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ABSTRACT This paper presents an optimal diagnostic observer design scheme to deal with the remote
fault detection problem for a local closed-loop system with unknown external disturbances and faults.
To utilize limited network shared resources efficiently, an event-triggered generator is employed in the local
closed-loop system to determine whether to transmit the current output measurement for fault detection.
By constructing the error system that contains event-triggered transmission errors and evaluating the
composition of the residual under the constraint of Luenberger conditions, the diagnostic observer which has
optional order and flexible structure is designed by the use of factorization techniques to achieve the optimal
performance tradeoff between disturbance robustness and fault sensitivity. Next, the inevitable influence
of reference input on the residual is taken into account in the residual evaluation to deliver a time-varying
threshold. Finally, a vehicle lateral dynamic system is presented to illustrate the validity of the proposed
optimal diagnostic observer design scheme.

INDEX TERMS Diagnostic observer, event-triggered system, fault detection, performance tradeoff.

I. INTRODUCTION
As modern engineering systems become larger and more
complex, remote monitoring and control have become the
norm with the assistance of network communication technol-
ogy. In these types of modern control systems, there is a high
demand in efficiently using the shared network, computing,
or energy resources. Given this background, event-triggered
techniques have emerged [1]–[3]. Compared with traditional
time-triggered techniques, the event-triggered technique can
be regarded as an on-demand nonuniform sampling and com-
munication method, which only executes actions when some
predefined conditions are satisfied, thereby reducing com-
putational complexity and unnecessary communication and
energy consumption. Besides, some elaborate event-triggered
mechanisms can improve control performance and detection
accuracy [4], [5]. Considering those advantages of the event-
triggered technique, various kinds of event-triggered mecha-
nisms such as absolute error, relative error, self-adaptation,
self-triggered ones, have been successively proposed to
apply to control and estimation of various complex network
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systems [6]–[9]. Also, some experiments on practical systems
such as vehicle platooning and unmanned aerial vehicles were
carried out to show the superiority of the event-triggered
techniques [10]–[12]. For more details on this topic, please
see the survey papers [1], [13].

On the other hand, one of the main purposes of remote
monitoring is to promptly discover and diagnosis poten-
tial faults in the system so as to take some reasonable
remedies. Similar to control and estimation problems, the
event-triggered mechanism can also be employed for fault
detection. However, due to the use of event-triggered tech-
nique, the remote monitoring center will lose some system
information and the system characteristics will change, which
increase some difficulties to remote fault detection [14], [15].
The research on event-triggered fault detection has received
widespread attention in the past few years [16]–[22]. Basi-
cally, the existing event-triggered fault detection approaches,
from the perspective of design idea, can be divided into
two categories: the optimal identification based one and
the performance tradeoff based one. The basic idea of the
optimal identification based event-triggered fault detection
approach is to design a fault detection filter to make the
generated residual signal approach the fault by expanding
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the faulty system and the error system into an augmented
system. Under the optimal filtering framework, the event-
triggered fault detection problem is easily formulated and
handled. Therefore, the optimal identification based method
was widely used in various complex network control systems
such as Markov jump systems, T-S fuzzy systems and non-
linear networked systems with output quantisation [16]–[18].
However, the method requires the estimation error signal of
fault to be robust to all external inputs, which reduces the
sensitivity to faults and thus deteriorates the fault detection
performance [23]. The performance tradeoff based event-
triggered fault detectionmethod considers the fault sensitivity
and disturbance robustness simultaneously. By introducing
some ratio-type or difference-type performance index and
applying some optimization technique, the residual generator
is designed to make the residual be robust to disturbances and
be sensitive to faults. In [19], a tradeoff approach for event-
triggered fault detection was developed under the H∞/H∞
performance index. It was also verified that the fault detec-
tion performance of the tradeoff based method was much
superior to the optimal identification based one. In [20],
an optimal event-triggered fault detection filter was designed
under the Hi/H∞ performance index. The generated residual
was decoupled from the event-triggered transmission error.
Similarly, in [21], the optimal parity space based event-
triggered fault detection scheme was developed under the
H2/H2 performance index. In the framework of nonuniform
sampled system, the residual generators in [20], [21] were
time-varying whose parameters require online calculation.
More recently, by introducing a novel parity vector based
event-triggered mechanism, the parity space based event-
triggered fault detection was also investigated in [22]. The
influence of the event-triggered transmission error on false
alarm rate was firstly quantitatively analyzed.

It is worth noting that the residual generators used in
the above two event-triggered fault detection approaches are
either fault detection filter or parity space based residual gen-
erator. The diagnostic observer, as another common form of
residual generator, is preferred in practice due to its optional
order and flexible structure [23]. It can reduce the online
calculation when the reduced order diagnostic observer is
adopted and has more design freedoms when the full or
higher-order form is adopted. In [24], an optimal diagnostic
observer was developed for sampled-data system. In [25],
a robust diagnostic observer was developed for nonlinear sys-
tem by using the logic-dynamic approach. In [26], to detect
the incipient fault in the post-fault system, some design
freedoms of diagnostic observer were employed to decouple
the incipient fault from the adaptive fault tolerant control.
In consideration of the advantages of diagnostic observer, it is
desirable to develop a performance tradeoff based diagnos-
tic observer for event-triggered systems for fault detection.
However, this is indeed a challenging work. The difficulties
arise from: (1) making a tradeoff among unknown external
disturbances, faults, and event-triggered transmission errors
on the residual due to the use of event-triggered technique

changes the dynamic of diagnostic observer, (2) coping with
more constraints in the optimization problem because the
diagnostic observer should satisfy the Luenberger conditions.

In this paper, a tradeoff approach based event-triggered
optimal diagnostic observer is developed for event-triggered
systems for fault detection. More specifically, the paper pro-
vides the following contributions.

1) By evaluating the influences of unknown external distur-
bances, faults, and event-triggered transmission errors on the
residual, the design of diagnostic observer, where a general
event-triggered mechanism is used to reduce the communica-
tion load, is formulated as an H∞/H∞ optimization problem
to make a tradeoff between fault sensitivity and disturbance
robustness.

2) An event-triggered optimal diagnostic observer with full
or higher-order, which has more design freedom, is designed
by the use of factorization techniques. And an algorithm is
developed to handle the Luenberger constraints.

3) A time-varying threshold that considers the influence
of reference input on the residual is constructed by the use
of Linear Matrix Inequality (LMI) technique. Also, a vehicle
lateral benchmark system is presented to illustrate the validity
of the proposed event-triggered optimal diagnostic observer
design scheme for fault detection.

The organization of the paper is as follows. Section II
presents the system description. The analysis of diagnostic
observer dynamic model, the design of optimal diagnos-
tic observer, and the residual evaluation are developed in
Section III. Section IV gives an example to verify the validity
of the proposed scheme. Section V concludes the paper.

FIGURE 1. The structure of optimal diagnostic observer for an
event-triggered system.

II. SYSTEM DESCRIPTION
Consider the following local closed-loop system to be
monitored

x(k + 1) = Ax(k)+ Bww(k)+ Bdd(k)+ Bf f (k),

y(k) = Cx(k)+ Dww(k)+ Ddd(k)+ Df f (k), (1)

where x(k) ∈ Rn denotes the state vector, w(k) ∈ Rnw

denotes the reference input vector, d(k) ∈ Rnd denotes the
unknown external disturbance vector, y(k) ∈ Rm denotes
the measured output vector, and f (k) ∈ Rnf denotes the
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fault vector which may occur in the plant, actuator, or sensor.
A,Bw,Bd ,Bf ,C,Dw,Dd ,Df are system parameter matrices
with appropriate dimensions. Moreover, A is assumed to be
stable and the pair (A,C) is detectable.
To reduce the communication load from the local closed-

loop system to the remote monitoring center, an event-
triggered generator is employed, as shown in Fig.1, to decide
whether to transmit the current output measurement through
the communication channel. More specifically, the event-
triggered function is defined as:

f
(
ey(k), δ,�

)
= eTy (k)�ey(k)− δy

T(k)�y(k), (2)

where ey(k) := y (ki)−y(k) and y (ki) denotes the transmitted
measurement that satisfies the event-triggered condition last
time, δ ∈ [0, 1) denotes the event-triggered parameter, and
� = MTM is a positive definite weighting matrix to be set.
If f (ey(k), δ,�)>0, the event-triggered generator closes the
switch S and transmits the current output measurement y(k)
to the remote monitoring center at time instant k . Otherwise,
the output measurement will not be transmitted. Therefore,
the next triggering time ki+1 can be defined as:

ki+1 = ki + min
1≤j≤τmax

{
j | f

(
ey (ki) , δ,�

)
> 0

}
, (3)

where ey(ki) := y(ki + j) − y(ki), τmax denotes the max time
interval for the event-triggered generator to trigger.

In the remote monitoring center, the received nonuni-
form measurement y(ki) is transformed into a uniform one
ȳ(k) using a zero-order-holder (ZOH), which means ȳ(k) =
y(ki),∀k ∈ [ki, ki+1). Then define the event-triggered trans-
mission error as ēy(k) := ȳ(k) − y(k), the inequality will be
satisfied as follows

ēTy (k)�ēy(k) ≤ δy
T(k)�y(k),∀k ∈ [ki, ki+1) . (4)

Further, the following diagnostic observer (DO) is utilized
for the residual generation

z(k + 1) = Fz(k)+ Ow(k)+ Lȳ(k)

ŷ(k) = N̄ z(k)+ V̄ ȳ(k)+ Q̄w(k)

r(k) = R(k) ∗ (ȳ(k)− ŷ(k))

= R(k) ∗ [V ȳ(k)− Nz(k)− Qw(k)], (5)

where z(k) ∈ Rs denotes the state vector of the diagnostic
observer, ŷ(k) ∈ Rm denotes the estimated output vector,
r(k) ∈ Rm denotes the residual vector. R(k) ∈ Rm×m is
the impulse response matrix of a stable linear time-invariant
post-filter to be designed. The symbol * denotes convolution.
Moreover, the matrix F,O,L,V ,N ,Q are design parameters
of the diagnostic observer, and N̄ , V̄ , Q̄ satisfy N = N̄ ,V =
I − V̄ ,Q = Q̄. The above-mentioned matrices should meet
the following Luenberger conditions as shown in Lemma 1.
Lemma 1 ([23, p. 81-82]): Given a matrix T ∈ Rs×n, the

design matrices F,O,L,V ,N ,Q of the diagnostic observer
should satisfy the so-called Luenberger conditions:

i. F is stable, (6)

ii. TA− FT = LC, O = TBw − LDw, (7)

iii. VC − NT = 0, Q = VDw. (8)

Remark 1: If there is no event-triggered generator in the
local closed-loop system, it is the output measurement y(k)
that is received by the remote monitoring center. In this case,
the above Luenberger equations (7) and (8) can ensure that
the residual r(k), under the fault-and-disturbance-free case,
will tend to zero for any known reference input w(k), that
is limk→∞r(k) = 0, ∀w(k) ∈ Rnw , d(k) = f (k) = 0. Oth-
erwise, if the event-triggered generator is used, the residual
r(k) no longer tends to zero because of the event-triggered
transmission error ēy(k). However, the Luenberger conditions
still make the residual r(k) be decoupled from the reference
input w(k) as much as possible, which will be analyzed in the
Subsection III-A.
Remark 2: Besides the advantages of the flexible struc-

ture, the proposed event-triggered diagnostic observer
scheme has some other merits when compared with the
existing performance based event-triggered fault detection
works [19], [20]. The residual generator used in [20] were
time-varying systems and all parameters were calculated
online at every triggering instant, which obviously requires
a high online computation load. In [19], a relative error based
event-triggered mechanism was used, while a general event-
triggered mechanism (3) is used in this work, which can
further reduce the communication load.

III. MAIN RESULTS
In this section, the main results are presented including the
analysis of diagnostic observer dynamic model, the design of
optimal diagnostic observer, and residual evaluation.

A. THE ANALYSIS OF DIAGNOSTIC OBSERVER DYNAMIC
MODEL
Define the estimation error vector e(k) = Tx(k) − z(k), and
from (1) and (5) the following error system can be obtained
as:

e(k + 1) = (TA− LC)x(k)+ (TBw − LDw)w(k)

−Fz(k)− Ow(k)+ (TBd − LDd ) d(k)

+
(
TBf − LDf

)
f (k)− Lēy(k),

r(k) = R(k) ∗ {VCx(k)+ (VDw − Q)w(k)

+VDdd(k)+ VDf f (k)

+V ēy(k)− Nz(k)}. (9)

Substituting the Luenberger equations (7) and (8) into (9)
yields

e(k + 1) = Fe(k)+ (TBd − LDd ) d(k)

+
(
TBf − LDf

)
f (k)− Lēy(k),

r(k) = R(k) ∗ {Ne(k)+ VDdd(k)

+VDf f (k)+ V ēy(k)
}
. (10)

It can be seen from (10) that the residual r(k) appears to be
decoupled from the reference input w(k). However, due to
the use of the event-triggered generator, the residual r(k) will
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be affected by the event-triggered transmission error ēy(k).
Note that ēy(k) is affected by all external inputs including
w(k). Therefore, although the Luenberger conditions reduce
the influence of w(k) on r(k) as much as possible, the perfect
decoupling of r(k) from w(k) will not be achieved.
Taking the Z-transform of (10), the input-output dynamic

of the residual generator is obtained as:

r(z) = R(z)
[
Gd,r (z)d(z)+Gf ,r (z)f (z)+Gēy,r (z)ēy(z)

]
,

Gd,r (z) = VDd+N (zI − F)−1 (TBd − LDd ) ,

Gf ,r (z) = VDf +N (zI − F)−1
(
TBf − LDf

)
,

Gēy,r (z) = V − N (zI − F)−1L. (11)

Next, we will analyze the influences of the fault f (k), the
unknown external disturbance d(k), and the event-triggered
transmission error ēy(k) on the residual r(k). Note that the
event-triggered transmission error ēy(k) is driven by all exter-
nal inputs, including the reference input w(k), the unknown
external disturbance input d(k) and the fault f (k), so its influ-
ence on the residual r(k) is essentially reflected in the influ-
ences of all external inputs on the residual r(k). Therefore,
we first evaluate the influence of the external disturbance d(k)
on the residual r(k), and note that the external disturbance
d(k) also affects the residual r(k) through the event-triggered
transmission error ēy(k). In case of fault-free (f (k) = 0)
and no reference input (w(k) = 0), the influence of the
unknown external disturbance d(k) on the residual r(k) can
be described as:

‖rd (k)‖2
= ‖r(k)‖2|f=0,w=0

≤
∥∥RGd,rd(k)∥∥2+∥∥∥RGēy,rM−1Mēy(k)

∥∥∥
2

≤
∥∥RGd,rd(k)∥∥2+∥∥RGēy,r∥∥∞ ∥∥∥M−1∥∥∥2 ∥∥Mēy(k)

∥∥
2 .

Then, according to the inequality (4), we have

‖rd (k)‖2 :

= ‖r(k)‖2|f=0,w=0

≤

{∥∥RGd,r∥∥∞+εγd ∥∥RGēy,r∥∥∞}∥∥∥M−1∥∥∥2 ‖M‖2‖d(k)‖2
≤ 2

∥∥R [Gd,r εγdGēy,r
]∥∥
∞

∥∥∥M−1∥∥∥
2
‖M‖2‖d(k)‖2,

where γd= ||Gd ||∞, Gd (z)=Dd+C(zI − A)−1Bd , ε2=δ.
Similarly, in case of disturbance-free (d(k) = 0) and no

reference input (w(k) = 0), the influence of the fault f (k) on
the residual r(k) can be described as:∥∥rf (k)∥∥2 :
= ‖r(k)‖2|d=0,w=0

≤
∥∥RGf ,r f (k)∥∥2+∥∥∥RGēy,rM−1Mēy(k)

∥∥∥
2

≤

{∥∥RGf ,r∥∥∞+εγf ∥∥RGēy,r∥∥∞} ∥∥∥M−1∥∥∥2 ‖M‖2‖f (k)‖2
≤ 2

∥∥R [Gf ,r εγfGēy,r
]∥∥
∞

∥∥∥M−1∥∥∥
2
‖M‖2‖f (k)‖2,

where γf = ||Gf ||∞, Gf (z) = Df + C(zI − A)−1Bf .
In the design of the residual generator, the residual r(k)

should be sensitive to the fault f (k) as much as possible, and
meantime, be robust to the external disturbance d(k). In order
to make a performance tradeoff between disturbance robust-
ness and fault sensitivity, the followingH∞/H∞ performance
index is optimized

min
L,R(z)

J (L,R(z)) = min
L,R(z)

∥∥R(z) [Gd,r (z) εγdGēy,r (z)
]∥∥
∞∥∥R(z) [Gf ,r (z) εγfGēy,r (z)

]∥∥
∞

.

(12)

It should be noted that, in (12), the variables to be opti-
mized are only L and R(z). The other parameters ε, γd , γf are
either be chosen or obtained from the known systemmatrices.
In addition, the transfer functions Gd,r (z), Gēy,r (z), Gf ,r (z)
are related to the design parameters N , F , T , L, V . However,
based on the Luenberger condition equations (7) and (8), the
matrix F can be determined by T and L, the matrixN can also
be determined by V and T . Therefore, as long as T and V are
selected, the other design parameters are also be determined.

Further, in order to simplify the residual generator, the
post-filter R(k) can be limited as a constant matrix W , the
optimization problem is accordingly expressed as:

min
L,W

J (L,W ) = min
L,W

∥∥W [
Gd,r (z) εγdGēy,r (z)

]∥∥
∞∥∥W [

Gf ,r (z) εγfGēy,r (z)
]∥∥
∞

. (13)

Remark 3: In the Subsection III-A, we only analyze the
influences of the unknown external disturbance d(k), the fault
f (k) and its corresponding event-triggered transmission error
ēy(k) on the residual r(k). The influence of the reference input
w(k) on the residual r(k) will be analyzed in the residual
evaluation stage since w(k), which is different from d(k) and
f (k), is generally known.

B. THE DESIGN OF OPTIMAL DIAGNOSTIC OBSERVER
Before solving the optimization problems (12) and (13), the
following two Lemmas are introduced.
Lemma 2 ([19]): Suppose that the discrete Linear Time

Invariant system G(z) = (A,B,C,D) has no transmission
zeros on the unit circle. Then, G(z) can be decomposed
into G(z) = Gco(z)Gci(z) by the co-inner-outer factorization
technique and the following equations are satisfied

Gci
(
ejθ
)
G∗ci

(
ejθ
)
= I , θ ∈ [0, 2π ],

G−1co (z) = H − HC(zI − (A− LC))−1L,

Gci(z)=HD+HC(zI−(A− LC))−1(B− LD),

L =
(
AXCT

+BDT
) (

CXCT
+ DDT

)−1
,
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where X is the stable solution of the discrete time Riccati
equation

AXAT − X + BBT −
(
AXCT

+ BDT
)

(
CXCT

+ DDT
)−1 (

CXAT + DBT
)
= 0, (14)

G∗ci(e
jθ ) is the conjugate transpose of Gci(ejθ ), G−1co is the

inverse of Gco(z), and H = (CXCT
+ DDT)−1/2.

Lemma 3 ([23, p. 23-24]): Suppose that the discrete Lin-
ear Time Invariant system G(z) = (A,B,C,D) is stabilizable
and detectable. Let E and L be so that A+BE and A−LC are
Hurwitz matrix, and define M̂ (z) = (A − LC,−L,C, I ) and
N̂ (z) = (A−LC,B−LD,C,D). Then, we can obtain the Left
Coprime Factorization (LCF) of G(z):G(z) = M̂−1(z)N̂ (z).

Now, we are in the position to present the design method
of the optimal observer gain matrix L and the weighted
matrix W .
Theorem 1: The optimal parameters L and W to be

designed in the diagnostic observer are

Lopt =
{
TAT �X

(
CT �

)T
+ TBdDT

d

}
{
CT �X

(
CT �

)T
+ DdDT

d + δγ
2
d I
}−1

,

Wopt =

{
V
[
CT �X

(
CT �

)T
+ DdDT

d + δγ
2
d I
]
V T
}−1/2

,

(15)

where T � denotes the generalized inverse of T , X is the stable
solution of the following discrete time Riccati equation

(TAT �)X (TAT �)T − [TAT �X (CT �)T + TBdDT
d ]

[CT �X (CT �)T + DdDT
d + δγ

2
d I ]
−1[CT �X (TAT �)T

+DdBTdT
T]−X + TBdBTdT

T
= 0. (16)

Proof: Define

Gdēy,r (z) =
[
Gd,r (z) εγdGēy,r (z)

]
= N (zI − F)−1

[
TBd − LDd −εγdL

]
+
[
VDd εγdV

]
, (17)

Gf ēy,r (z) =
[
Gf ,r (z) εγfGēy,r (z)

]
= N (zI − F)−1

[
TBf − LDf −εγf L

]
+
[
VDf εγf V

]
. (18)

Then the optimization problem (12) is transformed into

min
L,R(z)

J (L,R(z)) = min
L,R(z)

∥∥R(z)Gdēy,r (z)∥∥∞∥∥R(z)Gf ēy,r (z)∥∥∞ . (19)

Next, we solve the optimization (19) in two steps. Firstly,
assume that the observer gain L is fixed, namely L = Lfixed .
By the use of Lemma 2, Gdēy,r (z) can be decomposed into

Gdēy,r (z) = Gdco(z)Gdci(z). (20)

Let R(z) = Q(z)G−1dco(z),Q(z) ∈ RH∞ and substituting it
into (20) to obtain

J (R(z)) =

∥∥R(z)Gdēy,r (z)∥∥∞∥∥R(z)Gf ēy,r (z)∥∥∞

=

∥∥∥Q(z)G−1dco(z)Gdco(z)Gdci(z)∥∥∥
∞∥∥∥Q(z)G−1dco(z)Gf ēy,r (z)∥∥∥

∞

=
‖Q(z)‖∞∥∥∥Q(z)G−1dco(z)Gf ēy,r (z)∥∥∥

∞

≥
1∥∥∥G−1dco(z)Gf ēy,r (z)∥∥∥

∞

. (21)

It is easy to find that when Q(z) = I , the equal sign of the
inequality (21) holds and the optimal solution of the above
performance index is obtained as:

R(z) = G−1dco(z) = H − HN (zI − (F − L0N ))−1 L0, (22)

where

L0 = {FXNT
+
[
TBd − LfixedDd −εγdLfixed

]
·
[
VDd εγdV

]T
} · {NXNT

+
[
VDd εγdV

]
·
[
VDd εγdV

]T
}
−1

= {FXNT
+ (TBd − LfixedDd )DT

dV
T

−δγ 2
d LfixedV

T
} · {NXNT

+ VDdDT
dV

T

+δγ 2
d VV

T
}
−1. (23)

Define

F = TAT � − LfixedCT �, (24)

N = VCT �. (25)

Then, by introducing (24) and (25) into (23), it is obtained
that

L0 = {(TAT � − LfixedCT �)X (VCT �)T

+(TBd − LfixedDd )DT
dV

T
− δγ 2

d LfixedV
T
}

·{VCT �X (VCT �)T + VDdDT
dV

T
+ δγ 2

d VV
T
}
−1

= {TAT �X (CT �)T + TBdDT
d }{CT

�X (CT �)T

+DdDT
d + δγ

2
d I }
−1V−1 − LfixedV−1, (26)

where X is the stable solution of the discrete time Riccati
equation (16).
As can be seen from equation (26), when Lfixed = Lopt ,

L0 = 0, the corresponding R(z) degenerates into a constant
matrix, that is R(z) = Wopt . At this time, the minimum
performance index is

min
L=Lopt ,R(z)

J (R(z)) =
||WoptGdēy,r (z)|L=Lopt ||∞
||WoptGf ēy,r (z)|L=Lopt ||∞

. (27)

Next, we go into the second step. If Gdēy,r (z) and Gf ēy,r (z)
are LCF according to Lemma 3, there will always be a
reversible matrix M̂ (z) = I − N (zI− (F − (Lopt −
L)N ))−1(Lopt − L) such that

Gdēy,r (z) = M̂−1(z)Gdēy,r (z)|L=Lopt ,

Gf ēy,r (z) = M̂−1(z)Gf ēy,r (z)|L=Lopt , (28)
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where Gdēy,r (z)|L=Lopt and Gf ēy,r (z)|L=Lopt are derived from
the transfer functions Gdēy,r (z) and Gf ēy,r (z) with L = Lopt ,
respectively.

Considering that the inequality of performance index func-
tion J (R(z)) ≤ J (W ) will always hold, from (27) and (28), it is
obtained that

min
L=Lopt ,R(z)

J (R(z))

=
||WoptGdēy,r (z)|L=Lopt ||∞
||WoptGf ēy,r (z)|L=Lopt ||∞

= min
L=Lopt ,R(z)

||R(z)Gdēy,r (z)|L=Lopt ||∞
||R(z)Gf ēy,r (z)|L=Lopt ||∞

= min
L,R(z)

||R(z)M̂ (z)Gdēy,r (z)||∞

||R(z)M̂ (z)Gf ēy,r (z)||∞

= min
L,R̃(z)

||R̃(z)Gdēy,r (z)||∞

||R̃(z)Gf ēy,r (z)||∞

≤ min
L,W

||WGdēy,r (z)||∞
||WGf ēy,r (z)||∞

. (29)

It can be observed that, when L = Lopt , W = Wopt ,
the equality in (29) holds and the optimal performance is
obtained. In addition, it can be seen that (15) is the solution
to the two optimization problems (12) and (13). Therefore,
Theorem 1 is proved.

Nevertheless, only the observer gain matrix L and the
weighted constant matrix W are provided in Theorem 1.
Based on this, a complete design of the diagnostic observer
is concluded in Algorithm 1.

Algorithm 1 An Optimal Event-Triggered Diagnostic
Observer Design Algorithm for Fault Detection
Step1 : Calculate γd and select matrix T ∈Rs×n to calculate

T �;
Step2 : According to Theorem 1, calculate Lopt and Wopt ;
Step3 : According to F = TAT � − LoptCT � and O =

TBw − LoptDw, calculate F and O;
Step4 : Judge the stability of the matrix F . If it is unstable,

return to Step1. Otherwise, perform Step5;
Step5 : Select the matrix V , according to N = VCT � and

Q = VDw, calculate N and Q.

Remark 4: In the conventional design process of the diag-
nostic observer, it is usually to select the three matrices
F , L, W firstly, and then to solve the Sylvester equation
TA−FT = LC to obtain T , and finally to calculate the
remaining matrices according to the Luenberger equations.
Differently, in Algorithm 1, the matrix T is firstly selected
and then the observer gain L is obtained from Theorem 1.
Further, it should be pointed out that since F and N are set
as F = TAT � − LoptCT � and N = VCT �, the chosen
matrix T in the Step1 must satisfy T �T = I to guarantee the
Luenberger conditions (7) and (8). In other words, the matrix
T is with full column rank and the diagnostic observer is a
full or higher-order observer. As presented in [23, p. 81], the

full or higher order observer can play an important role in the
optimization of the fault detection and isolation system.

C. RESIDUAL EVALUATION
In this subsection, the residual r (k) is further evaluated, that
is, a test statistics8 based on the residual and the correspond-
ing threshold are designed to determinewhether a fault occurs
by the following decision logic{

8 ≤ 8th ⇒ q(k) = 0, no fault
8 > 8th ⇒ q(k) = 1, a fualt occurs,

(30)

where the test statistics 8 is chosen as the root mean square
(RMS)

8 = ||r(k)||RMS =

 1
Nc

Nc∑
j=1

||r(k + j)||2

1/2

withNc denoting the window time,8th denotes the threshold,
q(k) denotes the alarm sign.
Usually, the threshold is set as the maximum influence of

the external inputs on the residual r (k) except the fault f (k).
Recall in the error system (10) that the residual r (k) is driven
by the external disturbance d(k) and the event-triggered trans-
mission error ēy(k) under fault-free case. Thus, the following
augmented system (31) composed of the local closed-loop
system (1) and the error system (10) is constructed as:

_x(k + 1) =
_

A_x(k) +
_

Bww(k)+
_

Bdd(k)+
_

Lēy(k),

r(k) =
_

C_x(k) +WoptDdd(k)+Wopt ēy(k), (31)

where

_x(k) =
[
x(k)
e(k)

]
,

_

A =
[
A 0
0 F

]
,
_

Bw =
[
Bw
0

]
,

_

Bd =
[

Bd
TBd − LoptDd

]
,

_

L =
[

0
−Lopt

]
,

_

C =
[
0 WoptCT−1

]
.

Note that the event-triggered transmission error ēy(k) is
essentially driven by unknown external disturbance d(k) and
the reference inputw(k), then the threshold can be defined as:

8th = sup
f (k)=0,d(k),w(k)

||r(k)||RMS

= sup
f (k)=0,d(k),w(k)

||rd (k)+ rw(k)||RMS

≤ sup
f (k)=0,d(k),w(k)=0

||rd (k)||RMS

+ sup
f (k)=0,d(k)=0,w(k)

||rw(k)||RMS , (32)

where rd (k), rw(k) denotes the influences of unknown exter-
nal disturbance d(k) and the reference inputw(k) on the resid-
ual r(k) respectively. The computation of the threshold (32)
is presented in the following Theorem 2.
Theorem 2: If there are positive matrices γ1, γ2, β1, β2

and positive semidefinite matrices P1, P2, and the following
LMIs are satisfied
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61 =

61ME11 61ME12 61ME13
61ME21 61ME22 61ME23
61ME31 61ME32 61ME33

 ≤ 0, (33)

62 =

62ME11 62ME12 62ME13
62ME21 62ME22 62ME23
62ME31 62ME32 62ME33

 ≤ 0, (34)

where

6iME11 : =
_

A
T
Pi

_

A− Pi +
_

C
T_
C + βiδC̃T�C̃, i = 1, 2,

61ME12 : =
_

A
T
P1

_

Bd +
_

C
T
WoptDd + β1δC̃T�Dd ,

62ME12 : =
_

A
T
P2

_

Bw + β2δC̃T�Dw,

6iME13 : =
_

A
T
Pi

_

L +
_

C
T
Wopt , i = 1, 2,

61ME21 : =
_

B
T

dP1
_

A
T
+ DT

dW
T
opt

_

C + β1δDT
d�C̃,

62ME21 : =
_

B
T

wP2
_

A
T
+ β2δDT

w�C̃,

61ME22 : =
_

B
T

dP1
_

B
T

d + (WoptDd )T(WoptDd )

−γ 2
1 I + β1δD

T
d�Dd ,

62ME22 : =
_

B
T

wP2
_

B
T

w − γ
2
2 I + β2δD

T
w�Dw,

61ME23 : =
_

B
T

dP1
_

L + (WoptDd )TWopt ,

62ME23 : =
_

B
T

wP2
_

L,

6iME31 : =
_

L
T
Pi

_

A+WT
opt

_

C, i = 1, 2,

61ME32 : =
_

L
T
P1

_

Bd +WT
optWoptDd ,

62ME32 : =
_

L
T
P2

_

Bw,

6iME33 : =
_

L
T
Pi

_

L +WT
optWopt − βi�, i = 1, 2,

C̃ =
[
C 0

]
.

Then the augmented system (31) satisfies the H∞ perfor-
mance indices ||rd (k)||2 ≤ γ1||d(k)||2 and ||rw(k)||RMS ≤
γ2||w(k)||RMS . At this time, the threshold (32) can be set as:

8th =
1
√
Nc
γ1min||d(k)||2 + γ2min||w(k)||RMS , (35)

where γ1min = min(γ1), γ2min = min(γ2).

Proof: Define the Lyapunov function V1(k) =
_x
T
(k)P1

_x(k) and the function

8d = 1V1(k)+ rTd (k)rd (k)− γ
2
1 d

T(k)d(k) (36)

where 1V1(k) = V1(k + 1)− V1(k).
If there is no faults and external inputs, it can be obtained

from (4) that

β1ēTy (k)�ēy(k)

≤ β1δyT(k)�y(k)

≤ β1δ[xT(k)CT
+ dT(k)DT

d ]�[Cx(k)+ Ddd(k)]

≤ β1δ[xT(k)CT�Cx(k)+ dT(k)DT
d�Cx(k)

+xT(k)CT�Ddd(k)+ dT(k)DT
d�Ddd(k)]

≤ β1δ[xT(k)CT�Cx(k)+ 2xT(k)CT�Ddd(k)

+dT(k)DT
d�Ddd(k)]

≤ β1δ[
_x
T
(k)C̃T�C̃_x(k) + 2_x

T
(k)C̃T�Ddd(k)

+dT(k)DT
d�Ddd(k)]. (37)

Substituting (37) into (36) yields

8d = 1V1(k)+ rTd (k)rd (k)− γ
2
1 d

T(k)d(k)

=
_x
T
(k + 1)P1

_x(k + 1)− _x
T
(k)P1

_x(k)

+rTd (k)rd (k)− γ
2
1 d

T(k)d(k)

≤ ηT1 (k)61η1(k), (38)

where η1(k) = [ _x
T
(k) dT(k) ēTy (k) ]

T.
It can be seen from (38) that when 61 ≤ 0 the function

8d ≤ 0 and 6∞k=08d (k) hold under zero initial conditions.

Since V1(k+1)=
_x
T
(k+1)P1

_x(k+1)≥ 0, we finally obtain
the inequality ||rd (k)||2 ≤ γ1 ‖ d(k)‖2. Similarly, following
the same process as above, by defining Lyapunov function
V2(k) =

_x
T
(k)P2

_x(k) and 8w = 1V2(k)+ rTw(k)rw(k)−
γ 2
2 w

T(k)w(k), the inequality ||rw(k)||2 ≤ γ2||w(k)||2 will
holds under zero initial conditions when 62 ≤ 0. Finally,
recall that the relationship between RMS-norm and 2-norm
of residual signal satisfies ||r(k)||RMS≤||r(k)||2/

√
Nc. Then,

for the external disturbance d(k) that needs to satisfy 2-norm
bounded, the inequality ||rd (k)||RMS ≤ ||rd (k)||2/

√
Nc will

holds. For reference input w(k) that does not need to meet
the 2-norm boundedness, ||rw(k)||RMS ≤ γ2||w(k)||RMS will
holds because the 2-norm gain is also the RMS-norm gain.
So (35) can be obtained from (32), Theorem 2 is proved. The
algorithm 2 is presented for the residual evaluation for fault
detection.

Algorithm 2 Residual Evaluation Algorithm for Fault
Detection
Step1 : Set RMS-norm window time Nc, use LMI tool to

calculate γ1min and γ2min.
Step2 : Calculate ||w(k)||RMS and determine the threshold

8th according to equation (35).
Step3 : Calculate ||r(k)||RMS . If 8 ≤ 8th, no fault. Other-

wise, a fault occurs.

IV. SIMULATION RESULTS
In this section, a benchmark of vehicle lateral dynamic sys-
tem, as shown in Fig.2, is utilized to illustrate the effective-
ness of the proposed method. By assuming that the vehicle
is simplified as a center of gravity and thus can only move
in x-axis, y-axis, and yaw around z-axis, the benchmark is
called as one-track model which is mostly implemented in
personal cars. Let the vehicle side slip angle β and the yaw
rate r as the state variables x = [β r]T, the steering angle δ∗L
as the reference input variable, the lateral acceleration sensor
ay and the yaw rate sensor r as output variables y = [ay r]T.
The matrices of the continuous-time one-track model and its
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FIGURE 2. The kinematics of one-track model.

measurement model can be obtained as:

A =


−
C ′aV + CaH
mgvref

lHCaH − lVC ′aV
mgv2ref

− 1

lHCaH − lVC ′aV
Iz

−
l2VC
′
aV + l2HCaH
Izvref

 ,

Bw =


C ′aV
mgvref
lVC ′aV
Iz

 , Dw =

[
C ′aV
mg
0

]
,

C =

−C ′aV + CaHmg

lHCaH − lVC ′aV
mgvref

0 1

 .
The detailed explanations of the parameters are summarized
in Table 1.

TABLE 1. Parameters of the one-track model.

By considering the influences of road bank angle, vehicle
body roll angle, roll rate, and sensor noises in practice as
the external disturbances and discretizing the system with the
sampling period 0.1 seconds, the following matrices of the
discrete-time vehicle lateral dynamics can be obtained as:

A =
[
0.6333 −0.0672
2.0570 0.6082

]
, Bw =

[
−0.0653
3.4462

]
,

C =
[
−152.7568 1.2493

0 1

]
, Dw =

[
56
0

]
,

Bd =
[
0.1571 0.2395 0
0.3977 0.5156 0

]
, Dd =

[
0 0 1
0 0 0

]
.

FIGURE 3. Residual of Case 1 with � =

[
1
0

0
1

]
.

FIGURE 4. Residual of Case 2 with � =

[
1
0

0
1

]
.

FIGURE 5. Trigger interval of Case 1 with � =

[
1
0

0
1

]
.

In addition, a typical offset fault is considered in the steer-
ing angle sensor, then we can set the fault matrices Bf = Bw
and Df = Dw. The triggering parameters are selected as
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δ = 0.01, �= I2×2, τmax = 6. The window time Nc= 20.

Now, by selecting the matrices T =
[
1 1 0
1 0 1

]T
, V =

[
1 0
0 1

]
and implementing the Algorithm 1, we can obtain γd =
90.3499 and the following design parameters of the optimal
diagnostic observer

Lopt =

 −0.0250 0.0008
−0.0031 0
−0.0220 0.0008

 ,
Wopt =

[
0.0227 0.0013
0.0013 0.1106

]
,

F =

−0.1877 −0.9469 0.7592
0.0337 0.1309 −0.0971
−0.2215 −1.0778 0.8563

 ,
O =

 4.7831
0.1065
4.6766

 , Q =
[
56
0

]
,

N =
[
−50.5025 − 102.2543 51.7518
0.3333 − 0.3333 0.6667

]
.

Meanwhile, by implementing the Algorithm 2, we can obtain
γ1min = 1.4142, γ2min = 2.2362 for threshold calculation.
In the simulation, the fault and the disturbance are assumed

to be

f (k) =

{
π/12, k > 40
0, elsewhere,

d(k) = [0.2 0.1 0.15]T · λ(k),

where λ(k) denotes the signal uniformly distributed over the
interval [−1, 1].
Now, two cases are considered in the simulation. In Case 1,

the vehicle is assumed to move in a straight line (namely
w(k) = 0), the threshold is computed as 8th = 0.18.
In Case 2, the vehicle is moving as a sine trajectory (w(k) =
(π/15) ∗ sin(0.2k)), and thus the threshold is time-varying.
The corresponding fault detection results are shown in Fig.3
and Fig.4 respectively. As shown in Fig.3, the performance
tradeoff approach with a time-invariant threshold for fault
detection can detect the fault immediately in Case 1. Also,
it can be observed from Fig.4 that the coupling between the
generated residual and the reference input leads to a time-
varying threshold and further results in a small detection
delay. Further, as shown in Fig.5 and Fig.6 that the event-
triggered mechanism reduced the traffic when compared to
the time-triggered mechanism in two cases.

Besides, in order to demonstrate the superiority of the
general event-triggered mechanism (3) to the relative error
one in [19] in optimizing the frequency of transmission. Note
that the general event-triggered mechanism (3) boils down
to the relative error event-triggered mechanism in [19] when
� = I2×2 and the constraint that � can be any positive
definite weighting matrix shows the possibility of changing
the performance of the general event-triggered mechanism by

selecting a appropriate�. Therefore, we reselect� =
[
2 3
3 5

]

FIGURE 6. Trigger interval of Case 2 with � =

[
1
0

0
1

]
.

FIGURE 7. Trigger interval of Case 1 with � =

[
2
3

3
5

]
.

FIGURE 8. Trigger interval of Case 2 with � =

[
2
3

3
5

]
.

in simulation. As shown in Fig.7, Fig.8, and Table 2, the new
� can further reduce the traffic in two cases, and the effect is
more obvious in Case 1. In addition, it is worth noting that the
change of�may lead to the change of the detection threshold
because � is related to the calculation of γ1min and γ2min
in (35).

Further, the residual generation effect and fault detection
performance under different event-triggered parameters δ and
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TABLE 2. Traffic of different event-triggered parameters.

the same event-triggered parameter � = I2×2 of Case 2 are
shown in Fig.9. As can be observed, the threshold is basi-
cally unchanged with the increase in the value of the event-
triggered parameter δ when �= I2×2. The coupling between
the generated residual and the reference input leads to the
detection delay becomes larger and even the fault cannot be
detected without τmax. It means the selection of δ should
not only ensure that the LMIs (33) and (34) has a feasible
solution, but also make a tradeoff between fault detection
performance and communication load.

FIGURE 9. Residual of Case 2 with different δ.

V. CONCLUSION
In this paper, we have investigated an event-triggered optimal
diagnostic observer for fault detection. Firstly, an H∞/H∞
performance index is set by analyzing the composition of
the residual to make a tradeoff among unknown external
disturbances, faults and event-triggered transmission errors
on the residual. Then, an optimal diagnostic observer that
considers the event-triggered mechanism is proposed to get a
full or higher-order observer under the constraint of the Luen-
berger conditions. Next, a time-varying threshold including
the influence of the reference input on the residual and
a test statistics are constructed for fault detection. Finally,
simulation results of the vehicle lateral dynamic system are
utilized to illustrate the effectiveness of the event-triggered
diagnostic observer design using the performance tradeoff
approach. In the future, it would be interesting to analyze
event-triggered fault detection performance under different
event-triggered parameters and utilize the design freedom of

the designed diagnostic observer for fault isolation for event-
triggered systems. Also, a lower-order diagnostic observer
design using the performance tradeoff approach will be inves-
tigated. Besides, incipient fault diagnosis [27], [28] under
the event-triggered mechanism will be another important
research direction for us in the future.
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