the authors performs the further analysis and
provide several comprehensive examples of DPA attacks.
Especially, the author elaborates on issues like the simulation
of DPA attacks and the calculation of the number of power
traces that are needed to perform DPA attacks successfully.
Table 6.1 in [26] provides the results to illustrate the rela-
tionship between ρmax and the calculated number of traces
according to (12). Especially, the authors indicate that since
σ = 1

/√
n− 3 ≈ 1

/√
n with the large enough value of n,

the estimators for all correlation coefficients before and after
the attacked intermediate results is processed are essentially
located in the interval ±4σ = 4

/√
n. Moreover, the authors

in [26] also indicated that n ≈ 28
ρ2ck,ct

. The purpose of this work

is not to find the lower bound of the number of power traces.
We assume that the n is already sufficient and we use n power
traces in total to implement the CPA efficiently. Our proposed
technique will be discussed more detail in the next section.

III. PROPOSED METHODS FOR REDUCING THE
COMPUTATION COMPLEXITY OF CPA
For the computation complexity of the CPA technique, firstly,
we present the complexity of the attack on a protected device
using hiding countermeasure. Then, we describe the com-
putation cost on masking protected device. As described in
Section II.A, the attackers need n power traces to perform a
standard DPA successfully. Therefore, the number of com-
putations is proportional to l ∗ n ∗ K . In addition, hiding
countermeasure will bury the intermediate results by adding

different kinds of noise. Consequently, the number of corre-
lation coefficients is reduced and the number of power traces
is increased, according to (12).

In term of the second-order DPA attack, the authors in [6]
have shown that the complexity is the square order in compar-
ison to a standardDPA attack on a interval with the length of l.
This means that the length of each power trace will increase
from l to l(l−1)

2 . Therefore, the complexity of the second-
order technique is proportional to l(l−1)

2 ∗ n ∗ K . In fact, the
more noise in the power trace, the more measurements are
needed for a successful DPA attack. Therefore, cryptographic
devices are typically protected by a combination of hiding
and masking countermeasures. This leads to a very time
consuming task to perform an attack on the highly protected
devices.

A. PARTIAL CORRELATION POWER ANALYSIS
It is clear that reducing the length l of each power trace can
reduce significantly the complexity of the DPA attack. In this
section, we describe the process of our proposed method
and explain the way to reduce the number of samples of
a power trace in computing process. As mentioned in the
previous section, all values of matrix R are drawn from one of
two sampling distributions. By using Fisher’s transformation,
we assume that all values of matrix R → Z will be drawn
from two normal distributions N1 (0, σn) and N2

(
µρmax , σn

)
,

where σn = 1
√
n as illustrated in Fig. 1. From the equation (9),

it is clear that an attacker can decrease the overlap between
these two normal distributions by increasing the number of
traces.

As explained in [26], the recorded traces are quite long
compared to the interval during which the attacked inter-
mediate results are processed. Usually, many operations are
executed during the recording and completely independent of
the attacked intermediate values. Therefore, most of correla-
tion values ρck,1 . . . ρck,l are usually zero in practice. Indeed,
we assume that all values of ρ except ρck,tc will be distributed
in the form of N1(0, σn), and ρck,tc at the sample t(τkc,tc) will
be distributed in the form of N2

(
µρmax , σn

)
. Hence, we have

some observations as follows.
Firstly, if we reduce the number of traces from n to

n/2 and n/3, the standard deviation of the normal distribu-
tion N1(0, σn) will be changed from σn to σn/2, σn/3. The
shape of distributionN1(0, σn) will be changed toN3(0, σn/2),
N5(0, σn/3), respectively, as illustrated in Fig. 1.
Secondly, from the equation (6), the correlation ρck,tc will

be a stable value when the number of traces is large enough.
In this case, we assume that the ρck,tc will distribute around
and near the mean µρmax =

1
2 ln

1+ρmax
1−ρmax

and then keeps
consistent. Therefore, the value of mean µρmax will be used
to determine the interval of POI.

Thirdly, if n is replaced by n/2, we can obtain:

4
√
2
√
n
>

√
28
√
n

(13)
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FIGURE 1. The probability density of Z values on different numbers of
used power traces: a) n and n/2; b) n and n/3.

Consequently, 4σn/2 > ρmax. In this context, ρmax is small
(ρmax < 0.2), therefore µρmax ≈ ρmax. It means that the
right tail of distribution N3(0, σn/2) is larger than µρmax . This
larger interval (LI ) can be calculated as LI = 4σρ0 − µρmax ,
where σρ0 denotes standard deviation of zero mean normal
distribution in Fig. 1. The same calculations can be done for
n/3. As a result, if we take the LI containing the samples
which have the highest correlation, we can take the correct
samples t(τkc,tc). In other words, we can take the POI based
on the right tail of N3(0, σn/2), N5(0, σn/3).

FIGURE 2. The remarkable positions to perform P-CPA.

Let’s consider an intuitive example to illustrate our obser-
vation about the correlation. We perform an online 2-order
CPA on the first 1200 power traces of the public ASCAD
database. This is a software masked AES implementation

obtained from an ATMega8515 micro-controller [18]. Then,
we take the maximum correlation of each hypothesis key.
In this context, we assume that the secret key is known and
illustrated as a red line in Fig. 2. Two remarkable positions
in which the numbers of traces are n

2 and n
3 are determined,

respectively. In addition, the diameter of the red circle is used
to illustrate the LI for taking POI. It is clear that at the position
n′ = n

2 , the red circle is very small, the maximum correlation
of the correct key is higher than almost all other hypothesis
keys. It means that, if we take the top-down α POIs which
have the highest correlation at n′ = n

2 , we can take the correct
samples t(τkc,tc). In contrast, at the position n′ = n

3 , the red
circle is larger and the correlation is very low compared with
other hypothesis keys. Therefore, a larger number of POIs
must be taken to reveal the correct samples t(τkc,tc). It is noted
that the correlation matrix has the size of key× l. Therefore,
taking the sample t(τkc,tc) when n′ = n

3 is very challenging.
With α selected POIs where α is very small in compar-

ison to l, the CPA computation complexity can be reduced
proportionally with l

α
. We complete our first proposal by

Algorithm 1. Suppose that we employ it to perform an auto-
CPA on a set of n × l power traces corresponding to set of
plain-texts which has size of n × 16, we chose n′ = 1

/
2n

and α = 100. Algorithm 1 is divided into two phases.
Firstly, we take a subset of power trace which has size of
n′× l (Steps 2, 3). Then, we perform the standard CPA using
the function StandardCPA() on this subset of power traces.
As a result, the matrix correlation Rkey,l is taken and it is
also the end of phase 1 (Step 5). Next, we take a top-down
100 samples corresponding to first 100 highest correlation
values of matrix Rkey,l (Steps 8, 9, 10). After that, we take the
second subset of power traces with the size of n×100 and the
corresponding subset of plain-texts (Steps 12, 13). Finally,
the phase 2 is performed (Step 15). The standard CPA is
implemented again on the newest subset of power traces and
plaintexts. The output of Algorithm 1 is the correct byte of
the secret key.

B. PARTIAL CORRELATION POWER ANALYSIS BASED
ON POWER TRACE BIASING
As indicated previously, taking the sample t(τkc,tc) when
n′ = n

3 is very challenging. Therefore, we propose another
method based on the power trace biasing technique.

For each sample t (τ ), the operation on all power traces is
usually the same. Therefore, the variance of the operation-
dependent power consumption σ 2(to(τ )) = 0. Consequently,
the SNR value in (4) can be further simplified as:

SNR =
σ 2(td (τ ))
σ 2(tnoise(τ ))

(14)

In the conventional CPA, it is clear that if the plaintexts are
chosen randomly, the 8-bit intermediate values are uniformly
distributed. In addition, each bit of the intermediate value is
independent with the other bits and the probability of each
bit is 0.5. Therefore, HW follows a binomial distribution.
In practice, the probability of each HW is distributed as
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Algorithm 1 Auto-CPA Based on Partial Correlation Power
Analysis: P-CPA

Input: tracen×l , plaintextn×16, n′ = 1
/
2n, α = 100

Output: CorrectKeyByte
1: for Byte from 1 to 16 do
2: Plt0 = plaintextn

′
×16

3: Tr0 = tracen
′
×l

4: for key from 0 to 255 do F Phase 1
5: Rkey,l ← StandardCPA(Plt0,Tr0)
6: end for
7: while α ≤ 100 do F Taking POIs
8: α = α + 1
9: l̄α = li← argmax(Rkey,l)

10: li = 0
11: end while
12: Plt1 = plaintextn×16

13: Tr1 = tracen×l̄ F l̄ has size of (1× α)
14: for key from 0 to 255 do F Phase 2
15: Rkey,l̄ ← StandardCPA(Plt1,Tr1)
16: end for
17: CorrectKeyByte = key← argmax(Rkey,l̄)
18: end for

TABLE 2. Probability distribution of the HW of a uniformly distributed
8-bit value.

expressed in Table 2. It is clear that theHW with big deviation
appears with low probability. In this case, we assume that
Var(td (τ )) ∝ Var(HW ). It means that we can take the high
values of the variance σ 2(to(τ )) if the adaptive plaintexts are
chosen. Based on this observation, we proposed a method for
selecting the adaptive plain-texts which give the high SNR
values. However, unlike the previous works [16], our novelty
is that we take the plain-text from a given set of plain-texts.
If we take n′ plain-texts which have the intermediate values
corresponding toHW = {0, 1, 2, 6, 7, 8}, n′ is approximately
28.9% of n. In other words, if we calculate the CPA on
n′ = 1

/
3n for taking POI as the phase 1 of P-CPA, the

probability of taking the correct sample t(τkc,tc) is very high.
The previous intuitive example is used again with further

experiments. Fig. 3.(a) illustrates the correlation at the first
350 power traces of a given set of power traces (one third
of previous example). Meanwhile, Fig. 3.b presents the cor-
relation of 350 power traces selected by biasing technique.
It clearly shows that the correlation of correct key in Fig. 3.(b)
is higher and more consistent than that in Fig. 3.(a). There-
fore, it is easy to take the number of POIs which consist of
the correct sample t(τkc,tc). Our second proposed method is
presented by Algorithm 2.

Similar to Algorithm 1, Algorithm 2 is divided into two
phases. However, Algorithm 2 is different withAlgorithm 1 in

FIGURE 3. The correlation of the correct key for two CPA methods:
(a) Standard CPA; (b) CPA with power trace biasing technique.

the process of the phase 1 and the value of α = 250. We also
do further steps to take out n′ ≈ n

3 power traces based on the
biasing technique (Step 5, 7, 8). The rest of Algorithm 2 is
processed the same as Algorithm 1.

An important practical aspect is the number of POIs that
have to be taken in order to perform a successful attack.
However, calculating the exact number of POIs that contain
the correct sample is very challenging in practice because
of several reasons. Firstly, ρmax is a random variable and it
is difficult to find the certain values of ρmax. Secondly, it is
clear that LI have different lengths corresponding to different
values of n. Finally, there are so many correct samples that
can be used to reveal the correct keys. Indeed, the authors
in [26] have indicated that in their experiments, the inter-
mediate result is used in several instructions. This is very
typical for software implementations. Each time the micro-
controller performs an operation that involves the attacked
intermediate result, there is at least one peak in the matrix R.
Due to the abovementioned reasons, we focus only on finding
the number of traces for the POI extractor. The theory of
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Algorithm2Auto-CPABased on Power Trace Biasing Based
Partial Correlation Power Analysis: BP-CPA

Input: tracen×l , plaintextn×16, n′ = 0, α = 250
Output: CorrectKeyByte

1: Plt0 = plaintextn×16

2: for Byte from 1 to 16 do
3: for key from 0 to 255 do F Phase 1
4: for i from 1 to n do
5: h← HW (SBOX ((plaintexti,16, key))
6: if h = 0, 1, 2, 6, 7, 8 then
7: n′ = n′ + 1
8: tracen′,l = tracei,l
9: end if

10: end for
11: Tr0 = tracen

′
×l

12: Rkey,l ← StandardCPA(Plt0,Tr0)
13: end for
14: while α ≤ 250 do F Taking POIs
15: α = α + 1
16: l̄α = li← argmax(Rkey,l)
17: li = 0
18: end while
19: Plt1 = plaintextn×16

20: Tr1 = tracen×l̄

21: for key from 0 to 255 do F Phase 2
22: Rkey,l̄ ← StandardCPA(Plt1,Tr1)
23: end for
24: CorrectKeyByte = key← argmax(R(key,l̄))
25: end for

calculating exactly the number of POIs is out of the scope
of this work. However, based on several practical attacks and
simulations, we have determined the values of POI= 100 and
POI = 250 for n/2 and n/3, respectively, can be enough to
reduce n for POI extraction with a small number of POIs.
This reasonable choice will be proven by our experiments in
the next section.

IV. EXPERIMENTAL RESULTS
To prove the efficiency of our proposed on different types of
SCA countermeasures, the data of two platforms including
RISC-V processor and public ASCAD database were chosen.
All experiments were performed with MATLAB software on
a personal computer with Intel Core i5-9500 CPU, DDR4
24GBmemory. In our experiments, the average of the success
rate and the computation time are used as the metrics to
evaluate the efficiency of the proposed methods.

A. MASKING
Our first experiment is performed on the ASCAD database
containing 60,000 traces in which each trace consists of
700 samples. The protected AES core was implemented
by the masking countermeasure with a different masking
value for each bye of the secret key. This technique leads to

FIGURE 4. Test platform: RISC-V power traces acquisition on Sakura-G
board.

TABLE 3. The parameter of traces for our experiments on noise added
RISC-V power traces.

an increased computational complexity. In our experiments,
we perform the standard 2-order CPA (Std-CPA) to determine
the number of power traces needed for the attack. P-CPA
and BP-CPA techniques are then performed to investigate
the efficiency in terms of the computation time. In the pre-
processing state of Std-CPA, we calculate a pre-processed
trace that contains all values |la − lb| ∀la, lb ∈ l. As a result,
the new dataset with 244,650 samples on each power trace
is collected. Next, the Std-CPA is performed on the pre-
processing traces. As depicted in Fig. 5(a), the Std-CPA
was implemented successfully with 1200 ASCAD traces.
The highest correlation is 0.16605 and the execution time
of Std-CPA is 1188.4 seconds. Then, these traces are used
to implement P-CPA and BP-CPA. Fig. 5.(b) shows that
P-CPA can reveal the correct key on power traces that used
by Std-CPA. Especially, P-CPA allows to take exactly the
same sample which has the highest correlation as Std-CPA
(ρ = 0.16605). For BP-CPA, it is clear that this method
works better than P-CPA and Std-CPA. BP-CPA only used
350 power traces for phase 1 (nearly 1/3 of total power traces
needed in Std-CPA). In addition, the POIs of BP-CPA are
taken accurately, the position of the correct sample (X = 3)
is lower than P-CPA (X = 13). It means that the power
trace biasing technique makes the values of the correct key
higher and leads to the higher probability of the successful
attack. Since the partial correlation is used, the computation
time values of P-CPA and BP-CPA decline considerably from
1, 188.4 seconds to 583.54 seconds and 446.94 seconds,
respectively. These results have clarified the efficiency of our
proposed methods on masking protected devices.

B. HIDING
This experiment aims to evaluate the proposed tech-
nique in different contexts of hiding countermeasures.
Therefore, several noise levels were built by changing the
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FIGURE 5. Attack results of standard CPA, P-CPA and BP-CPA methods on masking countermeasure: (a) Standard CPA; (b) P-CPA; (c) BP-CPA.

standard deviation of Gaussian noise on clean power traces.
We have performed the power traces acquisition for the
unprotected AES-128 on Sakura-G board. To obtain the
power trace, we use an oscilloscope at the sampling rate
of 250 MS/s. The target acquisition contains a Murax 32-bit
RISC-V MCU operating at the clock frequency of 48 MHz,
as illustrated in Fig. 4. We have collected 10,000 power
traces, each power trace contains 9,919 samples. We then add
the Gaussian noise centered in zero with several values of
standard deviation to simulate different levels of hiding coun-
termeasure. As same as the previous experiment, we perform
CPA attacks by using three techniques of Std-CPA, P-CPA,
BP-CPA to compare the efficiency in the computation time.
Table 3 presents the details of parameters on each experiment
in this work. We mount the attacks and repeat these attacks
in each case of noise 100 times, the power traces of each
attack are randomly taken from 10,000. The results of the
experiments are then averaged. As depicted in Fig. 6.(a), the
computation times of three techniques on each level of noise
are different. It is clear that the average computation time of
Std-CPA is highest on all experiments. The results indicate
that the computation time values of P-CPA and BP-CPA are
the 2nd lowest and the lowest ones, respectively. These results
demonstrate that BP-CPA is the most effective in terms of the
computation time and it can reduce approximately two times
compared with Std-CPA. However, it is worth noting that the
time consumption values of P-CPA and BP-CPA methods
when σ = 0.004 are nearly the same, and the reduction
of the computation time is 1.5 times. This is an unexpected
result because the number of traces for the attack is small and
phase 1 of BP-CPA needs some extra computation time to
filter the high SNR power traces. Comparing the reliability
of our proposed techniques, the averages of success attack
is taken. As illustrated in Fig. 6.(b), P-CPA achieves the
highest success rate and the success rate of BP-CPA is lower
than Std-CPA in cases of σ = 0.006 and σ = 0.008.
However, in general, the results of the BP-CPA success rate
are acceptable.

C. COMBINED HIDING AND MASKING
In this experiment, we consider the combination of hiding and
masking techniques. To simulate this scenario, we simply add

FIGURE 6. Average computation time and success rate of one subkey on
noise added RISC-V power traces. (a) Average computation time;
(b) Average success rate.

the Gaussian noise with different levels to ASCAD database.
In TCHES-2019, Benjamin et al. have demonstrated that
DDLA can break the masked cryptographic devices without
any advance knowledge about the masking implementa-
tion [21]. In contrast, a 2-order CPA attack needs to be
pre-processed and performed in a squared computation com-
plexity compared to the 1-order CPA. However, the standard
2-order CPA can overcome the noise-generation-based hiding
countermeasure. Therefore, in this experiment, we mount the
attacks to compare the possibility of DDLA and CPA on
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FIGURE 7. The experimental results on differential levels of noise added ASCAD database. (Left column) σ = 0.5; (Center column) σ = 1.0;
(Right column) σ = 1.5; (a), (b), (c) DDLA attack; (d), (e), (f) BP-CPA attack.

a combined countermeasure. We reconstruct the same model
of the MLP network on TCHES-2019 with 30,000 power
traces as the original work [21]. In terms of CPA, we use a
maximum 2,700 and minimum 1,200 power traces for the
highest and the lowest levels of noise, respectively. It is
noted that the original traces in each attack are the same,
but the Gaussian noise is re-initialized and added on each
implementation. Table 4 shows the parameter of our exper-
iments in detail. For the convenience, we choose the most
effective proposed technique BP-CPA for this experiment.
The attack results are shown in Fig. 7. As shown clearly in
Fig. 7.(a, b, c), it is difficult to discriminate the correct subkey
by DDLAwhen σ = 1.0 and it can not distinguish the correct
subkey in the case of σ = 1.5. In contrast, our proposed
technique can reveal the correct subkey in all cases. The black
lines in Fig. 7.(d, e, f) present the correlation of the correct
subkey. It is worth noting that the correct samples which have
the highest correlation are taken at the beginning of the POI
axis. It means that the power trace biasing technique makes
the correlation values of candidate samples higher than the
rest. In addition, our algorithm takes the POI following the
top-down strategy. Therefore, we can reduce the number of
POIs to the value of less than 250. More interestingly, the
maximum correlation value decreases when the number of
traces increases as explained in (12). Despite having the high-
est values, the black lines are not clearly distinguished from
the rest (gray lines). This is because we take the minimum
number of traces for successful attacks. These experimental
results have indicated that the proposed method could outper-
form the non-profiled DL based attack (DDLA) on hiding-
masking protected devices.

TABLE 4. The parameter of traces for the experiments on the noise
added ASCAD database.

After proving the efficiency of our proposed method,
we decide to perform further experiments to evaluate the
execution time of DDLA, Std-CPA and our proposed tech-
niques. To achieve the reliable results, we repeat 50 times
the experiment of CPA in Section IV-C. The computation
time is then averaged and presented in Fig. 8.(a). The DDLA
columns show the execution time of the DDLA technique.
They are almost the same because we fixed the number of
traces for all different levels of noise. The Std-CPA columns
illustrate the computation time of Std-CPA. We increase the
number of traces corresponding to the increase of the devi-
ation of noise. As a result, the execution time of Std-CPA
increases significantly and it reaches the highest value when
σ = 1.5. In addition, the execution time of Std-CPA is
higher than DDLA in all cases. These results indicate that
the drawback of Std-CPA is time-consuming. Fortunately, the
goal of this work is to resolve the limitation of Std-CPA.
As expected, the BP-CPA columns present the time consump-
tion of BP-CPA which is lower than those of both DDLA and
Std-CPA. Especially, the execution time of BP-CPA reduces
approximately by 2.6 times compared to Std-CPA in all cases.
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FIGURE 8. Average of computation time and success rate on different
levels of Gaussian noise added ASCAD: (a) Average of computation time;
(b) Average of success rate.

The results also indicate that our proposed technique out-
performs DDLA even though DDLA uses a huge number of
power traces (967.842 seconds compared to 1495.62 seconds
in the case of σ = 1.5).

Consider the reliability, the comparison of the success
rate between Std-CPA and BP-CPA is shown in Fig. 8.(b).
In terms of the low noise level, the success rate of our
proposal is slightly lower than Std-CPA. This is the limitation
of our proposed technique. Our proposal uses power trace
biasing to increase the standard deviation of td (τ ) on n′ = n/3
power traces. However, the attack phase is still based on
standard CPA. Therefore, the success rate of the proposed
technique is less than or the same as Std-CPA in such cases.
In contrast, our proposal has better results than Std-CPA
in the remaining cases. From (14), it clearly shows that
the higher the noise, the smaller the SNR value. Therefore,
Std-CPA needs to use more power traces in order to dis-
criminate the correct samples as obtained from (6). By using
the POI extractor, our proposed technique has eliminated
most of the noise affected samples that are not related to
the correct key or the operation. Consequently, the proposed
technique increases the probability of the successful attack in
comparison to Std-CPA: 81% compared to 70% in the case of
σ = 1 and 78.85% compared to 76% in the case of σ = 1.5.

V. CONCLUSION
This paper has proposed two novel POI extractors based
on the power trace biasing technique and the correlation
distribution to reduce the computation time. Our first pro-
posal (P-CPA) exploits the correlation distribution. On the
other hand, the second proposal (BP-CPA) is a new power
trace biasing based technique which requires only 28.9% of
power traces. Using proposed POI extractors, we presented
two auto-CPA algorithms that perform automatically the POI
selection, together with key recovering. The effectiveness
of our algorithms was proved by conducting various exper-
iments based on different platforms, such as the ASCAD
database and RISC-V processor based dataset. The results
indicate that when compared with the standard CPA, by using
only a half of the power traces needed for taking the POIs, our
proposed method not only decreases the execution time by
approximately 2.0 times but also enhances the success rate of
attack. In addition, based on power trace biasing technique,
our proposed technique reduces the execution time to approx-
imately 2.6 times compared to the standard CPA. However,
the success rate of BP-CPA is lower than the standard CPA.
We assume that this is the trade-off between the number of
traces needed for taking POI and the attack success. In the
future work, we plan to combine our proposal with other pre-
processing techniques to further enhance the performance of
the SCA evaluation.
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