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ABSTRACT Secure and economic operation of the power system is one of the prime concerns for the
engineers of 21st century. Unit Commitment (UC) represents an enhancement problem for controlling the
operating schedule of units in each hour interval with different loads at various technical and environmental
constraints. UC is one of the complex optimization tasks performed by power plant engineers for regular
planning and operation of power system. Researchers have used a number of metaheuristics (MH) for
solving this complex and demanding problem. This work aims to test the Gradient Based Optimizer (GBO)
performance for treating with the UC problem. The evaluation of GBO is applied on five cases study, first
case is power system network with 4-unit and the second case is power system network with 10-unit, then
20 units, then 40 units, and 100-unit system. Simulation results establish the efficacy and robustness of GBO
in solvingUC problem as compared to othermetaheuristics such as Differential Evolution, EnhancedGenetic
Algorithm, Lagrangian Relaxation, Genetic Algorithm, Ionic Bond-direct Particle Swarm Optimization,
Bacteria Foraging Algorithm and Grey Wolf Algorithm. The GBO method achieve the lowest average run
time than the competitor methods. The best cost function for all systems used in this work is achieved by the
GBO technique.
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I. INTRODUCTION
Modern power system is becoming diverse and complex and
secure in addition to power system economic operation is one
of the prime concerns for the engineers of 21st century [1].
Unit Commitment (UC) assists an electricity provider to
determine which power generators to run at which times and
at what level, so as to satisfy the demand for electricity.
UC is an enhancement issue for determining the operating
timetable of the units in each hour with different loads
at various technical and environmental constraints. UC is
one of the complex optimization tasks performed by power
plant engineers for regular planning and operation of power
system [1], [2].

Researchers have used a number of metaheuristics (MH)
such as GA, PSO, ACO, GWO etc for solving this complex
and demanding problem. In [1], authors have used Binary
Grey Wolf Optimization (GWO) for solving the UC problem
for 100-unit, 80-units, 40-units, 20-units, and 10-unit system.
In [2], the authors have proposed a mix optimizer of GA
and MILP for solving UC. In [3], the authors have formed
the UC problem for CHP in a multi-objective framework
with operating cost and net emission as objective functions.
The same problem was solved by using multi-objective PSO.
In [4], the UC problem is modelled considering hydropower
and solar in a robust platform and solved the same by CSA.
In [5], the authors have used BWA to solve profit-based UC
in competitive power market. In [6], the authors have used
novel SCA for solving unit commitment of thermal units.

In [7], the authors have used the UC problem for thermal
units in attendance of PHEVs. The same problem was solved
by PVS algorithm simulated by passing vehicles on highways
of two-lane rural. In [8], the authors have modelled the
unit commitment problem considering pumped storage and
renewable sources. Further, the authors have proposed a novel
BASAmimicking the social behavior of sheep for solving the
issue. In [9], the authors have used a novel DA PSO algorithm
considering hybridization of DA and PSO for solving unit
commitment. Simulation results demonstrated that the DA
PSO performed better than the stand-alone algorithms for
solving the complex UC problem. In [10], authors performed
the forceful generation scheduling of a thermal power plant
by SCA. In [11], authors have proposed a novel BMFO-
SIG for solving unit commitment of a conventional power
plant with and without wind resources. In [12], authors
have validated the performance of novel BFMO for solving
UC issue for different IEEE test networks. In [13], authors
have used PSA, a metaheuristic mimicking social behavior
of penguins for solving the demanding and complex unit
commitment problem.

In [14], the authors have proposed an improved version
of PSO possessing an improved strategy to deal with the
binary decision variables for solving unit commitment in a
micro grid having battery energy storage. Further, in [14],
the battery degradation cost was also taken into account.
In [15], a binary CSA was performed for solving the UC
of a standard 4-unit system. In [16], a novel BGSA was
performed for solving constrained UC problem. In [17],
authors have hybridized HS with a random search strategy

in order to solve unit commitment problem for various IEEE
test beds. In [18], authors have used a quantum inspired
binary GSA for solving the UC problem for various IEEE
test beds. In [19], authors have used novel BWA for solving
stochastic profit-based UC in a smart city environment.
In [20], authors have hybridized GA and DE for solving basic
unit commitment problem. In [21], authors have modelled the
unit commitment during natural calamities such as hurricanes
and used machine learning assisted approach to solve it.
In [22], authors have modelled the unit commitment problem
for hydropower plants considering multiple hydraulic heads
by a two-layer nested optimization approach with Cuckoo
Search (CS) and dynamic programming. In [23], authors have
modelled the unit commitment problem as Markov process
and then applied tree search and reinforcement learning for
its solution. The approach is validated on 30-unit test system.
The reinforcement learning based approach outperformed
mixed integer linear programming [23]. In [24], the authors
proposed a novel Bayesian Optimization approach for unit
commitment problem. In [25], the authors modelled a secu-
rity constrained scenario-based unit commitment problem
considering battery energy storage and solved the problem
by deep learning. They concluded that incorporating battery
energy storage could reduce the operating cost by 4.7%.
In [26], authors modelled the unit commitment considering
hydropower for Quebec, Canada and solved the same by
applyingMixed Integer Linear programming. In [27], authors
formulated the unit commitment problem considering ran-
dom generation of wind power and solved the same byMixed
Integer Linear programming. In [28], the authors formulated
price based stochastic unit commitment and solved the same
by Bender’s decomposition method. In [29], the authors
proposed a novel polar bear optimization algorithm for
solving scalable unit commitment problem. In [30], authors
proposed a scalable security constrained unit commitment
and solved the same by cone programming method. A brief
description of existing research works on UC is presented
in Table 1. The existing algorithms reported in [1]–[30]
used for solving UC sometimes suffer from shortcomings
such as getting stuck in local optima, poor balance between
exploitation and exploration, time complexity etc.

The main motivation that inspires us to use GBO is the
theorem of No Free Lunch (NFL) which states that any
single algorithm cannot equally perform better in all the
optimization problems. It is always recommended to test
new algorithms on complex optimization problems. UC is
one of the complex power system optimization problems.
Hence, we validated the performance of GBO on UC. GBO
proved good balance between exploitation and exploration
and chances of getting trapped in the local optima is always
rare in GBO. So, it can be suggested that GBO is one of
the candidate algorithms for solving complex optimization
problems such as UC.

In the electrical power production, the problem of unit
commitment (UC) represents a big family of the mathemati-
cal optimization problems. In this regard, producing electrical
generators set is coordinated to realize some common target,
commonly either matching the demand of energy at minimal
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TABLE 1. Review of research works on unit commitment.

cost or maximizing the electricity production revenue. The
main properties of UC problem are:
– The units number can be large (e.g., hundreds or

thousands)
– There are many kinds of units, which significantly differ

in energy production costs as well as the constraints on
how power is produced.

– The generation is distributed over vast geographical
area, e.g., a country, and thus the electrical grid
response, itself a highly complicated system, has to be
considered: even if production levels for all the units are
known, inspecting whether the load could be sustained,
and the losses that require highly complicated power
flow computations.
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Thus, the unit commitment is a complex power system
optimization problem having a number of decision variables
and is nonlinear in nature. The nonlinear, complex, multi-
variable, constrained nature of the problem makes it worth
investigating.

GBO is a novel algorithm that has been validated on
benchmark problems in existing research works. Motivated
by the superior performance of GBO on a number of
problems, this work validates its performance on UC
problem. Moreover, good balance between exploration and
exploitation, less probability of getting stuck in local optima
makes GBO a good candidate for validating UC.

In this work, a novel Gradient Based Optimizer (GBO)
is applied for solving the problem of UC. GBO is a
technique roused by the Newton method including Gradient
Search Rule (GSR) and Local Escaping Operator (LEO).
In recent years, GBO is used in solving a number of real-
world problems such as parameter extraction of photovoltaic
models [31], [32] structural optimization problems [33], eco-
nomic load dispatch [34], feature selection [35], coordination
of overcurrent relay [36], charging station placement [37] and
design of wind cube [38]. The contributions of this work are:
– Solution of unit commitment problem for five systems

of 4-unit, 10-unit system, 20-unit system, 40-unit system
and 100-unit system.

– Novel GBO based solution methodology for UC
problem.

– Comparison of the performance of GBO with other
metaheuristics such as differential evolution, Enhanced
Genetic Algorithm, Lagrangian Relaxation, Genetic
Algorithm, Ionic Bond-direct Particle Swarm Optimiza-
tion and Bacteria Foraging Algorithm on UC problem.

– The convergence and robustness curves are performed
for all used techniques.

II. PROBLEM FORMULATION
The UC issue is a famous power system optimization
issue [39]. Minimizing the total cost of generation is the main
objective of UC issue, that is achieved by stating the ON/OFF
period of all units used in the generation system according to
the constraints [39], [40]. The objective functions and con-
straints of UC are elaborated in this section. The fitness func-
tion involves minimization of fuel cost and startup cost [39].

The UC fitness function is the fuel cost of unit j that
is characterized as a quadratic power function at time t as
in Eq. (1),

Fj
(
Pj,t

)
= aj + bjPj,t + cjP2j,t (1)

where, Fj
(
Pj,t

)
is the jth unit fuel cost. cj, bj, and aj are the

cost factors, Pj,t is the jth unit real power output.
The total cost comprises of start-up cost, that characterizes

the cost of regenerating a de-committed unit. This function
is dependent on the hours of unit that has been down as
in Eq. (2),

SU j,t =

{
HSC j if T downj ≤ T offj,t + T

cold
j

CSC j if T offj,t > T downj + T coldj

(2)

where, SU j,t is the unit j startup cost, HSC j and CSC j are the
unit j hot start and the unit j cold start cost respectively, T downj

is the unit j down time, T coldj is the unit j cold start hours, T offj,t
is the unit j continuous OFF time.

The UC problem is solved in accordance to a number of
constraints as shown in Eq. (3) to Eq. (7),

uj,tPminj ≤ Pj,t ≤ uj,tP
max
j (3)

where, Pmaxj and Pminj are the maximum and minimum power
generation boundaries of unit j, Uj,t is the ON/OFF status of
jth unit. ∑N

j=1
Pj,tuj,t = PDt (4)

where, PDt is the total demand of the system at time t .∑N

j=1
Pmaxj uj,t ≥ PDt + SRt (5)

where, SRt is the spinning reserve of the system at time t .
T onj,t ≥ T upj (6)

T offj,t ≥ T downj (7)

III. GRADIENT-BASED OPTIMIZER (GBO)
As of late, the GBO is a new meta-heuristic technique,
which mirrors the gradient and populace based strategies
together [31]–[38], [41]. In the GBO, so as to investigate
the search space using a bunch of vectors as well as two
fundamental factors such as the GSR and the LEO, Newton’s
technique is used to indicate the search direction. Principle
cycle of the GBO is as per the following,

A. INITIALIZATION PROCESS
The likelihood rate and the control boundaries α in the
GBO are utilized to adjust and change from exploration into
exploitation. Moreover, the populace size and emphasis num-
bers are because of the issue’s complexity. The search space
D-dimensional in the GBO algorithm can be characterized as,
Xn,d =

[
Xn,1,Xn,2, . . .Xn,D

]
,

n = 1, 2, . . .N; d = 1, 2 . . .D (8)

Generally, the initial vectors from GBO are randomly
produced in the D-variable search area, which can be
characterized as,

Xn = Xmin + rand (0, 1) . (Xmax − Xmin) (9)

where, Xmax and Xmin are the decision parameters bound-
aries.

B. PROCESS OF GSR
In the GBO calculation, to ensure a harmony between
exploration of critical search area and exploitation to move
close to ideal and worldwide focuses, an important factor ρ1
is utilized as follows,

ρ1 = 2.rand.α − α (10)

∝ =

∣∣∣∣β sin(3π2 + sin
(
β ×

3π
2

))∣∣∣∣ (11)

β = βmin + (βmax − βmin) .

(
1−

(m
M

)3)2

(12)
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TABLE 2. Description of 4-unit system [39].

TABLE 3. Description of 10-unit system [39].

TABLE 4. Load pattern of 4-unit system [39].

where, the values of βmax and βmin are 1.2 and 0.2,
respectively, while m addresses the number of iteration,
and M addresses the all-out iterations. Especially, the
ρ1 parameter is liable for adjusting the exploration and
exploitation dependent on the sine function α. The GSR can
be defined as follows,

GSR = randn.ρ1.
21x.xn

xworst − xbest + ε
(13)

The idea of GSR is to give the GBO technique an irreg-
ular conduct through iterations, in this manner reinforcing

exploration conduct and departure from native optima. In Eq.
(13), it is characterized by the factor 1x that conveys the
distinction between the best xbest and a haphazardly selected
xmr1. The boundary δ is changed throughout cycles because of
Eq. (16). Also, the exploration is improved using a random
number randn as follows,

1x = rand(1 : N). |step| (14)

step =

(
xbest − xmr1

)
+ δ

2
(15)

δ = 2.rand .

(∣∣xmr1 + xmr2 + xmr3 + xmr4∣∣
4

− xmn

)
(16)

where, the values of rand(1 : N) ∈ [0, 1]. Also, four arbitrary
integer numbers are looked over [1, N], which are r1, r2, r3,
and r4 such that r4 6= r3 6=r2 6= r1 6= n, and the variable step
signifies a stage size which is controlled by xmr1 and xbest.
In addition, Direction Development (DM) is utilized to

unite around the solution region xn. To furnish an advan-
tageous neighborhood search propensity with a important
impact on the convergence of GBO, the term DM can be
identified as follows,

DM = rand.ρ2. (xbest − xn) (17)

where, the value of rand variable is randomly range ∈ [0, 1],
and ρ2 is an irregular parameter utilized to alter step size. The
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TABLE 5. Pattern load of 10-unit system [39].

TABLE 6. Comparison between GBO, IBPSO, DE and BFA on unit
commitment for 4-unit system.

ρ2 parameter is calculated as follows,

ρ2 = 2.rand.α − α (18)

Finally, based on the DM and GSR, Eqs. (13) and (17) are
used to renew the position of current vector xmn .

X1mn = xmn − GSR+ DM (19)

where, X1mn is the novel vector based on updating xmn .
According to Eqs. (13) and (17), X1mn can be calculated as,

X1mn = xmn − randn.ρ1.
21x.xmn

ypmn − yqmn + ε
+randn.ρ2.

(
xbest − xmn

)
(20)

where, yqmn and ypmn are equal to yn − 1x and yn + 1x,
respectively, and yn is the average vector for the current
solution vector xn and the vector zn+1 that are computed as
follows,

zn+1 = xn − randn.
21x.xn

xworst − xbest + ε
(21)

while, the best and worst solution are xbestandxworst
respectively, and 1x is given by equation 14. Based on this
equation, when replacing the vector of best solution xbest with
the vector of current solution xmn , we get X2

m
n as follows,

X2mn = xbest−randn.ρ1.
21x.xmn

ypmn − yqmn + ε
+randn.ρ2.

(
xmr1−x

m
r2
)

(22)

In particular, the GBO method means to upgrade the
exploitation and exploration stages utilizing Eq. (20) to work
on the global solution for the exploration stage, while Eq.
(22) is utilized to further develop the neighborhood search
ability for the exploitation stage. At last, the solution of the
subsequent iteration is as per the following,

xm+1n = ra.
(
rb.X1mn + (1−rb).X2mn

)
+ (1−rα).X3mn (23)

where, the value of rb and ra are ranged from 0 to 1, and X3mn
is calculated as follow,

X3mn = Xm+1
n − ρ1.

(
X2mn − X1mn

)
(24)

FIGURE 1. GBO flow chart.

C. PROCESS OF LEO
The LEO is acquainted with reinforce the GBO algorithm
performance to take care of intricate issues. The LEO can
adequately refresh the solution position, to help a technique
to leave nearby optima focuses and speed up convergence of
the improvement method. The LEO aims create a new result
with superior performance Xm

LEO by numerous solutions to
renew the current solution. The following structure is used to
act this process,

If rand < pr

Xm
LEO =



Xm+1
n + f1

(
u1xbest − u2xmk

)
+f2ρ1(u3

(
X2mn − X1mn

)
+u2

(
xmr1 − xmr2

)
)
/
2, if rand < 0.5

xbest + f1
(
u1xbest − u2xmk

)
+f2ρ1(u3

(
X2mn − X1mn

)
+u2

(
xmr1 − xmr2

)
)
/
2, otherwise

End (25)
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FIGURE 2. Convergence curve for 4-unit system.

FIGURE 3. Robustness curve for 4-unit system.
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FIGURE 4. Friedman rank test result for 4-unit system.

FIGURE 5. Convergence curve for 10-unit system.

where, the value of pr is 0.5, f1 and f2 are random numbers
with uniform distribution ∈ [−1, 1], and the value of u1, u2
and u3 are created as follows,

u1 =

{
2.rand, if µ1 < 0.5
1, otherwise

(26)

u2 =

{
rand, if µ1 < 0.5
1, otherwise

(27)

u3 =

{
rand, if µ1 < 0.5
1, otherwise

(28)

where, the value of µ1 is in range [0, 1]. The equations for
u3, u2 and u1 can be justified as follow,

u1 = L1.2.rand+ (1−L1) (29)

u2 = L1.rand+ (1−L1) (30)

u3 = L1.rand+ (1−L1) (31)

where, the value of L1 is a binary number 0 or 1. The solution
xmk is produced as follows,

xmk =

{
xrand, if µ2 < 0.5
xmp , otherwise

(32)
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FIGURE 6. Robustness curve for 10-unit system.

TABLE 7. Optimal generation scheduling in MW of 4-unit system obtained by GBO.

TABLE 8. Comparison between GBO, IBPSO, DE and BFA on unit
commitment for 10-unit system.

where, the solution, xrand is random according to the
following formula and xmp is a randomly solution, the value
of µ2 is ∈ [0, 1].

xrand = Xmin.rand(0, 1).(Xmax − Xmin) (33)

The proposed algorithm is described in the flow chart of
figure 1.

IV. NUMERICAL ANALYSIS
A. TEST SYSTEM
The UC problem is solved for 10-unit and 4-unit system. The
details of the aforementioned test systems are as shown in
Table 2 and Table 3. The load pattern of 10-unit and 4-unit
system are as shown in Table 4 and Table 5 respectively.

B. COMPARISON OF GBO WITH DE, IBPSO, BFA ON UNIT
COMMITMENT PROBLEM
The performance of GBO on Unit Commitment problem is
compared with DE, IBPSO, and BFA for 4-unit as well as
10-unit system. The results of that comparison are presented
in this section. Table 6 illustrates the best, worst, and mean
cost achieved by IBPSO, DE, BFA, and GBO in case of 4-unit
test system. Based on that the GBO performance is better than
the other state-of-art algorithms for this case study. The best
cost yielded by GBO is 74379 $ which is less as compared to
other algorithms. The optimal generation scheduling in MW
of 4-unit system obtained by GBO is reported in Table 7. The
convergence curve in case of 4-unit system is as shown in
Fig.2. The X axis of the convergence curve is iteration, and
the Y axis is mean cost in $ as depicted in section II. Based
on that GBO favors faster convergence as competed to other
algorithms.

Metaheuristic algorithms are stochastic in nature that are
designed to operate on discrete variable spaces utilize ran-
domness and memory to search large discrete variable spaces
in order to find an optimal solution. Hence, it is required
to investigate how robust the algorithm is. Robustness curve
signifies the variation of fitness function with number of runs.
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FIGURE 7. Friedman rank test results for 10-unit system.

TABLE 9. Optimal generation scheduling in MW of 10-unit system obtained by GBO.

Fig. 3 shows the robustness curve in case of 4-unit system.
Based on this figure, the robustness of GBO is more as
compared to other algorithms. Further, Friedman rank test is
conducted and the Friedman rank test results are reported in
Fig. 4. Based on this figure, the best rank achieved by GBO
then IBPSO.

Table 8 illustrates the best, worst, and mean cost obtained
by IBPSO, DE, BFA, and GBO in case of 10-unit test system.
Based on the GBO performance is better than the other state-
of-art algorithms for this case study. The best cost yielded
by GBO is 559960$ which is less as compared to other
algorithms. The optimal generation scheduling in MW of

10-unit system obtained by GBO is reported in Table 9. The
convergence curve in case of 10-unit system is as shown
in Fig.5. The X axis of the convergence curve is iteration,
and the Y axis is mean cost in $ as depicted in section II.
Accordingly, GBO favors faster convergence as competed
to other algorithms. Also, the possibility of getting stuck
in local optima is rare in case of GBO. Fig. 6 shows the
robustness curve in case of 10-unit system. Based on that, the
robustness of GBO is more as compared to other algorithms.
Further, Friedman rank test is conducted and the Friedman
rank test results are reported in Fig. 7. The Friedman Test is
a statistical test used to determine if 3 or more measurements
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TABLE 10. Comparison of GBO with LR, GA, and EGA on unit commitment
for 4-unit system.

TABLE 11. Comparison of GBO with LR, GA, and EGA on unit commitment
for 10-unit system.

TABLE 12. Comparison of GBO with LR, PSO LR, GA, BCGA, BF on unit
commitment for large test systems.

from the same group of subjects are significantly different
from each other on a skewed variable of interest. The variable
of interest should be continuous, and have a similar spread
across the groups. The algorithm that performs best i.e have
least significant difference is the one having the lowest
rank. Accordingly, the best rank has been achieved by GBO
then DE.

C. COMPARISON OF GBO WITH LR, GA, EGA ON UNIT
COMMITMENT PROBLEM
The performance of GBO is compared with LR, GA,
EGA on UC problem for 10-unit and 4-unit system. The
unit commitment problem is solved with GBO and its
performance is compared with LR, GA, and EGA. The
solution of unit commitment by LR, GA, and EGA is
utilized from ref [41]. And, the GBO solve the UC problem
with the same parameter settings as in ref [41]. Table 10
reports the results of GBO, LR, GA, EGA on UC problem
for 4-unit system. Based on this table, the performance of
GBO is superior visible compared with others algorithm.
Table 11 reports the best cost obtained by GBO, LR, GA, and

TABLE 13. Comparison time complexity of GBO with other
metaheuristics.

EGA in case of 10-unit system. Based on this table, GBO
performance is better than LR, GA, and EGA.

D. COMPARISON OF GBO WITH OTHER STATE OF ART
ALGORITHMS ON UNIT COMMITMENT PROBLEM FOR
LARGE TEST SYSTEMS
The performance of GBO is compared with other metaheuris-
tics such as LR, PSO LR, GA, BCGA, BF on UC problem
for larger test systems. The solution of unit commitment by
LR, PSO LR, GA, BCGA, BF is utilized from ref [42]. And
the GBO is used to solve the UC problem with the same
parameter settings as in ref [42]. Table 12 reports the results
of LR, PSO LR, GA, BCGA, BF on UC problem for 20, 40,
and 100-unit system. Based on this table, the performance of
GBO is superior visible compared with others algorithm.

E. TIME COMPLEXITY ANALYSIS
The 4-unit test system is considered as a test case for compar-
ing the time complexity of GBO with other metaheuristics.
Table 13 reports the average run time of GBO, DE, BFA,
IBPSO for the 4 unit system. It is observed that GBO
performs better than the others

V. CONCLUSION
Electric power system has one of the mixed-integer and
nonlinear problems, that is called unit commitment (UC).
UC is one of the complex optimization tasks performed by
power plant engineers for regular planning and operation
of power system. Researchers have used a number of
metaheuristics (MH) for solving this complex and demanding
problem. The performance of novel GBO algorithm on unit
commitment problem is tested in this work. It is observed that
the GBO performance is competitive as competed to other
state-of-art algorithms. For 4-unit system, best cost yielded
by GBO is 74379 $ which is less as compared to other
algorithms. For 10-unit system, the best cost yielded by GBO
is 559960$ which is less as competed to other algorithms.
Additionally, it is checked that GBO has obtained the best
rank as competed to other algorithms. For large unit systems
it is observed that GBO yields relatively better results. GBO
has well balance between exploitation and exploration. Also,
the probability of getting caught in local optima and early
convergence is rare in GBO. Our future work will focus on:
– Hybridization of GBO with other metaheuristics
– Solution of unit commitment problem in presence of

renewable sources and Electric Vehicles as storage
– Performance validation of GBO on other complex and

demanding power system optimization problem.
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