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ABSTRACT Traffic sign detection is an essential module of self-driving cars and driver assistance system.
The major challenge being, traffic sign appear relatively smaller in road view images. It covers only 1%-2%
of the total image area. Hence, its challenging to detect very small traffic sign in a larger image covering
huge background of similar shape objects. Thus, we propose YOLOv3 network layers pruning and patch
wise training strategy for small sized traffic sign detection. This aids in improving recall percentage and
mean Average Precision. We also propose anchor box selection algorithm that uses bounding box dimension
density to obtain optimal anchor set for the dataset. This reduces false positives and log-average miss rate.
The proposed approach is evaluated on German traffic sign detection benchmark and Swedish traffic sign
dataset and proves that it achieved a good balance between mAP and inference time.

INDEX TERMS Anchor box algorithm, network pruning, small object detection, YOLOv3.

I. INTRODUCTION
Among several fields on the canvas of artificial intelligence,
the intelligent transportation system is the hot research area
for the researchers and scientists. Today the automotive
industry is developing vehicles that employ intelligence based
technology that reduces the chances of accidents. An intelli-
gent vehicle can delineate the road conditions on the basis
of traffic signs that are fixed on either side of the road.
Hence, an accurate traffic sign recognition system that can
pick information from a traffic sign fixed several meters away
with a smaller apparent size is necessary for such vehicles.

The traffic sign recognition system mainly consists of two
steps; (1) detection and correct localization of the traffic sign
from an image (2) classification of the detected traffic sign.
Several different research articles claimed to have achieved
near 100% detection accuracy on the German Traffic Sign
Detection Benchmark (GTSDB) [1]. However, the authors
in [2] noted that the accuracy of the traffic sign detection
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system decreases with the increase of distance between the
camera and the traffic sign on the road. Furthermore, they
also noted a void of annotation in GTSDB that can evaluate
the detector in this perspective and proposed Korean Traffic
Sign Detection (KTSD) dataset to fill the gap. The authors
in [3] also noted the same and argued that the detector should
be robust to detect the traffic signs of smaller size with
reference to the image size. Hence, we may conclude that the
robust traffic sign detection system should be able to detect
the small size traffic signs with reference of the image size.
This property of the detector will also leverage the driver
assistance systems in warning the danger ahead of time.

In addition, the speed of the traffic sign detection system
also plays an important role. These days the Convolutional
Neural Network (CNN) provides promising feature set to
detect and classify an object. CNN networks like Fast RCNN,
Faster RCNN, and Mask RCNN [4]–[6] use region proposals
to detect an object. The authors in [7] acquired the upper
and lower human body part features from the fully con-
nected layer using image patches. This helps the authors to
use autoencoder for transforming the acquired features to
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discriminative lower dimensional values. These neural net-
works are highly accurate in object detection but lacks in per
frame detection speed required for the real time traffic sign
detection. On the other hand, Single Shot Detector and You
Only Look Once detector [8], [9] are very fast in detection but
lacks in the accurate detection of the small size objects such
as traffic signs.

Hence, for intelligent transportation system, a reliable and
fast traffic signs detection system is required. A reliable
traffic sign detection system would guarantee the detection
of smaller traffic signs that may lead to early drive assistance
warning and may avoid fatal accidents. Moreover, fast traffic
sign detection will ensure that every frame is sifted rapidly
to provide reliable information to the driver assistance sys-
tem in due time. In this work we propose few updates over
YOLOv3 [9] network, which provides us the fast and reliable
traffic sign detection system as compared with the state-of-
the-art detection systems.

The main contributions of this paper are as follows:
• Tuned YOLOv3 network for small traffic sign detection:
We propose to remove few of the DBL layers in the
YOLOv3 network. For larger objects these DBL layers
in the network extract fine features necessary for the
detection and classification of an object. However, for
the traffic signs that are small as compared to the image
size, these DBL layer extract a lot of redundant features
that leads to false detection with other objects. Hence,
by removing these redundant DBL layers we may limit
the detector to only learn basic core features of the
objects such as basic shape of traffic signs. In addition,
we also propose break an input image in patches before
training and testing. This will cause in decreasing the rel-
ative size ratio of the traffic sign and image.We achieved
9% and 2.5% increase in mean Average Precision for
German Traffic Sign Detection Benchmark and Swedish
Traffic Sign (STS) dataset respectively.

• Sort and Scale Anchor Box Selection: We propose
to divide the traffic signs into three groups of small,
medium, and large traffic signs by analysing the bound-
ing box distribution from the ground truth data. These
three groups signify the pixel size of traffic signs. Each
group is assigned an anchor box by calculating its
median value. Once, the three anchor boxes are obtained,
we find the remaining six anchors as the derivatives
of the median anchors. Hence, total of nine anchors
are selected for the dataset. The proposed technique
gives 5.5% and 2.7% increase in the detection accuracy
than the base k-means anchor box selection technique
in YOLOv3 for GTSDB and STS datset respectively.
The proposed method can be effective in cases where
an object has high pixel size variations.

• Focal Loss: We propose to validate the effects of using
focal loss as objectness score. We found the values of
hyper-parameters alpha and gamma for the traffic signs
as suggested by the authors of [10]. We concluded that
our proposed method using Tuned YOLOv3 and Sort

and Scale method achieves 1.37% higher detection accu-
racy than the detector tuned for the small size object
detection using the focal loss as objectness score.

The remaining of the paper is organised as follows.
In Section 2 related works are discussed. Section 3 deals
with the methodology of the proposed traffic sign detection
system. Results are presented in Section 4. And finally we
conclude the paper in Section 5.

A. RELATED WORK
Rigorous research and developments have been achieved
in the field of Traffic Sign Recognition (TSR) lately. It is
because the TSR is an important block for the driver-less cars
and Advance Driver Assistance Systems (ADAS). A plethora
of research work containing different approaches for the traf-
fic sign detection is available in the literature. The researchers
have used the colour attributes as features and colour based
detectionmodels [11]–[13], shape features [14], [15], channel
features [16], and the popular Maximally Stable Regions
(MSERs) [17], [18] for the traffic sign detection. These meth-
ods have performed well in their time and achieved high
detection accuracies on the well-known traffic sign datasets.
Moreover, the researchers enhanced the performance of the
aforementioned methods by intelligently incorporating the
mathematical models in features selection, extraction, and
classification phase.

The progress in the field of Convolutional Neural Network
has shifted the interest of many researchers towards designing
or tuning the CNN layers and parameters to achieve the
desired detection accuracy. All the CNN networks can be
classified into two categories i.e. single stage and multi-
stage detectors. Single stage CNN detectors have built-in
detection stage and accomplish the detection and classifi-
cation of an object inside an image in a one go. On the
other hand, multi-stage detectors first utilize some method
to detect an object and then they classify that object. As per
the literature information, generally, these CNN based object
recognition techniques are better and efficient than recog-
nition techniques based on the hand-crafted features. The
authors in [19] used multi-stage CNN detector for the traffic
sign recognition. In the first stage, the traffic signs were
detected by a region proposal CNN network detector. Then
in the second stage Hough transform was used to refine the
localization of the traffic sign. And finally in the third stage
CNN network based classifier was used for the classification.
Similarly, Serna and Ruicheck in [20] proposed a multi-stage
traffic sign recognition system. In the first stage the authors
have utilized the region proposal CNN network for the traf-
fic sign detection and in the next stage they proposed the
CNN based classifier. Their network was able to achieve
96.16% detection accuracy at 3.3 frames per second or pro-
cessing speed on German Traffic Sign Detection Bench-
mark (GTSDB). The multi-stage CNN detection systems are
meticulously designed and provide good detection accuracy.
However, these networks mostly lag behind in giving high
FPS for real-time traffic sign detection. Now, the single stage
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FIGURE 1. Proposed approach for small traffic sign detection. The yellow coloured box indicate proposed anchor box algorithm, where as blue
coloured box represent improved section.

CNN detectors detect, localize, and classify the traffic sign
in one go hence, they provide inherent advantage of speed
over multi-stage detectors. These detectors are designed to
avoid the processing time consumed in the generation of
region proposals or sliding windows. Traffic sign detection
system with Single Shot Detector (SSD) [21], feature pyra-
mid network [22], SSD with feature pyramid network [23],
and YOLOv3 [24], [25] suggests that a fast real-time traffic
sign detection system can be made using the single stage
detectors. The single stage networks provide a very fast way
for object detection. However, these networks cannot achieve
high accuracies on the benchmark datasets that contains
smaller objects such as the traffic signs.

In addition, there is also some innovative work reported by
the researchers in the field of traffic sign detection in both the
categories. Kamal et al. [26] presented a traffic sign detection
method by merging segmentation architectures SegNet and
U-Net and named the network as SegU-Net. For training the
presented network, authors have used the modified Tversky
loss function. On GTSDB, their proposed network achieved
the precision and recall of 95.29% and 89.01%, respectively.
Liu et al. in [27] reported coarse to fine approach for traffic
sign detection. On TT100K dataset, the authors reported the
F1-score of 91.55 at 21 FPS. Tabernik and Skočaj in [28]
presented a system for large scale traffic sign recognition.
The authors presented end-to-end automatic learning tech-
nique using mask region proposal network on their proposed
dataset. The dataset consisted of around thirteen thousand
traffic annotations in different weather conditions and appear-
ance variations. Only 3% of error rate is reported by using
the proposed approach on the proposed dataset. Wang et al.
in [29] presented a two-stage network model for the traffic
sign detection. The authors have used the prior information
such as locations and sizes of the traffic signs to make
a probability distribution model. A light-weight superclass
detector was then concatenated with the probability model
for the detection purpose. The next stage includes design of
a refinement classifier. The proposed system was tested on
TT100K dataset and achieved 92.16% mAP at 7 FPS.

Almost all of the proposed detectors either excel in the
detection accuracy or the speed in FPS. In the traffic sign

detection, higher FPS can be achieved by the single shot
detectors such as YOLOv3 detector. And for increasing the
accuracy in YOLOv3, we noted two important factors (1) the
detection of the small traffic signs; (2) accurate placement
and localization of the anchors on the traffic signs. Hence,
to achieve higher detection accuracy and FPS for traffic sign
detection, detection of small traffic sign and a nice set of
anchors are required.

B. PROPOSED METHOD
YOLOv3 is a single-stage detector. It processes complete
image in a single run hencemarking itself as fast object detec-
tor. It infersMSCOCO dataset test image in 29ms, equivalent
to 34.5 Frames Per Second (FPS), which is an impressing
number. Despite being fast, it lags behind in terms of accuracy
percentage. Author in [9] states that the YOLOv3 attains
mAP of 31% for MS COCO dataset that is substantially
low. For traffic sign detection, the detector must be accurate
and fast to assist drivers to make well-timed appropriate
decisions. Hence, there is a need to attain a balance between
mAP and inference time. Moreover, the detectable objects in
MS COCO dataset are much larger that covers at least 40% to
50% pixel area relative to complete image.While traffic signs
appear quite smaller in road scenes and occupy only 1.5%
to 2% pixel area relative to complete image. Thus, detec-
tion accuracy for small objects (for example, traffic signs)
must be enhanced. In addition, anchor box sizes and scales
play an important role in object detection. The anchor box
appropriate size helps to reduce false detections and improve
recall percentage, hence this aids in the improvement of mean
Average Precision (mAP) eventually.

To address small traffic sign detection and to attain an opti-
mal balance between mAP and inference time, we propose
following improvements to YOLOv3 network: (1) network
layers pruning, (2) patch-wise training strategy and (3) anchor
box selection algorithm. We propose to reduce the network
length to an appropriate size. This facilitates in saving fine
features of traffic signs, which yields an improved recall
percentage. Secondly, the proposed patch-wise training strat-
egy aids to attain an optimal balance between detector accu-
racy and inference time. Thirdly, the proposed anchor box
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selection algorithm assists in determining best fit anchor
boxes for the dataset, which helps in reducing False Posi-
tive (FP) and lowering log-average miss rate. Fig. 1 shows
the proposed traffic sign detection approach, where at first;
the input image is divided into 400 × 400 pixels patches
and passed into proposed YOLOv3 network. The network
outputs bounding box predictions for each patch. The output
patches are then used to recreate original 1360 × 800 pixels
image, and the redundant predictions of patches are removed
using Non-Max Suppression (NMS). The proposed tech-
nique helped to lower log-average miss rate (lamr) and infer-
ence time, hence facilitated in obtaining an optimal balance
between accuracy and processing speed.

C. ANCHOR BOX SELECTION
Anchor boxes play a major role in the detection accuracy
of the single stage detectors. Their appropriate size and
scale assists to localize objects faster and precisely. YOLOv3
default anchor box selection method uses k-means cluster-
ing to determine their size. It makes use of bounding box
dimensions and their overlap in percentage with the selected
anchors. It provides a good generalization of bounding box
dimensions but does not considers the anchors requirement
for a particular dataset. It means that for a typical traffic
sign dataset, there is a higher chance of having many small
size traffic signs and less amount of large size traffic signs
with reference to the image size. The greater percentage of
smaller traffic signs in a dataset demands higher percentage
of smaller anchors than the larger ones to have faster and
reliable detections. Therefore, we propose the anchor box
selection algorithm based on bounding box dimension sorting
and clustering.

Refering to Fig. 2, the algorithm estimates three basic
anchor boxes based on the pixel size of traffic signs i.e. small,
medium, and large. These anchors are then scaled to form
the derivative anchors making the total up to nine different
anchor sizes. The algorithm works in three steps: 1) Sorting
and grouping the dataset according to object sizes in the
training set, 2) Forming clusters based on condition specified
in Equation (1), and 3) Extracting foundation anchors and its
derivatives. Quantity of anchors in each group is estimated
using Equation (2).

We validated the proposed approach on GTSDB dataset.
The GTSDB dataset can be divided into three categories
i.e. small, medium, and large based on traffic sign bounding
box dimensions [30], [31]. The small traffic sign refers to
traffic sign size smaller than 32 × 32 pixels, medium signs
refers to size in the range of 32 × 32 & 96 × 96 pixels,
and large signs refers to size greater than 96 × 96 pixels.
According to given sizes, the dataset constitute of 41% small,
52% medium, and 7% large traffic signs as illustrated
in Fig. 3.

In Fig. 3, it could be noted that GTSDB is a realistic
dataset that can be used to train network models for real-
time scenarios. Majority of the traffic sign are concentrated
in small and medium range. While large range consists of

lesser traffic signs. We may assume the similar distribution
of traffic signs in real-scenario. Thus, detection must be
fast to completely process the captured frames per second
i.e. 30 FPS. For this purpose, there is a need of anchor boxes
with appropriate size and scales. We propose the quantity of
anchor boxes to be reserved for each group i.e. one anchor
box for large sized traffic sign and rest for small and medium
sized traffic signs.

The foundation anchors (represented in blue colour
in Fig. 4)) are the median values of the clusters formed using
condition specified in Equation (1).

∀x ≤
xmax − xmin

3
(1)

where xmax and xmin are the maximum and minimum data
points respectively of stated groups (small and medium sized
traffic signs). All bounding box dimensions fulfilling the pro-
vided condition forms a cluster. The median value of formed
clusters are the foundation anchors. These anchors are then
used to estimate derived anchors. In order to do so, we fix
the total number of anchors to nine and calculate the number
of anchors that can be assigned to each group by using
Equation (2).

Ag = min(Aa, d
ng
n
× Ae) (2)

where Ag and Aa represents anchors in a group and allowed
anchors per group respectively, ng and n denotes bounding
boxes in group range and total number of bounding boxes
respectively, while A symbolize the total number of anchors.
If a group contains more number of ground truth bounding
boxes, more anchors will be assigned to the group and vice
versa. The minimum number of anchors that can be assigned
to each group is one (i.e. the foundation anchor) and maxi-
mum the four (i.e. foundation + derived anchors). Once the
number of anchors that will be assigned to each group is
determined, the foundation anchors of each group was scaled
by the multiple of 21/3, 21/2 and 22/3 to obtain the derived
anchors. First ’m’ derived anchors were selected per group
as identified by Equation (2). E.g. Ag for small group is 4,
then one foundation anchor plus three derived anchors were
selected. It should be noted that from the large traffic sign
group, only foundation anchor is the required anchor box. The
anchor set obtained is illustrated in Fig. 4, where blue boxes
are the foundation anchors and the white ones are derived
anchors.

Fig. 5 show the plot between allowed anchors in a group
(Aa) versus anchors selected in a group (Ag). This plot also
depicts the working of Equation (2). All the parameters of
small, medium, and large traffic signs were provided to the
Equation (2) at a time. Aa was set to nine anchors as per
requirement and was decreased in proportion to the increase
in Ag. The Ag for small, medium, and large size traffic sign
was calculated as four, six, and one respectively. However,
we have selected four, four, and one for small, medium, and
large size traffic signs to accommodate all anchors in total
of nine possible anchor set. The response of Equation (2)
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FIGURE 2. Flowchart for anchor box selection algorithm.

shows that more numbers of anchors were assigned to the
areas where more number of traffic signs were present and
vice versa.

Incorporating the obtained anchor boxes in the training
process resulted in 100% recall percentage for GTSDB
dataset, hence, detection accuracy has also been improved.
Moreover, it aids in lowering number of false positives and
log-average miss rate. The proposed method is a one go pro-
cess, which determines optimal anchor boxes for the dataset.
On the other hand, k-means clustering, which is the base
method in YOLOv3 has to be executed multiple times along
with network training and testing to determine the optimal
anchor boxes.

D. YOLOV3 NETWORK PRUNING WITH PATCH-WISE
TECHNIQUE
YOLOv3 is a single stage object detector. It processes com-
plete input image at once and predicts bounding boxes at
three different scales. It uses Darknet53 network with skip
connections as feature extractor, which extracts features at
multiple levels similar to feature pyramid network. It upsam-
ples deeper feature map by stride of two and concatenates
with a shallower feature map to detect objects of various
sizes. This upsampling takes place twice in the network. The
combined map is then processed by a stack of five convo-
lutional layers, each followed by batch normalization and
ReLU activation layer, represented as DBL block as shown
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FIGURE 3. Graphical analysis of GTSDB dimension bounding boxes.

FIGURE 4. Anchor set for GTSDB dataset.

in Fig. 6a. Each level outputs bounding box predictions. The
redundant bounding box predictions (least overlap with true
outputs) are removed using NMS.

Generally, the traffic signs appear small in road view
images and occupy smaller pixel area in the image. Thus
it possesses lesser feature values. These features are lost
with deeper networks since at deeper layers object texture
and fine details are learnt while at shallow layers, network
learns about object’s basic shapes and strokes. Therefore,
a natural idea is to use output feature map of shallow layers
to detect small-sized objects with reference to the image size.
We propose to prune YOLOv3 network layers to an optimum
value for effectively detecting small traffic sign. Here, opti-
mum value defines the number of layers that help to attain
maximummAP. Fig. 7 illustrates how the mAP first increases
with reduction of layers and after a certain point it drops again
following a Gaussian trajectory. The mAP is highest when

FIGURE 5. Plot of Aa vs Ag.

DBL stack is reduced to 2. Therefore, we reduced the stack
of 5 DBL layers to 2 DBL layers at each detection level as
shown in Fig. 6b. This helped in improving mean log-average
miss rate and mean Average Precision.

The default setting in YOLOv3 takes an input image
of 1:1 aspect ratio. If the image doesn’t qualify the aspect
ratio check, it is resized to 416 × 416 pixel size. Thus for
1360×800 pixels image, it will be resized to 416×416 pixel
size, which eventually lessens the pixel area of traffic signs.
Hence, the features of traffic signs are lost. Therefore, we pro-
pose to train and test the network with patches of size
400 × 400 pixels. This helps to retain features of traffic
sign and provide assistance in its detection process. More-
over, [21] suggest that a patch-wise input to the network takes
lower inference time than complete image input. Thus, this
enables to obtain a precise detection in minimum time.
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FIGURE 6. (a) Default YOLOv3 network (b) Proposed YOLOv3 network with pruned layers.

We trained the network with input image patches varying
from size 400 × 400 to 800 × 800 pixels, depending upon
the size and location of traffic sign. The annotations of traffic
sign in an image were stretched 400 pixels further in each
direction to have enough background along with traffic sign
and also to ensure the essence of road scene does not vanishes.
As an example, consider the image shown in Fig. 8a where
bounding box co-ordinates for traffic sign are [825, 428, 862,
463] stretching the co-ordinates 400 pixels in each direction
yields an image patch to train the network. In the case of
limited area for stretching, limit constraint is applied. After
patches extraction, the bounding box annotations are updated
in a .csv file in accordance to the patch size.

To test the network, each test image is cropped and saved
as patches of size 400×400 pixels. The patches are extracted
using sliding window scheme, where 400 × 400 size win-
dow slides over the image and saves an image patch. The
output image patches from the network are then consolidated
to re-create the complete image, while the bounding box
predictions by the detector are updated with reference to

complete image in a .csv file. For example, consider the
image shown in Fig. 8b, where red coloured box represents
the sliding window. It is placed at the origin of the image and
a patch is captured at this point as shown at the bottom of
Fig. 8b. The window slides next in x-direction with a stride of
100 pixels as shown with blue coloured box in Fig. 8b. The
window slides in x-direction again until it reaches the right
bound of the image. Next the window slides in y-direction
with the same stride as shown with green coloured box in
Fig. 8b. The window slides along x-direction and then along
y-direction until it covers the complete image. The overlap
between image and sliding window is cropped and saved as
patch, shown at the bottom of Fig. 8b.

Network pruning and patch-wise training and testing
approach helped to learn and save fine features of traffic
signs. This eventually aided to reduce the log-average miss
rate and improved mean Average Precision. In addition,
it assisted to lower test-image inference time and hence
an optimal balance between mAP and inference time is
achieved.
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FIGURE 7. Effect of layers pruning in YOLOv3 network.

FIGURE 8. Patches creation-(a) for train images (b) for test images.

E. FOCAL LOSS
YOLOv3 computes losses for objectness score (probability
percentage of object presence), bounding box predictions and
classification loss. These losses are computed using different
loss functions; bounding box width and height loss is com-
puted using mean square error, while bounding box centroid
loss, objectness score and classification loss are calculated
using Binary Cross Entropy (BCE) loss. Each computed loss
is averaged for the selected batch size. And in the end all the
averaged losses are summed to determine total loss for the
specific epoch.

Focal loss (FL) is an effective loss for small-size
object detection in the single stage detectors or for class

imbalance between foreground and background during train-
ing. In 1360×800 pixels image there is huge class imbalance
between traffic sign and background. It is because the size of
traffic sign is smaller as compared to the reference image size.
Moreover, the traffic signs are small objects in a road scene
image, therefore we found it effective to incorporate focal loss
in YOLOv3 network.

Focal loss dynamically weights BCE loss with the help of
modulating factor γ and scaling factor α. γ heavily penal-
izes hard negative examples and minimizes loss contribution
by easy examples. For well classified examples, it decays
the scaling factor against improvement in correct class
probability. Equations (3) & (4) shows mathematical form
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FIGURE 9. Plot of focal loss experimentation; (a) When scaling factor is varied from 0.25 to 0.99, while modulation factor is 1, (b) Plot of focal loss
experimentation, when modulating factor is varied, while scaling factor is 0.75.

of BCE loss and FL respectively.

BCE loss =

{
− log(p), if y = 1
− log(1− p), otherwise

(3)

FL =

{
α(1− p)γ .BCE loss, if y = 1
α(p)γ .BCE loss, otherwise

(4)

where α and γ are two hyper-parameters and their values
has to be determined experimentally. Tsung-Yi et al. in [10]
proposes 0.25 and 2 as best values for α and γ respectively for
MS COCO dataset. We found that the values of parameters α
and γ are dependent on the size of the objects to be detected.
Since MS COCO dataset comprises of large objects while
traffic signs appear small. We followed the experimentation
process provided in [10] and found 0.75 and 1 as optimal
values for α and γ respectively. The graphs in Fig. 9 indicates
how the mAP varies with varying α and γ respectively.

II. EXPERIMENTAL RESULTS AND DISCUSSION
We performed various experiments to validate our proposed
approach. The proposed method stated in Section 3 is imple-
mented by modifying the GitHub repository [32]. It uses
Keras with Tensorflow at the backend. The experiments
were performed on Google CoLab using Tesla T4 GPU
having 16 GB memory and 12 GB RAM. The proposed
approach is evaluated for six evaluationmetrics, namelymean
Average Precision (mAP), inference time, recall percentage,
false positives and log-average miss rate.

The network was trained in two stages; for first 10 epochs,
Darknet53 network is frozen and rest of the network is trained
with the batch size of 32 image patches to obtain a stable
loss, and finally complete network is trained for 50-60 epochs
with the batch size of 8 image patches. The number of epochs
was selected based on the trend observed from experimenta-
tion. The network training was halted upon reaching same

FIGURE 10. Comparison of average precision (for all three classes) and
mean Average Precision results for default and tuned YOLOv3 network
with STS dataset.

FIGURE 11. Effect of patch-wise training technique on mAP and inference
time.

validation loss for 10 consecutive epochs. It was observed
that total of 70 epochs were sufficient for training the net-
work. Default network values were used for batch size and
learning rate. For loss function optimization adam optimizer
is used with learning rate decay of 0.1 per three consecutive
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TABLE 1. Detail description of dataset.

TABLE 2. Comparison of anchor box algorithms and YOLOv3 network.

FIGURE 12. Precision-recall curves of GTSDB dataset for Original and proposed YOLOv3 network (a) Danger class (b) Mandatory class (c) Prohibitory class.

FIGURE 13. Precision-recall curves of STS dataset for Original and proposed YOLOv3 network (a) Danger class (b) Mandatory class (c) Prohibitory class.

epochs for consistent validation set loss, while initial learning
rate used is 1e-3.

A. DATASETS
In order to validate our proposed approach, we experimented
with two datasets namely German Traffic Sign Dataset
Benchmark (GTSDB) [1] and Swedish Traffic Sign (STS)
dataset [33]. GTSDB is a widely used dataset. It comprises
of 600 training and 300 test images, of resolution 1360 ×
800 pixels. The number of traffic signs in an image varies
from 0 to 6, of various sizes, ranging from 16 × 16 to
128× 128 pixels. The dataset is categorized into three super
classes: danger, mandatory and prohibitory.

TABLE 3. Number of parameters in default and tuned YOLOv3 network.

In comparison to GTSDB dataset, STS dataset is a large
dataset with more than 20000 images of 1280 × 960 pixels
resolution, but among them only 20% are annotated. We used
Set1 Part0 as train set and Set2 Part0 as test set, using only
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FIGURE 14. mAP and inference time comparison for state-of-the-art methods and
proposed method for GTSDB dataset.

FIGURE 15. Qualitative results of proposed approach for GTSDB dataset (a) blurred traffic sign (b), (c), (d) small traffic signs.

visible signs for experimentation. The size of traffic sign
varies from 9 × 9 to 264 × 249 pixels. The dataset can
be categorized into three super classes: danger, mandatory
and prohibitory. The detail description of both the dataset is
provided in Table 1.

B. ANCHOR BOX ALGORITHM
We performed experiments with GTSDB and STS dataset
to evaluate the proposed anchor box algorithm on default
and tuned YOLOv3 network with patch-wise training and
testing approach. The experimentation results are presented
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FIGURE 16. Qualitative results of STS dataset for proposed method (a) variable small size traffic signs, (b) size variation of small and large sign, (c) signs
detection in dim light (d) small sign detection in bright sunshine.

in Table 2. The evaluation metrics considered here are recall
percentage and AUC.

For GTSDB dataset, the recall percentage for sort and scale
algorithm is 5% higher than the default k-means method
which further improves to 100% for tuned YOLOv3 net-
work. Similarly, AUC gets a rise of 5.5% with sort and scale
algorithm anchor set with a further boost of 9% with tuned
YOLOv3 network.

For STS dataset, the recall percentages are nearly equal for
both the anchor sets but there is an increment of 1.6% with
tuned YOLOv3 network coupled with sort and scale anchor
set. On the other hand, AUC improves by 2.7% with sort and
scale anchor set and it further improves with tuned network.
Hence, it proves that proposed anchor box selection algorithm
is more effective than default kmeans algorithm in terms of
detection accuracy and recall percentage.

C. YOLOV3 NETWORK PRUNING WITH PATCH-WISE
TECHNIQUE
We experimented with pruning YOLOv3 network layers for
small traffic signs detection on GTSDB dataset. We tested
with removing the DBL layers from the stack of 5 to 0 for
all three levels of detection. The mAP for two DBL blocks
in the stack is the maximum among all as shown in Fig. 7.
The graph in Fig. 7 indicates that pruning the layers to certain
limit helps the network, while additional pruning can drop the
mAP. Just like Gaussian distribution, it is symmetric around
pruned YOLOv3 network with a stack of two DBL layers.
In addition, the mean log-average miss rate is zero for pruned
YOLOv3 network with a stack of 2 and 3 DBL layers and
increases as the layers are increased or decreased. Thus the
pruned network with 2 DBL layers is more accurate than the
original YOLOv3 network.
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TABLE 4. Experimental results for focal loss as object-ness score with
GTSDB dataset. The maximum among all are highlighted in bold.

The network parameters for each network model is pre-
sented in Table 3. The number of parameters for network
model was reduced from 65M to 47M. The proposed network
pruning was also evaluated on STS dataset, yielding 2.5% rise
in mAP than the default network as shown in Fig. 10.
We experimented to train default YOLOv3 network with

default resizing method and patch-wise technique, discussed
in section 3.2. Training the network with patches helped in
obtaining an optimal balance between mAP and inference
time. As the plot in Fig. 11 indicates, with patch-wise tech-
nique mAP has improved by 5% with reduction of inference
time to half of the original value.

The proposed approach is tested on two traffic sign datasets
namely: GTSDB and Swedish dataset. Fig. 12 and 13 shows
precision-recall curves for GTSDB and STS dataset respec-
tively, where proposed approach has better AUC than the
default network. Our approach out-performs among other
state-of-the-art methods. Fig. 14 illustrates mAP and infer-
ence time comparison for state-of-the-art methods and pro-
posed method. Among all, our method excels in terms of
achieving a balance between mAP and inference time. The
qualitative results of proposed approach for GTSDB and STS
dataset are shown in Fig. 15 and 16 respectively. It qualifies
that the proposed method is very effective in the detection
of small and blurred traffic signs in a dense and cluttered
environment.

D. FOCAL LOSS
Focal loss is effective for small objects detection. We used
focal loss for objectness score loss, to help network
differentiate between traffic signs and the background.
Tsung-Yi et al. in [10] states 2 and 0.25 as best values for
scaling and modulating factor respectively. We followed the
experimental procedure stated in [10] to determine optimal
values for α and γ for small objects such as traffic signs.
Following the procedure we equated γ to zero to find optimal
value for α. For modulating factor γ set to 0, training quickly
failed and the network diverged, it continued the same for
range 0 to 1. Therefore, γ was initiated to 1 to find optimal
value for α. For α ranging from 0.5 to 0.75, we achieved
relatively good mAP with nearly 100% recall percentage for
GTSDB dataset. For finding optimal value for γ , we varied
the range for γ while keeping α constant to 0.75. The experi-
mental results for various combinations of α and γ are stated

in Table 4. Maximum detection accuracy has been achieved
for α =0.75 and γ = 1, as shown in Table 4.

The usage of focal loss does not seem effective here, there
is a drop in mAP than the proposed approach. Hence, it can
be concluded that tuned network and patch-wise training
strategy is more effective for small traffic signs and it results
1.37% increase in mAP than focal loss implementation.

III. CONCLUSION
In this paper we propose methods that assist in small traffic
signs detection. We propose sort and scale based anchor box
selection algorithm that uses bounding box dimension density
to extract optimal anchor boxes. This aids in lowering false
positives and log-average miss rate. Moreover, we propose
YOLOv3 network layers pruning and patch wise training
and testing strategy for small traffic signs. The proposed
approaches helped to improve recall percentage and hence
mAP is improved. It helps to achieve an optimal balance
between detection accuracy and inference time.

To further assist in small traffic sign detection. We tested
the network with focal loss incorporated as objectness score.
This actually reduced the detection accuracy by 1.37% thus
proving that our approach is more effective for small traffic
signs detection than focal loss. Experiments prove that the
proposed approach is effective and competent to other state-
of-the-art methods for small traffic sign detection.We noticed
that the number of anchors would be increased if there is high
number of large size traffic signs in a dataset. This will result
in a possible false positive generation, which can be counted
as a limitation of the proposed technique. The fidelity of the
proposed technique can be validated for other objects and
detectors in future.

REFERENCES
[1] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, ‘‘The German traffic

sign recognition benchmark: A multi-class classification competition,’’
in Proc. Int. Joint Conf. Neural Netw., Jul. 2011, pp. 1453–1460, doi:
10.1109/IJCNN.2011.6033395.

[2] Y. Rehman, I. Riaz, X. Fan, and H. Shin, ‘‘D-patches: Effective traffic
sign detection with occlusion handling,’’ IET Comput. Vis., vol. 11, no. 5,
pp. 368–377, Aug. 2017, doi: 10.1049/IET-CVI.2016.0303.

[3] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, ‘‘Traffic-
sign detection and classification in the wild,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2110–2118, doi:
10.1109/CVPR.2016.232.

[4] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[5] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[6] K. He, G. Gkioxari, and P. Dollar, and R. Girshick, ‘‘Mask R-CNN,’’ in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Mar. 2017, pp. 2961–2969.

[7] S. U. Khan, T. Hussain, A. Ullah, and S. W. Baik, ‘‘Deep-ReID: Deep
features and autoencoder assisted image patching strategy for person re-
identification in smart cities surveillance,’’ Multimedia Tools Appl., 2021,
doi: 10.1007/s11042-020-10145-8.

[8] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ Proc. Eur. Conf. Com-
put. Vis., Amsterdam, The Netherlands, Oct. 2016, pp. 21–37.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

VOLUME 10, 2022 18679

http://dx.doi.org/10.1109/IJCNN.2011.6033395
http://dx.doi.org/10.1049/IET-CVI.2016.0303
http://dx.doi.org/10.1109/CVPR.2016.232
http://dx.doi.org/10.1007/s11042-020-10145-8


Y. Rehman et al.: Small Traffic Sign Detection in Big Images: Searching Needle in Hay

[10] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, ‘‘Focal loss for dense
object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2980–2988.

[11] A. Gupta and A. Choudhary, ‘‘A framework for real-time traffic sign
detection and recognition using Grassmann manifolds,’’ in Proc. 21st Int.
Conf. Intell. Transp. Syst. (ITSC), Nov. 2018, pp. 274–279.

[12] S. Khalid, N. Muhammad, and M. Sharif, ‘‘Automatic measurement of the
traffic sign with digital segmentation and recognition,’’ IET Intell. Transp.
Syst., vol. 13, no. 2, pp. 269–279, Feb. 2019.

[13] Y. Yang, H. Luo, H. Xu, and F. Wu, ‘‘Towards real-time traffic sign
detection and classification,’’ IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 7, pp. 2022–2031, Jul. 2016.

[14] Á. Gonzalez, M. Á. Garrido, D. F. Llorca, M. Gavilan, J. P. Fernandez,
P. F. Alcantarilla, I. Parra, F. Herranz, L. M. Bergasa, M. Á. Sotelo,
and P. R. de Toro, ‘‘Automatic traffic signs and panels inspection system
using computer vision,’’ IEEE Trans. Intell. Transp. Syst., vol. 12, no. 2,
pp. 485–499, Jun. 2011.

[15] N. Barnes, A. Zelinsky, and L. S. Fletcher, ‘‘Real-time speed sign detection
using the radial symmetry detector,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 9, no. 2, pp. 322–332, Jun. 2008.

[16] Y. Yuan, Z. Xiong, and Q. Wang, ‘‘An incremental framework for video-
based traffic sign detection, tracking, and recognition,’’ IEEE Trans. Intell.
Transp. Syst., vol. 18, no. 7, pp. 1918–1929, Jul. 2017.

[17] H. Luo, Y. Yang, B. Tong, F. Wu, and B. Fan, ‘‘Traffic sign recognition
using a multi-task convolutional neural network,’’ IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 4, pp. 1100–1111, Apr. 2018.

[18] M. Donoser and H. Bischof, ‘‘Efficient maximally stable extremal region
(MSER) tracking,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 1, Jun. 2006, pp. 553–560.

[19] J. Li and Z. Wang, ‘‘Real-time traffic sign recognition based on efficient
CNNs in the wild,’’ IEEE Trans. Intell. Transp. Syst., vol. 20, no. 3,
pp. 975–984, Mar. 2019.

[20] C. G. Serna and Y. Ruichek, ‘‘Traffic signs detection and classification for
European urban environments,’’ IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 10, pp. 4388–4399, Oct. 2020.

[21] H. S. Lee and K. Kim, ‘‘Simultaneous traffic sign detection and bound-
ary estimation using convolutional neural network,’’ IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 5, pp. 1652–1663, May 2018.

[22] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 2117–2125.

[23] E. H. Chen, P. Rothig, J. Zeisler, and D. Burschka, ‘‘Investigating low level
features in CNN for traffic sign detection and recognition,’’ in Proc. IEEE
Intell. Transp. Syst. Conf. (ITSC), Oct. 2019, pp. 325–332.

[24] J. Choi, D. Chun, H. Kim, and H.-J. Lee, ‘‘Gaussian YOLOv3: An accurate
and fast object detector using localization uncertainty for autonomous
driving,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 502–511.

[25] G. N. Doval, A. Al-Kaff, J. Beltran, F. G. Fernandez, and G. F. Lopez,
‘‘Traffic sign detection and 3D localization via deep convolutional neural
networks and stereo vision,’’ in Proc. IEEE Intell. Transp. Syst. Conf.
(ITSC), Oct. 2019, pp. 1411–1416.

[26] U. Kamal, T. I. Tonmoy, S. Das, and M. K. Hasan, ‘‘Automatic traffic sign
detection and recognition using SegU-Net and a modified Tversky loss
function with L1-constraint,’’ IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 4, pp. 1467–1479, Apr. 2020.

[27] L. Liu, Y. Wang, K. Li, and J. Li, ‘‘Focus first: Coarse-to-fine
traffic sign detection with stepwise learning,’’ IEEE Access, vol. 8,
pp. 171170–171183, 2020.

[28] D. Tabernik and D. Skocaj, ‘‘Deep learning for large-scale traffic-sign
detection and recognition,’’ IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4,
pp. 1427–1440, Apr. 2020.

[29] Z. Wang, J. Wang, Y. Li, and S. Wang, ‘‘Traffic sign recognition
with lightweight two-stage model in complex scenes,’’ IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 2, pp. 1121–1131, Feb. 2022, doi:
10.1109/TITS.2020.3020556.

[30] H. Zhang, L. Qin, J. Li, Y. Guo, Y. Zhou, J. Zhang, and Z. Xu, ‘‘Real-time
detection method for small traffic signs based on Yolov3,’’ IEEE Access,
vol. 8, pp. 64145–64156, 2020, doi: 10.1109/ACCESS.2020.2984554.

[31] J. Wan, W. Ding, H. Zhu, M. Xia, Z. Huang, L. Tian, Y. Zhu, and H. Wang,
‘‘An efficient small traffic sign detection method based on YOLOv3,’’
J. Signal Process. Syst., vol. 93, no. 8, pp. 899–911, Aug. 2021, doi:
10.1007/s11265-020-01614-2.

[32] (Oct. 2020). Github Repository for Train Your Own YOLO. Accessed:
Oct. 17, 2020, doi: 10.5281/zenodo.5112375. [Online]. Available:
https://github.com/AntonMu/TrainYourOwnYOLO

[33] Swedish Traffic Signs Dataset. Accessed: Dec. 27, 2020. [Online]. Avail-
able: https://www.cvl.isy.liu.se/research/datas ets/traffic-signs-dataset/

YAWAR REHMAN received the bachelor’s degree
in electronics engineering from the Mehran Uni-
versity of Engineering and Technology, Pakistan,
in 2008, and the master’s and Ph.D. degrees
in electronics and communication engineering
from Hanyang University, South Korea, in 2017.
He is currently an Assistant Professor with the
NED University of Engineering and Technology,
Pakistan. His current research interests include
computer vision, image processing, feature
extraction, and deep learning.

HAFSA AMANULLAH received the B.E. degree
in electronic engineering and the M.Eng. degree
in industrial electronics from the NED Univer-
sity of Engineering and Technology, Pakistan, in
2017 and 2021, respectively.

Currently, she is working as a Senior Research
Assistant with Habib University. Her research
interests include computer vision, deep learning,
and artificial intelligence.

MUHAMMAD AYAZ SHIRAZI received the
B.E. degree in electronics engineering from the
NED University of Engineering and Technol-
ogy (NEDUET), Pakistan, in 2012, and the
Ph.D. degree from the Optomechatronics and
Multi-Scale Robotics Laboratory, Kyungpook
National University, South Korea, in 2018. He was
the Former Postdoctoral Researcher at KAIST,
South Korea. Currently, he is working as a Senior
Researcher with NCRA, NEDUET. His research

interests include camera calibration and 3D reconstruction, digital image
processing, augmented reality, deep learning, and structured light imaging.

MIN YOUNG KIM (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees with the
Korea Advanced Institute of Science and Tech-
nology, South Korea, in 1996, 1998, and 2004,
respectively. From 2004 to 2005, he worked
as a Senior Researcher at Mirae Corporation.
From 2005 to 2009, he worked as a Chief Research
Engineer at KohyoungCorporation, in the research
field of artificial vision systems for intelligent
machines and robots. He was a Visiting Associate

Professor with the Department of Electrical and Computer Engineering and
the School of Medicine, Johns Hopkins University, from 2014 to 2016.
Since 2009, he has been an Assistant Professor with the School of Electrical
Engineering and Computer Science, Kyungpook National University. Cur-
rently, he is a Full Professor with the School of Electronics Engineering,
Kyungpook National University, and the Deputy Director of the Research
Center for Neurosurgical Robotic Systems and the KNU-LG Convergence
Research Center. His research interests include visual sensor system for
robotic perception and recognition, human augmentation devices, control
system for microrobotic systems, and surgical robotic systems.

18680 VOLUME 10, 2022

http://dx.doi.org/10.1109/TITS.2020.3020556
http://dx.doi.org/10.1109/ACCESS.2020.2984554
http://dx.doi.org/10.1007/s11265-020-01614-2
http://dx.doi.org/10.5281/zenodo.5112375

