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ABSTRACT Root-finding of non-linear equations is one of the most appearing problems in engineering
sciences. Most of the complicated engineering problems can be modeled easily by means of non-linear
functions. The role of iterative algorithms via computers for solving such functions is much important and
cannot be denied in the modern age. In an iterative algorithm, the convergence order and the computational
cost per iteration are the main characteristics that depict its efficiency and performance i.e., a method
with higher-order and lower computational cost will be more efficient and vice versa. Keeping these
facts into consideration, the main goal of this paper is to introduce a new derivative-free iterative method
that performs better. We develop this algorithm by utilizing the forward- and finite-difference schemes
on well-known Househölder’s method, resulting in an efficient and derivative-free algorithm with a low
per iteration computing cost. We also look at the developed algorithm’s convergence criterion and show
that it is quartic-order convergent. We investigate nine test-examples and solve them to demonstrate its
correctness, validity, and efficiency numerically. Some real-world engineering problems in civil and chemical
engineering are also included in these examples. The numerical results of the test-examples reveal that the
newly constructed method outperforms the existing similar algorithms found in the literature. We consider
various different-degrees complex polynomials for the graphical analysis and used a computer tool to create
the polynomiographs of the proposed quartic-order algorithm and compare it to other comparable existing
approaches. The graphical findings show that the developed method has a faster convergence speed than the
other comparable algorithms.

INDEX TERMS Order of convergence, non-linear equations, Traub’s method, Househölder’s method,
polynomiography.

I. INTRODUCTION
In today’s world, the importance of computers in applied
mathematics cannot be overstated. A variety of complicated
problems may be readily addressed using various computer
programmes such as Mathematica, Matlab, Maple, and oth-
ers. Mathematicians have been using computers excessively
in several branches of mathematics in recent years, espe-
cially in polynomials’ root-finding, which has played a key
role in different modern disciplines. In engineering, root-
finding algorithms can be used to solve a variety of com-
plicated problems after converting them into the form of
non-linear scalar equations. We need iterative algorithms to
solve these types of engineering problems, since analytical
approaches do not always work. Newton [1] presented the
well-known classical iterative method in the late fifteenth
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century. Researchers enhanced the order and efficiency of
existing methods in the contemporary era, and multi-step
algorithms were established. For further information, see [2]–
[11]. Multi-step methods usually have a larger computing
cost due to the higher derivatives involved, which is the main
disadvantage of these algorithms. It is difficult to maintain a
balance between computing cost and convergence order since
increasing one reduces the other.

Researchers have improved the current iteration schemes
by applying various mathematical methodologies in recent
years and have proposed some novel multi-step methods.
In [12], Traub suggested the following quartic-order two-step
algorithm:

vp = up −
ψ(up)
ψ ′(up)

, p = 0, 1, 2, . . . ,

up+1 = up −
ψ(up)
ψ ′(up)

, (1)
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which is usually known as Traub’s method (TM), where ψ is
the real-valued function defined on the open interval of R.
Noor et al. [13] in 2012, developed the following iteration

formula:

vp = up −
ψ(up)
ψ ′(up)

, p = 0, 1, 2, . . . ,

up+1 = up −
ψ(up)
ψ ′(up)

+

(
ψ(up)
ψ ′(up)

)
ψ ′(vp)
ψ ′(up)

, (2)

which is called Noor’s method (NRM) for computing the
approximate solution of non-linear equations.

Zhanlav et al. [14] proposed a three-step predictor-
corrector iterative approach in 2010, which is as follows:

vp = up −
ψ(up)
ψ ′(up)

, p = 0, 1, 2, . . . ,

wp = vp −
ψ(vp)
ψ ′(up)

,

up+1 = vp −
ψ(vp)+ ψ(wp)

ψ ′(up)
. (3)

The above iterative scheme is a quartic-order root-finding
algorithm and is known as Zhanlav’s method (ZM).

In this paper, we provide a novel 4th order and
derivative-free technique for addressing engineering prob-
lems. The forward- and finite-difference techniques on the
Househölder’s approach were used to build this algorithm.
We further verify that the developed method has 4th order
convergence. By applying it to a variety of real-world engi-
neering problems, we show its superiority upon other similar
existing algorithms in the literature. Using computer technol-
ogy, a dynamical comparison of the created approach with
other related algorithms was also given.

The remaining parts of the paper are divided as follows.
In Section 2, an efficient and derivative-free method has been
developed. The developed algorithm’s convergence criterion
was addressed in Section 3. Nine random and technical prob-
lems were solved in Section 4. In Section 5, a graphical
characterization of the suggested method is shown. Finally,
Section 6 contains the paper’s conclusion.

II. CONSTRUCTION OF A NEW ALGORITHM
Let ψ : D→ R, D ⊂ R be a one-variable function, then by
using Taylor’s series expansion, Househölder [15] proposed
the following iterative scheme:

up+1 = up −
ψ(up)
ψ ′(up)

−
ψ2(up)ψ ′′(up)

2ψ ′3(up)
, p = 0, 1, 2, . . . ,

(4)

which is a cubic-order Househölder’s method. In [16], the
authors presented the following modified form of House-
hölder’s method:

vp = up −
ψ(up)
ψ ′(up)

, p = 0, 1, 2, . . . ,

up+1 = vp −
ψ(vp)
ψ ′(vp)

−
ψ2(vp)ψ ′′(vp)

2ψ ′3(vp)
. (5)

This is a two-step iteration method for computing scalar
non-linear equations’ zeros. The biggest downside of the
aforementioned method is its high computational cost per
iteration since it uses first and second derivatives to execute.
It should also be noted that the first derivative in the above
iteration scheme exists in the denominator and hence it cannot
be applied to those functions whose first derivative becomes
zero at some specific points in domain. We estimate the first
and second derivatives of the aforementioned method and
make it derivative-free to reduce its computing cost and make
it more effective and adaptable.

To estimate second derivative ψ ′′(v), we utilize the
finite-difference approximation as:

ψ ′′(vp) =
ψ ′(vp)− ψ ′(up)
ψ(vp)− ψ(up)

. (6)

In order to estimate first derivatives, we utilized forward-
difference scheme [17], [18] as follows:

ψ ′(up) =
ψ(up + ψ(up))− ψ(up)

ψ(up)
= η(up). (7)

ψ ′(vp) =
ψ(vp + ψ(vp))− ψ(vp)

ψ(vp)
= ζ (vp). (8)

Using (7) and (8) in (6)

ψ ′′(vp) =
ζ (vp)− η(up)
ψ(vp)− ψ(up)

= ρ(up, vp). (9)

With the help of equations. (7)–(9) in (5), we achieve a
novel two-step algorithm as given below:
Algorithm 1: For the initial guess u0, find the approximate

solution up+1 using the iteration schemes as given below:

vp = up −
ψ(up)
η(up)

, p = 0, 1, 2, . . . ,

up+1 = vp −
ψ(vp)
ζ (vp)

−
ψ2(vp)ρ(up, vp)

2ζ 3(vp)
.

This is a two-step novel iterative approach for obtaining
approximate roots (zeros) of non-linear functions in one vari-
able that is derivative-free. The basic and important feature
of the aforementioned algorithm is its large applicability area
because it does not need any derivative of the function and
thus covers those functions for which other methods have
failed to find the approximated root because most methods
have these derivatives in the denominator and these methods
do not work when they become zero at certain points in the
domain. The substitution of the first and second derivatives
in (5) lowers the computational cost per iteration, resulting in
a new derivative-free algorithmwith a higher efficiency index
than conventional iteration schemes. The numerical results of
test-examples reveal that the proposed technique outperforms
the other comparable algorithms in the literature.

III. CONVERGENCE ANALYSIS
This section contains the convergence analysis of the
designed method i.e., Algorithm 1.
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Theorem 1: Suppose β be the simple root of the
Eq. ψ(u) = 0, where ψ(u) is differentiable near the actual
root β, then the convergence order of Algorithm 1 is four.
Furthermore, it fulfills the following error equation:

ep+1 = Ae4p + O(e
5),

where A = 2( ψ
′′(β)

2ψ ′(β) )
3.

Proof: To show the convergence of Algorithm 1, we sup-
pose that ep is the pth iteration’s error, where ep = up−β and
by the Taylor series about u = β, we have:

ψ(up) = ψ ′(β)ep +
1
2!
ψ ′′(β)e2p +

1
3!
ψ ′′′(β)e3p

+
1
4!
ψ (iv)(β)e4p + O(e

5
p),

ψ(up) = ψ ′(β)[ep + b2e2p + b3e
3
p + b4e

4
p + O(e

5
p)], (10)

η(up) = ψ ′(β)[1+ 3b2ep + (7b3 + b22)e
2
p + (6b2b3

+15b4)e3p + (18b2b4 + 31b5 + b3b22 + 5b23)e
4
p

+O(e5p)], (11)

where

bp =
1
p!
ψ (p)(β)
ψ ′(β)

.

Using (10) and (11), we obtain:

vp = ψ ′(β)[β + 2b2e2p + (6b3 − 5b22)e
3
p + (−26b2b3

+13b32 + 14b4)e4p + O(e
5
p)], (12)

ψ(vp) = ψ ′(β)[2b2e2p + (6b3 − 5b22)e
3
p + (17b32 − 26b2b3

+14b4)e4p + O(e
5
p)], (13)

ζ (vp) = ψ ′(β)[1+ 6b22e
2
p + (18b2b3 − 15b32)e

3
p

+(−50b3b22 + 43b42 + 42b2b4)e4p + O(e
5
p)], (14)

ρ(up, vp)=ψ ′(β)[3b2+(7b3 − 2b22)ep + (10b2b3 + 15b4
− 2b32)e

2
p + (−62b3b22 + 16b42 + 30b2b4 + 31b5

+40b23)e
3
p + (78b5b2 − 258b2b23 + 188b3b4

+237b3b32 − 64b22b4 + 63b6 − 48b52)e
4
p

+O(e5p)]. (15)

Using equations (10)–(15) in Algorithm 1, we have:

up+1 = β + 2b32e
4
p + O(e

5
p),

which implies that

ep+1 = 2b32e
4
p + O(e

5
p). (16)

The above equation confirmed the quartic-order convergence
Algorithm 1. �

IV. NUMERICAL COMPARISONS AND REAL-WORLD
APPLICATIONS
In this part of the paper, we provide five random and four
real-world problems in engineering to illustrate the correct-
ness, validity, and robust performance of the newly con-
structed iteration method. By analyzing several non-linear

problems given below, we compare the proposedmethodwith
Noor’s method (NRM) [13], Traub’s method (TM) [12] and
Zhanlav’s method (ZM) [14].
Example 1: Blood Rheology Model
Blood rheology is a discipline of science that studies the

physical and flow characteristics of blood [19]. Blood is a
non-Newtonian fluid that is classified as Caisson. To inves-
tigate the plug flow of Caisson fluids, we used the following
non-linear function:

H = 1−
16
7

√
u+

4
3
u−

1
21
u4 (17)

where H calculates the flow-rate reduction. Using H =

0.40 in (17), we get the following expression:

ψ1(u) =
1

441
u8 −

8
63
u5 − 0.05714285714u4 +

16
9
u2

−3.624489796u+ 0.3. (18)

The initial guess for starting the iteration process to solve
ψ1(u) = 0 was u0 = 0.9, and the corresponding results are
shown in Table 1.
Example 2: To Calculate Volume from van der Waal’s

Equation
The renowned van der Waal’s equation, established by van

der Waal [20], is used in engineering to investigate the gas
behavior, as seen below:

(P+
K1n2

V 2 ) (V − nK2) = nRT . (19)

We get the following non-linear equation by taking feasible
values for the appearing parameters in (19):

ψ2(u) = 0.986u3 − 5.181u2 + 9.067u− 5.289,

where u signifies volume and may be readily calculated by
solving ψ2(u) = 0. Because ψ2 is a cubic-degree poly-
nomial, three roots (zeros) must exist, and one of them is
1.9298462428, that is only feasible because the volume of
the gas is always positive. To begin the iteration procedure,
we take u0 = 0.10 and the results are inserted into Table 1.
Example 3: Open Channel Flow Problem
In fluid dynamics, Manning’s equation [21] describes

water-flow in an open channel with uniform flow having the
following mathematical expression:

Flow of Water = 8 =

√
SAR

2
3

N
. (20)

In (20), R, S, A, and N symbolize hydraulic-radius, slope,
area, and Manning’s roughness coefficient respectively. For
a rectangular shaped channel with depth u and breadth b,
we have the following expression:

A = bu, and R =
bu

b+ 2u
.

We get the following results by inserting these values
into (20):

8 =

√
Sbu
N

(
bu

b+ 2u
)
2
3
.
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TABLE 1. Comparison among different iteration schemes for ψ1 − ψ9..

To find the water’s depth, the above described equality may
be rewritten as:

ψ3(u) =

√
Sbu
N

(
bu

b+ 2u
)
2
3
−8.

The parameters are given the values as N = 0.0015,
G = 14.15 m3/s, b = 4.572m, and S = 0.017. To begin
the iteration process, we choose the beginning point u0 =
4.50 and the results are inserted in Table 1.
Example 4: Plank’s Radiation Law
The Planck’s radiation law, developed by Planck [22] in

1914, is used to calculate the energy-density in an iso-thermal
black body. It has the following mathematical expression:

ψ(σ ) =
8πcP

σ 5(e
cP
σkT − 1)

. (21)

In order to compute wavelength σ1 corresponding to the
maximal energy-density ψ(σ1), we turn Eq.(21) into a non-
linear equation by assuming u = cP

σkT , as shown below:

1−
u
5
= e−u,

which may be transformed into the following scalar non-
linear function:

ψ4(u) = e−u +
u
5
− 1.

The maximal radiation’s wavelength is denoted by the
estimated root (zero) of ψ4, which shows the maximal wave-
length of the radiation. In the iteration procedure, we choose
u0 = 2.10 as the starting guess and the results are presented
in Table 1.
Example 5: Arbitrary Problems
To investigate the numerical behavior of the provided

method, we use five random problems, the results of which
are shown in Table 1.

ψ5(u) = u3 + 4u2 − 10, u0 = −0.30,

ψ6(u) = eu + cos u− 1, u0 = −0.90,

ψ7(u) = 2(1−
√
u), u0 = 2.00,

ψ8(u) = u2 − 3ueu + 2, u0 = 3.50,

ψ9(u) = u3 + u2 − 10, u0 = 0.00.
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Table 1 presents a comprehensive comparison of some
well-known existing iterative methods with the proposed
iteration technique. The table’s columns include information
such as the number of used iterations, the final estimated root,
the absolute functional value at that root, and the positive
distance of the two successive estimates.

The acquired test-examples’ results, which are presented
in Table 1, demonstrate the effectiveness of the proposed
method with respect to the other similar existing methods.
In the last example, we took such a non-linear function
in which its first derivative has become zero at the ini-
tial guess, and the results showed that all the compara-
ble methods did not work in this condition but the sug-
gested method still worked and determined the approxi-
mated root up to the given accuracy, which is the plus point
of the proposed method, and justifies its better applicabil-
ity among the other methods in comparison. Based on the
overall numerical findings, we can assert that the devised
algorithm has a robust performance in terms of accuracy,
speed, number of iterations, and computational cost and
that it is preferable to the other comparable root-finding
methods.

V. POLYNOMIOGRAPHY
Kalantari [23], [24] coined the term polynomiography
in 2005, defining it as a way of producing aestheti-
cally beautiful graphical things by utilizing the mathe-
matical convergence properties of iteration functions like
Newton’s iterative algorithm [25], Halley’s iterative algo-
rithm [26] and Househölder’s iterative algorithm [15], etc.
Polynomiographs are pictorial objects created as a result of
polynomiography.

In order to draw the polynomiographs on the complex
plane C using a computer programme, we pick a rectangle
R ∈ C of dimension [−2, 2] × [−2, 2], with the accuracy
ε = 0.001 and maximal iterations L = 20. This rectangle
comprises the roots (zeros) of a polynomial and corresponds
to the beginning point z0 in rectangle R, we commence the
iteration-procedure and give a color to the point correspond-
ing to z0. The color black is allocated to the spots where the
algorithm diverges. The quality of created graphical objects is
determined by the discretization of rectangle R. For example,
if we discretize R into a 2000 × 2000 grid, the displayed
polynomiographs will have the higher resolution and picture
quality.

According to the theorem of Algebra, if q is an nth-degree
polynomial, it must have the nth number of zeros and may be
represented as:

q(z) = dnzn + dn−1zn−1 + . . .+ d1z+ d0. (22)

If z1, z2, . . . , zn−1, zn are the zeros (roots) of the complex
polynomial q, then (22) may be expressed as:

q(z) = (z− z1)(z− z2) . . . (z− zp), (23)

where {dn, dn−1, . . . , d1, d0} are the complex coefficients.

For drawing graphical objects, any method involving iter-
ation can be used to the aforementioned representations
of q. The basic algorithm for drawing polynomiographs is
presented in Algorithm 2.

Algorithm 2 Plotting of Polynomiograph
Input: q ∈ C[Z ] — Complex Polynomial, A ⊂ C—

Area, L — Upper Bound of Iterations, τ —
Iteration Formula, ε—Accuracy, Colormap
[0 . . .C − 1] — Colormap With C Colors.

Output: Polynomiograph for the given
complex-polynomial.

for z0 ∈ A do
p = 0
while p ≤ L do

zp+1 = τ (zp)
if |zp+1 − zp| < ε then

break
p = p+ 1

color z0 via colormap.

In the aforementioned algorithm, i.e., Algorithm 2, an
iteration procedure is considered to be converged if the Con-
vergence Test (zp+1, zp, ε) returns TRUE and vice versa.
The usual test for identifying an algorithm’s convergence or
divergence is provided as:

|zp+1 − zp| < ε. (24)

The symbol ε > 0 in the above relation denotes accuracy,
whereas zp, zp+1 are the two successive estimations in the
process of iteration. We also used (24) as a stopping criterion
in this paper. By adjusting the parameters ε, L, and the itera-
tion technique, a number of various colored graphical objects
may be plotted. For more information on polynomiography
and its implementations, one may concern [27]–[39] and the
references are cited therein.

For drawing graphical objects in the complex plane, we use
the four complex polynomials listed below:

q1(z) = z2 − 1, q2(z) = z2 − z+ 1,

q3(z) = z3 − 1, q4(z) = z3 − z2 + z− 1.

We use the colormap shown in Figure 1 to color the iterations.

FIGURE 1. The colormap for coloring iterations.

Example 6: Polynomiographs for q1 Using Different Iter-
ation Methods
In the 6th example, we analyze and compare the dynamical

results achieved by various iteration methods with the newly
devised quartic-order method for the quadratic-degree poly-
nomial z2 − 1 having two distinct roots: 1 and −1. To obtain
the simple roots, we ran all root-finding methods, and the
results are shown in Figure 2.
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FIGURE 2. Polynomiographs corresponding to the 2nd-degree
polynomial q1. (a) Shows NRM, (b) shows TM, (c) shows ZM, and
(d) shows Algorithm 1.

Example 7: Polynomiographs for q2 Using Different Iter-
ation Methods
In the 7th example, we analyze and compare the

dynamical results achieved by various iteration techniques
with the newly devised quartic-order algorithm for the
quadratic-degree polynomial z2 − z+ 1 which possesses two
distinct simple zeros: 1

2 +
1
2

√
3i and 1

2 −
1
2

√
3i. We executed

all root-finding algorithms to achieve the simple roots and the
results can be visualized in Figure 3.

FIGURE 3. Polynomiographs corresponding to the 2nd-degree
polynomial q2. (a) Shows NRM, (b) shows TM, (c) shows ZM, and
(d) shows Algorithm 1.

Example 8: Polynomiographs for q3 Using Different Iter-
ation Methods

In the 8th example, we analyze and compare the dynamical
results achieved by various iteration methods with the newly
devised quartic-order method for the cubic-degree polyno-
mial z3 − 1, which has three unique zeros: 1, − 1

2 −
√
3
2 i,

−
1
2 +

√
3
2 i. We used all root-finding methods to determine

simple roots, and the results are shown in Figure 4.

FIGURE 4. Polynomiographs corresponding to 3rd-degree polynomial q3.
(a) Shows NRM, (b) shows TM, (c) shows ZM, and (d) shows Algorithm 1.

Example 9: Polynomiographs for q4 Using Different Iter-
ation Methods
In the 9th example, we take polynomial z3 − z2 + z − 1,

which has unique roots 1, i, and −i. We created the visually
attractive graphical objects by running all the comparable
root-finding methods and the results are shown in Figure 5.

FIGURE 5. Polynomiographs corresponding to the 3rd-degree
polynomial q4. (a) Shows NRM, (b) shows TM, (c) shows ZM, and
(d) shows Algorithm 1.
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In Examples 6-9, we used Mathematica 12.0 to run all
of the comparable root-finding methods for constructing
aesthetically beautiful polynomiographs. We can study eas-
ily the graphical aspects and stability of different iteration
methods using the resulting graphical objects. One can easily
observe that the newly constructed method has a significantly
bigger convergence zone as compared to other comparable
ones. The colors’ shades demonstrate the algorithm’s effi-
ciency that has been used to draw the polynomiograph. These
graphical objects indicate two important aspects: the con-
vergence speed and the dynamics of the iterative methods
used to build these graphics. The first may be shown by
examining the image’s color tones. Color richness in graphi-
cal objects demonstrates robust convergence with fewer iter-
ations. The second attribute may be examined by observ-
ing the color variations of the drawn polynomiographs. The
regions with minor color fluctuation represent low dynamic
zones, whereas the zones of substantial color variation indi-
cate high dynamic zones. The same color-zones signify the
similar No. of iterations used by different methods to seek the
approximated solution up to a particular precision, and their
graphical representation of the contour lines on the map is
equivalent.

VI. CONCLUDING REMARKS
Based on forward- and finite-difference schemes, we
developed a novel root-finding algorithm for non-linear equa-
tions that is more efficient and derivative-free. We reviewed
the proposed algorithm’s convergence criterion and demon-
strated its quartic-order convergence. We assumed cer-
tain random and engineering problems, turned them into
non-linear functions, and then solved them to illustrate
the applicability and robust performance of the described
method. The numerical findings in Table 1 demonstrate that
the newly proposed method outperforms the previous com-
parable root-finding algorithms in terms of convergence,
time, accuracy, and computational order of convergence. The
proposed algorithm’s robustness can also be anticipated by
looking at the accuracy of consecutive estimations, which
is significantly higher than that of other comparable algo-
rithms. To investigate the complicated dynamic nature of
the proposed method, polynomiographs for several complex
polynomials were created using the computer application
Mathematica 12.0. The resulting graphical objects are unique
and visually beautiful, revealing the devised algorithm’s
graphical properties and superior convergence rate over the
other comparable algorithms. Using the same concept as
in this article, a new family of derivative-free techniques
for calculating the roots of non-linear equations may be
constructed.
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