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ABSTRACT The generation and transmission capacities of many power systems in the world are
significantly increasing due to the escalating global electricity demand. Therefore, the adequacy evaluation
of power systems has become a computationally challenging and time-consuming task. Recently,
population-based intelligent search methods such as Genetic Algorithms (GAs) and Binary Particle Swarm
Optimization (BPSO) have been successfully employed for evaluating the adequacy of power generation
systems. In this work, the authors propose a novel Evolutionary Swarm Algorithm (ESA) for the adequacy
evaluation of composite generation and transmission systems. The random search guiding mechanism of
the ESA is based on the underlying philosophies of GAs and BPSO. The main objective of the ESA is
to find out the most probable system failure states that significantly affect the adequacy of composite
systems. The identified system failure states can be directly used to estimate the system adequacy indices.
The proposed ESA-based framework is used to evaluate the adequacy of the IEEE Reliability Test System
(RTS). The estimated annualized and annual adequacy indices such as Probability of Load Curtailments
(PLC), Expected Duration of Load Curtailments (EDLC), Expected Energy Not Supplied (EENS) and
Expected Frequency of LoadCurtailments (EFLC) are comparedwith those obtained using SequentialMonte
Carlo Simulation (SMCS), GA and BPSO. The results show that the accuracy, computational efficiency,
convergence characteristics, and precision of the ESA outperform those of GA and BPSO. Moreover,
compared to SMCS, the ESA can estimate the adequacy indices in a more time-efficient manner.

INDEX TERMS Composite system adequacy, evolutionary algorithms, genetic algorithms, particle swarm
optimization, population-based methods, reliability assessment.

I. INTRODUCTION
The global electricity demand is expected to grow by 2.4%
per year up to 2040 [1]. Therefore, power systems must
gradually grow in both size and supply capability to satisfy
the continuously increasing consumer demand. Hence, the
adequacy assessment of future power systems will become
a more complicated and time-consuming task due to the
increased number of system components such as generators,
transformers, and transmission lines.

Analytical and simulation based probabilistic methods
are widely used in power system adequacy evaluation in
order to model the stochastic nature of power system
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components and estimate more realistic adequacy indices.
The outage probability of each power system component
can be used to determine the status of the component
i.e. unit up or unit down. Then, the system state space
can be generated by convolving the status of each of the
power system components. The system states associated
with zero load curtailment are success states, whereas
the states with load curtailment are considered as failure
states. The derived system state space can be analyzed
to quantify the system adequacy using different adequacy
indices such as Probability of Load Curtailments (PLC),
Expected Duration of Load Curtailments (EDLC), Expected
Energy Not Supplied (EENS) and Expected Frequency of
Load Curtailments (EFLC).
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However, the state space of a composite generation and
transmission system is significantly large due to the combined
number of generation and transmission components. For e.g.,
if a power system has x number of components, then the
size of the state space will be 2x . Therefore, the larger
the power system the higher the complexity of the system
adequacy evaluation. On the other hand, composite system
states are evaluated by the Optimal Power Flow (OPF)
analysis and, this optimization problem requires a significant
amount of computational time especially when there is a
large number of system states. Moreover, in power generation
and transmission system planning, the system adequacy
indices are estimated for numerous case studies. Hence,
conventional analytical and simulation-based power system
adequacy evaluation methods may not cope with modern
power system planning as the cumulative time for such
studies may be discouraging their application. Thus, more
effective and efficient methods are needed to assess the
system adequacy more accurately and conveniently.

Monte Carlo Simulation (MCS) is widely used for eval-
uating the adequacy of power systems due to the increased
computational performance and storage of modern com-
puters [2]. In Sequential Monte Carlo Simulation (SMCS),
the system states are simulated and analyzed chronologi-
cally [2]–[7]. On the other hand, in Non-Sequential Monte
Carlo Simulation (NSMCS), the system states are randomly
sampled from the system state space [2], [8]–[11]. Despite
their popularity, MCS methods require a significant amount
of computational time especially when the system is large
and highly reliable [3]. The OPF analysis is the main time-
consuming task of composite system adequacy evaluation.
Several methods are proposed in the literature to reduce the
application of OPF analysis in the adequacy evaluation of
composite systems [6]–[17], [20]–[24].

The convergence time of MCS methods can be reduced
by incorporating variance reduction techniques such as
importance sampling [6], [8], [9], [11] and Latin Hypercube
sampling [7], [10]. Variance reduction methods increase the
precision of the estimates of the reliability indices while
reducing the number of states that need to be evaluated until
the convergence is reached.

In [12] and [13], MCS is conducted on parallel and
distributed processing environments instead of a single pro-
cessor based environment. However, the total computational
cost remains the same because the number of total system
states evaluated is not changed.

Artificial Intelligence (AI) based learning and optimization
techniques are recently employed for adequacy evaluation of
power systems. The Machine Learning (ML) classification
methods such as K Nearest Neighbor (KNN) [14], Artificial
Neural Network (ANN) [15], Support Vector Machine
(SVM) [16], Fisher Linear Discriminant (FLD) [17], Koho-
nen self-organizing map, K-means, K-medoids [18] and
transfer learning [19] can be used to classify the system
states either as success or failure. The available or unavailable
bus generation, generation reserve capacity and unavailable

transmission capacity are used as the input variables to the
classification models. These methods can be incorporated
into the MCS and only the states that are classified as
system failures are evaluated instead of applying the OPF
analysis on all the sampled states. This significantly reduces
the computational cost of MCS [14]–[17]. However, the
training of the aforementioned ML models is a time-
consuming task. Therefore, with the training stage, actual
reliability evaluation times should be larger than the values
stated in [14]–[17].

Population-based Intelligent Search (PIS) methods such
as Genetic Algorithms (GAs), Ant Colony Optimization
(ACO), Artificial Immune Systems (AISs), and Binary
Particle Swarm Optimization (BPSO) are AI-based opti-
mization methods which are inspired by biological or social
systems. These PIS methods can be used to find out either
a set of probable failure states or success states from
the system state space. In [20]–[24], the ability of the
population-based guided random search is used to identify
the most probable system success or failure states (e.g.,
the states with a state probability > 1e−10) instead of
attempting to find a single optimal solution. In [20], GAs,
ACO, AISs, and BPSO are used for pruning the system
state space. Firstly, the PIS methods are used to search
for most probable system success states. Then, the MCS is
applied on the pruned system state space until the simulation
converges. After that, the previously found system success
states are reintroduced in the adequacy indices calculation.
In [21], a differential evolution algorithm is used to prune the
system state space. Then, the pseudo-sequential Monte Carlo
simulation is used to obtain the system reliability indices.
In [22], a combination of MCS, state-space classification
and BPSO is used to estimate the adequacy of composite
systems. However, in the aforementioned hybrid PIS-MCS
methods, theMCS phase tends to reduce the overall sampling
efficiency of the algorithm [21]. On the other hand, in [23]
and [24], PIS methods such as GAs, BPSO, ACO, and
AISs are used to find out the most probable system failure
states. The adequacy indices can be directly derived from the
recorded system failure states. Even though thesemethods are
well established, significant changes to the searching mech-
anism may improve the overall computational efficiency of
these methods. Moreover, PIS methods do not need to be
trained as ML methods [23], [24]. However, there are several
limitations native to the application of two widely used PIS
methods (i.e. GAs and BPSO) in power system adequacy
evaluation which leads to a low sampling efficiency. The
failure system states are not randomly distributed in the
state space i.e., most of the system failure states may have
common component failures (e.g.: in most of the system
failure states, the largest generator of the system may be at
the downstate). When a new population is being generated,
the offspring generation should have these fit qualities of the
parents. In GAs, the crossover operator does not maintain this
genealogical link between parent and offspring generations.
On the other hand, the ability to search in new areas of the
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system state space is limited in BPSO due to the velocity
limitations of the particles.

This study extends the work presented in [23] and [24] in
which PIS methods are directly used for generation system
adequacy evaluation without incorporating the MCS. In this
work, the applicability of PIS withoutMCS is investigated for
evaluating the adequacy of composite power systems where
transmission and generation are considered together. A novel
PIS guiding mechanism called Evolutionary Swarm Algo-
rithm (ESA) is proposed for this application by combining
the useful features of GAs and BPSO while eliminating their
limitations. The proposed PIS guiding mechanism consists
of two population guiding operators namely selection and
dynamic mutation. The selection operator is inherited from
the GAs and the dynamic mutation operator is derived
by using the features of swarm intelligence. The dynamic
mutation operator helps to deliberately search failure states
in the system state space using the most probable failure
states that are already found. Instead of randomly searching
system failure states, the ESA attempts to search the most
probable system failure states that significantly affect the
system adequacy indices. This is done by eliminating the least
probable system states as in GAs (‘‘survival of the fittest’’)
and following the most probable failure states as in BPSO
(‘‘following the leader’’). The adequacy studies are con-
ducted on IEEE Reliability Test System (RTS) [25] using the
proposed ESA. The ESA based composite system adequacy
evaluation framework is validated using the reference values
obtained from the literature [5]. Then, the computational
efficiency, sampling efficiency and precision of the proposed
ESA are compared with those of GAs and BPSO. Moreover,
the correlation between computational time and different
sampling mechanisms (MCS and PIS) is conceptually and
numerically compared.

The rest of the paper is organized as follows. Section II
describes the application of PIS methods such as GAs
and BPSO for the adequacy evaluation of power systems.
An improved PIS algorithm called Evolutionary Swarm
Algorithm is proposed in section III. SMCS, a GA, BPSO,
and the proposed ESA are used in section IV to evaluate
the adequacy of composite systems. In section V, the
proposed ESA is validated and, the computational efficiency,
sampling efficiency and precision of the proposed ESA are
comparedwith those of GA andBPSO. Conclusions are given
in section VI.

II. POWER SYSTEM ADEQUACY EVALUATION USING
POPULATION-BASED INTELLIGENT
SEARCH METHODS
In power system adequacy evaluation, three basic steps are
needed to estimate the adequacy indices. Firstly, system states
are sampled from the system state space. Then, each sampled
state is evaluated to find out whether it is a success state or
a failure state. Finally, the adequacy indices are derived from
the sampled system states.

FIGURE 1. The representation of a system state.

A. SYSTEM STATE SELECTION
The system success and failure states are scattered over the
system state space. In PIS methods, the most probable system
failure states are enumerated from the system state space as
they significantly affect the system adequacy [23], [24].

A system state is a combination of the states of system
individual components such as generators and transmission
lines. In PIS, each system state is represented as an array in
which the component status are assigned to the respective
cells of the array. The configuration of the system state is
illustrated in Fig. 1. Similar components are grouped, and
each cell represents the availability of the corresponding
generator or transmission line i.e. 0 or 1.

Various power system adequacy evaluation methods use
different sampling mechanisms for system state selection.
In this study, the main emphasis is given for the sampling
mechanisms of widely used PIS methods i.e. GAs and BPSO.
In the aforementioned methods, the most probable system
failure states are found by iteratively applying evolutionary
or swarm intelligence-based operations on a set of randomly
selected system states.

1) GENETIC ALGORITHMS
In GAs, genetic operators such as selection, crossover, and
mutation are applied to the exiting population i.e. a set of
system states to generate a new population with a large
number of system failure states [26]. Firstly, individuals
i.e. system states with comparatively high fitness values
are selected from the existing population to form a new
population. RouletteWheel Selection (RWS) is a widely used
selectionmethod in GAs. In RWS, the probability of selection
of an individual is proportional to its fitness value. The higher
the fitness the larger the probability of selection. Individuals
with high fitness values may be selected more than once
and worst will die off eventually. Secondly, the selected
individuals are considered as parents and the crossover
operation is applied to each pair of selected individuals. This
is illustrated in Fig. 2. The crossover operation is applied
according to the crossover probability which is defined
according to the nature of the application. The crossover
position is selected randomly. Finally, the child chromosomes
are subjected to the mutation operator for introducing random
changes in the chromosomes. The genes i.e. bits in each
chromosome are changed according to the defined mutation
probability. This avoids the GA being trapped in a local area
of the system state space.

However, there exist several limitations that are native to
the application of GAs in power system adequacy evaluation.
The failure system states are not randomly distributed in
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FIGURE 2. The crossover operation.

the state space i.e. most of the system failure states may
have common component failures (For e.g. in most of the
system failure states, the largest generator of the system
will be at the downstate). When a new population is being
generated, the offspring generation should have these fit
qualities of the parents. In GAs, the crossover operator does
not maintain these genealogical links between parent and
offspring generations. Furthermore, the crossover operator
does not provide a significant advantage over mutation
because it is a form of mutation itself.

2) BINARY PARTICLE SWARM OPTIMIZATION
Particle swarm optimization is a form of swarm intelligence
in which the optimization problem is solved by a swarm of
particles roaming in a multi-dimensional search space [27].
The swarm particles have two main features i.e. position
and velocity. The particles record the best positions (p_best)
that they have visited and then, the best position of the
whole swarm is identified (g_best). The velocity provides
an idea of the solution distance w.r.t the current particle
position. For each particle, the velocity is calculated using
p_best and g_best and then, the next particle positions are
computed according to respective velocities. In BPSO, each
swarm particle is represented by a binary number. Hence,
the system state representation illustrated in Fig. 1 can also
be employed in the BPSO for composite system adequacy
evaluation. Thus, a swarm particle represents a system state.
The system component states i.e. individual binary digits
are changed according to their respective velocities to form
the next population of swarm particles. The velocity of each
individual component is calculated using (1) [28]. VK

i is the
velocity of ith component at K th generation. c1 and c2 are
learning factors known as cognitive acceleration constant and
social acceleration constant, respectively. r (K+1)1 and r (K+1)2
are uniformly distributed random numbers between 0 and
1 that are generated for the (K + 1)th generation. p_bestKi is
the status of the ith component (ith bit) of the most probable
system failure state that the swarm particle has encountered
up to the K th generation. g_bestKi is the status of the ith

component (ith bit) of the most probable system failure state
that any of the swarm particles has encountered up to the K th

generation. xKi is the status of the ith component (ith bit) at

K th generation.

V (K+1)
i = (VK

i )+ c1r
(K+1)
1 (p_bestKi − x

K
i )

+ c2r
(K+1)
2 (g_bestKi − x

K
i ) (1)

Similarly, the component velocities are calculated for the
other particles present in the population. The velocity of an
individual component provides an idea of the probability of
the component availability. The Sigmoid limiting transfor-
mation function explained by (2) is used to transform the
velocity of component i (Vi) to a probability of availability.
Then, the new state of the component i (xK+1i ) can be derived
using (3) where r is a uniform random number between
0 and 1 [28]. Moreover, the velocities should be limited by
an upper bound Vmax and a lower bound Vmin to avoid the
ultimate probability of availability of a bit in a particle being
zero or one.

S(VK+1
i ) =

1

1− e−V
K+1
i

(2)

xK+1i = 1 if r < S(VK+1
i ), 0 else (3)

However, the ability to search in new areas of the system
state space is limited in BPSO. Generally, the velocity of a bit
i.e. component in a particle will be bounded by [Vmin,Vmax]
and then, probability of availability of the component S(Vi)
will become a fixed value.

B. SYSTEM STATE EVALUATION
In state evaluation, each selected system state is analyzed
to identify the respective load curtailments associated with
the state. DC OPF analysis can be used to evaluate the
sampled system states. Themain objective of the optimization
is to minimize the cost of load curtailments. A general
representation of DCOPF problem is explained by (4)-(8) [2].

Min f =
k∑
i=1

xi Ci (4)

k∑
i=1

Pgi +
k∑
i=1

Ci =
k∑
i=1

Pli (5)

|[A].[P]| ≤ [Tlimit ] (6)

0 ≤ Pgx ≤ Pcapx (7)

0 ≤ Ci ≤ Pli (8)

where xi and Ci are the cost of load curtailment and the
curtailed load at the ith bus, respectively. k is the total number
of buses in the transmission system. Pgi and Pli are the power
generation and load requirement at the ith bus, respectively. A
is the sensitivity matrix in which the transmission line power
flows are expressed, P is the net bus injection vector, Tlimit
is the transmission line capacity vector. Pgx is the power
generation of x th generator with a maximum capacity of
Pcapx . For a selected system state, if

∑k
i=1 Ci > 0 then,

the state is classified as a failure state and stored for further
analysis.
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C. ESTIMATION OF SYSTEM ADEQUACY INDICES
Several adequacy indices that are employed to quantify the
composite system adequacy are described by (9)-(12) [2].

1) PROBABILITY OF LOAD CURTAILMENTS (PLC)

PLC =
n∑
i=1

State_pi (9)

where State_pi is the probability of failure of the system
failure state i and, n is the total number of system failure
states.

2) EXPECTED DURATION OF LOAD CURTAILMENTS (EDLC)
(HOURS PER YEAR)

EDLC = 8760× PLC (10)

3) EXPECTED ENERGY NOT SUPPLIED (EENS)
(MWh PER YEAR)

EENS =
n∑
i=1

LCi × State_pi (11)

where LCi is the load curtailment of the system failure state
i.

4) EXPECTED FREQUENCY OF LOAD CURTAILMENTS (EFLC)
(OCC. PER YEAR)

EFLC =
n∑
i=1

(Fi − fi) (12)

where Fi is the frequency of the departing system state i and,
fi is the portion of Fi which corresponds to the subsequent
system failure states.

III. PROPOSED EVOLUTIONARY SWARM ALGORITHM
The proposed ESA inherits the useful features of GAs
and BPSO while eliminating the limitations mentioned in
Section II A. The ESA generates a new population using
two main steps namely selection and dynamic mutation
that are explained in subsections A and B respectively.
The composite system adequacy evaluation procedure is
explained in subsection C.

A. SELECTION OPERATOR
The selection operator is inherited by GAs. It is used to
select themost probable system failure states from the present
population to form a new population. The RWS that is
explained in Section II A is used in this work.

B. DYNAMIC MUTATION OPERATOR
In the dynamic mutation mechanism, variable mutation
probabilities are used to mutate each bit of the particles (i.e.
the state of each component in the system states) in the
population. Hence, for each particle, a mutation probability
array should be maintained. This is somewhat similar to the

velocity principle of BPSO. However, the Sigmoid transfer
function is not required in the proposed mechanism because
the mutation probability of system components is directly
derived by the dynamic mutation operator. The dynamic
mutation mechanism can be explained by (13).

P(K+1)i = Pm+ r (K+1) ∗ |p_bestKi − x
K
i | (13)

P(K+1)i is the dynamic mutation probability of the ith

component at the (K + 1)th generation. Pm is the permanent
mutation constant. Pm is commonly a small constant e.g.
0.03 that is used to avoid premature convergence. Instead of
always following the fittest particles, new search areas are
explored due to the introduction of Pm. In composite system
reliability evaluation, different Pm values may be used for
generators and transmission lines according to their forced
outage rates. The value of the Pm is determined using the
trial-and-error method. The Pm value which provides the best
result is used in the algorithm. r (K+1) is a uniform random
number between zero and one which is used to exploit new
solutions around the p_best states while avoiding particles
frommoving exactly towards them. Similarly, the component
mutation probabilities are calculated for the other particles
present in the population.

Both p_bestKi and xKi are two arrays and the each bit of
these arrays can take either 1 or 0. The ith bit of p_bestKi is
the status of the ith component of the most probable system
failure state that the swarm particle has encountered up to
the K th generation. The ith bit of xKi is the status of the
ith component at the K th generation. The term |p_bestKi −
xKi | provides an idea of how close xKi to the best solution
identified so far. If |p_bestKi − xKi | = 0, the mutation
probability will be only Pm e. g. 0.03. This means that xKi
should not be changed during the mutation. If |p_bestKi −
xKi | = 1, then, xKi should be changed to get close to the best
possible value p_bestKi .
According to the mutation probability, the state of each

component of the particle population is updated using (14)
where r is a uniform random number between zero and one.
r is used to stochastically determine the mutation of each
component of the particle population. The symbol ¬ is used
to denote the negation operation (‘‘NOT’’) in symbolic logic,
which is also called ‘‘logical not.’’

x(K+1)i = ¬xKi if r < P(K+1)i , xKi else (14)

C. COMPOSITE SYSTEM ADEQUACY EVALUATION
PROCEDURE
The generation system adequacy evaluation procedure pro-
posed in [23] is extended in this work to evaluate the adequacy
of composite systems as follows. The adequacy evaluation
procedure is illustrated in Fig. 3.
Step 1: Generate a population of particles i.e. system

states randomly where the states of generators
and transmission lines are initialized using binary
digits.
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Step 2: Calculate the probability of each system state using
(15) and select the most probable system states e.g.,
state probability > 1e−10.

Pi =
m∏
j=1

P_compj (15)

where m is the total number of individual compo-
nents and P_compj is the state probability of jth

component. The fitness of the unqualified system
states e.g., state probability ≤ 1e−10 is assigned to
a small value e.g., Pi × 1e−5.

Step 3: Select a most probable system state and evaluate
it using DC OPF w.r.t the maximum load demand.
Derive the load curtailment LCi.

Step 4: If LCi = 0 (success state) a very small fitness
value is assigned to the state and repeat from step
3. If LCi > 0 (failure state) go to the next step.

Step 5: Calculate the number of all possible permutations
of the evaluated system failure state as follows.

Permi =
(
G1

n1

)
× . . .×

(
Gi
ni

)
× . . .×

(
Gn
nn

)
(16)

where Gi is the length of group i and ni is the
number of available components in group i.

Step 6: The fitness of the state is calculated by (17).

Fiti = Permi × Pi (17)

Step 7: Frequency of the state can be calculated by (18).

Fi = Pi × (
m∑
j=1

(1− bj)× µj −
m∑
j=1

bj × λj) (18)

where bj indicates the component status i.e. 0 or
1. µj and λj are the expected repair rate and the
expected failure rate of component j, respectively.

Step 8: Save the derived information e.g., system state, Pi,
Permi, Fi and LCi of the failure state in an array.

Step 9: Repeat steps 3-8 until the remaining system states
i.e. individuals are evaluated. Before each eval-
uation, the selected system state is checked to
ensure that it is not previously evaluated. If it is a
previously evaluated state, the fitness of the state is
assigned to a very small value. Therefore, it will not
appear in the following generations.

Step 10: Increase the iteration number by one. Check
whether any stopping criterion is satisfied. If yes
go to step 13 else go to the next step.

Step 11: PIS guidance mechanism is applied to the current
population for generating the next population.

Step 12: Repeat steps 2-11.
Step 13: Calculate the annualized composite system ade-

quacy indices described by (9), (10), (11) and
(12) using the derived system state array where

FIGURE 3. Proposed composite system adequacy evaluation framework.

State_pi = Permi×Pi. The EFLC explained in (12)
is calculated as follows.

EFLC =
n∑
i=1

Fi× Permi (19)

Step 14: Calculate the annual adequacy indices as follows.
• The chronological load curve is transformed

to a q number of load levels, for e.g.
15 load levels. Then sort the load levels in
descending order in which the first state has
the highest load value and the qth state has
the lowest.

• Calculate the load step probabilities and
load transition rates per year (λ) between the
load states.

• For each system failure state, DC OPF
analysis is applied for different load levels.
If LCix = 0 for a certain load cluster x, the
state evaluation process is stopped, and it is
restarted on the next system failure state.

• While evaluating all the system failure
states for different load levels, calculate the
composite system adequacy indices using
(9), (10), (11) and (12) where State_pix =
Permi × Pi × Lpx . State_pix is the state
probability of the ith state for the x th

load step. Lpx is the probability of the
x th load step. The EFLC is calculated as
follows [29].

EFLC =
n∑
i=1

q∑
x=1

Lpx × Fi × Permi

+

n∑
i=1

q∑
x=1

(
q∑

j=r+1

λrj −

r−1∑
j=1

λjr

×
Lpj
Lpx

)× Pi × Permi × Lpx

(20)
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TABLE 1. Annualized adequacy indices, number of failure states, and
adequacy evaluation time of SMCS and PIS methods for IEEE
RTS.

There are several criteria to determine the stopping rule
of metaheuristic algorithms [30]. In this work, the number
of population iterations is set to a maximum number and,
reaching this maximum number of iterations is used as
the stopping rule. The appropriate number of iterations is
determined using the trial and error method considering the
required accuracy and the computational cost.

IV. APPLICATION STUDIES
In this section, SMCS, GA, BPSO, and the proposed ESA are
used to estimate the annualized and annual adequacy indices
of the IEEE RTS system. The results of a GA and BPSO are
used for elaborating the accuracy, precision, and sampling
efficiency of the proposed ESA.

The SMCS is used to compare the computational efficiency
of PIS and Monte Carlo sampling methods. In SMCS, the
number of simulation years is fixed to 500 years while
maintaining coefficient of variation of PLC less than 1e−2.
MATLAB is used to implement the PIS and SMCS methods
in a single-core processing environment. The DC OPF
analysis is conducted by a linear optimization function called
‘‘linprog.’’ A system with the Intel Core i7-8750H processor
and 8 GB RAM is utilized in this work.

A. COMPOSITE SYSTEM ADEQUACY EVALUATION
OF IEEE RTS
IEEE RTS consists of 32 generators,38 transmission lines,
and 24 buses. The peak load of the system is 2850 MW and
the total generation capacity is 3405 MW. The total number
of iterations and population size of GA, BPSO, and ESA
are assigned as 1500 and 100 respectively. Annualized RTS
adequacy indices, the number of failure states evaluated, and
the adequacy evaluation time of SMCS, and PIS methods
are tabulated in Table 1. Annual composite system adequacy
indices and the respective evaluation time are shown in
Table 2.

V. DISCUSSION
This section describes the results obtained in section IV. The
proposed ESA is validated in subsection A. Subsection B
compares several characteristics and improvements of the
proposed ESA w.r.t SMCS, GA, and BPSO.

TABLE 2. Annual adequacy indices and adequacy evaluation time of
SMCS and PIS methods for IEEE RTS.

TABLE 3. Comparison of annualized adequacy indices obtained using the
ESA and the reference SMCS [5].

A. VALIDATION OF THE PROPOSED ESA
The proposed ESA can be validated using the results of
SMCS presented in [5]. Table 3 shows the comparison of
annualized adequacy indices obtained from the ESA and
the reference SMCS [5]. It can be seen that the adequacy
indices obtained by the ESA are very close to the reference
values presented in [5]. Given that SMCS is a probabilistic
simulation method, a certain degree of estimation difference
can be accepted.

B. COMPUTATIONAL EFFICIENCY, SAMPLING EFFICIENCY,
AND PRECISION OF THE PROPOSED ESA
1) THE COMPUTATIONAL EFFICIENCY OF THE ESA
In SMCS, accurate estimations for system adequacy indices
can be obtained by employing a tight coefficient of variation
for the adequacy estimators as the stopping rule. However, the
higher the accuracy of estimators the larger the computational
time. Tables 1 and 2 show the computational time associated
with each PIS method and SMCS. When comparing the
computational times, PIS methods are more computationally
efficient than the SMCS. When compared with the SMCS,
ESA can estimate the system adequacy indices in a signifi-
cantly short time period. The main reason is the difference
between the samplingmechanism of PISmethods and SMCS.
In SMCS, the system states are sampled stochastically and
both success and failure states are used to estimate the system
adequacy indices. Hence, the OPF analysis is conducted on
both success and failure system states. This significantly
increases the computational time.Moreover, when the system
is more reliable, the probability of sampling failure states
will be less, and the simulation convergence criterion may
not be satisfied even for a large number of samples. On the
other hand, PIS methods only focus on most probable system
failure states that significantly affect the system adequacy
indices. Hence, the OPF analysis will be conducted on a
limited number of states and this can drastically reduce the
computational time.
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TABLE 4. Computational time, number of iterations, number of failure
states of ESA, GA, and BPSO for difference tolerance levels of annualized
EDLC.

The computational time of PIS methods depends mainly
on two factors: the number of new most probable system
states (for e.g. state probability > 1e−10) identified
and the complexity of the PIS guide operation. However,
in applications of composite system adequacy evaluation, the
computational time of the PIS methods significantly varies
with the number of most probable system states evaluated.
These most probable system states include both success
and failure states. In PIS methods, the exploration of the
system success states throughout the generation iterations are
minimized as they are not needed in the calculation of system
adequacy indices. Hence, the computational time of PIS
methods significantly varies with the number of failure states
evaluated. This can be observed in the Tables 1 and 2. Hence,
the performance of the PIS methods cannot be compared
by using the respective computational times observed for a
given number of iterations (e.g. 1500). In fact the convergence
characteristics of the PIS methods showcase the respective
computational efficiencies.

The computational efficiency of the proposed ESA can be
compared with that of GA and BPSO as follows. The compu-
tational times, the number of states and the number of itera-
tions that are required for reaching different tolerance levels
of EDLC (or PLC) can be obtained for ESA, GA and BPSO
as shown in Table 4. The maximum number of iterations is
limited to 15000. As can be seen in Table 4, the BPSOmethod
significantly struggles to get into the defined tolerance levels
of EDLC. Especially, the tolerance level of 1.5% cannot be
reached even after 15000 iterations. The computational times
of the ESA are the lowest for each EDLC tolerance level. The
ESA computational time is reduced by 31.24% and 90.24%
when compared with GA and BPSO for the EDLC tolerance
level of 1.5%. Similarly, for the EDLC tolerance levels of 2%
and 2.5%, the average computational time reduction of ESA
is 25.02% and 87.86% w.r.t. GA and BPSO.

When comparing the results shown in Table 4, several
interesting facts can be observed. In all the cases, ESA
reaches the defined tolerance levels with the lowest number
of system failure states, the lowest number of iterations and
the lowest computational time. Although GA and BPSO have
accumulated more system failure states, they were unable to

FIGURE 4. The evolution of PLC in terms of computational iterations.

reach EDLC tolerance levels faster than ESA. Hence, having
the highest number of system failure states does not guarantee
the accuracy of the derived adequacy indices. The sampled
set of failure states should include the most probable failure
states of the system. If the probabilities of sampled states
are low, the estimations become inaccurate. The results show
that ESA can sample the most probable system failure states
within a fewer number of iterations than GA and BPSO.

The evolution of PLC in terms of computational iterations
is illustrated in Fig. 4 for each PIS algorithm. When
considering the first few iterations, both ESA and GA show
the same rise-up characteristics. BPSO could not reach
the rise-up performance of both ESA and GA. However,
it can be seen that ESA converges significantly faster than
GA and BPSO. The GA requires a significant number of
iterations to reach convergence. This may have happened due
to the elimination of important genealogical links between
parent states and child states by the crossover operator. This
limitation is addressed in the ESA and therefore, it rapidly
reaches the convergence. The convergence rate is lowest, and
time is highest in BPSO.

The PIS ability of BPSO is significantly reduced in the
adequacy evaluation of IEEE RTS. This happens mainly due
to the lack of mutation operator as in GAs. This causes the
convergence of particle velocities to the maximum permitted
values i.e. [Vmin,Vmax]. This will limit the BPSO’s ability
to search for new search spaces. The swarm intelligence
philosophy i.e. ‘‘following the leader’’ cannot be applied for
large state spaces because there may be a significant number
of leaders (most probable system failure states) that needs to
be followed.

In ESA, the selection of the best fitted individuals from
the old generation has a significant impact on the final result.
It was observed that PLC converges to 0.0835 instead of
0.0844 without the selection operator. Hence, the use of the
selection operator is a must to obtain the maximum advantage
of the dynamic mutation operator.

2) THE SAMPLING EFFICIENCY OF THE ESA
The sampling efficiency of PIS methods can be compared by
observing the number of sampled failure states from a system
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state space with defined dimensions (e.g. population size
and number of iterations). When considering the adequacy
evaluation of IEEE RTS, GA, BPSO and ESA found 10962,
7722, and 12068 failure states respectively, from the search
space of 100× 1500 i.e. 150000.

PLC is a good measure for quantifying the ability of PIS in
amoremeaningful manner. In PIS-based adequacy evaluation
methods, the larger the PLC the higher the accuracy of the
PIS method. As can be seen in Tables 1 and 2, ESA found
the largest number of system failure states and provides
the largest PLC value. Thus, the proposed PIS mechanism
outperforms GA and BPSO in terms of sampling efficiency.

In [23], the sampling efficiency (λ) of the PIS methods
is measured using (21). The ratio explained by (21) varies
according to the algorithm efficiency and the density of
system failure states in the state space. In the adequacy
evaluation of IEEE RTS, the sampling efficiencies of
GA, BPSO, and ESA are found to be 7.3%, 5.1%, and
8% respectively. Therefore, the sampling efficiency of the
proposed ESA is higher than that of GA and BPSO.

λ =
Number of meaningful states sampled

Number of total samples
(21)

3) THE PRECISION OF THE ESA
When comparing the adequacy indices obtained by the PIS
methods, the larger the adequacy indices such as PLC, EDLC,
EENS and EFLC the higher the accuracy of the estimations.
This means that the most probable system failure states are
sampled during the PIS process. Tables 1 and 2 show that
the proposed ESA has provided the most accurate system
adequacy indices. However, the adequacy indices should be
consistent throughout several executions of the algorithm.
Therefore, to identify the consistency and precision of the
PIS methods, the standard deviation of the annualized EDLC
estimator of the IEEE RTS is calculated for the results of
50 executions. The standard deviation of EDLC obtained
by GA, BPSO, and ESA, are found to be 1.15, 6.38, and
0.22 respectively. The standard deviation of EDLC is the
lowest in the ESA. Hence, the precision of the proposed algo-
rithm is significantly greater than that of the GA and BPSO.

VI. CONCLUSION
This paper proposes a new population-based random search
guide mechanism called ESA for the adequacy evaluation of
composite power systems. Then, the results of the proposed
ESA are compared with those of GA, BPSO, and SMCS to
investigate the application of PIS methods on the adequacy
evaluation of composite power systems. The proposed
algorithm provides more consistent and accurate estimations
for adequacy indices in significantly lesser time than SMCS.
Moreover, the computational and sampling efficiency of the
proposed ESA is higher than that of GA and BPSO.

In this particular application, Population based Intelligent
Search (PIS) methods such as GA, BPSO and ESA are used
to scan and find out a set of most probable failure states

which contribute significantly to system reliability indices,
rather than attempting to find a single optimal or near-optimal
solution. Therefore, convergence of these algorithms may
not guarantee the accuracy of the solution. In this work, the
accuracy of the solution provided by the proposed algorithm
is checked by comparing that with the solution of well-
established SMCS, instead of checking the convergence of
the proposed ESA.

However, PIS methods cannot provide exact adequacy
indices because the enumeration of every system failure state
is computationally intractable. Hence, the adequacy indices
obtained by the PIS methods are always somewhat less than
the exact values. On the other hand, in SMCS, the estimated
indices are somewhat larger or smaller than the exact values.
Thus, a small error margin is acceptable in the adequacy
estimation of composite systems. Therefore, the proposed
ESA is able to provide acceptable estimations for composite
system adequacy indices.

In the future, the authors intend to apply the proposed ESA
for evaluating the adequacy of power distribution systems.
AC optimal power flow analysis can be used to accurately
estimate the distribution system adequacy indices especially
when there is a large proportion of rooftop solar. Furthermore,
emerging deep learning techniques can be used to identify the
system failure states without using the time-consuming AC
optimal power flow analysis [31], [32].
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