IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 2, 2022, accepted February 8, 2022, date of publication February 10, 2022, date of current version March 4, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3150847

Characterizing the Architectural Erosion Metrics:

A Systematic Mapping Study

AHMED BAABAD'-2, HAZURA BINTI ZULZALIL"“', SYNADAH HASSAN 1,

AND SALMI BINTI BAHAROM !

I Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang

43400, Malaysia

2Department of Management Information Systems, Administrative Sciences, Hadhramout University, Al Mukalla, Yemen

Corresponding author: Hazura Binti Zulzalil (hazura@upm.edu.my)

This work was supported in part by the Universiti Putra Malaysia (UPM).

ABSTRACT Software architecture is crucial in determining success or failure in a variety of software
development and design fields. Typically, as a system evolves, software architecture deteriorates. This
phenomenon is known as architectural erosion. Several studies have addressed architectural erosion based
on different solutions. As a result, the metrics technique is the most prevalent solution for architectural
erosion. Nevertheless, a comprehensive description of architectural erosion metrics remains unorganized and
scattered. This work aims to conduct a systematic mapping to describe and analyze the architectural erosion
metrics to provide an overview of erosion metrics and their current trends. Furthermore, no systematic
attempts have been made on architectural erosion metrics. The final samples of this study were specified
as a total of 43 included papers. Nearly 100 architectural erosion metrics were found. We proposed nine
classifications to address architectural erosion challenges, based on adopted approaches in primary studies.
The metrics of architectural erosion provide strong evidence for identifying decay and a rapid enabler factor
for the adoption of numerous metrics mechanisms to address architectural erosion. The classification of
metrics, which is the first of its kind, benefits researchers and practitioners. However, it can be concluded
that various aspects are still ambiguous and require further research on architectural erosion measures.

INDEX TERMS Architectural erosion, architecture erosion, architecture degradation, architectural degra-

dation, metrics, measures, mapping study.

I. INTRODUCTION

Since late 1989, software architecture has appeared as the
initial conception of the large-widely structures of software
systems. It plays a prominent role in many aspects of software
development: analysis, reuse, understanding, evolution, con-
struction, and management. Practitioners have realized that
having the correct architecture is crucial for system devel-
opment and design [1]. The decisions and principles of the
system to be developed are considered part of the software
architecture [2].

Software architecture is degraded over time as a variety
of factors: code complexity, adding new features, time pres-
sure, fixing bugs, design decisions, accumulating architec-
tural debt, a dependency of the unintended cyclic among
components, and inconsistent requirements, as well as tech-
nical requirements for changes (i.e., programming languages,

The associate editor coordinating the review of this manuscript and
approving it for publication was Porfirio Tramontana.

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

hardware, new platforms, and operating system), all of these
architectural problems may appear quietly and considerably
unobserved and undiscovered unto they grow in the domain
and become hard to maintain [3], [4].

The potential risks that refer to problems in architecture
evolution and quality of systems [5], [6] must be identi-
fied and detected based on an architectural evaluation to
address and predict architectural erosion. Numerous solutions
have been proposed in [7] to combat architectural erosion.
Consequently, the metrics strategy is the most common and
successful among the available solutions [7], [8]. At var-
ious stages of software development, software metrics are
used to capture various software characteristics to improve
and monitor different products and processes in the soft-
ware engineering discipline[9]. The basic logic originates
from this concept * you cannot control what you cannot
measure”’ [10].

Despite the vast number of measures and their distribu-
tion across different topics in software engineering, there

22915

https://orcid.org/0000-0002-1596-4828
https://orcid.org/0000-0002-9344-8239
https://orcid.org/0000-0001-5286-3738

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

is a need to understand the metrics of architectural erosion
and analyze those metrics that are the most widely used
solutions to determine and comprehend architectural ero-
sion and maintain architectural sustainability due to the lack
of any previous systematic study. This study will focus on
metrics related to architectural erosion. The study aims to
explore the nature of existing metrics by classifying them
regarding software architecture erosion. The architectural
erosion metrics provide substantial help for a faster and
less costly architectural inspection [7]. Since the presence
of risks, defects, and problems that arise in the architec-
ture over time with evolution, metrics will adopt this phe-
nomenon to assess the extent of erosion and predict it before it
occurs.

Several studies have presented metrics as effective solu-
tions to address architectural erosion [6], [7]. Accordingly,
these efforts have yielded many results that need more com-
prehensive reviews and complete details. Furthermore, they
are subject to some criteria to obtain a broad knowledge
that leads researchers and practitioners to establish ideas
and future directions in this field. Nonetheless, as stated
previously, the concept of architectural erosion metrics is
still disorganized and dispersed. Furthermore, based on what
we know, no systematic attempts have been made to clas-
sify and describe the existing studies to provide practition-
ers and researchers with more insightful evidence and a
deeper understanding. Therefore, this paper presents a sys-
tematic mapping analysis on characterizing architectural ero-
sion metrics to determine the existing state of the art in
using erosion metrics and how they are effective in empirical
studies.

The key contribution of this paper presents three folds
different to the domain: Firstly, we identified 43 included
studies to characterize metrics of the architectural erosion,
which no other secondary study found out and can be used
as an inception indicator to broaden knowledge on the topic.
Secondly, we conducted a comprehensive explanation and
in-depth comprehension to gain knowledge about i) classi-
fication of the architectural erosion approaches and identi-
fication of the metrics used in each category, (ii) mapping
the metrics related to software quality, (iii) validation of
architectural erosion metrics and the extent of its level and
case study systems, (iv) used tools supporting for calcula-
tion of degradation metrics, (v) comparative analysis among
the metrics to identify the extent of the effectiveness of the
measures, and (vi) applicability of metrics. Thirdly, we iden-
tified the current study trends in architectural erosion met-
rics to support further investigation and research in this
domain.

The following is how the rest of the paper is organized:
the background of issues of the relevant architecturally is
depicted in section 2. The related work is stated in section 3.
The systematic mapping methodology protocol is planned in
section 4. The results are shown in section 5. The discus-
sion is explained in section 6. The potential threats to the
study’s validity are discussed in section 7. The implications

22916

of research and practice are demonstrated in section 8. The
conclusion is drawn in section 9.

Il. BACKGROUND

In order to introduce a correct definition of architectural
erosion metrics, this section presents a brief overview con-
cerning software architecture, architectural erosion, and
software metrics. The definition is demonstrated in the
subsections.

A. SOFTWARE ARCHITECTURE

Software architecture (SA) has been getting attention increas-
ingly since the past decade of the last century. SA plays a
pivotal and essential role within the software engineering
environment, particularly in software development aspects:
understanding, analysis, construction, evolution, reuse, and
management; thereby, it’s a crucial and high-priority factor
to identify success or failure of system development and
design [1], [11], [12].

The SA of the system can be described as the system’s
structures, which include software components, observable
properties of components, and the interactions between
them. [13]. SA is concerned with the high-level structure and
system attributes [14], [15]. It involves and interacts with
software families studying component-based reuse, limited
classes of components, domain-particular design, and soft-
ware analysis [12]. SA can be represented across two perspec-
tives: prescriptive architecture and descriptive architecture.
The descriptive software architecture is concerned with how
the system has been designed as-implemented architecture.
In contrast, prescriptive software architecture is concerned
with design decisions taken prior to system construction as-
intended architecture. Hence, its prominence and representa-
tion have to be led to the initial understanding of the structure
of any software system and analyzing crucial early design
decisions [16].

B. ARCHITECTURAL EROSION

Usually, as a system evolves, the software architecture dete-
riorates. [3], [4]. This problem is not born recently, but it’s
long-standing software engineering. This phenomenon called
architectural erosion [17]-[20], architectural decay [21],
architectural degeneration [19], [22], or architectural
degradation [14], [23], [24].

Architectural erosion can be defined as a continuous diver-
gence between prescriptive and descriptive software architec-
ture as intended and implemented. [14], [23]. It occurs when
the implemented software architecture, representing the sys-
tem’s actual functions, differs from the planned architecture,
representing the system’s original design. Several factors may
contribute to architectural erosion, such as the architectural
change of a system over time [22], developer mistakes, bad
practices [25], disregard of fundamental architectural rules of
a system due to the modification. Consequently, continuing
architectural erosion could shorten the system lifetime or re-
engineering from scratch [25], [26].

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

IEEE Access

Architectural erosion has a significant negative effect on
software quality and software architecture. It can result
in considerable problems such as increasing software
development costs [27], [28], minimizing software perfor-
mance [29], [30], and declining software quality proper-
ties [31] like maintainability, adaptability, or reusability
because of an erosion factor contributing to software aging.

C. SOFTWARE METRICS

Measurement is considered, as in all other engineering
domains, is pivotal in software engineering to identify, assess,
predict, and monitor software entities such as resources, prod-
ucts, and processes for evaluating, controlling, improving,
enhancing, and monitoring software quality, productivity,
estimation, accuracy, and reliability [9, 32-35]. Inevitably,
software measurement is prevalent in every process or prod-
uct thereby, and it isn’t easy to control something that cannot
be measured.

According to the ISO/IEC 15939:2017 [36], the mea-
surement process can be defined as a *“ primary tool for
managing, organizing, performing, and evaluating measure
within an overall system, enterprise, or organizational mea-
surement structure. Hence, software metrics are used to
appropriately measure different elements of the life cycle
of software development [37] since it’s an essential task to
a process of software measurement and quality attributes.
Goodman [38] defined software metrics as > the continued
application of measurement-based techniques to the soft-
ware development product and process to provide meaningful
and timely management information, as well as the use of
those techniques to improve and enhance the process and its
products.

A building of product or process for a system must be
subject to quality criteria identified by software metrics.
It explains that software metrics are the main factor for
analyzing the evolution or degradation of the system in
general.

Ill. RELATED WORK

Itis significant to present an overview of prior studies on char-
acterizing the metrics based on different forms of software
architecture erosion.

Baabad et al. [7] performed a systematic literature study
to thoroughly understand the architectural decay within
open-source projects by analyzing the possible reasons,
indicators of decay symptoms, proposed solutions, and
an extent of solutions effectiveness. According to their
research, metrics-based strategies are the most commonly
used solutions. Abdellatief et al. [39] performed a sys-
tematic mapping review (SMR) to provide an overview of
component-based software system (CBSS) metrics. In addi-
tion, they identified proper metrics to measure required
attributes, focusing on elements and approaches utilized to
assess the quality of CBSS from the perspective of the com-
ponent consumer. Staron and Meding [40] surveyed a set of
metrics used for information needs that represent architecture

VOLUME 10, 2022

metrics, technical debt/risk, and design stability. They found
54 metrics in the literature distributed a generic measurement
portfolio regarding the continuous prevalence of the software
design properties and the architecture quality. Tahir ef al. [41]
conducted a systematic literature review (SLR) to provide a
comprehensive overview of software measurement programs
(MPs). They highlighted used tools and current measure-
ment planning models for carrying out MPs and mitigation
strategies to encounter the challenges and essential infor-
mation on success/failure factors of MPs. Coulin ef al. [42]
performed a systematic literature review on current metrics
that center on the software architecture early in the design
process and over the software’s lifetime for assessing the
quality. They provided architecture metrics to identify its
relationship with some of the quality attributes and the degree
to which these measures represent the quality of architecture.
Stevanetic and Zdun [43] conducted a systematic mapping
study on the relevant measures to the understandability of
architectural structure concepts. These metrics represent the
high-level architectural structures (i.e., measures that work
above the level classes) concerning their relationship to
the system implementation. They classified the metrics in
terms of definitions, mapping quality attributes, measured
artifacts, level of validation, usability, applicability, com-
parative analysis, tool support. This is the only study that
has a significant similarity to our study in terms of the
characteristics of the level of maturity. Still, its fundamen-
tal difference lies in that this study classifies measures in
terms of understandability of architectural structure concepts,
while our study is concerned with characterizing architec-
tural erosion metrics. Mamdouh Alenezi [44] surveyed the
software architecture quality attributes, particularly stability
and understandability of software architecture because sev-
eral metrics affect stability and understandability. This work
paves the way for researchers and practitioners to provide
better ways of investigating and measuring the software archi-
tecture quality characteristic. Nufiez-Varela et al. [45] per-
formed a systematic mapping study on source code metrics,
considered a fundamental component in the software mea-
surement process. They provided a comprehensive overview
of an existing state of source code measures and their current
trendy track. They also focused on programming paradigms,
types of systems, programming languages, and benchmarks
systems currently measured by source code metrics. This
study presents proof that source code metrics has a con-
siderable body of research for different computer science
areas, empirical analysis studies to be investigated and pub-
lished for persistent development in source code metrics
research. Koziolek [46] conducted a systematic literature
review on measuring the sustainability of software architec-
ture. He evaluated sustainability through evolvement using
scenarios and metrics and early design using scenarios.
He carefully investigated the appropriateness of current meth-
ods for sustainability analysis and collected a list of more than
40 architecture-level metrics as reported by numerous design
principles.

22917

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

TABLE 1. Review summary of prior studies literature.

Reference Focus Period-span Primary paper Review Domain
method
Baabad, Zulzalil Understanding the reasons, indicators, ~ Up to March 2020 74 SLR Architectural decay and
etal [7] symptoms, solutions, and 0SS
effectiveness of architecture decay.
Abdellatief, Analysis of component-based metrics, Up to 2010 31 SMR component-based software
Sultan et al [39] focusing on approaches and elements system (CBSS)
to assess the quality of CBSS.
Staron and Investigation of metrics used for 2017 - Survey Architecture measures
Meding [40] information needs that represent
architecture metrics, technical
debt/risk, and design stability.
Tahir, Rasool et Highlight software measurement Upto 2016 36 SLR software measurement
al. [41] programs (MPs) to identify current programs (MPs)
tools, models, strategies and provide
information for implementing MPs.
Coulin, Detante Analysis of existing architecture Up to 2019 56 SLR Architecture metrics
et al [42] metrics for evaluating the quality.
Stevanetic and To measure the understandability of 1990- June 2013 25 SMR Understandability of
Zdun [43] architectural structure concepts of architectural structure
high-level architecture.
Mamdouh To measure and investigate the 2016 - Review Software Architecture
Alenezi [44] software architecture quality attributes Quality Measurement
in terms of stability and Stability and
understandability of software Understandability
architecture.
Nufiez-Varela, To collect source code metrics and 2010- 2015 226 SMR Source code metrics
Pérez-Gonzalez analyze the current state and their
et al [45] current trends.
Koziolek [46] To measure the sustainability of a Up to 2011 - SLR Sustainability of software

software architecture using scenarios
and metrics

architecture

According to the previous reviews, none performed sys-
tematic mapping analysis or any other type of review research
on characterizing architectural erosion metrics. However,
understanding the nature of the existing metrics assess-
ment about software architecture is necessary to address
architectural degradation. As a result, this study provides
a complete characterization to provide a holistic overview
of existing studies in analyzing and accomplishing software
metrics at the architectural level based on specific research
issues that haven’t been addressed in prior published reviews.
Table 1 demonstrates a summarized comparison between our
study and the previous studies concerning the focus, period-
span, number of primary studies, review method, and domain
covered in the study.

IV. SYSTEMATIC MAPPING METHODOLOGY

A systematic mapping study is a secondary method that
provides a comprehensive overview concerning identifying,
categorizing, and outlining all available research results of a
specific research area [47]-[49]. Systematic mapping studies

22918

focus on an overview of the topic through broad research
questions. In contrast, systematic literature studies (SLR)
focus on a specific topic through the deep analysis of narrow
research questions. Petersen et al. [48] presented a compari-
son between systematic and mapping studies to describe the
goal, process, breadth, and depth to choose the appropriate
study for research. This study aims to provide an overview of
a research field by categorizing measures, mapping quality
aspects to those categories, and validating metrics through
a comprehensive analysis. Therefore, we perform a compre-
hensive systematic mapping study to characterize the cur-
rent status of architectural erosion metrics. We follow recent
guidelines of systematic maps by Petersen et al. [49]. Fig 1
depicts a flowchart of the mapping process followed by us,
confirmed through guidelines and instructions by [48-50].

A. PLANNING PROCESS

The planning process includes sub-processes such as identi-
fying needs, formulating research question(s), and reviewing
protocol.

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

IEEE Access

Identification of needs

. Research guestions
~—— Planning >
| Review protocol
Search strategy & Study selection
mapping process] Quality assessment
RRERG B ' Conducting >
. Data extraction and synthesis
. Report results
— Reporting »

FIGURE 1. The systematic mapping protocol process.

1) IDENTIFICATION OF NEEDS

Measures are an essential field in software engineering. There
are several classifications of software metrics according to
specific measurement needs, such as architectural erosion
metrics concerned with detecting, repairing, or predicting
problems and defects that affect software architecture. There-
fore, many research papers have been published to cover the
definitions, concepts, and approaches that reduce the problem
of degradation within the software architecture based on the
concepts of metrics. Consequently, it is necessary to obtain
a comprehensive description of architectural erosion metrics
by gathering evidence from current research identified and
discussed in this study.

2) RESEARCH QUESTIONS

It is necessary to define research questions for the systematic
mapping study since it is the basic idea to identify the scope
and concepts of knowledge. One of the most critical steps
in the mapping studies protocol process is determining and
formulating the research question. The research questions and
their motivation are shown in Table 2.

3) REVIEW PROTOCOL

To perform systematic mapping studies, Petersen et al. [49]
and Kitchenham and Charters [50] identified a review
protocol method to choose without randomly and indi-
vidually based on the researcher’s intuition and antici-
pation, which lead to a bias in research is likely to
occur.

The following processes are included in the review
protocol: (i) generating research questions, (ii) develop-
ing a search plan, (iii) selecting study criteria and proce-
dures, (iv) evaluating quality criteria for collected studies,
(v) extracting relevant data, and (vi) synthesizing and
analyzing the extracted data. The phases of the review pro-
tocol for this study are depicted in Fig. 2.

VOLUME 10, 2022

B. CONDUCTING PROCESS

Once the planning process has been determined, the con-
ducting process begins through sub-processes which include
generating search strategy, studies selection relevant to the
defined questions to be primary studies at the end, and the
quality assessment.

1) SEARCH STRATEGY

Generating a research strategy is crucial since it provides
satisfactory results regarding coverage of studies, provided
that a strategy generation is accurate and comprehensive.
We also performed a manual search strategy to ensure that
no articles correlated to the research question were miss-
ing, as indicated by [51, 52]. A search mechanism includes
search string and searching resources venues. Fig. 2 sum-
marizes the review protocol, including the mechanism of
search strategy, which consists of manual and automatic
searches.

a: SEARCH STRING
To construct a search string that is relevant to the subject,
we should follow the guidelines and instructions given by
Petersen et al. [49] and Kitchenham and Charters [50], which
involve: a) obtaining main terms by deriving them from the
research questions; b) searching for abbreviations, spellings,
alternate words, and synonyms for any of the major terms;
¢) Investigating for the aforementioned prior steps by match-
ing keywords in any relevant research study; d) constructing
search strings with the Boolean operators ““OR’” and “AND”’.
The “OR’ operator is used to connect synonyms, alternative
words, and abbreviations. While “AND’’ is used to connect
the main terms. e) merging the main terms to construct the
ultimate search term.

The researchers specified the question structure based on
the experimental design, outcome, intervention, and popula-
tion to improve the design of the key terms, as declared below:

22919

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

TABLE 2. Research questions.

ID Research question Motivation

RQ1 What classifications and metrics have been established for To find metrics and categories of its approaches based on architectural

assessing architectural erosion?? erosion that can be used to solve architectural challenges.

RQ2 Which metrics have been mapped to each quality attribute? To identify metrics correlated to quality attributes (i.e., metrics
evaluate a specific quality whether one or more, such as
maintainability, reusability concerning architectural erosion).

RQ.3 What are the metrics validation criteria in the context of To identify the criteria of validating erosion measures, it is necessary to

architectural erosion? recognize the measure to be assessed.

RQ3.1 ‘What validation are approaches used for architectural erosion By describing the proposed metrics, it is essential to ensure how
metrics? approaches are validated through metrics.

RQ3.2 What validation level and case study are applied to architectural It is essential to identify which validation level and systems context
erosion metrics? were conducted by validating architecture decay metrics.

RQ 3.3 How could the extent of metrics effectiveness among several To clarify comparative analysis, if it exists, identify an extent of
studies be identified based on comparative analysis? metrics effectiveness among several studies.

RQ 4 Are there tools that support automatically calculating architectural ~ Find what tools are supporting metrics. For example, are researchers

erosion metrics? proposing tools to calculate metrics? or is research dependent on
identified metrics without automatic tool support?

RQ5 What is the representative approach for the metric context used? Describe the representation model of the used metric context within the
decay phenomenon.

RQ6 To what extent are the metrics applied in the context of Applied metrics can contribute to Identifying the extent of ease and

architectural erosion?

difficulty relating to applicability.

« Population: Software architecture.

« Intervention: checking of architectural erosion metrics.

o Outcomes: improved reliability of metrics in detection,
repair, or prediction of the architecture decay

o Experimental Design: Empirical studies, experimental
studies, and case studies.

Once the search string terms have been gathered and made
sure regarding some tests that were performed to identify the
validity of terms of search string on the chosen libraries, the
following comprehensive search terms were selected in this
study:

[(“‘Architectural drift” OR “Architectural problem” OR
“Architectural Smell” OR “‘Architectural degradation” OR
““ Architectural erosion” OR “Architectural inconsistency”
OR ““Architectural decay” OR “‘Architectural anomaly”
OR “Architectural violation” OR ‘“‘Architectural debt” OR
“Architectural change” OR “Architecture drift”” OR ““Archi-
tecture degradation” OR “Architecture erosion” OR
“Architecture decay”) AND (“measure” OR ‘“‘metric”
OR “measurement” OR “evaluation” OR ‘‘quantitative”
OR ““assessment”)].

The prior search terms were approved based on our prelim-
inary reading of a few scientific articles, particularly those
recently published, as well as our familiarity with standard
search terms.

Except for the web of science and SpringerLink libraries,
the search string term was checked in the specific digital
libraries by the keywords, abstract, and title per a study,
whereas the full text tested the search string term because the
advanced search by keywords, title, and abstract is not easy
and straightforward to use.

b: RESEARCH RESOURCES
Choosing the searching resources venues plays a crucial role
in the result determination effectively of the mapping study.

22920

Therefore, the researchers must identify the locations of the
research resources that are entirely compatible with the top-
ics of their research, whether the resources are specialized
towards specific research or the resources that are compat-
ible with all research’s specializations due to the nature of
the design of the comprehensive research resource mecha-
nism. In this study, seven databases were used in the search
scope. These digital database libraries are the most common
and efficient to perform systematic studies in the software
engineering context.

The first step is to conduct an automatic search across
seven databases, as shown in Table 3. The second step is
to conduct a manual search using the backward-forward or
snowballing search approach to find related studies among
the primary studies that have been chosen. [53]. Finally,
the Google Scholar engine was also employed to define
related studies citations based on the selected primary
studies.

2) STUDIES SELECTION CRITERIA

The selection criteria target all related articles in our system-
atic mapping study, including exclusion/inclusion criteria and
procedure of primary study selection.

a: INCLUSION AND EXCLUSION CRITERIA

The inclusion and exclusion criteria aim to ensure that the
selected studies are more related to the defined research
questions. In addition, this criterion was determined to find
unique papers relevant to the study.

Many research papers were discovered during the search
process (such as journals, conferences, chapters of books,
workshops, symposiums, and other research papers). In this
study, the inclusion criteria select the papers published until
the end of 2020. Articles in the editorials, research propos-
als, summaries of tutorials, controversial corners of journals,

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study I E E E ACC@SS

Generating Research Questions

l

Search

[“Architectural erosion” OR "Architectural degradation" OR “Architectural Smell® OR "Architectural amomaly” OR
“architectural drift" OR "Architectural decay™ OR "Architectural inconsistency OR "Architectural problem" OR "Architectural
violation" OR “Architectural change" OR "aArchitectural debt" OR “Architecture degradation” OR "Architecture decay" OR
“Architecture erosion" OR "Architecture drift") AND ["measure"” OR "metric" OR "measurement” OR “evaluation” OR
“guantitative™ OR "assessment")

.. ,. l

Wilay SCopus IEEE Explore Wos ScienceDirect ACI springerLink
65 503 70 62 149 514 94
¥ ¥ ¥ l
-
Required articles after applying inclusionand exclusion oriteria
The scan: 1463 - 1033 =430
Y
r/’— Removed Duplicates and Unrelated pomoye replicated \\1
studies
Soreen ouwt i Title and Full Text Final Induded
Duplication I Abstract scan \ . Reading | 58t
; 430-235=195 r 3 195 -95= 100 F : 100-50= 40 F. " 40 +i= 40 !
. v - y % B /
search Alert after sawing a string strategy within each search engine & applying the above criteria = 0

}

Y

]/
!

The primary studies total Quality assessment, Full Searching in references &
£k (1), Partial {0.5), Mo (0] citations for included
45-2=43 studies= 5

Drata Extraction . Data Synthesis

FIGURE 2. Review protocol stages.

poster sessions, and panels were excluded. The published written in English were excluded. In addition, research arti-
articles as short papers were also excluded. The research cles related to architectural decay metrics, whether the answer
papers written in English were included, while those not has a direct or indirect correlation with the research question,

VOLUME 10, 2022 22921

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

TABLE 3. Online databases.

Name URL
IEEE Xplore http://ieeexplore.ieee.org
Springer Link http://link.springer.com.
Science Direct http://www.sciencedirect.com
Scopus https://www.scopus.com
ACM Digital Library http://dl.acm.org
Web of Science http://www.webofknowledge.com
Wiley Online Library https://onlinelibrary.wiley.com/

were included. Articles that were irrelevant to answering
the research questions, on the other hand, were excluded.
Table 4 summarizes the papers’ inclusion and exclusion
criteria.

b: PROCEDURE OF PRIMARY STUDY SELECTION

The first search process extracted an elementary list of
articles, including 1463 (as demonstrated in Fig. 2). Then,
the first author performed the primary studies selection,
and the other authors investigated the selection process to
identify the extent of consistency. In this case, several steps
were performed to determine the inclusion of the articles
that related to the topic and exclusion the articles that are
irrelevant to the topic through following the guidelines by
Kitchenham and Charters [50], Petersen et al. [49], and devel-
oping search strategies including some recommendations to
find out the related studies [53], [54].

Concerning conduct processes, in the first process, the
exclusion and inclusion criteria were applied to get the con-
clusive studies, which refined 430 relevant articles (as shown
in Table 4). In the second process, screening duplicated stud-
ies was eliminated using the Endnote reference manager,
which resulted in 195 articles. The abstract and title were
read in the third process to determine whether or not the
article was relevant to the defined research question, yielding
100 articles. In the fourth process, reading the full text to
assess the article for making the final decision to be included
or excluded, refined 40 articles. There might be duplicate

TABLE 4. Inclusion and exclusion criteria.

articles in terms of content; thereby, the journal article has to
be included instead of the conference paper as long as it is up-
to-date. In the fifth process, a snowballing search strategy was
used to track references and citations of approved studies to
ensure no relevant study was missing, which found five arti-
cles in the first repetition. In the second repetition, five papers
were investigated, and no further studies were found [52]. The
search alert was applied for all the search resources presented
(as shown in Fig 2) to know the relevant papers published
after the first date research, ensuring no further articles were
found. In the final process, the quality assessment of the
articles was applied to evaluate the content of the article
concerning quality, and three studies were excluded because
they do not meet the criteria for quality questions evaluation
shown in Table 6. Consequently, the total of the included
studies was specified in this study, encompassing 43 primary
studies after applying the exclusion and inclusion criteria
(as illustrated in Fig. 2). Table 5 presents the details of the
primary studies of our research.

3) STUDY QUALITY ASSESSMENT

As mentioned in the general criteria for inclusion or exclu-
sion [49], [50], it is essential to reconsider the primary
studies regarding study quality assessment. An evaluation
of the study quality was applied to investigate whether
quality differences illustrate differences in the accuracy of
study findings. The checklist method was formulated to
evaluate the primary study’s quality based on the defined
research questions and extracted data. The purpose of the
study quality assessment is to decide whether or not to
include a study in order to ensure the quality of the
study.

The first author conducted the study quality assessment,
and the other authors investigated the included studies for
quality assessment. Additionally, a dialogue was also held
between the authors to discuss and agree on the point of
disagreement.

The study quality assessment was partitioned into three
levels: High, Medium, and Low. The scores per question
were specified in three portions. The first portion, number 1,

No Inclusion No Exclusion
1 Articles provide metrics discussion in the context of 1 Articles are written in languages other than English.
architectural erosion issues. 2 Articles with incomplete and insufficient information about
2 Articles must have a significant relationship with how the metrics estimates were derived.
metrics topics in order to address the research 3 Articles in the editorials, research proposals, summaries of
questions. tutorials, controversial corners of journals, poster sessions, and
3 Articles must be written in English. panels.
4 Articles must be published by the end of 2020. 4 Articles are written in languages other than English.
5 Articles that do not cover metrics in the context of
architectural erosion issues
6 Articles that have a duplication in several search engines.

22922

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

IEEE Access

TABLE 5. Details of primary studies.

Ref. No Author Title Year Publication Source

S01 Aversano et al [55] An Empirical Study on the Architecture Instability of 2019 Journal
Software Projects.

S02 Lenhard et al. [24] Exploring the suitability of source code metrics for indicating 2019 Journal
architectural inconsistencies

S03 Sejfia [56] A Pilot Study on Architecture and Vulnerabilities: Lessons 2019 Conference
Learned.

S04 Mo et al. [57] Architecture Anti-patterns: Automatically Detectable 2019 Journal
Violations of Design Principles.

S05 Maisikeli [58] Measuring Architectural Stability and Instability in the 2019 Conference
Evolution of Software Systems.

S06 Carvalho et al. [59] Investigating the Relationship between Code Smell 2018 Conference
Agglomerations and Architectural Concerns.

S07 Shahbazian et al. [60] Toward Predicting Architectural Significance of 2018 Conference
Implementation Issues.

S08 Behnamghader et al. [61] A large-scale study of architectural evolution in open-source 2017 Journal
software systems.

S09 Mohsin et al. [62] Evaluating Dependency based Package-level Metrics for 2017 Journal
Multi-objective Maintenance Tasks.

S10 Henrique et al. [63] DCL 2.0: modular and reusable specification of architectural 2017 Journal
constraints.

S11 Fontana et al. [64] An Experience Report on Detecting and Repairing Software 2016 Conference
Architecture Erosion.

S12 Mo et al. [65] Decoupling Level: A New Metric for Architectural 2016 Conference
Maintenance Complexity.

S13 De Oliveira Barros et al [66] Learning from optimization: A case study with Apache Ant. 2015 Journal

S14 Guimaraes et al. [67] Architecture-Sensitive Heuristics for Prioritizing Critical 2015 Conference
Code Anomalies.

S15 Fontana et al. [68] Towards assessing software architecture quality by exploiting 2015 Conference
code smell relations.

S16 Zengyang et al. [69] An Empirical Investigation of Modularity Metrics for 2014 Conference
Indicating Architectural Technical Debt.

S17 Ferreira et al. [70] Detecting Architecturally-Relevant Code Anomalies: 2014 Conference
A Case Study of Effectiveness and Effort.

S18 Macia et al. [71] Enhancing the Detection of Code Anomalies with 2013 Conference
Architecture-Sensitive Strategies.

S19 Guimaraes et al. [72] Prioritizing Software Anomalies with Software Metrics and 2013 Conference
Architecture Blueprints.

S20 Macia et al. [73] Are Automatically-Detected Code Anomalies Relevant to 2012 Conference
Architectural Modularity? An Exploratory Analysis of
Evolving Systems.

S21 Zude et al. [74] Characteristics of multiple-component defects and 2011 Journal
architectural hotspots a large system case study.

S22 Steff and Russo [75] Measuring Architectural Change for Defect Estimation and 2011 Conference
Localization.

S23 Sangwan et al. [76] Use of a multidimensional approach to study the evolution of 2010 Journal
software complexity.

S24 Andrea and Thomas [77] Software Engineering in Practice: Design and Architectures of 2009 Conference
FLOSS Systems.

S25 Singh et al. [78] Reducing Maintenance Efforts of Developers by Prioritizing 2019 Journal
Different Code Smells.

S26 Nayebi et al. [79] A Longitudinal Study of Identifying and Paying Down 2019 Conference
architecture debt.

S27 Vanius et al. [80] The WGB method to recover implemented architectural rules. 2018 Journal

S28 Zapalowski et al. [81] Understanding architecture non-conformance: Why is there a 2018 Conference
gap between conceptual architectural rules and source code
dependencies?

S29 Roveda et al. [82] Towards an Architectural Debt Index. 2018 Conference

S30 Rizzi et al [83] Support for Architectural Smell Refactoring. 2018 Conference

S31 Biaggi et al [84] An Architectural Smells Detection Tool for C and C++ 2018 Conference
projects.

S32 Fontana et al. [85] Automatic Detection of Instability Architectural Smells. 2017 Conference

S33 Altinigik et al. [86] Evaluating Software Architecture Erosion for PL/SQL 2017 Conference
Programs.

S34 Fontana et al. [87] On evaluating the impact of the refactoring of architectural 2016 Conference
problems on software quality.

S35 Stevanetic et al. [88] Supporting Software Evolution by Integrating DSL-based 2014 Conference
Architectural Abstraction and Understandability Related
Metrics.

S36 Reimanis et al. [89] A Replication Case Study to Measure the Architectural 2014 Conference
Quality of a Commercial System.

S37 Guimaraes et al. [90] Exploring Blueprints on the Prioritization of Architecturally 2014 Conference

VOLUME 10, 2022

Relevant Code Anomalies: A Controlled Experiment.

22923

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

TABLE 5. (Continued.) Details of primary studies.

S38 Schwanke et al. [91] Measuring Architecture Quality by Structure Plus History 2013 Conference
Analysis.
S39 Ambros et al. [92] On the Relationship Between Change Coupling and Software 2009 Conference
Defects.
S40 MacCormack and Sturtevant Technical debt and system architecture: The impact of 2016 Journal
[93] coupling on defect-related activity.
S41 Diaz-Pace et al. [94] Sen4Smells: A Tool for Ranking Sensitive Smells 2020 Conference
for an Architecture Debt Index
S42 Garcia et al. [95] Forecasting Architectural Decay from 2021 Journal
Evolutionary History
S43 Lindvall et al. [22] Avoiding Architectural Degeneration: An Evaluation Process 2002 Conference
for Software Architecture
TABLE 6. Quality assessment criteria.
QA ID Quality checklist questions Marked Score
QA1 Are the goal/(s) of the research clearly declared?
QA2 Does paper add well-motivated value about The score “Yes” =1/
characterizing the metrics for architecture erosion? “No” =0/ “partial”
=0.5
QA3 Does the paper provide in-depth detail of the
architectural erosion metrics?
QA4 Is the metrics assessment explicitly described?
QAS Is the paper well-referenced (i.e., article references from
various journals and peer-reviewed conferences)?
QA6 Does the paper independently depend on metrics of

architectural erosion?

denotes a quality criteria achievement perfectly and com-
pletely. The second portion, number 0, denotes not perform-
ing anything from the declared quality criteria in the second
portion. The last portion, number 0.5, denotes partial fulfill-
ment of the criteria. Table 6 shows the quality assessment
criteria.

Afterward, implementing quality criteria, scores of six
criteria were gathered, and the scope of the three levels was
identified for quality assessment. If the range is between the
scores 5.0 — 6.0, this means a high level; and if the range is
between scores 4.5 - 3.5, this means a medium level; and if
the range is between the scores 2.5 — 3.0, this means a low
level. Consequently, most of the scores were of a high level,
while three studies were excluded because they did not Fulfill
the bounded criteria. In Fig. 3, the classification of studies
is demonstrated after implementing the quality criteria for
the stated three levels. The scores of the quality assessment
criteria for primary studies were explained in Appendix A.

4) DATA EXTRACTION AND SYNTHESIS

Once the selected studies have been approved and evalu-
ated to be applied to the mapping study, the data extraction
is begun from the primary papers to write down all the
relevant data required to address the defined research ques-
tions. To simplify the data extraction process, we followed

22924

mHigh ® Medum Low

FIGURE 3. Distribution of study quality assessment levels.

guidelines in the study [49], [50] to use data design forms
that contribute to refining the list of required attributes for this
study. Table 5 describes the selected studies’ reference details
(SID, Title, Author, Year, and Publication source). Finally, the
data extraction of the required attributes list was applied to
43 primary studies with a summarized description of all the
attributes listed in Table 7. The extracted data of the required
attributes list was stored in Endnote reference manager and
the MS Excel spreadsheets

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

IEEE Access

TABLE 7. Data extracted attributes list of the primary studies.

Attribute Description
Study ID Unique identifier per study.
Year To specify the year in which the paper is published.
Study Type Identify the publication source such as journal, conference.
Study Title Summarize the topic that takes precedence over other topics.
Study Focus Outline the main goal concerning motivation and use approaches to justify the extent of approaches

effectiveness.
Measures of architectural

To clarify the name and description of metrics, mapping quality by which the metrics related to,

decay granularity level of the metrics, the context of the metrics, usability, applicability, and comparative

analysis among metrics itself.

Validation process

address architectural decay.

Obtained results
Tool Support

Describe the validation process regarding the state metrics to identify the extent of effectiveness to

Clarifying the key findings to identify positive or negative impact by which metrics were performed.
Are the used metrics supported by the tool or not, and which is the tool's name?

It is significant to identify whether the results obtained can
be synthesized in line with each specific research question
regarding data synthesis. The data synthesis can contain the
quantitative data if the data converge on a particular indicator
that has thoroughly influenced the outcome. Data synthesis
can contain descriptive data (non-quantitative). In this study,
data were extracted to include descriptive data (e.g., used
metrics, proposed used approaches, mapping quality, the con-
text of the metrics, tool support, and validation process) and
quantitative data (e.g., the extent impact of metrics accuracy
with respect to addressing issues of the architectural decay).

V. RESULTS

In this section, the results obtained according to the research
questions that have been answered by the selected primary
studies shown in Table 2 will be presented.

A. RQ1) WHAT CLASSIFICATIONS AND METRICS HAVE
BEEN ESTABLISHED FOR ASSESSING ARCHITECTURAL
EROSION?
To address RQ1, we conducted an exploratory study of all
used approaches of architectural erosion metrics. Based on
our exploratory study, which is shown in Table 8, we clas-
sify the methods to architectural erosion analysis into nine
categories established on the analysis of two criteria for the
primary studies (i.e., the study objective and the approach
adopted to address architectural erosion): Historical data
revision, Architectural bad smells, Architecture modular-
ization, Architectural change, Architectural technical debt,
Architectural dependency coupling, Architectural cohesion,
Architectural complexity, and Analysis of software architec-
ture size. All these classifications are defined in Appendix C.
Our classification makes it possible to determine the
metrics related to each architectural erosion type. This clas-
sification of metrics is defined using the prioritization of the
proposed metric of an empirical study based on two identified
vital criteria: 1) metric repeatability in used approach, which
means a measure is considered to be repeatable by how many

VOLUME 10, 2022

n

FIGURE 4. Number of metrics by classification.

this metric in stated classification is performed 2) obtained
positive value, which refers to what extent the value is being
met positively. Fig 4 summarizes the number of metrics per
classification.

Regarding the adopted of approaches classifications, archi-
tectural dependency coupling analysis represents 26.66%,
of all included studies, architectural bad smells 17.33%,
architectural change 12.00%, architectural complexity
9.33%, architecture modularization, architectural technical
debt, and analysis of software architecture size 8.00%, while
architectural cohesion 4.00%. These categories are clarified
by a number of papers in Fig 5.

Figure 5 depicts metrics distribution in terms of classifying
architectural erosion we considered. It shows that architec-
tural dependency coupling analysis is measured by 24.17% of
all well-chosen metrics from studies, making it most widely
used for developing a mechanism of metrics approaches to
address issues of architectural erosion. In addition, the archi-
tectural change is measured by 13.18%; architectural bad
smells are measured by 12.08%; historical data revision and
architecture modularization are measured 10.98%; analysis
of software architecture size is measured by 9.89%; archi-
tectural complexity is measured by 7.69%, while architec-
tural technical debt and architectural cohesion are measured
by 4.49%.

22925

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

TABLE 8. Adopted metrics and approaches classifications.

Study ID

Adopted classifications

Abbreviation of the defined metrics

[S02], [S04], [S25], [S36], [S38].

[S05], [S14], [S15], [S17], [S19], [S20], [S30], [S31], [S32],
[S34], [S37], [S41], [S42].

[S03], [S06], [S09], [S12], [S16], [S26].

[S01], [S03], [S05], [S07], [S08], [S13], [S22], [S23], [S42].

[S02], [S16], [S26], [S29], [S34], [S40].

[S02], [S03], [S09], [S11], [S13], [S18], [S19], [S23], [S24],
[S27], [S28], [S30], [S31], [S32], [S34], [S35], [S39], [S40],
[S42], [S43].

[S02], [S13], [S33].
[S02], [S05], [S11], [S21], [S23], [S25], [S34].

[S02], [S05], [S10], [S13], [S35], [S37].

Historical data revision.

Architectural bad smells

Architecture modularization

Architectural change

Architectural technical debt

Architectural dependency coupling

Architectural cohesion
Architectural complexity

Analysis of software architecture size

NC, NCL, Severity, CF, TF, BCF, PCF,
BC, CCH, NCMs.

PCD, PCC, Fan-in, Fan-out, NCC, CDC,
CDO, CDLOC, NAC, COL, COC.

NOCL, IPMD, IPMC, IPMCD, IPMCC,
Mnewm, Mgé&g, Mrcc, Mbunch, MQ.

CMC, IMC, PDI, PCI, RBMS, ASM,
CVG, MoJo, CD, Abstractness(A),
Instability (I), SD.

DL, PC, MI, SIG, SQALE, IIPU, IIPE,
IPCL IIPUD, IIPED, IPGF, ANMCC.

CMD, OMD, TCMD, TOMD, IMD,
EMD, MDS, DFSM, TWD, AEL, CBO,
SOC, EWSOC, LWSOC, RFC, ROC, Ca,
Ce, MPC, DAC, NOD (Cost Function),
ATFD.

PCQ, LCOMP, LCOM, TCC, RCL
SCC, CC, MCC, WMC, XS, DC, DP.

LOC, TNC, NCONN, NELEM, NCML,
CLD, NOS, Public API, Class elegance.

Analysis of software achitecture sze
Archiectural complexity
Architectural coheson

Architectural dependency coupling

Archiecturalchange
Architecture modularization
Architectural bad smells

Architecturaltechnical debt L

Historical datarev sion

FIGURE 5. Number of papers by classification.

B. RQ2) WHICH METRICS HAVE BEEN MAPPED TO EACH
QUALITY ATTRIBUTE?
The results indicate that most of the metrics directly relate
to the mapping of quality attributes to address architec-
tural erosion by investigating the quality attributes of the
architecture. Therefore, we assess ranking criteria of metrics
mapping based on two identified key criteria [96]: 1) mea-
sure’s significance in terms of reliability, which refers to
the study’s primary goal in terms of identified architectural
quality attributes. 2) repeatability, which refers to what extent
the metric is being used or applied to the quality properties to
address the erosion.

The mapping process for the metrics used to identify qual-
ity characteristics is based on the general goal of architectural

22926

erosion that quantitatively estimates more profound quality
attribute problems.

The results also indicate that analyzability, modularity,
modifiability, and maintainability are the most investigated
measures to address the degradation. Additionally, some
quality characteristics have less effect than the above-stated
characteristics, such as usability, understandability, reusabil-
ity, reliability, and performance efficiency. The metrics abbre-
viations are defined in Appendix B. Table 9 summarizes
mapping metrics to the architecturally relevant quality
attributes.

The results also show the metrics with the highest number
of occurrences used for architectural quality qualities in
resisting erosion and identifying essential measures and their
function for addressing the issue of architectural decay. The
results also indicate that metrics such as FAN-OUT, FAN-IN,
the coupling between objects (CBO), afferent coupling (Ca),
and efferent coupling (Ce), size metrics such as line of
code (LOC), number of clusters (NOCL), number of classes
(NOC), and weighted methods per class (WMC), and Lack
of Cohesion in Methods (LCOM) are most commonly used
metrics among the various attributes of architectural quality.
Table 10 shows the metrics occurrences among the different
quality attributes.

C. RQ3) WHAT ARE METRICS VALIDATION CRITERIA IN
THE CONTEXT OF ARCHITECTURAL EROSION?

Assessing the validation of metrics in software engineering
is vital for understanding, controlling software development

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study IEEEACC@SS

TABLE 9. Mapping metrics the architecturally relevant attributes.

Study ID Quality attribute Metrics abbreviation

[S01], [S03], [S05], [S10], [S21], Analyzability PDIpk, PCIpk, PDIcl, PCIcl, PkDI, PkCI, Instability, RCI

[S23], [S27], [S28], [S30], [S31], ROC, Ca, Ce, Abstractness, MDS, LOC, FAN-IN, FAN-OUT,

[S34], [S38], [S39], [S40]. CF, TF, BCF, PCF, SOC, EWSOC, LWSOC, XS.

[S01], [S12], [S13]. Reusability PDIpk, PCIpk, PDIcl, PCIcl, PkDI, PkCI, CBO, Ca, Ce, Class
elegance. NOD (Cost Function), CD

[S03], [S09], [S12], [S13], [S16], Modularity MQ, WMC, LOC, LCOM, CBO, NCC, CDC, CDO, RFC,

[S22], [S26], [S33], [S36], [S37]. FAN-IN, FAN-OUT, CF, TF, BF, PCF, NAC, COL, COC.

IPMD, IPMC, IPMCD, PCD, CDLOC, IPMCC, Mnewm,
Mgé&g, Mrcc, Mbunch, MQ, DL, PC, PCQ, LCOMP, I1PU,
IIPE, IPCI, IIPUD, IIPED, IPGF, ANMCC.

[S04], [S18], [S22], [S34]. Modifiability BF, BC, CF, CCH, FAN-IN, FAN-OUT, CBO, RFC, LOC,
XS. MCC, IPMCD, PCC.

[S03], [S05], [S07], [S08], [S10], Maintainability NOCL, WMC, a2a, CVG, CDC, CDO, LOC, TCC, ATFD,
[S14], [S15], [S25], [S29], [S34], CC, Severity, Instability, FAN-IN, FAN-OUT, Ce, Ca, LCOM,
[S42], [S43]. CBO, MCC, TNC, MolJo, CD, MI, SIG, SQALE, DC, DP
[SO5]. [S06]. Usability FAN-IN, FAN-OUT, NOD (Cost Function).

[S25], [S35], [S36]. Understandability LOC, NCONN, NELEM, FAN-IN, FAN-OUT, CF, TF, BCF,

PCF, CC, TCMD, CMD, OMD, TOMD, IMD, EMD, SCC,
[S02] Functional Suitability, Reliability LOC, NOS, LCOM, FAN-OUT, FAN-IN, NOC, RFC, WMC,
Public API, CLD, MPC, DAC, SOC, MCC.

[S05], [S11], [S17], [S42]. Performance efficiency FAN-IN, FAN-OUT, LOC, NOC, WMC, LCOM, TCC, FAN-
OUT, ATFD, RFC, CBO, CC, NOCL, MCC.

TABLE 10. Metrics with the highest number of occurrences.

Metrics abbreviation Total occurrences

PkDI, PkCI, PClpk, PDIpk, PCIcl, PDIcl, PD, MDS, LWSOC, NOD, Class elegance, IPMD, IPMC, CCH, MCC, Severity, 1
NCONN, Public API, DAC, Two-way dependencies (TWD), ROC, ST, EWSOC, IPMCD, BC, TCMD, NODI, NOS, CLD, MPC,

PCC, NCML, DFSM, AEL, NAC, COL, NC, NCL, NCMs, PCD, COC, IPMCC, Mnewm, Mg&g, Mrcc, Mbunch, MQ, CMC,

IMC, RBMS, ASM, MoJo, CD, SD, SIG, SQALE, CMD, OMD, TOMD, IMD, EMD, PCQ, LCOMP, RCI, SCC, DC, DP,

NELEM, IIPU, IIPE, IPCI, IIPUD, IIPED, IPGF, ANMCC.

TF, BCF, CDLOC, BF, TCC, MCC, MQ, NCC, ATFD, CC, TNC, SOC, DL, PC, MI
CF, a2a, CVG, CDC, CDO, NOCL, PCF, Instability, XS, Abstractness, RFEC

WMC.

NOC, LCOM, Ca, Ce.

CBO.

FAN-IN.

LOC.

FAN-OUT.

N=REN [NNV, IV (9]

—_—
—_ o

practices, and helping build quality into software in the 1) RQ3.1) WHAT VALIDATION APPROACHES ARE USED FOR
erosion metrics validations. As a result, evaluating architec- ARCHITECTURAL EROSION?

tural erosion metrics entails finding defects in a system and Each metric must be validated in the software measurement.
determining whether it will be eroded or evolved based on There are two approaches to software metrics valida-
various criteria. tions: theoretical and empirical validations [97], [98].

VOLUME 10, 2022 22927

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

The theoretical validation refers to details on the mathemat-
ical and statistical operations that may be done with the
measure, which is significant when dealing with it. While
empirical validation refers to the extent to which a test’s,
models, or other construct’s accuracy can be shown through
systematic and experimental observation (i.e., the collection
of supporting research evidence) instead of theory alone.
Figure 6 depicts the two approaches of software metrics
validations.

Theoretical
Validation
Software Metrics
Validations
Empirical
Validation

FIGURE 6. Depicts the two approaches of software metrics validations.

We classified the studies into four categories concerning
the validation approaches for these architectural erosion met-
rics: theoretical validation, empirical validation, complete
validation (i.e., both theoretical and empirical), and no val-
idation (i.e., neither empirical nor theoretical). The last two
classifications were established based on primary study anal-
ysis and derived from similar studies to assess the validity of
metrics [43], [46].

The results show that all of these included studies involve
only the complete validation or empirical validation. In con-
trast, the empirical validation represents 79% of the studies
that followed these metrics for this validation. In compari-
son, the complete validation represents 21%. The theoretical
and no validation have not been stated in these included
studies independently. Furthermore, empirical validation in
some studies [S02, S03, S16, S18] shows that some metrics,
such as the Sqale index, Sqale debt ratio, [IPU, IIPE, IIPUD,
IIPED, and AEL have no positive impact on contributing to
address architectural erosion. Table 11 demonstrates valida-
tion approach types.

TABLE 11. Validation approach types.

Study ID
S01], [S02

Validation approach
Empirical validation

[1, [S03], [S04], [S05],
[S07], [SO8], [S11], [S12], [S13],
[S15], [S16], [S18], [S19], [S21],
[S22], [S23], [S24], [S25], [S26],
[S28], [S30], [S32], [S33], [S34],
[S35], [S36], [S37], [S38], [S39],
[S40], [S42], [S42], [S43]

[S06], [S09], [S10], [S14], [S17],
[S20], [S27], [S29], [S31].

Complete validation

22928

2) RQ3.2) WHAT THE VALIDATION LEVEL AND CASE STUDY
ARE APPLIED TO ARCHITECTURAL EROSION METRICS?
Concerning the validation level that indicates how well the
metrics have been empirically validated, we classified the
studies into four levels: small experiment shows the metrics
that have been empirically validated using one system or a
few small to medium-sized systems, large experiment the
metrics that have been empirically validated using many
small to medium-size systems or one / few large systems,
independently validated metrics indicate the metrics pro-
posed by some researchers have been successfully validated
by other authors team, and their applicability to the specific
context has been confirmed, and unknown experiment indi-
cates the metrics that have been empirically validated using
unspecified detail of target systems. These classifications
were inspired based on supported evidence research as shown
in [43].

The results show that the large experiment is the most com-
monly used to apply metrics. In contrast, the large experiment
represents 58%, the small experiment represents 30%, inde-
pendently metrics validated represents 7%, and the unknown
experiment represents 5%. Table 12 shows the validation
level for included studies.

e =

[505] [514]

P T e

[s20 [29)

mOpen-sourcesygems B Industrial systems Unknown system

FIGURE 7. Common case study of systems among limited studies.

The findings also indicate three categories’ systems for the
case study employed in the research: open-source, industrial,
and unknown systems. The case study of open-source sys-
tems is the most frequently applied to the proposed architec-
tural erosion metrics. Thus, open-source systems represent
58%, industrial systems represent 21%, and unknown sys-
tems represent 21%. Table 13 shows the case study systems
that have been validated in the studies. Furthermore, some
studies may apply a mixture of the case study of the systems
such as what appears in the studies [S05], [S14], [S20], and
[S29], whether they are open-source, industrial, or unknown
systems. As seen in Fig 7, it represents the number of systems
used in each study.

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

IEEE Access

TABLE 12. Validation level.

TABLE 14. Tools used for calculating architectural erosion metrics.

Study ID Validation level Study ID Tool used
[SO1], [S16], [S20], [S21],[S26], Small experiment [S02], [S22]. CKIM
[S27], [S32], [S34], [S36], [S37], [S02], [S34]. SonarQube
[S39], [S40], [S43], [S02], [S09]. - PMD, FindBugs _
[S02], [S03], [S04], [S05], [S06], Large experiment [S02]. Git, VizzAnalyzer, and SourceMonitor
[S07], [S08], [S09], [S11], [S13], [S03], [S42]. ARCADE
[S14], [S15], [S17], [S19], [S23], bt dbond Understand
[S24], [S25], [S28], [S29], [S30], 8201, %sn%’ [S42]. DEMCAl
[S31], [S35], [S38], [S41], [S42]. [SIZ]: Titan
[S10], [S18], [S22]. Independently v.alidated [S13]. PF-CDA static analysis
[S12], [S33]. Unknown experiment [S14]. NDepend
[S16]. ModularityCalculator
[S17], [S18]. SCOOP
[S18]. Hist-Inspect, inCode
[S20]. Sonar, MuLATo
TABLE 13. Case systems type. [S18], [S20]. Together
[S24]. Doxygen source code documentation
generator
S29], [S41]. Arcan
Study ID Case systems type [[S]3[3].] Package Cohesion Evaluator
[S34]. inFusion (InF) and Structure101

[SO1], [S02], [S03], [S04], [S05],
[S06], [SO7], [SO8], [S09], [S10],
[S12], [S14], [S15], [S17], [S18],
[S20], [S21], [S23], [S24], [S25],
[S26], [S29], [S31], [S34], [S36],
[S37], [S39],

[S05], [S11], [S14], [S19], [S20],
[S27], [S28], [S35], [S38], [S40].
[S13], [S16], [S22], [S29], [S30],
[S32], [S33], [S41], [S42], [S43].

Open-source system case study

Industrial system case study

Unknown system case study

3) RQ3.3) HOW COULD THE EXTENT OF METRICS
EFFECTIVENESS AMONG SEVERAL STUDIES BE IDENTIFIED
BASED ON COMPARATIVE ANALYSIS?

To identify the comparative analysis regarding the effective-
ness of the metrics, whether, within the same study or when
compared to another study, The findings show a wide range
of efficiency when it comes to analyzing the metrics for
studying a given topic of architectural erosion. The study
[SO2] compares several metrics to describe the classes con-
tributing to architectural decay. Clarifying a predominance
a2a metric on a critical deficiency of the widely used MoJo
FM metric was the focus of the study [SO8]. In the study
[S09], a comparative analysis is conducted with Abdeen’s
metrics (AbdeenMod) against Martin’s package level metrics
through Logistic Regression (LR) model.

The reliability of the decoupling level measure (DL) in
comparison to the propagation cost (PC) and independence
level (IL) metrics was investigated in the study [10]. In the
study [S17], they are comparing the inspection-based strat-
egy with an ad hoc metrics-based strategy overall. Finally,
the study [S18] compares traditional detection metrics with
architecture-sensitive metric strategies.

The underlying principle is included in all measurement
approaches and methodologies that may be used in the vari-
ous analysis, whether in one study or across multiple inves-
tigations. As a result, it’s critical for researchers to select

VOLUME 10, 2022

software metrics for deterioration architecture that most
closely fits and provides detection capabilities for the study,
particularly In the early stages of development.

D. RQ4) ARE THERE TOOLS THAT SUPPORT
AUTOMATICALLY CALCULATING ARCHITECTURAL
EROSION METRICS?

Some research directly disclosed the tools used to automate
calculating metrics. These tools provide a set of metrics for
engineers and researchers to compute an accurate value that
can detect the architecture and code problems.

The results also indicate several different tools regarding
the number of metrics involved and the number of their use
frequency within the studies based on the importance of the
particular tool and the approaches designed to address an
issue.

The Understand tool represents the most considerable
used portion among other tools within the included stud-
ies. In addition, CKJM, SonarQube, PMD, FindBugs,
and Together tools significantly impact researchers due to
the effectiveness of the metrics in which implemented.
Table 14 illustrates the tools used for calculating architectural
erosion metrics.

E. RQ5) WHAT IS THE REPRESENTATIVE APPROACH FOR
THE METRIC CONTEXT USED?

Concerning the outline context and methodology of the met-
rics so as to identify the used representation model during
data analysis, we tend to classified all the studies into three
approaches of the context of the metric supported the identi-
cal classification in [43]: 1) internal structure-based metrics,
which refer to metrics based on the internal structure and
their relationships of the higher-level artifacts (components,

22929

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

TABLE 15. The approach of the metrics type.

Metric

The approach of metrics type

PDIpk, PCIpk, PDIcl, PCIcl, PkDI, PkCI, NC, NCL, Severity, CF, TF, BCF, PCF, BC, CC,

Internal structure-based metrics

NCMs, PCD, PCC, Fan-in, Fan-out, NOCL, IPMD, IPMC, IPMCD, IPMCC, CMC, IMC, PDI,
PCI, ASM, CD, Abstractness (A), Instability (I, DL, CMD, OMD, TCMD, TOMD, IMD,
XMD, DFSM, TWD, AEL, CBO, SOC, EWSOC, LWSOC, RFC, ROC, Ca, Ce, MPC, DAC,
NOD, ATFD, PCQ, LCOMP, LCOM, TCC, RCI, SCC, WMC, Class elegance, LOC, TNC,

NCONN, NELEM, NCML, CLD, NOS.

NCC, CDC, CDO, CDLOC, NAC, COL, COC, Mrcc, MQ, RBMS, cvg, a2a, MolJo, PC, MI,

SIG, SQALE, MDS, CC, DC, DP, Public APIL.

Mnewm, Mg&g, Mbunch, SD, MCC, XS.

Specific model-based metrics

Graph-based metrics

modules, packages, etc.), ii) specific model-based metrics
which refer to metrics that are defined using a specific
representation or model of the system’s structure, iii) and
graph-based metrics which refer to metrics for a certain sys-
tem that is based on a graph model as a set of nodes and edges.

The results show that the internal structure-based metrics
are most widely used in the context of the metric according
to included studies, while specific model-based metrics play
a prominent role in the context of the metric for identifying
representation of a specific model within the system structure.
Graph-based metrics have no significant impact on architec-
tural erosion despite the importance of the context of these
metrics used in other software architecture concepts. The
approaches to the types of the specified metric are shown in
Table 15.

F. RQ6) TO WHAT EXTENT ARE THE METRICS APPLIED IN
THE CONTEXT OF ARCHITECTURAL EROSION?
Regarding the essential parameters to identify the extent of
applicability of these metrics within the context of archi-
tectural erosion considering what proportion usage or future
prospects provided by the authors, we classified these param-
eters into three criteria: i) future prospects and usage,
which means only a small amount of knowledge about
future prospects of metrics applicability, ii) requiring further
improvements which means to provide a research analysis
that can be applied in future studies, but it still needs to be
improved or additional evaluations for suitable assessment
criteria, and iii) successful applicability which means the
measures can be used successfully in real-world applications.
The results indicate that 90% of studies represent the appli-
cability of the metrics in real projects successfully, 5% of
the studies contribute to useful analysis that can be applied
for future directions of the research but still need further
improvements and experiments or more logical assessment
criteria to be applied in real-world applications, and 5% of
studies concern about obtaining some information to clarify
the future prospects and usage of the applicability of the
metrics. Fig 8 demonstrates the three essential parameters of
metrics applicability.

22930

[

[or] L
o

rea
Ln

: a9 &

Future prospects and Require further
usage mprovements

Successul applicability
of the metrics

FIGURE 8. The extent of the applicability of the metrics within the context
of architectural erosion.

VI. DISCUSSION

In this section, the discussion of the findings that have already
been shown in the results section based on research questions
and the study’s goal will be analyzed. Additionally, some
recommendations will be stated to identify future research
directions in this domain.

A. CLASSIFICATIONS AND ADOPTED METRICS (RQ1)

We observed classifications and defined metrics per category
based on our exploratory study to address the issues of archi-
tectural erosion. This classification reveals the diversity of
proposed architectural erosion solutions based on the adopted
approaches by the authors in their studies. Furthermore, this
classification provides researchers with analyzing methods
that would open a wide field for them to address architec-
tural erosion from several different perspectives, including
the combination of these classifications or approved met-
rics to provide solutions that could have a higher impact
or efficiency than current solutions. This classification also
reveals for researchers and practitioners the ambiguity on
studying the phenomenon of erosion directly concerning the

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

IEEE Access

methodology used to address this phenomenon. The classi-
fications of the architectural dependency coupling analysis,
architectural bad smells, and architectural change represent
the familiar picture of most of the approaches and meth-
ods proposed by researchers to address the phenomenon of
erosion than other classifications, due to the several metrics
that are included in these classifications, as well as several
studies that are based on the analysis of relationships and
dependencies among architecture artifact of abstraction level
(such, model, package, file).

Regarding the defined metrics per classification, the archi-
tectural dependency coupling analysis has several metrics
compared with another classification. This classification of
dependency coupling metrics is the most commonly used and
popular among the other metrics. It can be stated that these
measures, by their nature, are focused on linking and con-
necting components, files, modules, packages, classes, and
methods with each other. This is made the researchers focus
on dependency coupling metrics to calculate metric values
between the architecture files. In addition, the classifications
of architectural change and architectural bad smell comprise
several metrics that may be similar to the study of erosion
with the dependency coupling analysis. The remaining met-
rics of other classifications may address the architectural ero-
sion in a few approaches proposed by the authors. Still, they
will not achieve the same high level as the three categories
stated.

B. MAPPING METRICS TO EACH QUALITY ATTRIBUTE
(RQ2)

We observed that the quality attributes representing
maintainability, analyzability, modularity, reusability, and
modifiability are the most addressed by researchers in their
study by linking metrics to them to address architectural
erosion. It reveals that these attributes are all fall under
the maintainability attribute, which represents the degree
of effectiveness and efficiency with which a system can
be altered to evolve, correct, or conform to changes in the
environment and requirements. Although some studies [S03],
[S05], [S07], [S09], [S10], [S14], [S15], [S25], [S29], [S32]
have linked the metrics mapping to maintainability attribute
since the researchers’ correlated metrics of the maintenance
efforts with the relationship of architectural erosion in general
without broaching the sub-feature specifically.

The architectural structure is measured by knowing
its deterioration or evolution through its maintainability
attributes and sub-features. We also revealed that other qual-
ity attributes impact the extent of the erosion of the architec-
ture, such as understandability, performance efficiency, and
reliability. Still, this effect is not considered when compared
with the maintainability attribute and its sub-features.

We also observed that metrics with the highest number of
occurrences between the various quality characteristics are
dependency coupling and size metrics. This explains that the
dependency coupling metrics play a significant role in identi-
fying the architectural erosion based on the description of the

VOLUME 10, 2022

stated attributes, and it also indicates an ability of analysis
depth of these metrics for addressing the degradation and an
extent of providing sufficient results, especially FAN-OUT,
FAN-IN, afferent coupling, and efferent coupling metrics.
We also revealed that the role of size metrics has a significant
effect on identifying architectural erosion compared with the
dependency coupling metrics. From this, we conclude that
it is possible that if these metrics are integrated with more
than one metric rather than investigating them in isolation
through a broader and deeper analytical way, it will provide
critical importance results to address architectural erosion.
Therefore, this is a new trend in the future of our study,
whereas these metrics will be evaluated after the appropriate
integration among them to form the appropriate model for
determining the eroded or evolved architecture based on the
measures.

C. VALIDATION OF THE METRICS (RQ3.1)

We observed that the validation approach involves complete
validation and empirical validation. In contrast, the other two
validation approaches, theoretical and no validation, have not
been stated in any study. This explains that the empirical
and complete validation is closely related to the metrics
mechanism’s nature. It is impossible to conduct a theoretical
validation for architectural erosion metrics without empirical
validation. From this point, researchers must identify the
appropriate validation mechanism for any topic to address the
issue.

The empirical validation, which represented the majority
of included studies, is the majority because the metrics can-
not be empirically applied unless they can be theoretically
applied. This is what combines the two types. Therefore,
it does not need to be theoretically proven to validate the
theoretical type, but it is possible to prove theoretically to
clarify the content of metrics work.

Several researchers have focused their efforts on validat-
ing the extent to which metrics are efficient in detecting
architectural problems that cause erosion. Some metrics that
were found out in studies [S02], [S03], [S16], [S18] did not
provide sufficient impact and results for addressing architec-
tural erosion and disclosing architecturally relevant concerns,
but that does not indicate they are insufficient or unsuitable
for this concept. Thus, some metrics have been evaluated in
more than one study, such as instability metric in the study
[SO3] has no impact in terms of analyzing the correlation
between architecture changes, decay, and the presence of
vulnerabilities while in studies [S06] and [S25] provided
generally significant results, especially when it is accurately
identified in efferent coupling (Ce) and afferent coupling (Ca)
metrics. We also observed that the architectural debt metrics,
represented Sqale index and Sqale debt ratio metrics in the
study [S02], are entirely inadequate in describing classes
contributing to the architectural inconsistencies. However,
they may have a significant impact when used on a concept
of appropriate importance concerning various architectural
problems.

22931

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

This is an important open issue for researchers to conduct
further studies and validate some metrics and apply them to
many concepts subject to the architectural erosion concept
to ensure the extent of metrics sufficiency, especially when
applied to different systems in terms of domain architecture
type and size.

D. VALIDATION LEVELS (RQ3.2)

We found out that the large validation experiment was the
majority among other validation levels. This explains the
reliability of the obtained metrics results since that validation
depends on many systems, whether small or medium-sized
or a few large systems. Also, some researchers used metrics
to verify architectural erosion based on the metrics proposed
by some researchers that other authors have successfully
validated, and their applicability to the specific context has
been confirmed. This also reveals that the validation level of
these metrics clearly presents its work and extent to its appli-
cability has been appropriately carried out, thereby reducing
the extent of the metrics results biased to address architectural
erosion.

We also observed that most of the case study of the sys-
tem used is open-source systems because these systems are
available and easily accessible. In addition, some studies
validated the results reliability of the metrics using a com-
bination of the case study of systems between open-source
systems, industrial systems, and non-described systems used
in previous studies, as shown in Fig 7. This explains that some
researchers generalize the results using different domains,
sizes, and architecture types.

Although most studies have validated these metrics based
on extensive experiments, researchers have a considerable
opportunity to conduct more research on integration from dif-
ferent system contexts such as academic and student systems
that are not addressed in prior studies depending on different
sizes of fields and architecture types.

E. COMPARATIVE ANALYSIS TO IDENTIFY THE
EFFECTIVENESS OF THE METRICS (RQ3.4)

Considering the effectiveness of the metrics among each
other based on the comparative analysis performed by many
researchers, whether in their study or a comparison with other
studies through different metrics, we observed that the com-
parative analysis would either be built on metrics strategies
generally without indicating to specific metrics as in studies
[S17], [S18] or metrics will have to be distinguished from
the rest of the metrics in terms of efficiency, the supported
specific tool for them and the particular issue in which the
metrics can provide essential results as in studies [SO2],
[S08], [S09].

This explains that the metrics strategies generally may
explore the comparison by highlighting the element and effort
required to evaluate the architectural erosion regardless of
metrics that may provide desired results. The concept is
confined to the general strategy to which all metrics are
subject. While comparison analysis may study one metric and

22932

another to determine the reliability and reasonable accuracy
of predicting errors, improving performance, and responding
to identify the extent of the architectural erosion.

F. USED TOOLS FOR CALCULATING THE ARCHITECTURAL
EROSION (RQ4)

Based on the tools that appeared to be used within the
included studies, we observed that most studies did not state
the tools when calculating metrics. However, this does not
mean that the validated metrics did not involve any tool,
which explains that there are metrics used within the tools
in the studies. At the same time, the same metrics were used
in other studies without specifying the used tool, such as the
instability metric.

We also observed that there are metrics or what is called
the metrics strategy has been stated in general, and indication
to the tool that includes these metrics within another study
by specifying the reference as in the study [S16]. We also
found out that the tool may be incorporated into the integrated
development environment (IDE), which leads to ambiguity,
especially for new relevant readers to the topic. Therefore,
researchers may not realize this issue when writing their
articles.

G. APPROACH OF THE METRICS CONTEXT (RQ5)

We observed that an approach classification of the metric
context was divided into internal structure-based metrics, spe-
cific model-based metrics, and graph-based metrics. We have
relied on the study [43] concerned with software metrics to
measure the ability to understand the architectural structures
to make the classification due to convergence of the two
studies in terms of the distribution of metrics to capture the
big picture of the system architecture.

We also noticed that the context of the metric represented
by internal structure-based metrics was most commonly and
frequently used in the studies than other approaches of the
context of the metric. This reveals the internal structure-based
metrics based on higher-level artifacts (i.e., components,
files, systems, projects, modules, packages) and their rela-
tionship. Thus, the answer to (RQ1) regarding the metrics
mechanism approach indicated that most of the reviewed
papers were based on analyzing relationship correlation
between issues relevant architecturally or inconsistencies
based on metric values.

Concerning graph-based metrics, the software artifacts and
their interaction represent a set of nodes and edges.

Although the inherent simplicity of graph-based metrics
and their use widely in software engineering, it appears a
scarcity within metrics of architectural erosion. This may
explain its inadequacy significantly, or many researchers have
not studied them for identifying architectural deterioration.

H. APPLICABILITY OF METRICS (RQ6)

We observed that the applicability of metrics is divided into
three significant parameters. The results revealed that the
applicability of the metrics within real-world applications

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

IEEE Access

represents the majority of studies through a considerable
percent exceeding 90% compared to the rest.

This explains that the applicability of these metrics to real
systems has provided a strong indication and motivation for
many researchers to adopt addressing architectural erosion
through the metrics strategy of various levels and types.
Therefore, it could be that the concept of metrics strategy
to present as a solution that has a significant impact when
compared with other solutions as was demonstrated in our
prior study [7], because of the widespread use and prevalent
applicability of metrics successfully, whether a solution of the
metrics strategy is being applied as isolation or combination
with other mechanisms to provide a solution integration of
importance or reduce the defects for some metrics.

As for good analysis that requires further improvements
and experiments, we noticed a small percentage within the
studies. Instead, it represents only two out of 43 studies. Nev-
ertheless, sound analysis and a context of importance were
presented to pave the applicability of these metrics’ types
within the real projects by conducting further improvements
and experiments to identify positive or negative effects.

VII. IMPLICATIONS FOR RESEARCH AND PRACTICE

Since our key objective was to characterize metrics of the
architectural erosion based on the profound analysis in terms
of investigating validation approaches and levels, mapping
erosion metrics to each quality attribute, identifying the appli-
cability metrics, comparative analysis conducted to determine
the effectiveness of metrics, and specifying a tool-supported
for calculating architectural erosion metrics thereby a map-
ping study provides implications for researchers and practi-
tioners on characterizing the architectural metrics as follows:

The study presented the mechanisms of adopted metrics
approaches that have been shown to address the issues of
architectural erosion. In contrast, it shows that the relation-
ship analysis between components of architecturally related
issues is essential among researchers for adopting a mech-
anism of the metrics approaches used. Thus, further stud-
ies need to be conducted from several aspects, factors, and
several different metrics to identify the correlation and the
extent to which software architecture negatively or positively
impact. Practitioners should recognize all the mechanisms of
effective metrics approaches to avoid the problems leading to
architectural erosion, particularly the beginning of the design
and analysis of systems architecture.

Based on the approaches used by the authors in their
primary studies, the classification reveals a variety of pro-
posed architectural decay solutions. This classification pro-
vides researchers with analyzing methods that will allow
them to handle architectural erosion from various perspec-
tives, including the combination of these classifications or
approved metrics to provide solutions that may have a more
significant impact or efficiency than current solutions. Fur-
thermore, the classification also reveals to researchers and
practitioners the ambiguity in studying erosion directly in
terms of the methodology used to address this phenomenon.

VOLUME 10, 2022

Mapping metrics to quality attributes to identify architec-
tural erosion lies considerably in maintainability, analyzabil-
ity, modularity, reusability, and modifiability, representing
the degree of effectiveness and efficiency with which a system
can be altered to evolve and correct or conform to changes in
the environment and requirements. Also, the highest number
of metrics occurrences between the various quality character-
istics appeared dependency coupling and size metrics. This
reveals that there is an open opportunity for researchers to
shed light on the quality characteristics that affect the archi-
tecture in terms of degradation or evolution, as well as the
high-impact metrics and the change between metrics and the
appropriate characteristics to study the relationship, impact,
and change that may occur on the architectural software based
on the composition of the metrics and quality attributes that
are directly related to the determination of the erosion or
evolution of the architecture.

The study revealed that the empirical and complete valida-
tion approaches are considerably applied to the metrics mech-
anism and validation level described by extensive validation
experiments. Thus, researchers must identify the appropriate
validation mechanism for any topic to address an issue. From
this point, one direction for a considerable opportunity for
researchers to conduct more empirical research addressing
this issue to overcome the defined implementation of the ana-
lyzed approaches in practice [99] based on the combination
from different system contexts such as academic and student
systems that are not addressed in prior studies in terms of
various sizes, fields, and architecture types.

The comparative analysis performed by many researchers
through different metrics in their study showed a significant
lack of empirical validation. However, few studies appear
to be concerned with the comparative analysis, and the sur-
prising thing is that metrics strategy generally refers to a
comparison analysis of metrics. Therefore, this is an open
opportunity that provides researchers to conduct further stud-
ies on comparative analysis to identify important factors
that may provide highly desirable results, such as the effort
required for assessing architectural erosion, identifying rea-
sonable accuracy in terms of detecting errors, and predicting
critical architectural problems, improving performance and
responding to determine the characterization of the extent of
architecture erosion.

From an academic point of view, we did not find in the
included studies that the maximum benefit of the tool was
offered when calculating the metrics using the tools, but
rather that it was limited to focusing only on specific metrics
and calculating them through a supported tool. This explains
why these tools have not been provided with a comprehensive
concept to investigate the importance of the tools and their
strength in comparison to each other and to achieve the
maximum benefit, including determining the development or
erosion of the architecture using metrics in which it included.
Thus, several researchers have only dealt with the tools
that include metrics to achieve the required study and data
analysis.

22933

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

VIil. THREATS TO VALIDITY OF THE STUDY

Although our study was performed following the predefined
set of protocol rules that might reduce the research bias
within the mapping study, threats affect the study’s valid-
ity concerning the correlation between the conclusion and
results obtained. For example, we can identify some threats
represented by search incompleteness, a process bias, and
inaccuracy in data extraction and synthesis. These threats are
described as follows:

Internal Validity: the threat of incompleteness research lies
in the comprehensiveness of the research process and the
obtaining studies relevant to the defined research question in
this study. The study indicated [100], [101] that the common
threat is implementing the appropriate research mechanism
by exploring search terms related to the specific topic of
the study and identifying the relevant studies to answer the
particular research question. Therefore, we tried to maximize
internal validity using convenient online libraries involving
relevant studies. Thus, seven well-known online libraries
were identified, such as Science Direct, Web of Science,
Springer, Scopus, Wiley. Additionally, ACM, IEEE libraries
are specialized in our domain, including all journal and con-
ferences articles. We also looked for ways to increase internal
validity by identifying, researching, and exploring everything
related to search terms, synonyms, abbreviations, and alter-
native words to form an adequate and sufficient research
chain from all scientific papers that have been previously
identified to reduce research bias as much as possible. Also,
the snowballing search strategy was implemented based on
the backward and forward concept of the included studies to
discover the relevant articles that may be missed in the case
of the research chain that did not appear in these articles.

Construct Validity: this threat lies in a bias of the process
and inaccuracy in data extraction and synthesis. We tried
to maximize the construct validity to mitigate process bias
through a protocol of the study was identified and planned
to make sure a mutual understanding, relevant research ques-
tions were chosen. In addition, explicit inclusion and exclu-
sion criteria were specified, which may occur when the
authors conflict about understanding a process and obstruct
reaching common agreements. We also attempted to max-
imize the construct validity to mitigate inaccuracy in data
extraction and synthesis that requires an understanding of
the topic to avoid inaccurate information can be introduced,
as the threat of data extraction lies in the inference of non-
explicit data from detailed data in the included studies. The
first author extracted the primary studies’ data, then passed
them on to the other authors to evaluate. We already identified
attributes of the necessary data extraction to gather informa-
tion and established a checklist to arrange and investigate the
needed information based on a discussion among researchers
to reduce the gap difference between them and maximize data
extraction and synthesis accuracy.

External Validity: this threat concerns the extent to which
a study’s findings can be generalized in relation to the map-
ping study’s key objectives based on the papers chosen.

22934

TABLE 16. Study quality assessment checklist.

S ID QAl QA2 QA3 QA4 QA5 QA6 Score
S01 1 1 1 1 1 1 6
S02 1 1 1 1 1 1 6
S03 1 1 0.5 1 1 0.5 5
S04 1 1 1 1 1 0.5 55
S05 1 1 1 1 1 1 6
S06 1 1 1 1 1 0.5 55
S07 1 1 0.5 0.5 1 0 4
S08 1 1 1 1 1 0.5 55
S09 1 1 1 1 1 1 6
S10 1 0 0 0.5 1 0 25
S11 1 1 1 1 1 0.5 55
S12 1 0.5 1 1 1 0.5 5
S13 1 1 1 1 1 1 6
S14 1 1 0.5 0.5 1 0 4
S15 1 1 1 0.5 1 1 55
S16 1 1 0.5 1 1 1 55
S17 1 1 0.5 1 1 1 55
S18 1 1 1 1 1 1 6
S19 1 0.5 0.5 1 1 0.5 45
$20 1 0.5 0.5 1 1 0.5 45
S21 1 0.5 0.5 1 1 0 4
$22 1 1 0.5 1 1 1 55
s23 1 1 1 1 1 1 6
S24 1 0.5 0.5 0.5 1 0.5 4
S25 1 0.5 0.5 1 0 1 4
S26 1 1 0.5 1 1 0.5 5
S27 1 0.5 0.5 1 1 0.5 45
$28 1 0.5 0.5 1 1 0 4
$29 1 0.5 1 1 1 0.5 5
$30 1 0.5 0.5 1 1 0 4
S31 1 0.5 0.5 0.5 1 0 3.5
S32 05 05 0.5 0.5 1 0.5 35
$33 0.5 1 1 1 1 0.5 4
S34 05 05 1 1 1 0.5 45
S35 0.5 1 0.5 1 1 0.5 45
S36 1 1 0.5 1 1 1 55
$37 1 1 1 1 1 0 5
38 0.5 1 1 1 1 1 55
$39 1 1 1 1 1 1 6
S40 1 1 0.5 1 1 0.5 5
S41 1 0.5 0.5 0.5 1 0.5 4
S42 1 1 1 1 1 1 6
s43 1 0.5 1 1 1 1 5.5

By ensuring the representativeness of the included stud-
ies, we attempted to maximize results’ generalization using
the systematic protocol. Furthermore, we organized research
steps to obtain a comprehensive representation that could
be used to view all contexts. As a result, the study findings
concerning thorough knowledge of the architectural erosion
metrics domain were deemed to meet the validity of all
studies on the topic.

IX. CONCLUSION

In this article, we conducted a systematic mapping study
on characterizing metrics of architectural erosion. The key
objective was to systematically describe measures that related
to the architectural decay to analyze adopted metrics from dif-
ferent perspectives: identifying mechanism of adopted met-
rics approaches to address the issues of architectural erosion
and their classification, describing the mapping metrics to
each quality attribute that addressed by researchers in their
study by relating metrics to them to handle architectural
deterioration, exploring the validation approaches and levels

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

IEEE Access

TABLE 17. Metrics, definitions.

Label

Full name metric

Full Definition

Abstractness (A)
ATFD

Ca

coC
COL
AEL
ala
ASM
BCF

BC
Class elegance
CCH
CD

CF
CLD
CDLOC
CDC
CDO
cC

CBO

EWSOC

EMD
CMD

IPCI
IPGF

IIPE

IIPED

1IPU

1IPUD

IPMC
IPMCC
IPMCD
IPMD

IMC

IMD
Instability (I)

LWSOC
LOC

Abstractness (A)
Access to Foreign Data

Afferent Coupling

Architectural Concern Cohesion
Architectural Concern Locality
Architectural Element Locality

Architecture to Architecture
Architecture Stability Metric

Bug change frequency

Bug Churn

Class elegance

Change Churn

Changes dispersion

Change frequency

Comment line density

Concern Diffusion in LOC
Concern Diffusion over Components
Concern Diffusion over Operations
Cognitive Complexity

Coupling between objects
Cluster Coverage
Cross-module co-changes

Data Abstraction Coupling
Defect persistence

Defect Complexity
Decoupling Level

Dependency frequency support
metric

Efferent Coupling

Excessive complexity

Exponentially Weighted Sum of
Coupling

External module dependencies
Incoming module dependency

Index of Package Changing Impact
Index of Package Goal Focus

Index of Inter-Package Extending

Index of Inter-Package Extending
Diversion
Index of Inter-Package Usage

Index of Inter-Package Usage
Diversion

Inter-Package Modularization
Connections

Inter-Package Modularization Cyclic
Connections

Inter-Package Modularization Cyclic
Dependencies

Inter-Package Modularization
Dependencies

Inner-module co-changes

Internal module dependencies
Instability (I)
Linearly Weighted Sum of Coupling

Ratio of abstract classes (and interfaces) to total classes in the analyzed package.
The number of external classes from which a given class directly or via accessor
methods accesses attributes.

The number of classes from outside package A depends on at least one class from
package A.

Therelative number of methods in a given class implements the same set of
concerns.

The relative number of architectural concerns that a code element (class or
method) modularizes in its component.

The relative number of dependencies that the measured code element (class or
method) has in its component.

Computes the similarity of two architectures.

Theratio of the total external calls to the unchanged inter-package calls.

The number of bug-fixing commits in which afile participated.

The number of lines of code added and removed by bug-fixing commits.
Calculates the standard deviation for the number of classes in each package.
The number of changed LOC in a file committed for any issues.

The number of classes and packages involved in each commit.

The number of times a file hasbeen checked in.

Counts comment lines divided by code plus the comment lines and multiply
by100.

The number of transition points through the lines of code for each concern.

The number of classes affected by concern implementation.

The number of methods affected by the concern implementation.

Measures the current level of comprehension of the software system's various
classes.

The number of other objects to which it is coupled.

Calculates the extent to which the clusters of two architectures overlap.

The number of co-changes for a file in which the co-changes are made across
more than one architectural module.

A class's number of abstract data types.

The number of system development phases (and releases) that this defect spans.
The number of accompanying changes needed in various components to fix it.
The degree to which software is decoupled into separate modules.

Investigating frequency in which classes of a module depend on classes of
another.

The number of classes from outside package A upon which classes reside on
package A depends on implementing their features.

The total number of dependencies in the graph divided by the minimal feedback
set (MFS) is reported as the percent XS.

Shared transactions are weighted exponentially according to their distance in
time, highlighting current modifications rather than those that occurred
previously.

The total number of outgoing dependencies from a module to other modules.

A binary metric for a module m1 that returns 1 if at least one module m2 is
dependent on ml, and 0 otherwise.

The ratio of non-dependency package pairs to all possible package pairs.

The average overlap of service sets offered by a component to other components
in a software system

The ratio of extended dependencies between classes within a local package to the
overall number of Extend dependencies between classes throughout the entire
software system.

The average diversity of classes extended by a package in other packages

The ratio of use dependencies between classes within a local package to the total
number of use dependents between classes throughout the entire software system.
A package in other packages extends the average diversity of classes.

Measures common reuse of modularization for a package that is reused together.

Measures the extent of modularization to which cyclic connections among the
package are minimized.

Measures the extent of modularization to minimize cyclic dependencies between
the classes.

Measures the common closure of modularization for the classes that change
among the packages.

The number of co-changes for a file is at least another co-changed file in the
same architectural module.

The total number of dependencies among all files within a module.

VOLUME 10, 2022

22935

IEEE Access

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

TABLE 17. (Continued.) Metrics, definitions.

22936

LCOMP
LCOM

MI
McCC
Severity

MPC
MQ

MDS

Mnewm

Mgé&g
Mrcc
Mbunch
Molo
NAC
FAN-OUT
FAN-IN
NC
NOCL
NCL
NCMs
NCONN
NCC
NCML
NOD
NELEM

NOS
OMD

PCQ
PCC

PCD

PCF
PCIpk
PDIpk
PClcl
PDIcl

PC

Public API

RCI
ROC

RFC
RBMS

SIG
SQALE

Line of code

Lack of Cohesion Metric for
Packages

Lack of Cohesion in Methods
Maintainability Index

Mccabe's Cyclomatic complexity
Measures change-history of a
software system

Message Passing Coupling
Modularization Quality

Module dependency strength

Modularity's Newman

Modularity's Guo and Gershenson
Modularity Relative Clustered Cost
Modularity Bunch Clustering
Move-Join

Number of Architectural Concerns
Number of called object

Number of caller object

Number of changes

Number of clusters

Number of co-changed files
Number of commits

Number of Connectors

Number of Concerns per Component
Number of comment lines

The number of dependencies

Number of Elements

Number of statements
Outgoing module dependency

Package Cohesion Quality
Package Cyclic Connections
Package Cyclic Dependencies
Pair change frequency

Project Call Instability of package

Project Design Instability of package
Project Call Instability of class
Project Design Instability of class
Propagation Cost

Public application programming
interface

The ratio of Cohesive Interactions
Ratio of Coupling

Response For Class

Relationship-Based Similarity Metric

This rating measures the package's adaptability to change.

Shared transactions are linearly weighted according to their distance in time.
Measures the file size determined by counting the number of non-empty non-
comment lines.

Refers to measure the lack of cohesion of the package.

Measures the lack of cohesion in a class according to its common usage of
attributes methods.

Identifies architectural, technical debt based on Halstead Volume, McCabe
Cyclomatic Complexity, Lines of Code, and Comments.

Quantifies independent paths in software source code using control flow graphs
of functions, modules, methods, or classes.

The total number of transactions in the software system's change history is
divided by a total number of transactions involving the code smell I class C.
The number of method calls from one class to another.

Measures the complete system to simplify understanding and limit modifications
to specific system areas.

Measures how strongly the dependency between two modules is using
dependency intensity and dependency distribution.

Measures the modularity of social networks represented in graphical structures
based on a theoretical heuristic for edges within a module greater than expected
ones.

Measures the modularity of physical entities using a difference of inter and intra
edge densities.

Measures the modularity of evolving software systems based on the relative
clustered cost of software systems.

Measures software modularity that represented intra-edges of modules and inter-
edges between modules.

Determines the similarity between two different architectures with the same set
of implementation-level entities.

Number of architectural concerns a given code element (class or method) realizes.
The number of modules that the given module depends on.

The number of modules that depend on a given module.

The number of times a file is committed to a repository.

The number of clusters associated with the package.

The number of other files that a given file is changed with.

The total number of commits made by each developer or contributor.

The total number of connectors in the architecture.

The number of concerns in each class.

The number of lines containing either comment or commented-out code.

The number of class-to-class use dependencies relates to the number of links
among classes and, indirectly, among packages.

The total number of elements in the architecture (summing up the number of
components and the number of connectors).

The number of statements in a software component.

An indicator of whether or not there is at least one dependency between two
modules (ml and m2).

Measures ratio of internal dependencies of a package to all dependencies among
and within a package.

The ratio package cyclic connections among the packages to all package
dependencies.

The ratio of class cyclic dependencies within the package to all package
dependencies.

The number of times in which file pairs and versions are modified in the same
commit.

Analyzes the interaction between two software components that affect the
number of interactions at the package level.

Measures how much a software system's components change from release N to
release N+1 at package levels.

Analyzes the interaction between two software components that affect the
number of interactions at the class level.

Measures how much a software system's components change from release N to
release N+1 at class levels.

Measures how tightly coupled a system is, and it is calculated using a matrix
model of the dependencies among files.

A publicly available application programming interface enables data transmission
between one software product and another.

The ratio between actual cluster interactions to possible cluster interactions.
The number of existing dependencies among modules to the number of all
possible dependencies among modules.

The total number of methods that can potentially be executed in response to a
message received by an object of a class

measures the change in the inheritance relationship. It takes the ratio of the total

VOLUME 10, 2022

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

IEEE Access

TABLE 17. (Continued.) Metrics, definitions.

Software Improvement Group

inheritance relationships to measure architecture stability.

SCC Software Quality Enhancement Quantifies TD based on an estimation of repair effort and maintenance effort.
SOC computing the Remediation Cost (RC), which is the cost of correcting violations
Sum cyclomatic complexity of the rules set for each category.
SD Sum of Coupling The total of the Cyclomatic Complexity all nested functions or methods.
The sum of the shared transactions between a given class ¢ and all the classes n-
TF Structural distance coupled with c.
TCC Measures the architecture between two revisions of a software system using a
TCMD Ticket frequency graph kernel.
Tight Class Cohesion The number of different bug or issue tracking tickets for which files are modified.
TOMD Total incoming module dependencies The relative number of methods is directly connected via accesses of attributes.
TNC The total number of dependencies to a module and originating from other
Total outgoing module dependencies ~ modules in a software system.
TWD Total Number of Components The total number of dependencies from a module m1 to other modules in a
system.
WMC Two-way dependencies The number of components in the system appears in different levels of

Weighted Methods per Class

abstraction, including packages, classes, methods, and attributes.

The ratio between the number of two-way dependent clusters over all possible
two-way dependencies.

The sum of the statistical complexity of all methods in a class.

TABLE 18. Approaches, to, categorizing, architectural, erosion, metrics.

Classification approach

Definitions

Historical data revision

Architectural bad smell

Architecture modularization

Architectural change

Architectural technical debt

Architectural dependency coupling analysis

Architectural cohesion

Refers to analyzing project files to determine how frequently they are bug-prone or change-prone
during maintenance, revealing architectural issues with severe consequences.

Refers to an architectural decision that harms system quality and could lead to architectural
erosion in the future.

Refers to the degree to which a system or software comprises discrete components with minimal
impact on other components when one is changed.

Refers to the modifications that occur at different levels of abstraction and from multiple
architectural views, which may appear as vague factors that cause architectural decay and
instability.

Refers to incomplete, immature, inadequate artifact, or suboptimal designs in the software
development lifecycle.

Refers to correlation relationships among abstraction-level elements within a module based on a
module with a direct or indirect dependency on another module.

Refers to the degree to which the module elements are functionally related and keep the module

Architectural complexity

together. A well-designed architecture will have high cohesion.

Refers to the complexity of the system's structure, stored information on how it works, and its
makeup, which may reflect a state of having many parts and being difficult to understand or find

Software architecture size an answer to.

Refers to estimating the size of a software application or component to identify software
productivity and predict fault locations for testing and maintenance effort. It has to do with the
system's bulk size, whether as an overall metric, data, or functional measure.

that associated with the nature of the metrics mechanism,
using tools that support metrics of the architectural erosion,
investigating comparative analysis to identify the effective-
ness of the metrics, and approach of the context of the metric,
and extent of the applicability of metrics.

We pursued implementing search protocol through seven
online libraries (Science direct, web of science, ACM, IEEE,
Willey, Scopus, and Springer). Several processes and criteria
were applied to reach the studies related to the research
question in our research. A total of 43 primary studies were
specified to characterize measures of architectural erosion.

The analysis revealed that metrics could be used directly
or indirectly to address architectural erosion, defined as the

VOLUME 10, 2022

study of change or the development of a phenomenon to
determine this deterioration. This led to the classification of
architectural decay into several categories, as seen in this
study, all of which serve to address this phenomenon.

The analysis also revealed that metrics of architectural
erosion have a strong relationship with the quality attributes
that identify success or failure in the architecture software.
It has also been observed that the architectural erosion
metrics are a rapid, vital feedback enabler that is primary
in meeting software architecture quality. Also, this study
found that measures of the architectural erosion in software
quality attributes centralize on maintainability, analyzability,
modularity, reusability, and modifiability that are the most

22937

IEEE Access

A. Baabad et al.

: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

attributes addressed by researchers in their study since the
strong correlation between these properties and identification
of the degradation. Finally, this study presented evidence
that architectural erosion metrics provide several research
approaches for detecting or predicting architectural erosion
problems.

We assert that the findings of SMS could benefit the
practitioners and researchers to identify and understand the
nature of architectural erosion metrics, as well as their
approaches adopted and classification to provide evidence for
the future direction of the research, significantly narrow the
gap between industry and academia and address the current
challenges

It can be concluded that mechanisms of adopted metrics to
address the architectural erosion are still open research issues.
Therefore, there is a need for further studies on measures of
the architecture decay based on various aspects: new metrics
establishment based on the particular set of metrics to adopt
a new approach that may enhance from the detection of the
architectural degradation, conducting different experiments
to ensure applicability and utility of the metrics, and assessing
the metrics development that map with the quality factors
related to architectural erosion that appeared in this study
with a few metrics such as usability, efficiency, and functional
suitability.

APPENDIX
APPENDIX A
See Table 16.

APPENDIX B
See Table 17.

APPENDIX C
See Table 18.

DECLARATION, OF, COMPETING, INTEREST

The, authors, declare, that, they, have, no, known, competing,
financial, interests, or, personal, relationships, that, could,
have, appeared, to, influence, the, work, reported, in, this,
paper.

ACKNOWLEDGMENT

The authors would like to acknowledge Universiti Putra
Malaysia (UPM) for facilitating support to get open access
publications. Ahmed Baabad would also like to express his
gratitude to Hadhramout University and the Hadhramout
Foundation, Yemen, for their support in tuition fees.

REFERENCES

[1] D. Garlan, “Software architecture: A roadmap,” in Proc. Conf.
Future Softw. Eng., Limerick, Ireland, 2000, pp.91-101, doi:
10.1145/336512.336537.

[2] J. Knodel, M. Lindvall, D. Muthig, and M. Naab, *“Static evaluation of
software architectures,” in Proc. Conf. Softw. Maintenance Reeng., Bari,
Italy, 2006, p. 10.

22938

[3]

[4]

[5]

[6

[71

[8]

[91

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. M. Lehman, “On understanding laws, evolution, and conservation
in the large-program life cycle,” J. Syst. Softw., vol. 1, pp.213-221,
Jan. 1979.

M. M. Lehman, “Laws of software evolution revisited,” in Proc. 5th
Eur. Workshop Softw. Process. Technol. Berlin, Germany: Springer, 1996,
pp. 108-124.

O. P. N. Slyngstad, J. Li, R. Conradi, and M. A. Babar, Identifying and
Understanding Architectural Risks in Software Evolution: An Empirical
Study. Berlin, Germany: Springer, 2008, pp. 400-414.

L. Dobrica and E. Niemeld, “A survey on software architecture analysis
methods,” IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 638-653, Jul. 2002.
A. Baabad, H. B. Zulzalil, S. Hassan, and S. B. Baharom, ‘“‘Software
architecture degradation in open source software: A systematic literature
review,” IEEE Access, vol. 8, pp. 173681-173709, 2020.

S. Misra, A. Adewumi, L. Fernandez-Sanz, and R. Damasevicius, “A
suite of object oriented cognitive complexity metrics,” IEEE Access,
vol. 6, pp. 8782-8796, 2018.

S. Misra, “An approach for the empirical validation of software com-
plexity measures,” Acta Polytechnica Hungarica, vol. 8, pp. 141-160,
Jan. 2011.

T. DeMarco, Controlling Software Projects: Management, Measurement,
and Estimates. Upper Saddle River, NJ, USA: Prentice-Hall, 1986.

S. Ducasse and D. Pollet, ‘“Software architecture reconstruction:
A process-oriented taxonomy,” IEEE Trans. Softw. Eng., vol. 35, no. 4,
pp- 573-591, Jul. 2009.

M. Shaw and P. Clements, “The golden age of software architecture,”
IEEE Softw., vol. 23, no. 2, pp. 31-39, Mar. 2006.

L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Reading, MA, USA: Addison-Wesley, 2012.

D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, pp. 40-52,
Oct. 1992.

M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.
M. H. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, and H. Lip-
son, “Attribute-based architecture styles,” in Proc. Conf. Softw. Archit.,
San Antonio, TX, USA, P. Donohoe, Ed. Boston, MA, USA: Springer,
1999, pp. 225-243.

A.Jansen, J. V. D. Ven, P. Avgeriou, and D. K. Hammer, “Tool support for
architectural decisions,” in Proc. Workshop Conf. Softw. Archit. (WICSA),
Mumbai, India, 2007, p. 4.

D. L. Parnas, “Software aging,” in Proc. 16th Int. Conf. Softw. Eng.,
Sorrento, Italy, 1994, pp. 279-287.

L. Hochstein and M. Lindvall, “Combating architectural degeneration:
A survey,” Inf. Softw. Technol., vol. 47, no. 10, pp. 643-656, Jul. 2005.
J. Bosch, “Software Architecture: The next step,” in Proc. Ist Eur.
Workshop Softw. Archit., vol. 3047, Berlin, Germany: Springer, 2004,
pp. 194-199.

M. Riaz, M. Sulayman, and H. Naqvi, “Architectural decay during con-
tinuous software evolution and impact of ‘design for change’ on software
architecture,” in Proc. Int. Conf. Adv. Softw. Eng. Appl. Berlin, Germany:
Springer, 2009, pp. 119-126.

M. Lindvall, R. Tesoriero, and P. Costa, “Avoiding architectural degen-
eration: An evaluation process for software architecture,” in Proc. 8th
Symp. Softw. Metrics, Ottawa, ON, Canada, 2002, pp. 77-86.

N. Medvidovic and R. N. Taylor, “Software architecture: Foundations,
theory, and practice,” in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng.,
2010, pp. 471-472.

J. Lenhard, M. Blom, and S. Herold, “Exploring the suitability of source
code metrics for indicating architectural inconsistencies,” Softw. Qual.
J., vol. 27, no. 1, pp. 241-274, Mar. 2019.

V. Bandara and 1. Perera, “Identifying software architecture erosion
through code comments,” in Proc. 18th Int. Conf. Adv. Emerg. Regions
(ICTer), Sep. 2018, pp. 62—69.

Z.Liand J. Long, “A case study of measuring degeneration of software
architectures from a defect perspective,” in Proc. 18th Asia—Pacific Softw.
Eng. Conf., 2011, pp. 242-249.

H. P. Breivold and I. Crnkovic, ““A systematic review on architecting for
software evolvability,” in Proc. 21st Austral. Softw. Eng. Conf., Auckland,
New Zealand, Apr. 2010, pp. 13-22, doi: 10.1109/ASWEC.2010.11.

W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of UML in software maintenance,”
IEEE Trans. Softw. Eng., vol. 34, no. 3, pp. 407-432, May 2008.

VOLUME 10, 2022

http://dx.doi.org/10.1145/336512.336537
http://dx.doi.org/10.1109/ASWEC.2010.11

A. Baabad et al.: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

IEEE Access

[29]

[30]

[31]

[32]

[33]

[34]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni, ‘“Model-based
performance prediction in software development: A survey,” IEEE Trans.
Softw. Eng., vol. 30, no. 5, pp. 295-310, May 2004.

F. Brosig, P. Meier, S. Becker, A. Koziolek, H. Koziolek, and S. Kounev,
“Quantitative evaluation of model-driven performance analysis and sim-
ulation of component-based architectures,” IEEE Trans. Softw. Eng.,
vol. 41, no. 2, pp. 157-175, Feb. 2015.

H. Koziolek, B. Schlich, S. Becker, and M. Hauck, “Performance and
reliability prediction for evolving service-oriented software systems,”
Empirical Softw. Eng., vol. 18, no. 4, pp. 746-790, 2013.

M. Berry and M. F. Vandenbroek, ““A targeted assessment of the software
measurement process,” in Proc. 7th Int. Softw. Metrics Symp., London,
U.K., 2001, pp. 222-235.

L. C. Briand, C. M. Differding, and H. D. Rombach, ‘“Practical guidelines
for measurement-based process improvement,” Softw. Process., Improve-
ment Pract., vol. 2, no. 4, pp. 253-280, Dec. 1996.

M. Unterkalmsteiner, T. Gorschek, A. K. Islam, C. K. Cheng,
R. B. Permadi, and R. Feldt, “Evaluation and measurement of software
process improvement—A systematic literature review,” IEEE Trans.
Softw. Eng., vol. 38, no. 2, pp. 398-424, Mar. 2012.

S. Misra, I. Akman, and R. Colomo-Palacios, ‘“Framework for evaluation
and validation of software complexity measures,” IET Softw., vol. 6, no. 4,
pp. 323-334, Aug. 2012.

ISO/IEC/IEEE International — Standard—Systems and Software
Engineering—Measurement Process, Standard ISO/IEC/IEEE 15939,
2017, pp. 1-49.

R. Malhotra, Empirical Research in Software Engineering: Concepts,
Analysis, and Applications. Boca Raton, FL, USA: CRC Press, 2015.

P. Goodman, The Practical Implementation of Software Metrics.
New York, NY, USA: McGraw-Hill, 1993.

M. Abdellatief, A. B. M. Sultan, A. A. A. Ghani, and M. A. Jabar,
“A mapping study to investigate component-based software system met-
rics,” J. Syst. Softw., vol. 86, no. 3, pp. 587-603, Mar. 2013.

M. Staron and W. Meding, “Metrics for software design and architec-
tures,” in Automotive Software Architectures: An Introduction, M. Staron,
Ed. Cham, Switzerland: Springer, 2017, pp. 179-199.

T. Tahir, G. Rasool, and C. Gencel, “A systematic literature review
on software measurement programs,” Inf. Softw. Technol., vol. 73,
pp. 101-121, May 2016.

T. Coulin, M. Detante, and F. J. A. Petrillo, “Software architecture
metrics: A literature review,” 2019, arXiv:1901.09050.

S. Stevanetic and U. Zdun, “Software metrics for measuring the under-
standability of architectural structures: A systematic mapping study,”
in Proc. 19th Int. Conf. Eval. Assessment Softw. Eng., Nanjing, China,
Apr. 2015, pp. 1-14, doi: 10.1145/2745802.2745822.

M. Alenezi, “Software architecture quality measurement stability and
understandability,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 7,
pp. 550-559, 2016.

A. S. Nuiiez-Varela, H. G. Pérez-Gonzalez, F. E. Martinez-Perez, and
C. Soubervielle-Montalvo, “Source code metrics: A systematic mapping
study,” J. Syst. Softw., vol. 128, pp. 164-197, Jun. 2017.

H. Koziolek, “Sustainability evaluation of software architectures: A sys-
tematic review,” in Proc. SIGSOFT Conf.-QoSA ACM SIGSOFT Symp.,
Boulder, CO, USA, 2011, pp. 3—12, doi: 10.1145/2000259.2000263.

B. A. Kitchenham, D. Budgen, and O. Pearl Brereton, “Using mapping
studies as the basis for further research—A participant-observer case
study,” Inf. Softw. Technol., vol. 53, no. 6, pp. 638-651, Jun. 2011.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, ““Systematic mapping
studies in software engineering,” in Proc. 12th Int. Conf. Eval. Assess-
ment Softw. Eng., Rome, Italy, 2008, pp. 1-10.

K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting
systematic mapping studies in software engineering: An update,” Inf.
Softw. Technol., vol. 64, pp. 1-18, Aug. 2015.

B. Kitchenham and S. Charters, “Guidelines for performing system-
atic literature reviews in software engineering,” EBSE, Chennai, India,
Tech. Rep. Ver. 2.3, 2007.

D. Badampudi, C. Wohlin, and K. Petersen, “Experiences from using
snowballing and database searches in systematic literature studies,” in
Proc. 19th Int. Conf. Eval. Assessment Softw. Eng., Nanjing, China,
Apr. 2015, pp. 1-10, doi: 10.1145/2745802.2745818.

E. Mourao, M. Kalinowski, L. Murta, E. Mendes, and C. Wohlin, “Inves-
tigating the use of a hybrid search strategy for systematic reviews,”
in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM),
Nov. 2017, pp. 193-198.

VOLUME 10, 2022

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

J. Webster and R. T. Watson, “Analyzing the past to prepare for the future:
Writing a literature review,” MIS Quart., vol. 26, no. 2, pp. 23-30, 2002.
O. Dieste and A. G. Padua, “Developing search strategies for detecting
relevant experiments for systematic reviews,” in Proc. Ist Int. Symp.
Empirical Softw. Eng. Meas. (ESEM), Madrid, Spain, 2007, pp. 215-224.
L. Aversano, D. Guardabascio, and M. Tortorella, “An empirical study
on the architecture instability of software projects,” Int. J. Softw. Eng.
Knowl. Eng., vol. 29, no. 4, pp. 515-545, 2019.

A. Sejfia, “A pilot study on architecture and vulnerabilities: Lessons
learned,” in Proc. IEEE/ACM 2nd Int. Workshop Establishing
Community-Wide Infrastruct. Archit., Montreal, QC, Canada, May 2019,
pp. 42-47.

R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Architecture anti-
patterns: Automatically detectable violations of design principles,” IEEE
Trans. Softw. Eng., vol. 47, no. 5, pp. 1008-1028, May 2019.

S. G. Maisikeli, “Measuring architectural stability and instability in the
evolution of software systems,” in Proc. Inf. Technol. Trends, Emerg.
Technol. Artif. Intell., Dubai, United Arab Emirates, 2019, pp. 263-275.
L. P. D. S. Carvalho and R. Novais, “Investigating the relationship
between code smell agglomerations and architectural concerns: Simi-
larities and dissimilarities from distributed, service-oriented, and mobile
systems,” in Proc. Brazilian Symp. Softw. Compon., Archit., Reuse, Sao
Carlos, Brazil, 2018, pp. 1-12, doi: 10.1145/3267183.3267184.

A. Shahbazian, D. Nam, and N. Medvidovic, “Toward predicting
architectural significance of implementation issues,” in Proc. 15th Int.
Conf. Mining Softw. Repositories, Gothenburg, Sweden, May 2018,
pp- 215-219, doi: 10.1145/3196398.3196440.

P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian,
and N. Medvidovic, “A large-scale study of architectural evolution in
open-source software systems,” Empirical Softw. Eng., vol. 22, no. 3,
pp. 1146-1193, Jun. 2017.

S.H. M. A. Jalbani and A. A. M. Kashif, “Evaluating dependency based
package-level metrics for multi-objective maintenance tasks,” Int. J. Adv.
Comput. Sci. Appl., vol. 8, no. 10, pp. 345-354, 2017.

H. Rocha, R. S. Durelli, R. Terra, S. Bessa, and M. T. Valente, “DCL
2.0: Modular and reusable specification of architectural constraints,”
J. Brazilian Comput. Soc., vol. 23, no. 1, p. 12, Dec. 2017.

F. A. Fontana, R. Roveda, M. Zanoni, C. Raibulet, and R. Capilla,
“An experience report on detecting and repairing software architecture
erosion,” in Proc. 13th Work. IEEE/IFIP Conf. Softw. Archit. (WICSA),
Apr. 2016, pp. 21-30.

R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level:
A new metric for architectural maintenance complexity,” in Proc. 38th
Int. Conf. Softw. Eng., Austin, TX, USA, May 2016, pp. 499-510, doi:
10.1145/2884781.2884825.

M. De Oliveira Barros, F. De Almeida Farzat, and G. H. Travassos,
“Learning from optimization: A case study with apache ant,” Inf. Softw.
Technol., vol. 57, no. 1, pp. 684-704, 2015.

E. Guimaraes, A. Garcia, and Y. Cai, “Architecture-sensitive heuris-
tics for prioritizing critical code anomalies,” in Proc. 14th Int. Conf.
Modularity, Fort Collins, CO, USA, Mar. 2015, pp.68-80, doi:
10.1145/2724525.2724567.

F. A. Fontana, V. Ferme, and M. Zanoni, ‘“Towards assessing soft-
ware architecture quality by exploiting code smell relations,” in Proc.
IEEE/ACM 2nd Int. Workshop Softw. Archit. Metrics, Florence, Italy,
May 2015, pp. 1-7.

Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and A. Ampatzoglou, “An
empirical investigation of modularity metrics for indicating archi-
tectural technical debt,” in Proc. 10th Int. ACM SIGSOFT Conf.
Qual. Softw. Archit., Marcq-En-Bareul, France, 2014, pp. 119-128, doi:
10.1145/2602576.2602581.

M. Ferreira, E. Barbosa, I. Macia, R. Arcoverde, and A. Garcia, “Detect-
ing architecturally-relevant code anomalies: A case study of effectiveness
and effort,” in Proc. 29th Annu. ACM Symp. Appl. Comput., Gyeongju,
Republic Korea, Mar. 2014, doi: 10.1145/2554850.2555036.

I. Macia, A. Garcia, C. Chavez, and A. Von Staa, “Enhancing the detec-
tion of code anomalies with architecture-sensitive strategies,” in Proc.
17th Eur. Conf. Softw. Maintenance Reeng., Genova, Italy, Mar. 2013,
pp. 177-186.

E. Guimaraes, A. Garcia, E. Figueiredo, and Y. Cai, “Prioritizing soft-
ware anomalies with software metrics and architecture blueprints: A
controlled experiment,” in Proc. 5th Int. Workshop Modeling Softw. Eng.,
San Francisco, CA, USA, May 2013, pp. 82-88.

22939

http://dx.doi.org/10.1145/2745802.2745822
http://dx.doi.org/10.1145/2000259.2000263
http://dx.doi.org/10.1145/2745802.2745818
http://dx.doi.org/10.1145/3267183.3267184
http://dx.doi.org/10.1145/3196398.3196440
http://dx.doi.org/10.1145/2884781.2884825
http://dx.doi.org/10.1145/2724525.2724567
http://dx.doi.org/10.1145/2602576.2602581
http://dx.doi.org/10.1145/2554850.2555036

IEEE Access

A. Baabad et al.

: Characterizing Architectural Erosion Metrics: Systematic Mapping Study

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

22940

I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, and A. V. Staa,
“Are automatically-detected code anomalies relevant to architectural
modularity? An exploratory analysis of evolving systems,” in Proc. 11th
Annu. Int. Conf. Aspect-oriented Softw. Develop., Potsdam, Germany,
2012, pp. 167-178, doi: 10.1145/2162049.2162069.

Z. Li, N. H. Madhavji, S. S. Murtaza, M. Gittens, A. V. Miran-
skyy, D. Godwin, and E. Cialini, *‘Characteristics of multiple-component
defects and architectural hotspots: A large system case study,” Empirical
Softw. Eng., vol. 16, no. 5, pp. 667-702, Oct. 2011.

M. Steff and B. Russo, ‘““Measuring architectural change for defect esti-
mation and localization,” in Proc. Int. Symp. Empirical Softw. Eng. Meas.,
anff, AB, Canada, Sep. 2011, pp. 225-234.

R. S. Sangwan, P. Vercellone-Smith, and C. J. Neill, “Use of a multi-
dimensional approach to study the evolution of software complexity,”
Innov. Syst. Softw. Eng., vol. 6, no. 4, pp. 299-310, Dec. 2010.

A. Capiluppi and T. Knowles, ““Software engineering in practice: Design
and architectures of FLOSS systems,” in Open Source Ecosystems:
Diverse Communities Interacting. Berlin, Germany: Springer, 2009,
pp. 34-46.

R. Singh, A. Bindal, and A. Kumar, “Reducing maintenance efforts of
developers by prioritizing different code smells,” Int. J. Innov. Technol.
Exploring Eng., vol. 8, no. 8, pp. 139-144, 2019.

M. Nayebi, Y. Cai, R. Kazman, G. Ruhe, Q. Feng, C. Carlson, and
F. Chew, “A longitudinal study of identifying and paying down archi-
tecture debt,” in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng., Softw. Eng.
Pract. (ICSE-SEIP), Montreal, QC, Canada, May 2019, pp. 171-180, doi:
10.1109/ICSE-SEIP.2019.00026.

V. Zapalowski, I. Nunes, and D. J. Nunes, “The WGB method to
recover implemented architectural rules,” Inf. Softw. Technol., vol. 103,
pp. 125-137, Nov. 2018.

V. Zapalowski, D. J. Nunes, and I. Nunes, ‘“Understanding archi-
tecture non-conformance: Why is there a gap between conceptual
architectural rules and source code dependencies?” in Proc. Brazil-
ian Symp. Softw. Eng., Sao Carlos, Brazil, 2018, pp.22-31, doi:
10.1145/3266237.3266261.

R. Roveda, F. Arcelli Fontana, I. Pigazzini, and M. Zanoni, “Towards an
architectural debt index,” in Proc. 44th Euromicro Conf. Softw. Eng. Adv.
Appl. (SEAA), Prague, Czech Republic, Aug. 2018, pp. 408-416.

L. Rizzi, F. A. Fontana, and R. Roveda, “Support for architectural
smell refactoring,” in Proc. 2nd Int. Workshop Refactoring, Montpellier,
France, Sep. 2018, pp. 1-10, doi: 10.1145/3242163.3242165.

A. Biaggi, F. Arcelli Fontana, and R. Roveda, “An architectural smells
detection tool for ¢ and C++ projects,” in Proc. 44th Euromicro Conf.
Softw. Eng. Adv. Appl. (SEAA), Prague, Czech Republic, Aug. 2018,
pp. 417-420.

F. A. Fontana, 1. Pigazzini, R. Roveda, and M. Zanoni, ‘“‘Automatic
detection of instability architectural smells,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Raleigh, NC, USA, Oct. 2016,
pp. 433-437.

E. Ersoy and H. Sozer, “Evaluating software architecture erosion
for PL/SQL programs,” in Proc. 11th Eur. Conf. Softw. Archit.,
Companion, Canterbury, UK., Sep. 2017, pp.159-165, doi:
10.1145/3129790.3129811.

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

F. A. Fontana, R. Roveda, S. Vittori, A. Metelli, S. Saldarini, and
F. Mazzei, “On evaluating the impact of the refactoring of architectural
problems on software quality,” in Proc. Sci. Workshop, Edinburgh, Scot-
land, May 2016, pp. 1-8, doi: 10.1145/2962695.2962716.

S. Stevanetic, T. Haitzer, and U. Zdun, “Supporting software evolution
by integrating DSL-based architectural abstraction and understandability
related metrics,” in Proc. Eur. Conf. Softw. Archit. Workshops, Vienna,
Austria, 2007, pp. 1-8, doi: 10.1145/2642803.2642822.

D. Reimanis, C. Izurieta, R. Luhr, L. Xiao, Y. Cai, and G. Rudy,
“A replication case study to measure the architectural quality of a com-
mercial system,” in Proc. 8th ACM/IEEE Int. Symp. Empirical Softw. Eng.
Meas., Turin, Italy, 2014, pp. 1-8, doi: 10.1145/2652524.2652581.

E. Guimaraes, A. Garcia, and Y. Cai, “Exploring blueprints on the
prioritization of architecturally relevant code anomalies—A controlled
experiment,” in Proc. IEEE 38th Annu. Comput. Softw. Appl. Conf.,
Vasteras, Sweden, Jul. 2014, pp. 344-353.

R. Schwanke, L. Xiao, and Y. Cai, “Measuring architecture quality by
structure plus history analysis,” in Proc. 35th Int. Conf. Softw. Eng.
(ICSE), San Francisco, CA, USA, May 2013, pp. 891-900.

M. D’ Ambros, M. Lanza, and R. Robbes, “On the relationship between
change coupling and software defects,” in Proc. 16th Work. Conf. Reverse
Eng., Lille, France, 2009, pp. 135-144.

A. MacCormack and D. J. Sturtevant, “Technical debt and system archi-
tecture: The impact of coupling on defect-related activity,” J. Syst. Softw.,
vol. 120, pp. 170-182, Oct. 2016.

J. A. Diaz-Pace, A. Tommasel, I. Pigazzini, and F. A. Fontana,
“Send4Smells: A tool for ranking sensitive smells for an architecture
debt index,” in Proc. IEEE Congreso Bienal Argentina (ARGENCON),
Resistencia, Argentina, 2020, pp. 1-7.

J. Garcia, E. Kouroshfar, N. Ghorbani, and S. Malek, “‘Forecasting archi-
tectural decay from evolutionary history,” IEEE Trans. Softw. Eng., early
access, Feb. 18, 2021, doi: 10.1109/TSE.2021.3060068.

P. W. Lawrence JD, A. Sicherman, and J. GL, “Assessment of soft-
ware reliability measurement methods for use in probabilistic risk
assessment,” Fission Energy Syst. Saf. Program, Lawrence Liver-
more Nat. Lab., Livermore, CA, USA, Tech. Rep. UCRLID-136035,
1988.

K. P. Srinivasan and T. Devi, “Software metrics validation methodolo-
gies in software engineering,” Int. J. Softw. Eng. Appl., vol. 5, no. 6,
pp- 87-102, Nov. 2014.

B. Kitchenham, S. L. Pfleeger, and N. Fenton, “Towards a framework
for software measurement validation,” IEEE Trans. Softw. Eng., vol. 21,
no. 12, pp. 929-944, Dec. 1995.

M. A. Babar and I. Gorton, ‘““Software architecture review: The state of
practice,” J. Comput., vol. 42, no. 7, pp. 26-32, 2009.

B. Kitchenham and S. Charters, “Guidelines for performing system-
atic literature reviews in software engineering,” EBSE, Chennai, India,
Tech. Rep. Ver. 2.3, 2007.

A. Nguyen-Duc, D. S. Cruzes, and R. Conradi, “The impact of global
dispersion on coordination, team performance and software quality—A
systematic literature review,” Inf. Softw. Technol., vol. 57, pp. 277-294,
Jan. 2015.

VOLUME 10, 2022

http://dx.doi.org/10.1145/2162049.2162069
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00026
http://dx.doi.org/10.1145/3266237.3266261
http://dx.doi.org/10.1145/3242163.3242165
http://dx.doi.org/10.1145/3129790.3129811
http://dx.doi.org/10.1145/2962695.2962716
http://dx.doi.org/10.1145/2642803.2642822
http://dx.doi.org/10.1145/2652524.2652581
http://dx.doi.org/10.1109/TSE.2021.3060068

