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ABSTRACT This paper proposes a new online auto-tuning method to improve the accuracy and reduce the
tuning time of permanent magnet synchronous motor (PMSM) drives. Under varying loads, the ability to
tune the controllers of PMSMdrives using optimal tuning time is crucial. However, direct tuning of controller
parameters using estimated parameters or conventional particle swarm optimization (PSO) methods do not
satisfy the performance criteria. To solve this problem, the new method combining mechanical parameter
estimation (MPE) and multi-layer particle swarm optimization (MLPSO) with K-means clustering (KMC)
and an adaptive learning strategy (ALS) is proposed. First, the combination of anMPEmethod with a lookup
table (LUT) for initial parameter selection is introduced to reduce the iteration time. Then, the MLPSO-
KMCALS method is proposed as an improvement over the conventional PSO method by increasing the
number of layers, grouping the swarm into several subswarms, and using the ALS for each particle to increase
the population diversity and optimize the controller parameters within the shortest possible amount of time.
Finally, a disturbance load torque observer is applied to compensate for the effect of external disturbances
after tuning. The effectiveness of the proposed method is validated through experiments conducted under
practical conditions.

INDEX TERMS PMSM drives, auto-tuning, parameter estimation, particle swarm optimization (PSO),
adaptive multi-layer search.

I. INTRODUCTION
PMSM drives are widely used in many applications due to
the properties of lower maintenance, speed regulation perfor-
mance, and high power density. In fact, the PMSM system
is not easy to control because most processes have different
nonlinear levels, variable parameters and a large amount
of uncertainty in the mathematical models. Thus, high-
performance PMSM motor drives require fast response, high
accuracy, and stable adaptability against the motor parameter
and load torque variation. In general, the typical electric
drive controller consists of several nested control loops for
the control of current, speed, and position. In each con-
trol loop, conventional proportional-integral-derivative (PID)
controllers are widely applied due to their simplicity, stability,
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and easy adjustment [1], [2]. However, the PID parameters
must be tuned to obtain the minimum operating error that sat-
isfies the stability criteria of motor under different operating
conditions.

There have been a lot of approaches to tune the parameters
for the motor PID controller. For example, parameters were
tuned by using an basis adaptive rule and a speed error under
various conditions [3]. A parameter modifier was proposed
for the PD position controller based on a position error [4].
Although these control techniques do not require knowledge
of the mechanical and electrical parameters of the motor, they
are often complicated and take a long execution time. There-
fore, the tuning using estimators has been developed to sim-
plify control law based on the identified parameters such as
flux linkage, disturbance, viscous frictional, and motor iner-
tia [5], [6]. In this case, the accuracy of the estimator directly
affects the ability to optimize the tuning process. For low-cost
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motors with low-resolution encoders (≤10000 pulses/rev),
the control parameters cannot be guaranteed to be optimal
because of the large estimation error.

To overcome the above disadvantages, some intelli-
gent auto-tuning approaches have been integrated into PID
controllers [7]–[13]. In [7] and [8], a parameter tuning
approaches was proposed by Ziegler andNichols based on the
values of the lag and unit reaction rate in order to improve the
response and accuracy of the motor speed controller. Fuzzy
logic control (FLC) [9], [10] has been employed to reduce
the overshoot and settling time by tuning on-line parameters
under the load torque variance. Moreover, with the develop-
ment of artificial intelligence, many researchers have been
used an artificial neural network (ANN) technique [11]–[13]
to control the PMSM system for linear and non-linear factor
compensation. However, the large number of rules and the
high computational burden increase the complexity, which
limits the implementation of this technique in practical
applications.

Among the previously studied intelligence auto-tuning
controls, particle swarm optimization (PSO) [14]–[16] has
a strong ability to search for the best parameters for the
controllers. In addition, it is simple to implement and has
low computational cost, which are important characteristics
considering industrial needs. To speed up the tuning time
and avoid the searching of parameters not being optimal due
to falling into local optima, the conventional PSO [17] has
been improved by using a comprehensive learning strategy
[18], [19] or a multi-player PSO technique (ML-PSO) [20].
The experimental results of these tuning techniques show that
although it is possible to optimal the parameters, the tuning
time still does not satisfy the requirements of the industry
standard.

Motivated by the wish to find the best parameters of the
PID speed controller in the shortest tuning time as well
as to improve the operating accuracy of the PMSM sys-
tem with low-revolution encoder under variable load, this
paper presents a new approach, called Multi-Layer PSO with
k-means clustering and adaptive learning strategy (MLPSO-
KMCALS). The main contributions of this article are sum-
marized as follows:

1) Pre-tuning processing is accomplished using a com-
bination of a MPE method and lookup table (LUT)
to reduce the tuning time. A disturbance load torque
observer with gain tuning is designed to compensate
the load torque changes.

2) The MLPSO-KMCALS algorithm is proposed. First,
the multi-layer PSO is applied to increase the con-
vergence speed. Second, the k-means clustering and
adaptive learning strategies are integrated to increase
the population diversity and avoid local optima.

3) The modified fitness function for the MLPSO-
KMCALS algorithm is proposed to adapt to the
performance criteria.

4) Experiments are performed and the method is com-
pared with existing auto-tuning methods to verify the

FIGURE 1. Motor control system.

effectiveness of the proposed method and its practical
applicability.

The remainder of this paper is organized as follows.
Section II provides the overview and reviews related works
of auto-tuning for a PMSM driver. Section III describes the
pre-tuning process and disturbance load torque observer.
Section IV details the proposed online auto-tuning technique
for the speed loop. Finally, Section V and VI present the
experimental results and summarizes the conclusions of this
paper, respectively.

II. OVERVIEW AND RELATED WORKS
A. MATHEMATICAL MODELING OF A PMSM
The system equations in a d-q model of a PMSM can be
expressed as follows [21], [22]:[

vQ
vD

]
=

[
Rs + sLqs ωrLds
−ωrLqs Rs + sLds

] [
iQ
iD

]
+

[
ωrλm
0

]
(1)

Te =
3
2
P
2

[
λmiQ +

(
Lds − Lqs

)
iQiD

]
(2)

where vQ, vD, iQ, iD, Lqs and Lds are the q− and d − axis
voltages, current, and inductances, respectively; Rs is the
resistance; λm is the flux linkage of permanent magnet;
ωr is the electrical angular speed of the rotor; ‘‘s′′ represents
the Laplace operator; Te is the electromagnetic torque; and
P is the number of rotor poles.

In the linearized model, iD can be made zero by controlling
the field direction. Therefore, the electromagnetic torque can
be described as:

Te = Kt iQ = J
dωm
dt
+ Bωm + TL (3)

where Kt is the motor torque constant; J is the inertia of the
rotor (Jr ) and load (Jl); B is the viscous frictional coefficient;
TL is the load torque; and ωm is the mechanical speed of the
rotor shaft.

B. RELATED WORKS
Given the effect of varying high loads, many techniques have
been proposed for tuning the parameters of three controllers,
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as shown in Fig. 1. Among them, two methods are most often
applied, the direct auto-tuning method based on the estimated
parameters [23] and the optimal auto-tuning method based on
the traditional PSO [24].

In [23], Yang and Lin first estimated the resistance and
inductance for current control loop tuning. The torque con-
stant, inertia and viscous frictional coefficients for speed and
position loop tuning were also estimated. When there is a
significant change in the load, the inertia J changes and
the parameters controllers are adjusted accordingly. The PI
parameters of the current controller and speed controller were
suggested by the authors as follows:

Current :
{
K i
p = ω

iLqs
K i
i = ω

iRs
Speed :

{
K v
p = ω

vJ
K v
i = ω

vB
(4)

where K i,v
p and K i,v

i are the proportional and integral param-
eters of the current and speed controller, respectively; and
ωi,and ωv are the cutoff frequencies of the current loop,and
speed loop, respectively, which are identified based on
experience.

Using the zero-cancellation method, the parameters con-
trollers are quickly adapted, however, factors such as over-
shoot, settling time and especially vibration error are not
considered optimally. In addition, the J and B coefficients
require high accuracy under the impact of noise and high load.

Qi and Zhang used the PSO algorithm for the PID param-
eter tuning of the speed controller [24]. PSO is a population
based search algorithm that imitates the behaviors of birds.
In this algorithm, an initial population of randomly generated
solutions is called a particle. Each particle has a velocity and
a position vector, which are updated to find the best solution
during each iteration in D-dimemsional space. The velocity vi
and position zi vectors are updated according to (5) and (6),
as follows:

vt+1i = Wvti + c1r1
(
pbest ti − z

t
i
)
+ c2r2

(
gbest ti − z

t
i
)

(5)

zt+1i = zti + v
t+1
i (6)

where W is the inertia factor; t indicates the iterations;
i = 1, 2, . . . ,Nsize is the particles index; c1 and c2 are two
learning factors; r1 and r2 are two random numbers in the
range [0, 1]; pbesti = (pbesti1, pbesti2, . . . , pbestiD) is the
local best position recorded of the ith particle; and gbesti =
(gbesti1, gbesti2, . . . , gbestiD) is the global best position of
all particles. The quality of each particle is evaluated using
the fitness function. In [24], each particle is endowed with a
local update of the vector

[
K v
p ,K

v
i ,K

v
d

]
. The fitness function

is modified to deal with the stochastic characteristics of the
motor as (7).

F =
(
K v
p ,K

v
i ,K

v
d

)
=

1
m

m∑
l=1

(
N∑
k=1

Q1

∣∣∣ωrefm,k − ωm,k ∣∣∣+ N∑
k=1

Q2

∣∣∣irefQ,k−irefQ,k−1∣∣∣
)
(7)

FIGURE 2. Auto-tuning procedure of the proposed method.

where m is the maximum simulation executed; l is the sim-
ulation execution index; Q1 and Q2 are positive weighting
factors; ωrefm and irefQ are the reference speed and current,
respectively; and N is the number of samples.
The PSO algorithm is designed to optimize the set of

parameters
[
K v
p ,K

v
i ,K

v
d

]
that minimizes F

(
K v
p ,K

v
i ,K

v
d

)
.

This method is based on the integral of the speed error and the
deviation between the outputs. However when optimizing the
parameters, the authors do not consider the convergence time
or the iterations of the motor. In addition, the local optima
problem has not been solved, leading to uncertainty in the
parameters.

In this paper, a new online auto-tuning method based on
MLPSO-KMCALS is proposed to overcome all the disad-
vantages of the previous methods. Under the impact of vari-
able load, the speed control loop is mainly affected by the
corresponding change in load inertia, so the paper focuses
on the optimal speed control loop parameters. The current
loop and position loop parameters were determined based on
a previous paper [23]. Fig. 2 shows the auto-tuning proce-
dure used in the proposed method. First, the MPE method
is used to estimate the inertia ratio as input to the lookup
table. The outputs are the initial parameters of the particles.
The particles are then grouped into subwarms by the KMC
method before being valued by the modified fitness function
and updated by the MLPSO-ALS algorithm. In the proposed
method, the speed parameters are tuned based on load change,
vibration, and accuracy in the optimal tuning time.

III. PRE-TUNING PROCESS AND DISTURBANCE
LOAD TORQUE OBSERVER
A. MECHANICAL PARAMETER ESTIMATION
As in the traditional PSO method, random selection of the
initial positions will increase the convergence time as well as
the number of iterations of the motor necessary to find the
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FIGURE 3. Current, acceleration and, speed waveforms used to estimate
the inertia ratio.

optimal parameters. Therefore, we proposed the MPE to esti-
mate the inertia ratio value, which is used as a reference value
to narrow the initial search area. The estimation accuracy does
not need to be very high to directly tune the parameters as
in [23]. We have applied a simple least square method base
on the torque characteristic. According to the electromagnetic
torque (3), this can be expressed as follows:

Kt iQ =
[
dωm
dt

ωm 1
] B

J
TL

 (8)

which can also be expressed by applying Euler’s rule and the
LSM identification [25], [26] as follows:

Kt iQ(k)

Kt iQ(k+1)

. . .

Kt iQ(k+N )

 =


ωm(k)−ωm(k−1)
ts

ωm(k) 1
ωm(k+1)−ωm(k)

ts
ωm(k+1) 1

. . . . . . . . .
ωm(k+N )−ωm(k+N−1)

ts
ωm(k+N ) 1


 B
J
TL


(9)

or

Y = Xθ (10)

where N is a set volume of estimated data, ts is a sampling
time interval, Y ∈ RN is a vector of the current feedback of the
motor, X ∈ R3xN is a vector of the angular acceleration and
the motor speed feedback, and θ ∈ R3 is the parameters vec-
tor. By using ordinary least squares regression method (11),
the estimation parameters θ̂ =

[
B̂ Ĵ T̂L

]T
can be solved.

θ̂ = argmin
θ
‖Xθ−Y‖2 = (XTX )−1XTY (11)

Fig.3 shows the speed input waveform and current, speed
and acceleration output waveform for these estimated inertia.
From (11), the inertia (Ĵ ) is estimated to determine the inertia
ratio ( ˆIR) with known inertia rotor (Jr ), as follows:

ˆIR ≈
Ĵ
Jr

(12)

TABLE 1. Random search range with LUT.

After estimation, the inertia ratio is used as reference input
of the LUT to select the initial parameters for the MLPSO-
KMCALS tuning algorithm.

B. LUT OPTIMIZATION FOR THE INITIAL PARTICLE RANGE
The LUT is constructed with the estimated inertial ratio
input; the output is the initial Nsize particles for the tuning
algorithm. The main aim of this paper is to optimize the PID
speed controller parameters in the shortest amount of time.
The PID controller is considered in discrete time, as follows:

T refe = K v
pe

v
k + K

v
i

m−1∑
n=0

evn + K
v
d
(
evk − e

v
k−1

)
(13)

where k = 1, 2, 3, . . . ,m; m is the maximum sampling
number; T refe is the output of the PID speed controller and ev

is the error between the reference speed (ωrefm ) and feedback
speed (ωm).

As shown in (13), each particle consists of a spatial dimen-
sionD = 3 corresponding to the value of K v

p , K
v
i and K

v
d . The

LUT is built based on the experimental results. The MLPSO-
KMCALS tuning algorithm was applied without the LUT to
identify the optimal value of each parameter at different loads
(IR = 2.u ≤ Jlimit

Jr
, u = 1 : 10). Therefore, the initial value

of each particle is limited to the random search range within
the LUT, as shown in Table 1. The effect of the pre-tuning
process on the convergence time of the MLPSO-KMCALS
algorithm is evaluated in the experimental section.

C. DISTURBANCE LOAD TORQUE OBSERVER
During the pre-tuning process, for the estimator to work cor-
rectly, external influences or sudden changes in load torque
are limited. However, the disturbance load torque observer is
designed to estimate the T̂L for compensation of load torque
changes. According to the state-space model of the PMSM
motion equation [27], it can be expressed as follows:ω

′
m = −

B
J ωm −

TL
J +

Kt
J iQ

θ ′m = ωm
T ′L = 0

(14)
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FIGURE 4. The principle block diagram of the disturbance load torque
observer.

which can also be considered in linear time-invariant systems
as follows: {

x ′ = Ax + Bu
y = Cx

(15)

where A =

0 1 0
0 −a1 −a2
0 0 0

 ,B =
[
0 a2 0

]T
,C =[

1 0 0
]
, a1 = B/J , a2 = 1/J , x =

[
θm ωm TL

]T
, u =

Te, y = θm; θm is the mechanical position.
By using the full-dimensional state observer idea, the

structural formula of the disturbance load torque observer is
obtained as follows:{

x̂ ′ = Âx + Bu+ L̃y
ŷ = Cx̂

(16)
θ̂ ′m = l1(θm − θ̂m)+ ω̂m
ω̂′m = l2(θm − θ̂m)− a1ω̂m + a2(Te − T̂L)
T̂ ′L = l3(θm − θ̂m)

(17)

where L =
[
l1 l2 l3

]T , x̂ = [
θ̂m ω̂m T̂L

]T , ỹ = y − ŷ,
y = θm, ŷ = θ̂m; θ̂m, ω̂m and T̂L are the estimated position,
speed of rotor and the estimated disturbance load torque,
respectively; and l1, l2, and l3 are the state feedback gains.
Fig. 4 shows the block diagram of the disturbance load

torque observer. To satisfy the stability requirement, the state
feedback gains are considered on the condition of the charac-
teristic equation [28], [29] as follows:

det[sI − (A− LC)] = s3 + (a1 + l1)s2

+(a1l1 + l2)s− a2l3 = 0 (18)

For the third-order system, the stable characteristic equa-
tion with a pair of dominant complex conjugate poles p1,2 =
−ξωn ± jωn

√
1− ξ2 is expressed as:

s3 + (2ξωn − b)s2 + (ωn2 − 2ξωnb)s− ωn2b = 0 (19)

where the natural frequency wn ≈ 1000 and the damping
factor ξ ≈ 0.707 are assumed. The ωn should be large to
have a fast converging time, while ξ is selected to obtain a
small error. Balancing the coefficients of (18) and (19) gives:

l1 = 2ξωn − b− a1
l2 = ωn2 − 2ξωnb− a1l1
l3 = ωn2b/a2

(20)

FIGURE 5. The root of the characteristic equation.

After estimating the value J , the state feedback gains l1,2,3
are tuned to adapt to load changes following (20). To consider
the stability of the response feedback gains, the roof of the
characteristic equation (18) is observed in Fig. 5. The value
of the third pole (b) is selected (≈−300) away from the
imaginary axis to improve the response rapidity. To have
a good balance between rapidity and stationary, the pair of
dominant complex conjugate poles should be located around
the line of 45o from the negative real axis.

IV. ONLINE AUTO-TUNING BASED ON A NEW
MLPSO ALGORITHM
Given the effect of varying loads, solving the PID param-
eters tuning problem is necessary to increase the accuracy
and stability of the motor. In this section, an online auto-
tuning method for the PID parameters is proposed based on
a new MLPSO algorithm. The multi-layer PSO is proposed
in [20] to increase the convergence time by extending from
the two-layers of the conventional PSO to multiple-layers and
dividing the single swarm of a conventional PSO into several
subswarms.

A. SUBSWARM DIVISION WITH K-MEANS
CLUSTERING ALGORITHM
The K-means clustering algorithm [30], [31] is a popular
data clustering method. In this paper, this method is used to
divide the initial particles into subswarms. First, we select
S particles as initial subswarm centers, then compute the
Euclidian distance between each particle and each subswarm
center and assign it to the nearest subswarm. The average of
all subswarms is updated and the process is repeated until
the criterion function converges. The square error criterion
function is calculated as follows:

SE =
S∑
a=1

na∑
b=1

‖xab − ma‖2 (21)
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FIGURE 6. Subswarm division with K-Means clustering. x represents the
subswarm center.

where xab is the particle b of a-subswarm, ma is the center of
a-subswarm, and na is the number of particles in a-subswarm.
Fig. 6 shows an example of the subswarm division results
with S = 4, Nsize = 20, IR = 1, D = 3, K v

p = rand [0, 30],
K v
i = rand [0, 0.05], and K v

d = rand [0, 0.05].

B. AUTO-TUNING METHOD WITH THE
MLPSO-ALS ALGORITHM
As in [20], MLPSO is used to divide the swarm into several
layers and the particles in each layer into several subswarms.
A subswarm in the lower layer is called a swarmparticle and
is controlled by a swarmparticle in an upper layer. In the
conventional global MLPSO, each particle is impacted by
the particle in the best position in the same swarmparticle in
each layer. The velocity of a particle is updated based on the
accumulated information from all layers, as follows:{

vt+1i = Wvti +
∑M

j=1 cjr
(
pbest tij − z

t
i

)
zt+1i = zti + v

t+1
i

(22)

whereM is the number of layers, cj = c
M and c is a summary

of the acceleration constant, r is a random number in the
range [0, 1], and pbestj is the best position found in the
swarmparticle containing the current particle in layer j.

In this paper, the global MLPSO is applied and improved
to tune the PID parameters of the speed controller with the
following settings: M = 3-players, Nsize = 10-particles and
D = 3-dimemsions of a particle corresponding to the vector
[K v

p ,K
v
i ,K

v
d ]. Equation (22) is rewritten as follows: vt+1i = Wvti + c1r(pbest

t
i1 − z

t
i )

+c2r(pbest ti2 − z
t
i )+c3r(pbest

t
i3 − z

t
i )

zt+1i = zti + v
t+1
i

(23)

However, in each subswarm in layer two, there are two
types of particles: one is the best particle in the subswarm
(best-SUB particle), while the others are the remaining par-
ticles (normal SUB particles). According to the learning
strategy of the conventional global MLPSO, if the current
particle is a best-SUB particle, (pbest ti2 − z

t
i ) would be zero.

This causes a loss of population diversity and tends to make
the algorithm fall into local optima. Therefore, the adaptive

FIGURE 7. Comparison between the conventional PSO and the proposed
MLPSO-KMCALS algorithm framework.

learning strategy (ALS) algorithm is proposed, in which all
particles in a subswarm are identified as best-SUB particles
or normal-SUBparticles and the velocity is updated using two
different learning strategies. Equation (23) is used to update
the normal-SUB particles, while (24) used to update the best-
SUB particles:
vt+1i = Wvti + c1r(pbest

t
i1 − z

t
i )

+c2r
(
1
S

∑S
a=1 pbest

t
i2a − z

t
i

)
+c3r

(
pbest ti3−z

t
i

)
zt+1i = zti + v

t+1
i

(24)

where S is the number of subswarms. The social learning
exemplar pbest ti2 in (23) is replaced by the average of the
best-SUB particles in the second layer. This method not
only improves population diversity but also accelerates the
convergence time. Fig. 7 compares the conventional PSO and
the proposed MLPSO-KMCALS algorithm framework.
Moreover, a modified fitness function is proposed to con-

sider all tracking performance criteria in the PID speed con-
troller, including the overshoot (Ovs),rise time (tr ), settling
time (ts), and steady state error (Ess) of the speed con-
troller [32]. However, after tuning the controller parameters,
the steady-state error would be zero, so the mean squared
error (MSE) of speed is considered. The modified fitness
function is defined as follows:

F
(
K v, q

)
=

1
N

N∑
k=1

∣∣∣ωrefm,k − ωm,k ∣∣∣2
+q1Ovs + q2ts + q3tr (25)

where K v
= [K v

p ,K
v
i ,K

v
d ] is the parameter vector of the

speed controller, and q = [q1, q2, q3] is the weight parameter
vector. In this fitness function, theMSE is the most important.
To have a minimum MSE the other objects (Ovs, ts, tr ) have
to be at their minimum. Therefore, to minimize the fitness
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function F(K v, q), we can only evaluate the MSE . However,
in some cases, the motor is required to run with different
priorities, so the four functions of the F(K v, q) are generated
as follow:

[q1, q2, q3] = [0, 0, 0], Balance F
[q1, q2, q3] = [1, 0, 0], Maximize Ovs
[q1, q2, q3] = [0, 1, 0], Maximize ts
[q1, q2, q3] = [0, 0, 1], Maximize tr

(26)

To qualify for the parameters of the proposed MLPSO-
KMCALS algorithm, the convergence property of particle
cognition is analyzed in the next subsection.

C. CONVERGENCE ANALYSIS AND IMPLEMENTATION OF
THE MLPSO-KMCALS ALGORITHM
The convergence property of the iterative process can be
analyzed by considering the one-particle one-dimensional
proposed algorithm with fixed p1 = pbest1, p2 = pbest2 or
1
S

∑S
a=1 pbest2a, p3 = pbest3, ϕ1 = c1r1, ϕ2 = c2r2 and

ϕ3 = c3r3. The position and velocity updating (23) and (24)
of the particle can be reduced for the analysis, as follows:

vt+1 = Wvt + ϕ1(p1 − zt )+ ϕ2(p2 − zt )+ ϕ3(p3 − zt )

zt+1 = zt + vt+1 (27)

The basic simplified dynamic system can be expressed as

vt+1 = Wvt − ϕyt ; yt+1 = Wzt + (1− ϕ)yt (28)

where ϕ = ϕ1+ϕ2+ϕ3, yt = zt −p and p = ϕ1p1+ϕ2p2+ϕ3p3
ϕ1+ϕ2+ϕ3

Let Pt =
[
vt

yt

]
, and M =

[
W −ϕ

W 1− ϕ

]
then (28) can be

written in matrix form of the system as:

Pt+1 = MPt (29)

The characteristic equation of the matrixM is defined by:

λ2 − (W − 1− ϕ)λ+W = 0 (30)

In the convergent condition, the absolute values of both
eigenvalues λ1 and λ2 are less than 1,as follows:

λ1,2 =

∣∣∣∣∣W + 1− ϕ ±
√
1

2

∣∣∣∣∣ < 1 (31)

where 1 = (W + 1− ϕ)2 − 4W . We consider two cases:

Case 1 : 1 < 0⇔ (W + 1− ϕ)2 < 4W (32)

Case 2 : 1 ≥ 0⇔ (W + 1− ϕ)2 ≥ 4W (33)

The condition max(|λ1|, |λ2| < 1), case 1 itself and case
2 itself require:

Case 1 :
{
0 < W < 1
1+W − 2

√
W < ϕ < 1+W + 2

√
W

(34)

Case 2 :
{
W ≥ 0
ϕ ≤ 1+W − 2

√
W or ϕ ≥ 1+W + 2

√
W
(35)



{
W < 1
0 < ϕ ≤ 1+W − 2

√
W

if
{
ϕ ≤ 1+W − 2

√
W

max(|λ1|, |λ2| < 1){
W < 1
1+W+2

√
W ≤ ϕ≤2W+2

if
{
ϕ ≥ 1+W + 2

√
W

max(|λ1|, |λ2| < 1)
(36)

The guaranteed convergent condition of the parameters are
synthesized from cases 1 and 2, as follow (37). The results
of the convergence coefficient analysis match the results of
previous studies on convergence using the standards PSO
method [33].

0 ≤ W < 1 and 0 < ϕ < 2W + 2 (37)

The implementation of the auto-tuning method with the
proposed algorithm for the optimal parameters under the
effect of varying high loads can be summarized in the fol-
lowing steps. S1:

1) Run the first rotation motor for inertia ratio estimation
(IR) and input the results into the LUT to determine the
range of the parameters (K v

p ,K
v
i ,K

v
d ).

2) Specify the number of particles Nsize; the number of
subswarms (S); the random particles vector data set (xi)
with the range following S1; and the thresholdmin(SE).
Then, apply the KMC algorithm to divide the swarm
into subswarms.

3) Define the initial position (zi = xab); randomly initial-
ize the velocities of the particles; specify the parame-
ters of the update equation satisfying the convergence
criterion as (37); and specify the threshold value of the
fitness function F .

4) Run each rotation of the motor with the parameters cor-
responding to the position of each particle and evaluate
using the fitness function (F) as (25).

5) To compare the obtained value ofF , the best position of
a particle in layer 1 is saved as pbest1, the best position
of a subswarm in layer 2 is saved as pbest2, and the
global best position of the swarm in layer 3 is saved as
pbest3.

6) Update the velocity and position of the two types of
particles according to (23) and (24).

7) If the value of the fitness function reaches the threshold
value, go to S8. Otherwise, return to S4.

8) Obtain the optimal parameter set, pbest3.
Algorithm 1 gives a more detailed explanation of the

MLPSO-ALS algorithm.

V. EXPERIMENTAL
A. SYSTEM CONFIGURATION AND REAL TIME
EXPERIMENT OF TUNING PROCESS
An experimental system was constructed as shown in
Fig. 8. We used a PMSM model attached to an optical
encoder (Fastech, Co., motor model K6LS30N2). An MCU
STM32F446VCT6was used to apply the proposed algorithm.
A powder clutch (Mitsubishi, Co., model ZKG20AN) was
mounted coaxially to the motor shaft to generate the external
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Algorithm 1MLPSO-ALS Algorithm
Input: Nsize, M , D, initial (zi, vi), W , c1,2,3,4, r , q1,2,3,
threshold F ;
Output: pbest3 = [(K v

p best ,K
v
i best ,K

v
d best )]

1: for h = 1 : 1 : Nsize do
2: z(h) = xab(h)
3: F(h)← F(z(h))
4: pbest1(h)← z(h);Fpbest1 (h)← F(h)
5: end for
6: for a = 1 : 1 : S do
7: j← index for min(F) in size of a subswarm (na)
8: pbest2a← z(j); Fpbest2a (h)← F(z(j))
9: end for
10: j← index for min(F) of swarm
11: pbest3← z(j); Fpbest3 (h)← F(z(j))
12: while F > threshold
13: for h = 1 : 1 : Nsize do
14: if (normal-SUB particle) then
15: Update z(h), v(h) with (23)
16: end if
17: if (best-SUB particle) then
18: Update z(h), v(h) with (24)
19: end if
20: F(h)← F(z(h))
21: Compare F(h) with Fpbest1;Fpbest2a ,Fpbest3

and update the best position at every layer
22: end for
23: end while
24: return

load torque TL for the performance evaluation of against load
torque disturbance rejection. The sampling frequency for the
current control loop is 20kHz, and it is 2kHz for the speed and
position controller. The q-axis inductance is Lqs = 1.12mH
and the resistance is Rs = 1.4�. The cut-off frequencies for
determination of the current, speed and position controller
parameters are ωi = 600Hz, ωv = 100Hz, and ωp = 25Hz,
respectively. The inertia rotor is Jr = 8.6 × 10−6kgm2 and
the viscous friction is B = 2.66 × 10−3Nm/rad/s. The
parameters of the MLPSO-KMCALS algorithm are selected
according to the convergence condition as W = 0.7298,
r = 1/2, c1 = 0.1, and c2,3 = 0.072.
Fig. 9 shows the speed waveform for the auto-tuning pro-

cess (ωrefm = 1200r/min, dωrefm /dt = 200ms and, IR =
12.5). At the first rotation motor (Fig. 9 (a)), the data of
speed feedback, current feedback and acceleration feedback
are collected to estimate the inertia ratio ( ˆIR). After the
data is collected, the estimated inertia ratio is determined as
( ˆIR) ≈ 11.75, which makes the estimated error is 6% in the
Fig. 9 (b). In addition, based on the estimated ( ˆIR), the state
feedback gains of observer l1,2,3 are adjusted according to
(20) and the range of the parameters (K v

p ,K
v
i ,K

v
d ) are also

determined based on the LUT. Then, the KMC algorithm is
applied to divide the swarm into subswarms before starting

FIGURE 8. Experimental system.

the second rotation. Fig. 9 (c) shows the speed performance
and speed error of the particle with the best parameters
(K v

p ,K
v
i ,K

v
d ) in the first 10 rotations as well as in the 1st

iteration. By using the proposed auto-tuning technique, the
particle with optimal parameter is found after 31 rotations
and takes approximately 60s from the beginning to the end
of tuning. Fig. 9 (d) shows the speed performance and speed
error of the optimal controller parameters. The speed error has
been reduced more than 2 times and the overshoot is slower
than before tuning.

B. EXPERIMENTAL RESULTS COMPARED WITH DIRECT
AUTO-TUNING RESULTS USING ZERO-CANCELLATION
FOR THE PI METHOD
Fig. 10 and 11 compare the speed tracking control perfor-
mance of the Zero Cancellation and the proposed methods.
The speed reference value is 1200r/min in the low-load
(IR = 5), and high-load (IR = 19). Under the influence
of load, the speed controller with the PID parameters opti-
mized using the Zero Cancellation method show increasing
overshoot with increasing load. The cause of this error is due
to the large estimation error for low-cost motors with low-
resolution encoders. In addition, the speed error as well as
the overshoot, rise time and settling time standards is not
considered in the tuning process. Meanwhile, the controller
with the parameters after tuning using the proposed method
tracks the speed reference with an overshoot smaller than
more than 2 times. The Zero Cancellation method has a max-
imum speed error (≈175r/min) at IR = 5 and (≈225r/min)
at IR = 19. The proposed method achieves the best perfor-
mance, with a maximum speed error (≈50r/min) at IR = 5
and (≈55r/min) at IR = 19. We also can compare the value
of the current feedback at the red arrows to clearly see the
difference in the impact of the both methods in Fig. 10 (e),(f)
and Fig. 11 (e),(f).

Moreover, the speed and current controller’s performance
under multiple speed points with high-load (IR = 19) in
a cycle are analyzed in Fig. 12. The multiple speed pro-
file is generated that includes (600, 1200 and, 1800)r/min.
As can be seen, the set parameters with the proposed method
can reduce the overshoot problem and adapt better as the
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FIGURE 9. The speed waveforms for the auto-tuning process. (a) The data collection for inertia ratio estimation. (b) The estimated inertia ratio and
tuned observer gains. (c) The speed performance and speed error of the best set parameters in the 1st iteration. (d) The speed performance and speed
error of the best set parameters in the 3rd iteration.

FIGURE 10. Performance comparison of the conventional
Zero-Cancellation method (Kv

p ≈ 22.18, Kv
i ≈ 0.01) and the proposed

method (Kv
p ≈ 27.2, Kv

i ≈ 0.01, Kv
d ≈ 0.0093) under low-load condition.

(a) and (b) Speed response of the ZR method and the MLPSO-KMCALS
method. (c) and (d) Speed error of the ZR method and MLPSO-KMCALS
method. (e) and (f) Current feedback of the ZR method and the
MLPSO-KMCALS method.

speed changes. As discuss in Section II, the K v
p and K

v
i value

of the Zero Cancellation method are tuned depending on the
Ĵ , B̂ and, ωv. However, the estimation error is larger than
5%, the viscous friction value is too small while the encoder

FIGURE 11. Performance comparison of the conventional
Zero-Cancellation method (Kv

p ≈ 84.43, Kv
i ≈ 0.02) and the proposed

method (Kv
p ≈ 110, Kv

i ≈ 0.01, Kv
d ≈ 0.01) under high-load condition.

(a) and (b) Speed response of the ZR method and the MLPSO-KMCALS
method. (c) and (d) Speed error of the ZR method and the
MLPSO-KMCALS method. (e) and (f) Current feedback of the ZR method
and MLPSO-KMCALS method.

resolution is too large and, the selected cutoff frequency of the
speed loop is suboptimal. Those are the reasons for the poor
response ability of the Zero Cancellation method compared
to the proposed method.
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FIGURE 12. Performance comparison of the conventional
Zero-Cancellation method and the proposed method under multiple
speed points in a single cycle. (a) and (b) Speed response of the ZR
method and the MLPSO-KMCALS method. (c) and (d) Speed error of the
ZR method and the MLPSO-KMCALS method. (e) and (f) Current feedback
of the ZR method and MLPSO-KMCALS method.

FIGURE 13. The speed response and current feedback under the load
torque suddenly occur. (a) and (b) Speed response under proposed
controller with observer and without observer. (c) and (d) current
feedback under proposed controller with observer and without observer.

To mitigate the sudden change of load torque, we proposed
the load torque disturbance observer to compensate. The
experimental results are shown in the Fig. 13. An external
load torque (TL ≈ 0.15 N .m) is generated within 1s by a
brake powder clutch. At the constant speed (1000r/min), the
dynamic response of the system with the proposed observer
can achieve a better disturbance rejection capability.

C. COMPARISON OF THE EXPERIMENTAL RESULTS WITH
THOSE OF THE CONVENTIONAL PSO AND GLOBAL
MLPSO METHODS
To evaluate the effect of the proposed method on tuning time,
we compared the fitness function according to the number of
iterations of the motor with the conventional PSO and global

FIGURE 14. Comparison of the convergence time and converging position
of the particles. (a) Convergence time according to the number of
iteration of the motor. (b) Position of the particles at the 3rd iteration
with the conventional PSO method. (c) Position of the particles at the
3rd iteration with the global MLPSO method. (d) Position of the particles
at the 3rd iteration with the proposed method.

MLPSO methods (Fig. 14 (a)). We can easily observe that
the rate of convergence is affected by the equation updating
the velocity of each particle. When comparing (5) of the
conventional PSO method and (23) of MLPSO method,the
equation of updating the velocity of each particle is accel-
erated by a different value compared to the best-SUB parti-
cle.Experimental results have proven the theory to be correct.
At the 3rd iteration corresponding to the 30th (tuning time
≈60s) rotation of the motor (Nsize = 10), the fitness function
value is minimized with the proposed method, while the
fitness function value is not optimized in the conventional
PSO and global MLPSO methods until the 80th and 70th

rotation (tuning time ≈140s) and ≈160s), respectively.
We also compare the convergence quality of the three

methods in Fig. 14 (b), (c), and (d). After just the
30th rotation of the motor, the particles have almost converge
to the best position in the proposed method. More clearly,
we compare the high speed performance (1500r/min) with
the best parameters is tuned at 3rd iteration of the conven-
tional PSO, MLPSO and MLPSO-KMCALS method in the
Fig. 15. The speed error (Fig. 15 (b),(d),(f)) decreases in order
conventional PSO, MLPSO and MLPSO-KMCALS method.
As presented in Section IV, we can compare the velocity
update equation of the conventional PSO (5), MLPSO (23)
and MLPSO-KMCALS method (24). The MLPSO method
considered adding a layer when compared to the conventional
PSO component (pbest ti2 − zti ) in (23), which improves the
convergence speed. Compared with the proposed method,
we have applied the pre-tuning process to reduce the limit
of the initial particle value. Moreover, the KMC and ALS
method are integrated into the MLPSO method to further
increase the convergence speed, and avoid local optima.
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FIGURE 15. Speed performance and speed error with the best parameters
tuned at the 3rd iteration of the conventional PSO ((a) and (b)), MLPSO
((c) and (d)) and, MLPSO-KMCALS methods ((e) and (f)).

FIGURE 16. Speed performance corresponding to the four fitness
function.

Experimental results have proven that the proposed method
is effective. Therefore, we can conclude that our proposed
method for tracking speed and optimal tuning time shows
good stability, high accuracy and fast convergence time.

To compare the effects of different functions of F(K v, q),
an experiment in acceleration of approximately zero is per-
formed. Fig. 16 shows the the speed feedback correspond-
ing to the sets of parameters tuned with different fitness
functions. After the 31th rotation of the tuning gains at
120r/min, withMaximize ts ([q1, q2, q3] = [0, 1, 0]) and (tr )
([q1, q2, q3] = [0, 0, 1]) function, the speed feedback have
a slight similarity. The overshoot of both functions is larger
than the Maximize Ovs ([q1, q2, q3] = [1, 0, 0]) and Balance
F ([q1, q2, q3] = [0, 0, 0]) functions, but the settling time and
rise time are shorter. Depending on the specific requirements,
the fitness function will be used differently.

VI. CONCLUSION
In this paper, we developed an online-auto tuning scheme for
the PID controller tuning of PMSM drives that can adapt to

varying load conditions. The mechanical parameter was esti-
mated first. Then, a LUTwas used to identify the initial range
of the parameters for the purpose of reducing the tuning time.
The speed control loop parameters are tuned automatically
based on the MLPSO-KMCALS algorithm. The experimen-
tal results verified that the proposed scheme, which includes
multiple-layers, KMC subswarm division, an adaptive learn-
ing strategy and an advanced fitness function, is accurate
and satisfies the stability criteria. Furthermore, the population
diversity is improved to overcome the local optima problem
and reduce the convergence time. Therefore, this method can
be widely applied to industrial applications.
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