
Received January 20, 2022, accepted February 2, 2022, date of publication February 10, 2022, date of current version February 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3150878

Modeling Iteration’s Perspectives
in Software Engineering
MAMOONA MUMTAZ 1, NAVEED AHMAD 2, M. USMAN ASHRAF 3, AHMED ALSHAFLUT4,
ABDULLAH ALOURANI 5, (Member, IEEE), AND HAFIZ JUNAID ANJUM 6
1Department of Software Engineering, University of Management and Technology, Sialkot 51310, Pakistan
2Faculty of Computing, National University of Computer and Emerging Sciences (FAST), Islamabad 44000, Pakistan
3Department of Computer Science, Government College Women University, Sialkot 51040, Pakistan
4Faculty of Computing and IT, Albaha University, Al Bahah 61321, Saudi Arabia
5Department of Computer Science, Majmaah University, Al Majma’ah 11952, Saudi Arabia
6Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan

Corresponding author: Mamoona Mumtaz (mamona.mumtaz@skt.umt.edu.pk)

This work was supported by the Deanship of Scientific Research (DSR), Majmaah University, Saudi Arabia.

ABSTRACT Iteration is ubiquitous during software development and particularly notable in complex system
development. It has both positive and negative effects; the positives of iteration include improving quality
and understandability, reducing complexity and maintenance, leading to innovation, and being cost-effective
in the long run; Negatives of iteration include; time, cost, and effort overrun. Its management is a challenging
task and becomes more complex due to the non-uniformity of the terminology used at various places.
Although Software Development Life Cycles (SDLC) are highly iterative, not much work related to them
has been reported in the literature. Insights into iteration are explained in this paper by defining different
perspectives (Exploration, Refinement, Rework, and Negotiation) on iteration through literature review,
modeling each perspective, and simulating the effect of each iterative perspective on project completion time.
An attempt has been made to create awareness about efficient use of iteration during software development
by informing which perspective of iteration has what kind of impact on project completion time to avoid
delays.

INDEX TERMS Iteration, software engineering, software development lifecycle, modeling.

I. INTRODUCTION
Software development processes do not move in a straight-
forward, linear fashion. Deviation from linear movement
is widespread and is depicted as iteration [1]. Iteration
is performing a task again once it has been done. It is
considered unavoidable and particularly notable in the life
cycle of complex systems. Iteration can be categorized as
planned and unplanned iteration. Planned iterations occur
in iterative software development, particularly agile soft-
ware development [2]. In comparison to planned iteration,
unplanned iteration is costly and may affect a project’s out-
come. There are numerous causes of unplanned iteration in
software development processes, including volatile nature
of software scope [1], [3]; inconsistency revealed at some
later stage [1]; changing business rules, client criticism on

The associate editor coordinating the review of this manuscript and
approving it for publication was Mahmoud Elish.

prototypes [2], [4]; mistakes uncovered by testing [5], [6];
complexity, ambiguity or unclear requirements [7].

Iteration is well studied in product development [8]–[11],
construction [12], design [13]–[19], and engineering disci-
plines [13], [16], [19], [20], whereas very few authors discuss
them from software development viewpoint. A study gath-
ered and summarised insights into iteration from the design
and development discipline. Additionally authors create the
taxonomy of iteration that clarifies differences between dif-
ferent perspectives on iteration. They have selected a few
articles from software engineering literature as well [17].

Iteration is hard to oversee and control. In the software
industry, it is usually connected with time, cost, and effort
overwhelms [4], [5], [21]. Early iteration on the investigation
of thought lessens the recurrence of requirement changes later
in the development and reduces completion time because
there will be less modification on later phases of development
cycle [22]. It expands the amount and quality of the end
product and, in addition, diminishes the data sources required

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 19333

https://orcid.org/0000-0001-6026-0267
https://orcid.org/0000-0002-6656-3362
https://orcid.org/0000-0001-7341-8625
https://orcid.org/0000-0001-6794-3677
https://orcid.org/0000-0002-5252-8777


M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

to create it [23]. Iteration leads towards innovation [24].
It increases the development process’s complexity and moves
from linear towards dynamic. It also restricts the multifaceted
nature and positively affects the understandability and con-
ceptual clarity [25]. One can use it as a tool to refine unclear
goals into clear objectives [7]. Iteration makes the design
adaptable, i.e. it boosts the perseverance of the design in
future force changes as far as time and cost as well [26].
Empirical studies highlight that it also reduces the complexity
and size of the code. For instance, iteration reduces code
complexity, makes reverse engineering simple, and enhances
the software design [27]. It has beneficial outcomes, includ-
ing investigating ideas, finding and remedying blemishes,
removing inconsistencies, and permitting development under
unpredictability and change.

Although, iteration is unavoidable during software devel-
opment [1], [6], [28]–[32], detailed analysis of unplanned
iteration does not exist. Despite the iterative nature of SDLC,
little attention has been paid to it. Most of the authors have
used varied terms to refer to iteration at different places.
Management of iteration is a challenging task, and it becomes
more complex due to the use of different terms to define
iteration at different places. To resolve issues related to itera-
tion, there is a need for uniform terminologies. In software
engineering literature, no such study exists that considers
the issues surrounding unplanned iteration in software devel-
opment processes. The authors of the present article gather
insights into iteration to clarify the differences between differ-
ent perspectives on iteration and find the impact of each per-
spective on project completion time. This article contributes
in two ways; first, by defining different perspectives on iter-
ation —based on source and stage of the SDLC in which
it occurs— to clarify the distinctive viewpoints of iteration
that consistently exist in the software engineering discipline;
second, bymodeling the impact of each perspective on project
completion time.

A comprehensive analysis of different viewpoints of iter-
ation in software engineering processes has been created
through literature review. From an in-depth analysis of all
relevant publications, it has been found that iteration posi-
tively influences quality, understandability, productivity, and
conceptual clarity. The software, which is developed itera-
tively, provide flexibility and reduce maintenance. It reduces
the complexity and code size, removes inconsistencies, fixes
defects, and leads towards innovation. Iteration increases
time, effort, and cost for a short time, but it is cost-effective in
the long run. Overall, non-functional requirements get easily
satisfied by iteration. This article defines different perspec-
tives on iteration which exist in the software engineering
discipline. Next, the authors have modeled the impact of each
iterative situation on project completion time by using and
enhancing [33]. A project manager should know of all these
to manage a project in a better way.

The rest of this paper is organized into four sections.
Section II introduces different perspectives on iteration to dis-
tinguish between diverse iterative circumstances in software

development processes and demonstrates that previously no
such distinction existed. Section III models each iterative per-
spective. Section IV verifies iterative perspectives andmodels
by comparing simulation runs with deterministic solutions.
Section V summarizes key points and conclusion.

II. PERSPECTIVES ON ITERATION
Iteration has different perspectives because different iterative
circumstancesmay have diverse sources and impacts. An iter-
ation might be seen from a different point of view contingent
on the concern.

A. EXPLORATION
Dynamics of exploration involve an iterative process of
seeing different alternatives, assessing those solutions, and
selecting the optimal one. It incorporates the investigation
of new thoughts to tackle an emerging issue and iterative
convergence to a solution. Every progression of iterative pro-
cedure comprises of either a straightforward, surely known
expansion, design, or alteration in implementation inspired
by a better understanding of an issue acquired through the
process [34]. Exploration alludes to an iterative process that
concocts straightforward solutions, so there is less to change
and rolling out those improvements is less demanding and
enhances quality [7]. Exploration refines the problem state-
ment and creates an in-depth analysis of the problem [35].
Authors portray iteration as exploring diverse design options,
predicting each discretionary design’s quality and selecting
the one that best fits into a particular context [36]. It is central
in critical thinking and problem-solving processes. Explo-
ration usually includes the iteration of requirement building
and high-level design, however not of low-level configura-
tion, execution and testing [37].

Literature highlights that exploring different design
options in the early stage of design are beneficial
(see Table 1). Longitudinal action research found that inves-
tigating different design choices is the synchronous analy-
sis of the issue and its solutions. Particularly for software
development, performing this investigation during early or
architectural design is advantageous [31]. Exploring the
design choices is essential during software development,
and just a couple of strategies exist to help in performing
this investigation systematically. In User-Centred Software
Development (UCSD), iterative prototyping for the explo-
ration of the different design choices is one of the significant
activities [40].

In requirement gathering, explore the requirements to get
a higher-level understanding. In design, exploration is for
inventing the innovative and straightforward solution [7].
Many writers talk about exploration in early design phases
as [36] code iteration as exploring diverse design options,
predicting each discretionary design’s quality and selecting
the one that best fits into a particular context. Exploration usu-
ally comes in earlier phases of SDLC. It usually includes an
iteration of requirement building and high-level design [37].
System risks, e.g. risks identified with deficient, conflicting

19334 VOLUME 10, 2022



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

TABLE 1. Summary: benefits of exploring different options in the early stage of software development process.

and vague requirements, are all explored and managed
through the requirements elicitation stage [38]. Exploration
alludes to the procedure to make and/or check the initial sys-
tem specification [41]. Open innovation should be embraced
as a complementary approach to ease internal innovation.
There are two types of innovation those typically software
development firms adopt, i.e., exploration and exploitation to
stand in a promptly changing technological environment [42].

Early exploration on the investigation of thought lessen the
recurrence of requirement changes later in the development
and reduce completion time because lesser modification will
be required on later phases of the development cycle [22].
It invents simple arrangements which are less intricate [34].
At the point when there is an investigation of multiple ideas
at early stages, then development proceeds with continuous
improvement [43]. Exploration more often includes an iter-
ation of requirements and high-level design, however not of
later stages, so software development life cycle grows timely
because later stages development time decreases [37] and
customer satisfaction increases [36]. It refers to an iterative
process that concocts simple solutions, and then changes
become less complex [7].

B. REFINEMENT
Refinement enhances initial specification and has subtypes in
terms of its impacts. One of those is refactoring that has min-
imal impact. This type of refinement is done when sufficient
time is available or where products have aesthetic appeal or
assessment criteria is subjective. It portrays a situation where
essential requirements have been satisfied and experience
further iterations to upgrade optional qualities, e.g., enhance
the style or diminish cost. In general, refinement is the pro-
cess of removing impurities and improving something by
making small changes, e.g., refactoring. Different viewpoints
about the after-effects of refinement from the literature are
summarized in Table 2 and discussed below.

A few researchers characterize refinement as beginning
with the basic introductory implementation of a small part
of the issue and iteratively upgrading existing version,
e.g., after reviewing the prototype with users, developers

refine and extend it, this process continues through several
iterations [34]. In the same way, [37] additionally depict
refinement in the software development lifecycle as the first
iteration should produce a miniature version of the sys-
tem, and each iteration then enhances that version. Extreme
programming is an agile technique that stresses the con-
tinuous refactoring of codebase [44]. While developing
embedded systems, we refine the basic description into
another representation that mirrors the choices we have
made within exploration [36]. During software development,
unclear arrangement of objectives is progressively refined
into requirements [45]. It is also implausible that an architec-
tural design process does not involve cycles to upgrade the
design [46]. Traditional process management drives the dif-
ferences out of processes by nonstop estimation, identifying
errors, and process refinements [7]. In the software develop-
ment process, refinement also exists in removing code clones.
They depict that numerous practices can be utilized to elimi-
nate the clones from code [47]. Larger organizations have dif-
ferent practices than agile, e.g., change control board in larger
organizations and refactoring and continuous improvement
in agile [32].

In SDLC, the prototype should be designed first and then
refined in the next iterations [48]. User interface design
and agile concern iteration, change, and refinement [2].
Numerous authors discuss refinement in the analysis, design,
and implementation stages. As before, requirement anal-
ysis requirements are accumulated with little detail, and
afterwards, those are detailed up within iterations (refine-
ment) in the analysis [49]. In design, refinement is designing
with a straightforward introductory outline, incorporating
it persistently, and refactoring the outline [25], [50], [51].
In implementation, refinement is refactoring of code and
database [25], [50]–[52]. According to [47], refinement
(iteration) occur during implementation and maintenance
stage.

Refactoring has both positive and negative aftereffects
in terms of quality improvement. While coding, refactor-
ing improves practicality, upgrades execution, diminishes
code size, removes duplicate code, improves testability,
improves extensibility and require less work to incorporate

VOLUME 10, 2022 19335



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

TABLE 2. Summary: after-effects of refinement.

new components. It improves quality and reduces time to
market [57]. Refinement helps work faster, either wemeasure
direct or indirect, there is a positive influence of refactoring
on software quality. Refactoring restricts the multifaceted
nature, overall positively affects the understandability and
conceptual clarity for application engineers and understud-
ies [25], [64]. It enhances extensibility, simpler to include new
elements, i.e. reduce its complexity, simplify reverse engi-
neering, and enhance the software design. If there are clones
in the system, they have to change everywhere, so main-
tenance effort increases. Because of the negative effect of
clones, one can uproot code clones by dynamic refactoring
(iterative refinement) [27].

However, some studies claim that all types of refactoring
do not constantly improve quality; sometimes, refactoring
degrades software quality as well [67]–[70]. Code refactoring
could bring about an efficiency punishment in the short run if
the coding style gets to be not the same as the style designers
have become appended to [65]. It makes the configuration
versatile, i.e. support the persistence of the outline in future
power changes as far as time and cost [26]. Refinement leads
towards the investigation of new ideas that reduce change
costs by creating straightforward arrangements so that there
is less to change, and rolling out those improvements is less
complex [36]. The consequences of clones can be classified
in both positive and negative ways. While seeing an opti-
mistic viewpoint, clones diminish the development time by
reusing code. There are no compelling reasons to compose
the new code, so clones in the code enhance development
efficiency [47].

C. REWORK
Rework is one of the iteration’s perspectives that seem most
regularly in literature. It is reattempting a work in the same

manner as before due to changed information or suppositions.
Rework requires the reiteration of an assignment since it
has initially endeavoured with incorrect data and supposi-
tions. An example of rework in software development is
a change in requirements, or simply requirements misun-
derstood. Rework may be produced because a procedure is
excessively unpredictable, so that it is impossible to recognize
the most productive order of work execution beforehand.
It may be because of issues that appeared during analysis or
requirement changes. If the timing constraints require start-
ing a project with incomplete information, it is impossible
to eliminate rework because of changed input information
later. Rework is adverse because of the increase in time and
cost without any improved software performance and quality.
After-effects of the rework gained from the literature are
summarized in table 3.

Cycles often get to be compulsory when some irregular-
ity is found. At the point when there is irregularity, then
need to revise to eliminate the issues [1]. If the opera-
tional outline is not correct, it will be perceived at a prior
stage, and iterations with requirements and design can be
revamped [81]. Change can be due to many reasons, soft-
ware testing sometimes detects errors in programming, while
clients can change the requirement, and usability testing can
bring about change even without mistakes or changes in
requirements [2]. Requirements instability alludes to evolu-
tion or fluctuations in requirements throughout the SDLC,
and it causes rework [3]. Many cycles in the refinement
procedure are because of prerequisites just misjudged and/or
misconstrued [82]. The additional limit for change makes
projects vulnerable to prerequisites change, or requirement
creep [83]. To decide software cost and schedule, the measure
of revamping and how it is dealt with are essential compo-
nents [84]. When estimating the cost of a project, it is hard to

19336 VOLUME 10, 2022



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

TABLE 3. Summary: after-effects of rework.

TABLE 4. Summary: after-effects of negotiation.

reflect numerous cost variables which influence the product
cost, e.g., requirement changes [21].

Numerous activities in software development involve sig-
nificant changes in the requirements, scope, and technology
used. These changes are outside the development control
and regularly happen inside a development life cycle [7].
Most design cycles result from issues identified as late as
equipment or framework reconciliation time. At this point,
when coordinated into a framework, these either do not per-
form the required functionality or execute the wrong func-
tions [41]. There is a tremendous amount of change in a
project regarding new and changed classes during its life
cycle [85]. Change of requirements happens throughout a
project. Function Points can be redesigned each time the
use cases change so that they can determine the effect of a
particular use case in the estimate of the complete project
development [71].

There are some situations in the software development life
cycle when a team turns the effort in a new direction due to
a customer’s change demand or the changing market. Then
need to change the already developed portion to incorpo-
rate the changes [29]. Large organizations have resistance to
change, and agile development welcomes the change. During
software development, companies face the problem of rework
and deferrals [44]. Unpredictable changes occur during devel-
opment, and one must respond to those changes [86]. Small
organizations find it challenging to manage time in light of
changing customer requests [87]. Factors that contribute to
rework are lack of expertise, lack of documentation, lack
of communication, changes in requirements, lack of user
involvement, and lack of adequate testing [88]. ‘‘Rugby’’ is
an agile process model, and it permits response to change
requirements [48]. Software engineers distinguish between
artefacts that have more defects and, according to the defect
density, take decisions related to rework [89]. Rework is the

work implemented again because it was not appropriately
accomplished for the first time. Short, medium and long term
projects meet the different amount of rework. It exists in all
phases of SDLC but the maximum amount in the requirement
gathering phase.

The greater part of the outcomes of rework is negative, yet
there are some positive angles as well, e.g., it enhances the
understanding of developers [73]. Early rework is also less
costly, and it removes inconsistencies during design and in
specifications [75]. Rework identifies developers’ mistakes,
improves understanding of developers, and fix defects. It also
diminishes maintenance [74]. Negative effects of rework are
more obvious e.g., increases cost [21], increases effort [71],
much time will be used in fixing code [5], increases overall
development cycle [4]. Rework is the main reason for sched-
ule delays, budget overrun, and risks even after delivery [88].

D. NEGOTIATION
Negotiation is an iteration perspective that describes the cir-
cumstance in which the trade-off is made between various
members’ objectives and constraints by understanding and
negotiating their conflicting goals. Negotiation is utilized to
consolidate the commitment from variousmembers who have
little information about each other’s work, and they regularly
have clashing targets. When too many conflicting parameters
are involved, negotiation turns out to be excessively trouble-
some. The project comprises a dynamic chain of contracts,
and iteration is moved by backtracking up to the hierarchy
for decision making about what moves to make and growing
another sub-chain of agreements to execute the decision [1].
Building a system that operates nicely with individuals of
various backgrounds, in diverse places, and at different times
is a significant challenge. There must be a requirements nego-
tiation process that addresses the stakeholder heterogeneity.

VOLUME 10, 2022 19337



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

The selective consequences of negotiation gained from the
literature are presented in table 4 and discussed below.

Rather than rigorous requirements in contracts, now orga-
nizations require stakeholders with a shared vision and flex-
ibility to rapidly renegotiate another solution once unantici-
pated issues or opportunities emerge [80]. Risk management
comprises negotiation, and risks are overseen throughout the
development life cycle. Risk analysis is a business-level deci-
sion support tool [38], [39]. It is essential to adjust the levels
of simultaneousness and cycle appropriately to streamline
the execution. The decision about when to release software
is a business decision, and there is minimal information
available regarding the business decisions in any software
literature [84].

Requirement engineering involves a collaborative, interac-
tive, and interdisciplinary negotiation process that includes
diverse partners/ stakeholders. These stakeholders take part
in a negotiation process so they can unite on a commonly
satisfactory set of requirements [80]. To consolidate another
change, one must first choose whether it should accept it or
not and then decide to add this change in the previous or
create another module. Negotiation occurs while doing risk
analysis too [38], [39]. Negotiation makes a shared vision
among partners and develops project requirements defini-
tion. It also participates in COTS (commercial off-the-shelf)
development for obtaining and integrating, transition plan-
ning, COTS enhancement, and release planning. We should
perform prototyping in advance of and throughout require-
ments negotiations [80]. Distributed software development
may expand process duration, and there can be numerous
possible reasons for this delay. The most common delay was
resolving the work issues, e.g., if a chunk of the design or
code needs to be altered or needs a sound understanding of
the product. To resolve this kind of problem, the individuals
at more than one site should be included in information
exchange and negotiation [76]. Negotiation can also take part
in the selection of tools that will be utilized in the project
development [114]. While discovering an optimal solution
to an issue in search-based software engineering, there is
a need to trade-off between diverse stockholders’ concerns
and needs. The solution is assessed on various distinctive
subjective criteria [77].

Prune the product tree (online game) is being utilized for
eliciting requirements and buying a feature (online game)
for prioritization and negotiation to manage communication
and knowledge transfer issues during the requirement engi-
neering in [79]. The fundamental objective of negotiation
is to resolve clashes and agree between partners about the
most critical requirements. Sometimes, the restricted budget
accelerates the requirements negotiation to settle on each
requirement’s choices and needs. Stakeholders consult to
set the priorities and update the requirement list according
to the priority. Prototypes get refined based on the client’s
criticism. By picking the right set of requirements, the client
may get satisfied. As a consequence of negotiation, the vague
and unclear requirements get more precise, avoiding costly

changes. During software development, there is a negotiation
between customers and stakeholders. Working software and
user involvement is more critical than lengthy documentation
and contract negotiation [48]. We have verified the defined
perspectives bymapping each publication against the iterative
perspectives as shown in table 5.

III. MATHEMATICAL MODELING
This paper modified Braha and Bar-Yam’s model [33] by
incorporating the effects of exploration, refinement, rework,
and negotiation perspectives on the iteration as discussed in
the preceding section. Analysis in [33] is based on the overall
density of the incomplete tasks α. Hence their model does
not require investigation of the individual tasks separately.
However, we develop our model for the individual tasks as
the different kinds of iteration will occur in different tasks;
hence, their effects will not be present uniformly in all tasks.
We can then look at the overall density of the incomplete
tasks to establish a comparison with the results of [33]. As a
test example, we use a directed random graph which contains
105 tasks with connectivity < kin >=< kout >= 12 and
assuming all tasks to be incomplete at the start. Initially
the internal completion rate r = 0.75 and sensitivity value
β = 0.061 for all the tasks.
In our model, a network of nodes represents the software

development, and an individual node represents a particular
task during the development life cycle. During the software
development life cycle, the state of a task can either be ‘‘com-
plete’’ or ‘‘incomplete’’. The state of each task is influenced
by its incoming tasks, and it also influences the outgoing
tasks. The state of a task changes from being complete to
incomplete or vice-versa by some stochastic rules. If a task’s
state is complete and hasmore incoming edges, its probability
of getting incomplete will be higher. If a task is incomplete,
its state may become complete in the next instance, depend-
ing on its internal completion rate and incoming incomplete
tasks.

Let si(t) represent the state of the task i at time t , then in
our model a task can be either complete (i.e.si(t) = 1) or
incomplete (i.e.si(t) = 0). Let k ini be the number of incoming
edges to the task i, then ki(t) = k ini −

∑
j:(j,i)∈E sj(t) represents

the number of incomplete tasks connected to the task i at
time t . Following [33], the state of a task changes according to
the stochastic rules given in (1), (6), (16), (20), (24), and (25).
Corresponding to the case of task i being complete at time t
and task i being incomplete at time t , the state of task changes
according to (1) and (25) respectively.

si(t + 1) =

{
0 with probability tanh(βiki(t)),
1 with probability 1− tanh(βiki(t))

(1)

In the above equations, βi represents the coupling of task i
to its neighboring incomplete tasks, ri represents the inter-
nal completion rate of that task, and tanh(x) represents the

19338 VOLUME 10, 2022



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

TABLE 5. Selected studies mapped against iterative perspective it discuss.

hyperbolic tangent function defined as

tanh(x) =
ex − e−x

ex + e−x
(2)

We are updating the internal completion rate r , whereas
the coupling between tasks β, also get updated. In particular,
βi = 0 corresponds to the case where all the tasks are
independent, low βi value represents that tasks are not much
affected by its neighboring incomplete tasks and βi → ∞
means that all the tasks are completely dependent on its
neighbors.

A. ANALYTICAL RESULTS
Adhering to the nomenclature of [33], we define the density
of incomplete tasks at any time t as:

α(t) = 1−
∑
i

si(t)/N , (3)

whereN is the total number of the tasks. Keeping the assump-
tions of Braha and Bar-yam i.e. βi = β, ri = r for all tasks
and the homogeneity condition. ki(t) ∼=< kin > α(t), where
ki(t) represents the number of incomplete tasks and < kin >
represents the average number of incoming edges. The rate
equation for the evolution of overall density of incomplete
tasks is given by

dα(t)
dt
= (1− α(t))tanh(β < kin > α(t))− α(t)r

× (1− tanh(β < kin > α(t))). (4)

The time evolution of the state of an individual task is
dsi
dt
= −si(t)tanh(βiki(t))+ (1− si(t))ri

× (1− tanh(βiki(t))) (5)

To look at the overall density of the incomplete tasks, one
can recover (4) by using (3) in (5).

B. EXPLORATION MODEL
In the beginning, we assume that coupling between tasks is β
and the completion rate is r for all the tasks. Tasks are going to
complete once the project gets started. Expanding or dimin-
ishing coupling will not impact the exploration of a task, but

it will influence the completion rate if exploration occurs.
This is because a task being explored will take more time to
finish. Later on, during SDLC, the coupling between the tasks
will be less because the explored solution is straightforward
and less unpredictable. Since tasks are now straightforward
and less complex, rework will be minimum, the completion
rate will increase, and all tasks will be resolved in time.
If exploration occurs, then the convergence rate will be less.
After exploration, the convergence rate will increase, and all
the tasks will be completed within time. In short, exploring a
task will decrease the convergence rate for a short time. In the
long run, the completion rate of tasks will be higher than their
coupling, and all tasks will be converged timely. Increasing
early exploration will increase the probability that the project
will converge. To illustrate, for a given β and r , exploration
adds simplicity, minimizes complexity to a project network,
and all tasks converge to resolve state within time globally.

When initial state of task i is incomplete at time t and
exploration occurs, the state changes according to the follow-
ing stochastic rules.

si(t + 1) =


0 with probability 1− (ri +

Ne
N
αefe(t))

(1− tanh(βiki(t))),

1 with probability (ri +
Ne
N
αefe(t))

(1− tanh(βiki(t)))
(6)

Under the uniformity and homogeneity conditions stated in
the beginning, we can write (5) as

dsi
dt
=−si(t)tanh(β̄α)+(1−si(t))r(1− tanh(β̄α)), (7)

where β̄ = β < kin >.
Furthermore, modify as follows:

dsi
dt
= −si(t)tanh(β̄α)+ (1− si(t))(r + fe(t))

× (1− tanh(β̄α)), (8)

where fe(t) = −w◦erfc(t − t◦) + 0.75w1 is the exploration
function which decreases the overall internal completion rate

VOLUME 10, 2022 19339



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

during the exploration time and increases the overall internal
completion rate after the exploration, w◦,w1 are the explo-
ration weights which needs to be specified a priori depend-
ing upon the nature of the task and the exploration work
required, te is the time until which the exploration takes place.
It should be noted that the choice of the exploration function,
fe(t), is not unique. The particular form used here is moti-
vated by the smooth properties of the complementary error
function [115].

erfc =
2
√
π

∫
∞

x
e−t

2
dt. (9)

Let N be the total number of tasks in the development life
cycle, N◦ be the normal task i.e., those that are not being
explored, and Ne be the tasks that are being explored,then
the density of incomplete normal tasks (α◦) and tasks that are
being explored (αe) is defined as

α◦ =
N◦ −

∑N◦
1 Si(t)

N◦
, αe =

Ne −
∑Ne

1 Si(t)

Ne
(10)

respectively.
The rate equation for the evolution of the density of

incomplete normal tasks and incomplete tasks that are being
explored becomes

dα◦
dt
= tanh(β̄α)(1− α◦)− α◦r(1− tanh(β̄α)), (11)

dαe
dt
= tanh(β̄α)(1− αe)− αe(r + fe(t))(1− tanh(β̄α)),

(12)

respectively.
Combining (11) and (12), with the use of (10), we get

the rate equation for the evolution of the overall density of
incomplete tasks,

dα
dt
= (1− α)tanh(β̄α)− αr(1− tanh(β̄α))−

Ne
N
αefe(t)

× (1− tanh(β̄α)) (13)

Note that if none of the tasks are being explored
(i.e. Ne = 0), our model (13) reduces to that of Braha and
Bar-Yam [33]. For Ne 6= 0, our mathematical model (13)
captures the effects of exploration not being incorporated
in the Braha and Bar-Yam’s model. We can calculate the
asymptotic solution of (13) to analyze the system behavior
in the end state (i.e. when t →∞). Note that in the end state
the slope, dαdt , representing the rate of change in the density
of incomplete tasks will be zero i.e.

0 = (1− α)β̄α − αr(1− β̄α)−
Ne
N
αef ∗e (1− β̄α) (14)

where f ∗e is the asymptotic limit of the exploration function
fe(t) i.e. f ∗e = limt→∞ fe(t). The above relation can be
simplified by noting that in the end stage αe ≈ α, hence
simplifying (14), we get

α =
β̄ − r − Ne

N f
∗

β̄(1− r − Ne
N f
∗)
, (15)

which reduces to the results of Braha and Bar-yam for
Ne = 0. Notice that for Ne 6= 0, the value of α (obtained
using (15)) is smaller compared to the analogous results
of [33] which is due to the increased values of internal com-
pletion rate after the exploration as discussed earlier.

C. REFINEMENT MODEL
Refinement is the process of removing impurities and
improvement of something by the making of small changes.
It commonly occurs at end of each phase of development
process i.e, UI, analysis, design, and implementation. During
refinement, the value of the coupling parameter, β, will not
change, but the internal completion rate of that task,however,
will be little slow. During that time, the task is being refined
hence the rate of completion, during that time, will be zero.

When initial state of task i is incomplete at time t and
refinement occurs, the state changes according to the follow-
ing stochastic rules.

si(t + 1) =


0 with probability 1− (ri +

Nr
N
αrwr fr (t))

(1− tanh(βiki(t))),

1 with probability (ri +
Nr
N
αrwr fr (t))

(1− tanh(βiki(t)))
(16)

The overall internal completion rate r will be less than the
previous overall completion rate. For the tasks that are being
refined, the state changes as

dsi
dt
= −si(t)tanh(β̄α)+ (1− si(t)(r + wr fr (t))

× (1− tanh(β̄α)), (17)

where wr is the refinement weight and fr (t) is a rectangular
function whose value is one for the times when the refinement
takes place and stays zero otherwise. The value of refinement
weightwr is chosen to ensure that the internal completion rate
of the task stays zero during refinement.

When refinement occurs, the overall density of incomplete
tasks evolves according to

dα
dt
= (1− α)tanh(β̄α)− αr(1− tanh(β̄α))

−
Nr
N
αrwr fr (t)(1− tanh(β̄α)), (18)

where Nr is the number of tasks that are being refined.
A similar analysis, as presented in the preceding section,

gives the asymptotic solution of (18) in the end state,

α =
β̄ − r

β̄(1− r)
(19)

Notice that the above solution (19) is the same as Braha
and Bar-Yam’s which is due to the fact that the refinement
effects the convergence rate locally i.e., when the task is being
refined, however, the exploration effects are global i.e., its
effects are present for all time.

19340 VOLUME 10, 2022



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

D. REWORK MODEL
When project discloses, state of all tasks is incomplete. At this
stage, β is coupling between tasks and r is completion rate of
all tasks. We are also assuming that all tasks start at same
time. Rework is task attempting again due to changed input.
Source of change input can be internal or external. Increasing
or diminishing coupling will impact on the amount of rework.

Whenever a task gets complete, rework is determined by its
impact on successor completed tasks. If the successor tasks
are incomplete then there will be no rework due to input by
current completed task. If the successor tasks are incomplete
then output of the current completed task can make them
incomplete again and create rework. The amount of rework
created depends on how many incoming links are in the
task, those are coming from incomplete task, and coupling
weight of each link. By combination of both these factors
(i.e. number of incoming incomplete links, and weight of
each link) rework is calculated. At a time a task that is going
to be complete, can make its successor tasks incomplete by
changing input of successors. It is the situation that we have
performed a taskwith some assumptions and after completion
of some other task; the assumption get updated, so have to
perform it again. When a task gets complete, it can make
as many task incomplete as number of outgoing links to
completed tasks.

When initial state of task i is incomplete at time t and
rework occurs, the state changes according to the stochastic
rules given in 20.

si(t + 1)=


0 with probability 1−(ri+

Nrw
N
αrwwrwfrw(t))

(1− tanh(βiki(t))),

1 with probability (ri +
Nrw
N
αrwwrwfrw(t))

(1− tanh(βiki(t)))
(20)

When there are too many outgoing links from the task that
is going to be complete, then at that time, number of tasks
those are going to be complete is less than number of tasks
going to be incomplete. Because, rework is going to perform
a task again due to changed input, the internal completion
rate of the task r greater than previous internal completion
rate, when it was first performed. Coupling (β) value will
be high for successor completed tasks. When there will be
rework then density of unresolved tasks (α(t)) will be high
leading towards slow convergence.

Hence whenever rework occurs, the state of a task changes
according to

dsi
dt
= −si(t)tanh(β̄α)+ (1− si(t)(r + wrwfrw(t))

× (1− tanh(β̄α)), (21)

where wrw is the rework weight and frw(t) is a step function
which stays zero everywhere except at the time when rework
occurs (frw = 1).The rework weight wrw is chosen such

that the state of the task, in which rework comes, becomes
incomplete (si = 0) at that particular time.

The overall density of the incomplete tasks evolves accord-
ing to

dα
dt
= (1− α)tanh(β̄α)− αr(1− tanh(β̄α))

−
Nrw
N
αrwwrwfrw(t)(1− tanh(β̄α)), (22)

where Nrw is the number of tasks in which rework occurs.
In the end state, the asymptotic solution of (22) is given by

α =
β̄ − r

β̄(1− r)
, (23)

which is same as Braha and Bar-Yam’s showing that the
rework effects are local, similar to the refinement effects,
as discussed in the preceding section.

E. NEGOTIATION MODEL
Negotiation either leads to rework, refinement, or explo-
ration. Convergence slowdowns whenever negotiation
occurs. Completion rate of the tasks become too slow i.e.,
(new completion rate r is much less than previous completion
rate).

si(t + 1) =



0 with probability 1− (ri +
Nn
N
αnwnfn(t))

(1− tanh(βiki(t))),

1 with probability (ri +
Nn
N
αnwnfn(t))

(1− tanh(βiki(t)))
(24)

When initial state of task i is incomplete at time t and nego-
tiation occurs, the state changes according to the stochastic
rules given in (24).

F. CUMULATIVE EFFECTS
During SDLC, different perspectives on iteration occur at
different stages. In the preceding sections, we have modeled
these effects individually. We, now present a model which
incorporate all of these effects. When initial state of task i
is incomplete at time t , the state changes according to the
stochastic rules given in (25).

si(t + 1) =



0 with probability 1− (ri +
Ne
N
αefe(t)+

Nrw
N
αrwwrwfrw(t)+

Nr
N
αrwr fr (t)+

Nn
N
αnwnfn(t))(1− tanh(βiki(t)))

1 with probability (ri +
Ne
N
αefe(t)+

Nrw
N
αrwwrwfrw(t)+

Nr
N
αrwr fr (t)+

Nn
N
αnwnfn(t))(1− tanh(βiki(t)))

(25)

VOLUME 10, 2022 19341



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

FIGURE 1. The time evolution of the density of incomplete tasks α using
Braha and Bar-Yam’s model (solid line) and our proposed exploration
model (dashed line) given by (13). For the results presented it is assumed
that 20% of the total tasks are being explored for t ≤ 10.

FIGURE 2. The density of the incomplete tasks α plotted as a function of
time t . The solid curve corresponds to the Braha and Bar-Yam’s model
whereas the dashed curve represents our proposed refinement
model (18). In refinement model (i.e. dashed line) it is assumed that 20%
of the total tasks are being refined, refinement occurred between 15 and
20 time units (i.e., refinement duration; 15 ≤ t ≤ 20).

d
dt
α = (1− α)tanh(β̄α)− [αr +

Ne
N
αefe(t)

+
Nr
N
αrwr fr (t)+

Nrw
N
αrwwrwfrw(t)

+
Nn
N
αnwnfn(t)](1− tanh(β̄α)) (26)

The overall density of incomplete tasks, as a result of
combined effects of different iteration perspectives, evolves
according to (26)

IV. SIMULATIONS RESULTS AND VALIDATION
In order to validate the models given by (13), (17), (22), (24),
and (26), we have conducted simulations with following test

FIGURE 3. The evolution of the overall density of incomplete tasks α. The
plotted results are from simulations of Braha and Bar-Yam’s model and
our proposed rework model, on the test example (see discussion). The
solid line represents the results of the Braha and Bar-Yam’s model [33]
whereas dashed line corresponds to our proposed rework model as given
in equation (22). In rework model (i.e., dashed line) it is assumed that
20% of the total tasks are being reworked, rework occurred at t = 30.

FIGURE 4. The evolution of the overall density of incomplete tasks α.
Solid line represents the results of the Braha and Bar-Yam’s model [33]
whereas dashed line corresponds to our model as given in equation (22).
In negotiation model (i.e., dashed line) it is assumed that 20% of the total
tasks are negotiated, negotiation occurred at t = 5.

example (random graph withN = 105,< kin >=< kout >=
12, N◦ = 8 × 104,Ne = 2 × 104, w◦ = 0, w1 = 0.7).
Figure 1 shows the simulation results for [33] and (13). In this
simulation it was assumed that 20% of the total tasks are
being explored for the initial 10 time units. We therefore
see that during the exploration, the rate of completion in our
model is slower compared to Braha and Bar-Yam’s model
(with no exploration) whereas after the exploration, the com-
pletion rate increases in our model. On the other hand, the
curve due to Braha and Bar-Yam’s model shows a continu-
ously decreasing trend in time with no effects from the tasks

19342 VOLUME 10, 2022



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

FIGURE 5. The evolution of the overall density of incomplete tasks α. The
solid line represents the results of the Braha and Bar-Yam’s model [33]
whereas dashed line corresponds to our model as given in equation (26).
In our proposed model (i.e., dashed line) negotiation takes place at t = 5,
exploration continues for the first till 15 time units, refinement occurs at
t = 30 and its duration is 5 time units, and reworks occurs at t = 40 time
unit.

being explored. As mentioned above, the values of α, in the
end state, obtained through proposed model (13) are smaller

compared to the values of α obtained through Braha and Bar-
Yam’s Model consistent with our argument that the internal
completion rate accelerates after the exploration. Also notice
that due to higher internal completion rate(owing to the explo-
ration effects), in our proposed model (13), the system has
reached the end state (t ≈ 50) earlier than Braha and Bar-
Yam’s model.

Figure 2 shows the simulation results (for the same test
example) using our proposed refinement model (18) and [33].

For the presented simulation results, it is assumed that
20% of the tasks are being refined i.e. Nr = 2 × 104 for
15 ≤ t ≤ 20. It can be seen (dashed curve) that dur-
ing the refinement, the overall internal completion rate is
slower consistent with the theoretical effects of the refine-
ment as explained earlier. Notice that during the refinement
(15 ≤ t ≤ 20), the solid curve due to Braha and Bar-Yam’s
model continue to decrease uniformly showing no change in
the pattern expected due to ongoing refinement in some of the
tasks.

The simulation results for the proposed rework model (22),
for Nrw = 2 × 104, are shown in figure 3. At t = 30,
the dashed curve jumps from 0.1 to 0.28 showing an increase
in overall density of the incomplete tasks resulting from
the rework. On the other hand, the solid curve due to

FIGURE 6. Comparison of typical simulation run with deterministic solution.

VOLUME 10, 2022 19343



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

Braha and Bar-yam’s continues to decrease showing that the
overall density of the incomplete tasks decrease continuously
without any influence from the rework.

To elaborate the effects of negotiation, we assume that
the rework occurs in 20% of the tasks as a results of the
negotiation. Hence the modeling for this particular case is the
same as for the rework presented in the preceding sub section.
We show the simulation results, for the same test example,
for Nn = 2 × 104, negotiation time tn = 5 in figure 4. The
dashed curve shows a sudden increase at t = 5 due to the
rework arising as a consequence of the negotiation. As noted
in the results presented in 4, the curve due to the Braha and
Bar-yam’s model shows no influence due to the negotiation
at t = 5.
The simulation results for the combined effects of all

perspectives on iteration (26) during the complete software
development life cycle are shown in figure 5. In figure 5,
the negotiation occurs at t = 5 showing sudden increase in
fraction of incomplete tasks at that time. We can see in the
dashed curve that the tasks are being explored till 15 time
units. During the exploration time, the rate of convergence in
our proposed model is slower as compared to Braha and Bar-
Yam’s model (i.e. solid curve). It can be seen (dashed curve)
that tasks are being refined between 30 to 35 time units. The
overall convergence rate is slower during the refinement time
which is consistent with theoretical effects of refinement.
At t = 40, the dashed curve jumps from 0.8 to 1.5 showing an
increase in the fraction of incomplete tasks resulting from the
rework. On the other hand, the solid curve due to Braha and
Bar-Yam’s model continues to decrease showing that there
is no effect on the fraction of incomplete tasks due to the
different perspectives on iteration.

We have demonstrated the effects of the different perspec-
tives on iteration during SDLC. The proposed mathemati-
cal models capture the effects of individual perspectives of
iteration on the density of incomplete tasks. The developed
mathematical models for exploration and rework are entirely
consistent with the theoretical effects; however, there are
some limitations in the model of refinement and negotiation.
The refinement’s theoretical effect is that the convergence
rate becomes slow during the refinement period but speeds
up after refinement. We have modeled the refinement to
slow down the internal completion rate r during refinement
time, but the model does not exhibit the accelerating rate
of convergence after the refinement. In software engineering
literature, rework can be external and internal. In this paper,
we have successfully modeled the effects of external rework,
but internal rework implementation is future work.

Finally, we have performed simulations and compared the
simulation results with the deterministic solution. The sim-
ulation runs followed the deterministic solution as shown in
figure 6.

V. CONCLUSION AND FUTURE WORK
Different authors use different terms to refer to iteration in the
software engineering literature. To resolve the issues related

to unplanned iteration, we are contributing in two ways.
First, we have defined different perspectives on iteration to
clarify the different viewpoints through a literature review
on iteration in the software engineering discipline. The sec-
ond contribution is the modeling of iteration perspectives to
determine the impact on project completion time. We have
modeled the impact of each iterative situation on project com-
pletion time. Understanding different iterative situations and
their after-effects play an essential role in success. It increases
the visibility into processes by simulating different itera-
tive models to predict outcomes, see future risks, forecast
how much time can be delayed, and results in identifying
improvements based on those. We have evaluated our results
by comparing simulation runs with the deterministic solution.

The developed mathematical models have some
limitations. Models for exploration and rework are entirely
consistent with the theoretical effects. However, there are
some limitations in the model of refinement and negotiation.
In software engineering literature, rework can be external
and/or internal. In this paper, we have successfully modeled
the effects of external rework, but internal rework imple-
mentation is future work. Furthermore, negotiation can either
lead to rework, refinement, or exploration. Here we are only
considering the negotiation during the requirement phase of
the software development life cycle, and we have modeled
the case of rework as a consequence of negotiation. However,
we can improve the negotiation model by randomly selecting
the type of iteration (i.e. rework, refinement, or exploration)
or by using some average effect combining the effects
of all three perspectives as a consequence of negotiation.
We will create a taxonomy of iteration in software engineer-
ing through a systematic literature review to validate different
perspectives on iteration.

Acknowledgment
The authors would like to express their sincere gratitude to
the Computer Science Department, COMSATS University
Islamabad, for providing a research oriented environment
to complete this research. The authors are also thankful to
Prof. Aun Haider for his kind suggestions.

REFERENCES
[1] M. Dowson, ‘‘Iteration in the software process; review of the 3rd inter-

national software process workshop,’’ in Proc. 9th Int. Conf. Softw. Eng.,
1987, pp. 36–41.

[2] J. Ferreira, J. Noble, and R. Biddle, ‘‘Agile development iterations and UI
design,’’ in Proc. AGILE (AGILE), Aug. 2007, pp. 50–58.

[3] S. Ferreira, J. Collofello, D. Shunk, and G. Mackulak, ‘‘Understanding
the effects of requirements volatility in software engineering by using
analytical modeling and software process simulation,’’ J. Syst. Softw.,
vol. 82, no. 10, pp. 1568–1577, Oct. 2009.

[4] A. Gopal, T. Mukhopadhyay, and M. S. Krishnan, ‘‘The role of software
processes and communication in offshore software development,’’ Com-
mun. ACM, vol. 45, no. 4, pp. 193–200, Apr. 2002.

[5] C. R. Cooley, ‘‘Daily iterations: Approaching code freeze and half
the team is not agile,’’ in Proc. Agile Develop. Conf. (ADC), 2003,
pp. 162–164.

[6] V.-P. Eloranta, K. Koskimies, and T. Mikkonen, ‘‘Exploring ScrumBut—
An empirical study of scrum anti-patterns,’’ Inf. Softw. Technol., vol. 74,
pp. 194–203, Jun. 2016.

19344 VOLUME 10, 2022



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

[7] J. Highsmith and A. Cockburn, ‘‘Agile software development: The busi-
ness of innovation,’’ IEEE Comput., vol. 34, no. 9, pp. 120–127,
Sep. 2001.

[8] H.-B. Jun and H.-W. Suh, ‘‘A modeling framework for product develop-
ment process considering its characteristics,’’ IEEE Trans. Eng. Manag.,
vol. 55, no. 1, pp. 103–119, Feb. 2008.

[9] D. Unger and S. Eppinger, ‘‘Improving product development process
design: A method for managing information flows, risks, and iterations,’’
J. Eng. Des., vol. 22, no. 10, pp. 689–699, Oct. 2011.

[10] N. Bhuiyan, D. Gerwin, and V. Thomson, ‘‘Simulation of the new prod-
uct development process for performance improvement,’’ Manage. Sci.,
vol. 50, no. 12, pp. 1690–1703, Dec. 2004.

[11] T. Taylor and D. N. Ford, ‘‘Tipping point failure and robustness in
single development projects,’’ Syst. Dyn. Rev., vol. 22, no. 1, pp. 51–71,
Mar. 2006.

[12] M. Haller, W. Lu, L. Stehn, and G. Jansson, ‘‘An indicator for superfluous
iteration in offsite building design processes,’’ Archit. Eng. Des. Manage.,
vol. 11, no. 5, pp. 360–375, Sep. 2015.

[13] D. C. Wynn, C. M. Eckert, and P. J. Clarkson, ‘‘Modelling iteration in
engineering design,’’ in Proc. 16th Int. Conf. Eng. Design (ICED), Paris,
France, 2007.

[14] J. Clarkson and C. Eckert, Design Process Improvement: A Review of
Current Practice. London, U.K.: Springer-Verlag, 2010.

[15] S.-H. Cho and S. D. Eppinger, ‘‘A simulation-based process model for
managing complex design projects,’’ IEEE Trans. Eng. Manage., vol. 52,
no. 3, pp. 316–328, Aug. 2005.

[16] R. Costa, ‘‘Productive iteration in student engineering design projects,’’
Ph.D. dissertation, College Eng., Montana State Univ., Bozeman, MT,
USA, 2004.

[17] D. C. Wynn and C. M. Eckert, ‘‘Perspectives on iteration in design and
development,’’ Res. Eng. Des., vol. 28, no. 2, pp. 1–32, 2016.

[18] Y. Jin and P. Chusilp, ‘‘Study of mental iteration in different design
situations,’’ Des. Stud., vol. 27, no. 1, pp. 25–55, Jan. 2006.

[19] M. J. Safoutin, ‘‘A methodology for empirical measurement of iteration
in engineering design processes,’’ Univ. Washington, Seattle, WA, USA,
Tech. Rep. 3102710, 2003.

[20] R. Costa and D. K. Sobek, ‘‘Iteration in engineering design: Inherent and
unavoidable or product of choices made?’’ in Proc. ASME Int. Design
Eng. Tech. Conf. Comput. Inf. Eng. Conf.NewYork, NY, USA: American
Society of Mechanical Engineers, 2003, pp. 669–674.

[21] S. Kang, O. Choi, and J. Baik, ‘‘Model-based dynamic cost estimation and
trackingmethod for agile software development,’’ inProc. IEEE/ACIS 9th
Int. Conf. Comput. Inf. Sci. (ICIS), Aug. 2010, pp. 743–748.

[22] J. D. Blackburn, G. D. Scudder, and L. N. V. Wassenhove, ‘‘Improving
speed and productivity of software development: A global survey of soft-
ware developers,’’ IEEE Trans. Softw. Eng., vol. 22, no. 12, pp. 875–885,
Dec. 1996.

[23] B. J. Moore, ‘‘Achieving software quality through requirements anal-
ysis,’’ in Proc. IEEE Int. Eng. Manage. Conf. (IEMC), Oct. 1994,
pp. 78–83.

[24] K.Wnuk, D. Pfahl, D. Callele, and E.-A. Karlsson, ‘‘How can open source
software development help requirements management gain the potential
of open innovation: An exploratory study,’’ in Proc. ACM IEEE Int. Symp.
Empirical Softw. Eng. Meas., Sep. 2012, pp. 271–280.

[25] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, ‘‘A case
study on the impact of refactoring on quality and productivity in an agile
team,’’ in Balancing Agility and Formalism in Software Engineering.
Berlin, Germany: Springer, 2008, pp. 252–266.

[26] A. Mavridis, A. Ampatzoglou, I. Stamelos, P. Sfetsos, and I. Deligiannis,
‘‘Selecting refactorings: An option based approach,’’ in Proc. 8th Int.
Conf. Quality Inf. Commun. Technol. (QUATIC), Sep. 2012, pp. 272–277.

[27] C. K. Roy, M. F. Zibran, and R. Koschke, ‘‘The vision of software
clone management: Past, present, and future (keynote paper),’’ in Proc.
Softw. Evol. Week-IEEE Conf. Softw. Maintenance, Reeng., Reverse Eng.
(CSMR-WCRE), Feb. 2014, pp. 18–33.

[28] J. Chen, J. Xiao, Q. Wang, L. J. Osterweil, and M. Li, ‘‘Perspectives on
refactoring planning and practice: An empirical study,’’ Empirical Softw.
Eng., vol. 21, no. 3, pp. 1397–1436, Jun. 2016.

[29] J. Yli-Huumo, A. Maglyas, and K. Smolander, ‘‘How do software devel-
opment teams manage technical debt?—An empirical study,’’ J. Syst.
Softw., vol. 120, pp. 195–218, Oct. 2016.

[30] H. van Vliet and A. Tang, ‘‘Decision making in software architecture,’’
J. Syst. Softw., vol. 117, pp. 638–644, Jul. 2016.

[31] U. van Heesch, A. Jansen, H. Pei-Breivold, P. Avgeriou, and
C. Manteuffel, ‘‘Platform design space exploration using architecture
decision viewpoints—A longitudinal study,’’ J. Syst. Softw., vol. 124,
pp. 56–81, Feb. 2017.

[32] K. Dikert, M. Paasivaara, and C. Lassenius, ‘‘Challenges and success fac-
tors for large-scale agile transformations: A systematic literature review,’’
J. Syst. Softw., vol. 119, pp. 87–108, Sep. 2016.

[33] D. Braha and Y. Bar-Yam, ‘‘The statistical mechanics of complex product
development: Empirical and analytical results,’’ Manage. Sci., vol. 53,
no. 7, pp. 1127–1145, Jul. 2007.

[34] V. R. Basil and A. J. Turner, ‘‘Iterative enhancement: A practical tech-
nique for software development,’’ IEEE Trans. Softw. Eng., vol. SE-1,
no. 4, pp. 390–396, Dec. 1975.

[35] N. Ahituv, S. Neumann, and M. Zviran, ‘‘A system development method-
ology for ERP systems,’’ J. Comput. Inf. Syst., vol. 42, no. 3, pp. 56–67,
2002.

[36] D. D. Gajski and F. Vahid, ‘‘Specification and design of embedded
hardware-software systems,’’ IEEE Des. Test. Comput., vol. 12, no. 1,
pp. 53–67, Spring 1995.

[37] H. Kaindl, E. Arnautovic, D. Ertl, and J. Falb, ‘‘Iterative requirements
engineering and architecting in systems engineering,’’ in Proc. 4th Int.
Conf. Syst. (ICONS), 2009, pp. 216–221.

[38] V. N. L. Franqueira, Z. Bakalova, T. T. Tun, and M. Daneva, ‘‘Towards
agile security risk management in RE and beyond,’’ in Proc. Workshop
Empirical Requirements Eng. (EmpiRE), Aug. 2011, pp. 33–36.

[39] D. Verdon and G. McGraw, ‘‘Risk analysis in software design,’’ IEEE
Security Privacy, vol. 2, no. 4, pp. 79–84, Jul. 2004.

[40] M. Larusdottir, J. Gulliksen, and Å. Cajander, ‘‘A license to kill—
Improving UCSD in agile development,’’ J. Syst. Softw., vol. 123,
pp. 214–222, Jan. 2017.

[41] G. Mancini, D. Yurach, and S. Boucouris, ‘‘A methodology for HW-SW
codesign in ATM,’’ in Proc. 32nd Annu. ACM/IEEEDesign Autom. Conf.,
Dec. 1995, pp. 520–527.

[42] H. Munir, K. Wnuk, and P. Runeson, ‘‘Open innovation in software engi-
neering: A systematic mapping study,’’ Empirical Softw. Eng., vol. 21,
no. 2, pp. 684–723, 2016.

[43] B. Swaminathan and K. Jain, ‘‘Implementing the lean concepts of con-
tinuous improvement and flow on an agile software development project:
An industrial case study,’’ in Proc. Agile India, Feb. 2012, pp. 10–19.

[44] E. Kupiainen, M. V. Mäntylä, and J. Itkonen, ‘‘Using metrics in agile and
lean software development—A systematic literature review of industrial
studies,’’ Inf. Softw. Technol., vol. 62, pp. 143–163, Jun. 2015.

[45] T. J. Lehman and A. Sharma, ‘‘Software development as a service: Agile
experiences,’’ in Proc. Annu. SRII Global Conf., Mar. 2011, pp. 749–758.

[46] J. Bosch and P. Molin, ‘‘Software architecture design: Evaluation and
transformation,’’ in Proc. IEEE Conf. Workshop Eng. Comput.-Based
Syst. (ECBS), Mar. 1999, pp. 4–10.

[47] D. Liu, D. Liu, L. Zhang, M. Hou, and C. Wang, ‘‘The prediction of
code clone quality based on Bayesian network,’’ Int. J. Softw. Eng. Appl.,
vol. 10, no. 4, pp. 47–56, Apr. 2016.

[48] B. Bruegge, S. Krusche, and L. Alperowitz, ‘‘Software engineering
project courses with industrial clients,’’ ACM Trans. Comput. Educ.,
vol. 15, no. 4, p. 17, 2015.

[49] L. Williams, K. Rubin, and M. Cohn, ‘‘Driving process improvement
via comparative agility assessment,’’ in Proc. Agile Conf., Aug. 2010,
pp. 3–10.

[50] T. Chow andD.-B. Cao, ‘‘A survey study of critical success factors in agile
software projects,’’ J. Syst. Softw., vol. 81, no. 6, pp. 961–971, Jun. 2008.

[51] M. Fowler, Refactoring: Improving the Design of Existing Code. London,
U.K.: Pearson, 2009.

[52] S. W. Ambler, ‘‘Survey says: Agile works in practice,’’ Doctor Dobbs J.,
vol. 31, no. 9, pp. 62–64, 2006.

[53] T. Mens and T. Tourwé, ‘‘A survey of software refactoring,’’ IEEE Trans.
Softw. Eng., vol. 30, no. 2, pp. 126–139, Feb. 2004.

[54] M. Pizka, ‘‘Straightening spaghetti-code with refactoring?’’ in Proc. Int.
Conf. Softw. Eng. Res. Pract. (SERP), Las Vegas, NV, USA, Jun. 2004,
pp. 846–852.

[55] E. van Emden and L. Moonen, ‘‘Java quality assurance by detecting code
smells,’’ in Proc. 9th Work. Conf. Reverse Eng., 2002, pp. 97–106.

[56] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code. Reading, MA, USA: Addison-Wesley, 1999.

[57] M. Kim, T. Zimmermann, and N. Nagappan, ‘‘An empirical study of
RefactoringChallenges and benefits at Microsoft,’’ IEEE Trans. Softw.
Eng., vol. 40, no. 7, pp. 633–649, Jul. 2014.

VOLUME 10, 2022 19345



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

[58] A. van Deursen, ‘‘Program comprehension risks and opportunities in
extreme programming,’’ in Proc. 8th Work. Conf. Reverse Eng., 2001,
pp. 176–185.

[59] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, ‘‘A quantitative evaluation
of maintainability enhancement by refactoring,’’ in Proc. Int. Conf. Softw.
Maintenance, 2002, pp. 576–585.

[60] C. Schofield, B. Tansey, Z. Xing, and E. Stroulia, ‘‘Digging the devel-
opment dust for refactorings,’’ in Proc. 14th IEEE Int. Conf. Program
Comprehension (ICPC), Jun. 2006, pp. 23–34.

[61] P. Abrahamsson and J. Koskela, ‘‘Extreme programming: Empirical
results from a controlled case study,’’ in Proc. IEEE Int. Symp. Empirical
Softw. Eng., Redondo Beach, CA, USA, Aug. 2004, pp. 73–82.

[62] S. Demeyer, S. Ducasse, and O. Nierstrasz, ‘‘Finding refactorings via
change metrics,’’ ACM SIGPLAN Notices, vol. 35, no. 10, pp. 166–177,
2000.

[63] R. W. Zmud, ‘‘Management of large software development efforts,’’MIS
Quart., vol. 4, pp. 45–55, Jun. 1980.

[64] H. Sondergaard, B. Thomsen, A. P. Ravn, R. R. Hansen, and
T. Bogholm, ‘‘Refactoring real-time Java profiles,’’ in Proc. 14th IEEE
Int. Symp. Object/Component/Service-Oriented Real-Time Distrib. Com-
put., Mar. 2011, pp. 109–116.

[65] E. Ammerlaan, W. Veninga, and A. Zaidman, ‘‘Old habits die hard:
Why refactoring for understandability does not give immediate benefits,’’
in Proc. IEEE 22nd Int. Conf. Softw. Anal., Evol., Reeng. (SANER),
Mar. 2015, pp. 504–507.

[66] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, ‘‘Proactive detection of
collaboration conflicts,’’ in Proc. 19th ACM SIGSOFT Symp. 13th Eur.
Conf. Found. Softw. Eng. (SIGSOFT/FSE), 2011, pp. 168–178.

[67] S. Kaur and P. Singh, ‘‘How does object-oriented code refactoring influ-
ence software quality? Research landscape and challenges,’’ J. Syst.
Softw., vol. 157, Nov. 2019, Art. no. 110394.

[68] J. Al Dallal and A. Abdin, ‘‘Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: A systematic literature
review,’’ IEEE Trans. Softw. Eng., vol. 44, no. 1, pp. 44–69, Jan. 2018.

[69] A. Almogahed, M. Omar, and N. H. Zakaria, ‘‘Categorization refactoring
techniques based on their effect on software quality attributes,’’ Int. J.
Innov. Techno, Logy Exploring Eng., vol. 8, pp. 439–445, Jun. 2019.

[70] M. Kim, D. Cai, and S. Kim, ‘‘An empirical investigation into the role
of API-level refactorings during software evolution,’’ in Proc. 33rd Int.
Conf. Softw. Eng., May 2011, pp. 151–160.

[71] J. A. Pow-Sang and E. Jolay-Vasquez, ‘‘An approach of a technique for
effort estimation of iterations in software projects,’’ in Proc. 13th Asia
Pacific Softw. Eng. Conf. (APSEC), Dec. 2006, pp. 367–376.

[72] R. E. Fairley and M. J. Willshire, ‘‘Iterative rework: The good, the bad,
and the ugly,’’ Computer, vol. 38, no. 9, pp. 34–41, Sep. 2005.

[73] D. Kasperek and M. Maurer, ‘‘Coupling structural complexity manage-
ment and system dynamics to represent the dynamic behavior of prod-
uct development processes,’’ in Proc. IEEE Int. Syst. Conf. (SysCon),
Apr. 2013, pp. 414–419.

[74] S. Coronado and J. A. Jaén, ‘‘Incremental quality network,’’ in Proc. 2nd
Asia–Pacific Conf. Quality Softw., 2001, pp. 59–64.

[75] A. G. Cass, S. M. Sutton, Jr., and L. J. Osterweil, ‘‘Formalizing rework
in software processes,’’ in Proc. Eur. Workshop Softw. Process Technol.
Berlin, Germany: Springer, 2003, pp. 16–31.

[76] J. D. Herbsleb and A. Mockus, ‘‘An empirical study of speed and com-
munication in globally distributed software development,’’ IEEE Trans.
Softw. Eng., vol. 29, no. 6, pp. 481–494, Jun. 2003.

[77] G. R. Santhanam, ‘‘Qualitative optimization in software engineering:
A short survey,’’ J. Syst. Softw., vol. 111, pp. 149–156, Jan. 2016.

[78] D. Robey, R. Welke, and D. Turk, ‘‘Traditional, iterative, and
component-based development: A social analysis of software develop-
ment paradigms,’’ Inf. Technol. Manage., vol. 2, no. 1, pp. 53–70, 2001.

[79] H. Ghanbari, J. Similä, and J. Markkula, ‘‘Utilizing online serious games
to facilitate distributed requirements elicitation,’’ J. Syst. Softw., vol. 109,
pp. 32–49, Nov. 2015.

[80] B. Boehm, P. Grunbacher, and R. O. Briggs, ‘‘Developing groupware for
requirements negotiation: Lessons learned,’’ IEEE Softw., vol. 18, no. 3,
pp. 46–55, May 2001.

[81] W. W. Royce, ‘‘Managing the development of large software systems,’’
in Proc. IEEE WESCON, Los Angeles, CA, USA, 1970, vol. 26, no. 8,
pp. 328–338.

[82] A. I. Anton, ‘‘Goal-based requirements analysis,’’ in Proc. 2nd Int. Conf.
Requirements Eng., 1996, pp. 136–144.

[83] A. Powell, K. Mander, and D. Brown, ‘‘Strategies for lifecycle con-
currency and iteration—A system dynamics approach,’’ J. Syst. Softw.,
vol. 46, nos. 2–3, pp. 151–161, Apr. 1999.

[84] G. A. Hansen, ‘‘Simulating software development processes,’’ Computer,
vol. 29, no. 1, pp. 73–77, Jan. 1996.

[85] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, ‘‘Empir-
ical validation of three software metrics suites to predict fault-proneness
of object-oriented classes developed using highly iterative or agile soft-
ware development processes,’’ IEEE Trans. Softw. Eng., vol. 33, no. 6,
pp. 402–419, Jun. 2007.

[86] F. S. Silva, F. S. F. Soares, A. L. Peres, I. M. de Azevedo,
A. P. L. F. Vasconcelos, F. K. Kamei, and S. R. de Lemos Meira, ‘‘Using
CMMI together with agile software development: A systematic review,’’
Inf. Softw. Technol., vol. 58, pp. 20–43, Feb. 2015.

[87] M.-L. Sánchez-Gordón and R. V. O’Connor, ‘‘Understanding the gap
between software process practices and actual practice in very small
companies,’’ Softw. Qual. J., vol. 24, no. 3, pp. 1–22, 2015.

[88] V. D. Ramdoo and G. Huzooree, ‘‘Strategies to reduce rework in soft-
ware,’’ Int. J. Softw. Eng. Appl., vol. 6, no. 5, pp. 9–20, 2015.

[89] H. B. Yadav and D. K. Yadav, ‘‘A fuzzy logic based approach for phase-
wise software defects prediction using software metrics,’’ Inf. Softw.
Technol., vol. 63, pp. 44–57, Jul. 2015.

[90] Y. Shastri, R. Hoda, and R. Amor, ‘‘Spearheading agile: The role of the
scrum master in agile projects,’’ Empirical Softw. Eng., vol. 26, no. 1,
pp. 1–31, Jan. 2021.

[91] P. Hohl, J. Klünder, A. van Bennekum, R. Lockard, J. Gifford, J. Münch,
M. Stupperich, and K. Schneider, ‘‘Back to the future: Origins and
directions of the ‘agile manifesto’–views of the originators,’’ J. Softw.
Eng. Res. Develop., vol. 6, no. 1, pp. 1–27, 2018.

[92] J. Pernstål, T. Gorschek, R. Feldt, and D. Florén, ‘‘Requirements commu-
nication and balancing in large-scale software-intensive product develop-
ment,’’ Inf. Softw. Technol., vol. 67, pp. 44–64, Nov. 2015.

[93] D. Firmenich, S. Firmenich, J. M. Rivero, L. Antonelli, and G. Rossi,
‘‘CrowdMock: An approach for defining and evolving web augmentation
requirements,’’ Requirements Eng., vol. 23, no. 1, pp. 33–61, Mar. 2018.

[94] Y. Zhang, S. Shao, H. Liu, J. Qiu, D. Zhang, and G. Zhang, ‘‘Refactoring
Java programs for customizable locks based on bytecode transformation,’’
IEEE Access, vol. 7, pp. 66292–66303, 2019.

[95] Y. Yang, W. Ke, J. Yang, and X. Li, ‘‘Integrating UML with service
refinement for requirements modeling and analysis,’’ IEEE Access, vol. 7,
pp. 11599–11612, 2019.

[96] A. Nilsson, L. M. Castro, S. Rivas, and T. Arts, ‘‘Assessing the effects
of introducing a new software development process: A methodological
description,’’ Int. J. Softw. Tools Technol. Transf., vol. 17, no. 1, pp. 1–16,
Feb. 2015.

[97] A. A. S. Ivo, E. M. Guerra, S. M. Porto, J. Choma, and M. G. Quiles,
‘‘An approach for applying test-driven development (TDD) in the devel-
opment of randomized algorithms,’’ J. Softw. Eng. Res. Develop., vol. 6,
no. 1, pp. 1–31, Dec. 2018.

[98] E. Alégroth, R. Feldt, and P. Kolström, ‘‘Maintenance of automated test
suites in industry: An empirical study on visual GUI testing,’’ Inf. Softw.
Technol., vol. 73, pp. 66–80, May 2016.

[99] M. Hamid, F. Zeshan, A. Ahmad, S. Malik, M. Saleem, N. Tabassum,
and M. Qasim, ‘‘Analysis of software success through structural equation
modeling,’’ Intell. Autom. Soft Comput., vol. 31, no. 3, pp. 1689–1701,
2022.

[100] H. Villamizar, M. Kalinowski, A. Garcia, and D. Mendez, ‘‘An efficient
approach for reviewing security-related aspects in agile requirements
specifications of web applications,’’ Requirements Eng., vol. 25, no. 4,
pp. 439–468, Dec. 2020.

[101] A. Sarwar, Y. Hafeez, S. Hussain, and S. Yang, ‘‘Towards taxonomical-
based situational model to improve the quality of agile distributed teams,’’
IEEE Access, vol. 8, pp. 6812–6826, 2020.

[102] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó. Cinnéide, and K. Deb,
‘‘On the use of many quality attributes for software refactoring: A many-
objective search-based software engineering approach,’’ Empirical Softw.
Eng., vol. 21, no. 6, pp. 2503–2545, Dec. 2016.

[103] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, ‘‘When and why your code starts to smell bad,’’
in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng. (ICSE), vol. 1,
May 2015, pp. 403–414.

[104] C. Ebert and S. Brinkkemper, ‘‘Software product management—
An industry evaluation,’’ J. Syst. Softw., vol. 95, pp. 10–18, Sep. 2014.

19346 VOLUME 10, 2022



M. Mumtaz et al.: Modeling Iteration’s Perspectives in Software Engineering

[105] M. B. Julian, ‘‘Artefacts and agile method tailoring in large-scale off-
shore software development programmes,’’ Inf. Softw. Technol., vol. 75,
pp. 1–16, Jul. 2016.

[106] T. Alsanoosy, M. Spichkova, and J. Harland, ‘‘Identification of cultural
influences on requirements engineering activities,’’ in Proc. ACM/IEEE
42nd Int. Conf. Softw. Eng., Companion (ICSE-Companion), Jun. 2020,
pp. 290–291.

[107] Z. Li, P. Avgeriou, and P. Liang, ‘‘A systematic mapping study on tech-
nical debt and its management,’’ J. Syst. Softw., vol. 101, pp. 193–220,
Mar. 2015.

[108] E. Knauss, A. Yussuf, K. Blincoe, D. Damian, and A. Knauss, ‘‘Continu-
ous clarification and emergent requirements flows in open-commercial
software ecosystems,’’ Requirements Eng., vol. 23, no. 1, pp. 97–117,
Mar. 2018.

[109] R. Snijders, F. Dalpiaz, M. Hosseini, A. Shahri, and R. Ali, ‘‘Crowd-
centric requirements engineering,’’ in Proc. IEEE/ACM 7th Int. Conf.
Utility Cloud Comput., Dec. 2014, pp. 614–615.

[110] F. Wang, Z.-B. Yang, Z.-Q. Huang, C.-W. Liu, Y. Zhou, J.-P. Bodeveix,
andM. Filali, ‘‘An approach to generate the traceability between restricted
natural language requirements and AADL models,’’ IEEE Trans. Rel.,
vol. 69, no. 1, pp. 154–173, Mar. 2020.

[111] V. Alizadeh, M. Kessentini, M. W. Mkaouer, M. Ocinneide, A. Ouni, and
Y. Cai, ‘‘An interactive and dynamic search-based approach to software
refactoring recommendations,’’ IEEE Trans. Softw. Eng., vol. 46, no. 9,
pp. 932–961, Sep. 2020.

[112] P. Newman, M. A. Ferrario, W. Simm, S. Forshaw, A. Friday, and
J. Whittle, ‘‘The role of design thinking and physical prototyping in social
software engineering,’’ in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw.
Eng., May 2015, pp. 487–496.

[113] M. Glinz and S. A. Fricker, ‘‘On shared understanding in software
engineering: An essay,’’ Comput. Sci.-Res. Develop., vol. 30, nos. 3–4,
pp. 363–376, Aug. 2015.

[114] B. Boehm, ‘‘Anchoring the software process,’’ IEEE Softw., vol. 13, no. 4,
pp. 73–82, Jul. 1996.

[115] L. C. Andrews, Special Functions of Mathematics for Engineers, vol. 49.
Bellingham, WA, USA: SPIE, 1998.

MAMOONA MUMTAZ received the M.S. degree
in software Engineering from COMSATS Uni-
versity Islamabad, Pakistan, in 2018. She is
currently working as a Lecturer with the Uni-
versity of Management and Technology. Her
research interests include change in software
development, software process improvements, and
human–computer interaction.

NAVEED AHMAD received the Ph.D. degree
in engineering design from the University of
Cambridge, in 2011. He joined the Faculty of
Computing—National University of Computer
and Emerging Sciences (FAST-NUCES) as a Pro-
fessor, in January 2019. His research interests
include modeling and simulation, understanding
the behavior of complex systems, information
systems and security, software engineering, and
human–computer interaction (user experience).

M. USMAN ASHRAF received the Ph.D.
degree in computer science from King
Abdulaziz University, Saudi Arabia, in 2018.
He has served as a HPC Scientist at the HPC Cen-
tre, King Abdulaziz University. He is an Assistant
Professor and the Head of the Computer Science
Department, Government CollegeWomen Univer-
sity, Sialkot, Pakistan. His research on exascale
computing systems, high performance comput-
ing (HPC) systems, parallel computing, HPC for

deep learning, and location-based services systems has appeared in IEEE
ACCESS, IET Software, the International Journal of Advanced Research in
Computer Science, the International Journal of Advanced Computer Science
and Applications, the International Journal of Information Technology and
Computer Science, the International Journal of Computer Science and
Security, and several international IEEE/ACM/Springer conferences.

AHMED ALSHAFLUT received the M.Sc. degree
in IT (applied computing) from Edinburgh Napier
University, U.K., in 2012, and the Ph.D. degree
in computer science from King Abdulaziz Uni-
versity, Saudi Arabia, in 2019. He received the
Best Postgraduate Student Award for his Ph.D.
degree and the Second Best Paper Award at IEEE
L&T 2018.

ABDULLAH ALOURANI (Member, IEEE)
received the bachelor’s degree in computer science
from Qassim University, Saudi Arabia, the mas-
ter’s degree in computer science fromDePaul Uni-
versity, Chicago, and the Ph.D. degree in computer
science from the University of Illinois Chicago.
He is an Assistant Professor at the Department
of Computer Science and Information, Majmaah
University, Saudi Arabia. His current research
interests include cloud computing, software engi-

neering, security, and artificial intelligence. He is a member of ACM.

HAFIZ JUNAID ANJUM received the M.S. and
Ph.D. degrees from the Department of Applied
Mathematics and Theoretical Physics, University
of Cambridge, U.K. He is currently working as
an Assistant Professor at the Department of Math-
ematics, COMSATS University Islamabad. His
research interests include applied mathematics,
computational fluid dynamics, and high perfor-
mance computing.

VOLUME 10, 2022 19347


