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ABSTRACT As today’s printing volume worldwide decreases, and most traditional printing engines are
expensive non-digital devices (offset), the demand for a low-cost digital replacement is rapidly increasing.
A main disadvantage of digital presses is the low-resolution capabilities, introducing a compromise in the
print quality (PQ). A key factor of print quality is the halftoning algorithm. A very common halftoning
method is amplitude modulation (AM) halftone screening, in which dots are placed on a repetitive lattice,
varying in size as a function of the grey level. The main AM screen design PQ challenge for low-resolution
devices is the quantization frequencies, a disturbing pattern that usually emerges when a screen is approxi-
mated to a rational angle due to low resolution. Fourier-based analysis is a classical rule-basedmethod to filter
out screens that suffer from visually disturbing quantization patterns. This work presents a new approach
that tackles this challenge by incorporating machine learning with the classic Fourier-based approach.
Particularly, we show that a binary decision tree classifier with a Fourier-based feature vector has an accuracy
of 95% in identifying quantization-free screens compared to the classic rule-based method, which has an
accuracy of 66%.We conclude by demonstrating the use of the screen classifier to design a quantization-free
screen set. This is done by first applying the screen classifier to the entire screen pool, that is, the set of all
possible screens for a given print engine, followed by a rosette zero-moiré offset-like screen design.

INDEX TERMS Halftoning, moiré, print quality, AM screen, regular screens, irregular screens, quantiza-
tion, machine learning, classification and regression tree (CART).

I. INTRODUCTION
Halftoning is a technique that simulates a continuous-tone
image using dots, varying either in size, shape, or spac-
ing [1], [2]. This is usually done with a pre-computed thresh-
old matrix called a screen [3]. In the screening process,
a continuous-tone image is fragmented into identical tiles
of pixels, or halftone cells, on which the screen is applied.
The result is a binary image where every pixel can be either
switched on or off [4]. The common method for designing a
screen for an electrophotographic (EP) print engine is ampli-
tude modulation (AM) or periodic, clustered dot [1]. This
method produces clusters of pixels (spots) that vary in size on
a grid as a function of the gray level [5]. The screen resolution,

The associate editor coordinating the review of this manuscript and

approving it for publication was Rosalia Maglietta .

which is usually measured in lines per inch (LPI), is defined
as 1/distance between two adjacent clusters, while the screen
angle is the orientation of these clusters with respect to the
x-axis. Color printing requires the design of a screen set
composed of at least four screens, one for each color plane:
cyan, magenta, yellow and black (CMYK) [6]. Superimpos-
ing periodic screens may cause low-frequency interference
patterns, also known as moiré [7]. Print quality is compro-
mised in the cases where these patterns are evident. Avoiding
visual moiré patterns within a screen set requires one to
pinpoint screens that do not suffer from these patterns when
superimposed. Such screen sets are called moiré free [8],
[9], and the most common one is the rosette zero-moiré
screen set [8], [9] in which the screens have precisely the
same resolution and a fixed thirty-degree difference (CMK)
between them.Digital print engine screens are quantized to an
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integer number of pixels and thus can produce only a limited
number of unique angles and resolutions (i.e., screens) [1],
[10], [11]. The screen pool is the set of different achievable
screens per print engine. Having a large screen pool is a
prerequisite for designing a high-quality moiré-free screen
set, especially a rosette zero-moiré screen set. Further, having
a large screen pool is important for another reason: it is very
common that a print engine has several screen-sets to enable
different screen assignments per job. The choice of screen
usually depends on content, application, substrate, or color
performance. [4], [8]. The size of the screen pool is propor-
tional to the engine resolution: as the resolution increases,
the number of available screens increases as well [11]. Thus,
if the resolution is too low, as in the case of digital print
engines, it is usually impossible to design a high-quality,
moiré-free screen set [11]. One solution to this problem is
the method of irregular screens [11]–[13]. Irregular screens
form a space-varying cluster grid in which 1/distances and
the orientation of two adjacent clusters vary across the grid
and are equal on average to the screen resolution and angle,
respectively. This is in contrast to regular screens that form an
ideal cluster grid in the sense that 1/distances and the orien-
tations of two adjacent clusters are fixed and equal to the res-
olution and angle, respectively. Irregular screens are usually
noisier (grainier) and have inferior PQ in respect to regular
screens [11], [13]. The low PQ of irregular screens originates
from the fact that these screens have additional frequencies
in their spectra. The new frequencies, known as quantization
frequencies, cause visible and disturbing patterns on the print
[10]. When the patterns are too strong, the screen is consid-
ered unacceptable for production. The classical rule-based
approaches identify quantization-free screens by performing
Fourier analysis of the screen spectrum and avoiding screens
that contain low frequencies in the screen design process
[12], [13]. These approaches use overly simplistic models to
simulate the printing process and the human visual system
(HVS). Therefore, they do not sufficiently predict whether
a given screen will cause visible disturbing patterns after
the printing process. A new and more accurate function is
needed that distinguishes between acceptable and unaccept-
able (with visible disturbing patterns) irregular screens in the
screen design process. It is very challenging to build such
a function using analytic methods [14]. However, machine
learning (ML) algorithms are commonly used to automati-
cally build functions from the available data when analytical
description is not available [15]–[17]. ML can be applied to
construct both linear and non-linear functions. An example
of a linear model is logistic regression, whereas non-linear
models comprise support vector machine (SVM), K nearest
neighbors (KNN) and classification and regression decision
trees (CART) [18]–[20]. Because it is hard to predict which
ML model will fit the challenge at hand, it is customary to
evaluate different models and select the one with the high-
est performance on new data (spot checking) [21]. These
algorithms are well suited for tabular data, that is, data that
are represented in a table by rows and columns where each

row is a sample and each column is a feature, while the last
column is the target prediction. In this work, we propose a
new approach that utilizes machine learning (ML) methods
to build a binary screen classifier that takes as an input the
screen parameters and classifies whether those parameters
produce screens with visually-disturbing quantization pat-
terns. To assess the visibility of the quantization patterns in
the print, we have conducted psycho-physical experiments
that included printing and evaluating several hundred screens
on a typical digital low-resolution print engine. The results
of these experiments are used to construct a tabular database
for the ML algorithms. The ground truth of the data set
is the subjects’ evaluations of whether disturbing quanti-
zation patterns exist in the print (labeling each as accept-
able/unacceptable). For each screen, we define the lowest
frequencies in the screen spectrum as the feature vectors.
We explore different ML algorithms, hyper parameter tun-
ing and smart feature selection on the experimental data
set. Particularly, we show that a binary decision tree with
a Fourier-based feature vector has an accuracy of 95% in
differentiating between quantization-free screens and those
which are not. The classic rule-based method has an accuracy
of 66% on the same data set. We further demonstrate using
the screen classifier to design a quantization-free screen set
for a typical low-resolution digital print engine. This is done
by first applying the screen classifier to the entire screen pool,
followed by identification of screen sets in which the moiré-
free condition is satisfied [7] (out of the quantization-free
screen pool). As quantization-free screens are only 5% of the
screen pool (hundreds of thousands of screens), designing a
quantization-free screen set without the screen classifier is
very challenging. Our main contributions are summarized as
follows:

• We introduce a novel ML-based screen classifier that
predicts whether a given screen will cause visible quan-
tization patterns after the printing process.

• We present a method for training a high performance
ML-based classifier with relatively low amount of data
by using unique features that are best suited for the
screen classification challenge.

• We propose a novel screen design method that
enables constructing a quantization-free screen set for
a low-resolution digital print engine by incorporating a
screen classifier.

• Ourmethod outperforms the baseline rule-based method
for predicting the presence of a quantization patterns in
the print by a large margin.

The remainder of this paper is organized as follows:
Section II reviews the latest work, considering irregular
screen noise assessment, rule-based quantization pattern pre-
dictors and halftoning usingMLmethods. Section III reviews
the current screen set design approach, startingwith a descrip-
tion of the basic halftoning process, the screening method-
ology with regular and irregular screens, and the rule-based
screen set design method. In Section IV, a new method to
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design a screen set using an ML-based classifier is intro-
duced. Next, the ML methodology is presented: spectrum-
based feature extractor, ML models, evaluation metrics and
the data structure are covered. In Section V, both the simu-
lation and experimental results of the method are presented,
and a designated screen classifier is constructed (suitable for
the HP Indigo print engine). Next, the ML-based screen set
design method is applied (via the screen classifier that was
found in the experimental part) to construct a high resolution,
quantization-free screen set. In Section VI we discuss and
analyze the results of the simulation and experimental part
together with the proposed screen set design method. Conclu-
sions and future research directions are offered in SectionVII.

II. RELATED WORK
A. FOURIER-BASED NOISINESS EVALUATION OF
IRREGULAR SCREENS
Several Fourier-based approaches have been suggested to
evaluate the noise levels of an irregular screen [22]. It shows
that the high noise levels of an irregular screen originate from
the presence of low (quantization) frequencies that are absent
from the spectrum of regular screens. In [12] it is suggested
to quantitatively assess the additional noise of an irregular
screen by summing the energy of the quantization frequencies
in Fourier space and normalizing the energy in the frequen-
cies associated with it, with a corresponding regular screen.
In this method, each irregular screen receives a grade (ratio)
that is used to assess the expected noise of the screen in
the print. An extension of this work is presented in [13],
where the irregular screen noise is evaluated directly from the
screen basis lattice vectors, and an HVS model is applied to
predict the visibility of the noise in the print. Reference [8]
suggested measuring the noise level of an irregular screen
by counting the number of different cluster shapes per grey
level (a regular screen has only one shape per grey level).
The main challenge with these methods is their inability to
predict pattern visibility by a typical human observer after
the printing process. This leads to an inability to determine
which screens will be acceptable for production.

B. RULE-BASED APPROACH TO DIFFERENTIATE BETWEEN
ACCEPTABLE AND UNACCEPTABLE IRREGULAR SCREENS
A classic rule-based method to differentiate between accept-
able and unacceptable irregular screens was suggested in [10]
and [23]. In this approach, the quantization frequencies are
calculated directly from the reciprocal screen lattice. For
each screen, a vector of the six lowest frequencies that also
have the highest amplitudes was calculated. Then, a thresh-
old operation was applied (in the Fourier domain) in which
acceptable screens are differentiated from unacceptable ones.
Setting the threshold values is one difficulty with this method.
It is not clear how to adjust them per print engine and the
HVS function. Another difficulty is the over-simplicity of this
rule-based model. As both the printing process and the HVS
function are highly nonlinear systems [5], [14], this model has

a low chance of predicting the quantization pattern’s visibility
as a function of the screen spectrum.

C. IMPROVING HALFTONING ALGORITHMS WITH
MACHINE LEARNING METHODS
In [24], a cycle-GAN (generative adversarial network) is
used to generate halftone images and also to reconstruct
continuous-tone from halftone. This method does not take
into account the visibility of halftone patterns in the print,
which is the subject of this study. In [25] and [26], the recon-
struction of continuous-tone images from halftone images
using ML methods is described. While these algorithms aim
to improve the quality of a continuous-tone image, we aim
to improve printed halftoned images. Some studies were
performed regarding the use of machine learning to assess
print quality [27] or to rate the severity of print quality
defects [28]–[31]. However, those methods are used for eval-
uating the artifact severity post printing and cannot be incor-
porated in the pre-printing screen design process.

III. CURRENT SCREEN SET DESIGN APPROACH
This section describes the current approaches to design screen
sets for amplitude modulation halftoning algorithms that are
used for digital print engines.

A. HALFTONING
Halftoning is a function H (I ) that transforms a multi-bit,
multi-tone image I [m, n] into a 1-bit, two-tone image Ĩ [m, n].
Usually, I [m, n] ∈ [0, 255] and Ĩ [m, n] ∈ {0, 255} [1]:

Ĩ [m, n] = H (I [m, n]) (1)

Halftoning results in a degradation of both tonal and spatial
resolution of the image, as can be seen in Fig. 1.

FIGURE 1. Halftoning degrades both the tonal range and the spatial
resolution.

Halftoning is a mandatory step in binary systems such as
print engines. The halftone image acts as a map of locations
that indicate the coordinates on which ink drops or toner clus-
ters will be deposited. A high-enough halftoning resolution
will create the illusion of a continuous-tone image, thanks to
the low pass filter characteristics of the HVS, as shown in
Fig. 2 [32].

B. SCREENING
Screening is one of the fastest, cheapest, and most practical
ways to perform halftoning [4]. In this method, a square
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FIGURE 2. A halftone image can be perceived as a continuous-tone
image due to the HVS properties. (a) Halftone image, (b) halftone image
after applying the Näsänen HVS filter [5] with a viewing distance of
40 cm, (c) 80 cm and (d) 120 cm.

FIGURE 3. The result of the applying a screen (a) on a continuous tone
image with constant value (b) with gray level = 3

16 for all pixels is shown
in (c). In this case, all pixels smaller or equal to three in each
4× 4 non-overlapping region become black.

threshold matrix Sk×k is tiled over a scaled multi-tone image
I [m, n], and pixel by pixel thresholding is performed (2).

Ĩ [m, n] =

{
0 if I [m, n] ≥ S [m(mod k), n(mod k)]
255 otherwise

(2)

The area of the screen matrix k2 is equal to the maximal
number of tones that the screen emulates. Every threshold
value sm,n in the screenmatrix S[m, n] satisfies sm,n ∈ [1, k2].
The multi-tone image I [m, n] is scaled such that each pixel
will satisfy im,n ∈ [1, k2] pre-screening [3]. The elements of
S[m, n] indicate the order in which pixels change tone as a
function of the input tone. An example of a screen threshold
matrix is shown in Fig. 3a. In this example, k = 4; thus,
the number of emulated tones of this screen is 17, counting
both full white (no thresholds exceeded) and full black (all
thresholds exceeded). Fig. 3c shows the result of applying the
screen on a continuous-tone image as a function of the input
tone (gray level= 3

16 ). (The continuous-tone image I [m, n]
is scaled such that im,n ∈ [1, 16].)

FIGURE 4. Dispersed dot screen vs. clustered dot screen. (a) continuous
tone image, (b) image after clustered dot screening, (c) image after
dispersed dot screening. Note that (b) has higher spatial resolution
(smaller pixels) than (c). Although dispersed dot screening renders edges
more accurately than the clustered dot screening, it is not applicable for
electrophotographic print engines due to the high usage of isolated dots,
which are not stable.

The screen is the basic repetitive halftoning unit. In the
case of an AM screen, it is composed of halftone cells [1].
It is customary to use a cost function to determine the S[m, n]
values within the halftone cell [1]. Dispersed dot cost func-
tions tend to distribute pixels away from each other with
some typical wavelength, λgl , to create a visually pleasing
distribution [2], [33]. Clustered dot screen cost functions
distribute dots around the halftone cell center [8]. Dispersed
dot screens render large portions of the tonal range with
isolated areas of colorant pixels. These screens are applicable
in print engines that can produce stable and small isolated
ink drops, for example, ink jet-based engines. In the case
of electrophotographic engines, the common practice is to
use clustered dot halftoning [34]. Fig. 4 shows the result of
applying a dispersed dot screen vs. a clustered dot screen
on a continuous-tone image. As dispersed dot screens are
composed mainly of isolated dots (and not clusters), these
screens render edgesmuchmore accurately than clustered dot
screens. However, dispersed dot screens are not applicable for
electrophotographic engines because the electrophotographic
marking process is not as stable as the offset or ink jet marking
process. What this means is that there is more variation from
dot-cluster to dot-cluster, there is more noise due to scattered
colorant, and small dot-clusters may not consistently develop.
The overall effect is to create the appearance of graininess in
the printed image, which customers find objectionable [8].
The ability of a clustered screen to render edges relates to the
number of clusters per unit area—the screen resolution [1]
(usually measured in LPI).

1) REGULAR SCREEN
In a regular screen [1], the halftone cell size s2 is proportional
to the screen tonal resolution T and inversely proportional to
the screen’s spatial resolution (known as the screen frequency,
or LPI) fs factored by RP, the print engine resolution (3) [8].
We define HVSmin as the highest frequency noticeable by a
typical human observer. A halftoned image is perceived as
a continues tone when the screen resolution satisfies fs >
HVSmin (HVSmin = 80 lpi for a viewing distance of 20 cm [5],
[8]). As fs increases, more details from the pre-halftoned
image are preserved (Fig. 5). However, as T decreases, the
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FIGURE 5. As fs increases, more details from the pre-halftoned image are
preserved. (a) image after AM halftoning with screen of fs = 70 LPI
(b) image after AM halftoning with screen of fs = 140 LPI. (The reader is
advised to zoom in until the display artifacts that appear in
(b) disappear.)

FIGURE 6. The angle of the screen sang is defined by the right triangle
that the halftone cell forms with respect to the horizontal axis.

FIGURE 7. The halftone cell legs (a, b) define a rotated square lattice on
the pixel grid RP .

tonal range of the halftoned image deteriorates. The fs-T
trade-off is usually addressed by grouping multiple halftone
cell dimensions into a super-cell [1], [8].

fs =
RP

s
; T = s2 (3)

The angle of the screen sang is defined by the right triangle
that the halftone cell forms (Fig. 6) on the pixel grid RP.
Equation (4) shows the relationships between the halftone cell
s, the screen angle sang and the right triangle legs: (a, b) [1].

sang = tan−1
(
b
a

)
; s =

√
a2 + b2 (4)

The halftone cell legs define a square lattice on the pixel
grid RP (Fig. 7). We define {Evi}2i=1 as the basis vectors that
span the halftone square lattice. The Fourier spectrum of the
screen is also a 2D lattice, the reciprocal lattice, and the
frequencies of the screen are spanned by the reciprocal lattice
basis vectors {fi}2i=1:

Ev1 = (a, b); Ev2 = (−b, a)

Ef1 =
RP

a2 + b2
(−b, a); Ef2 =

RP

a2 + b2
(a, b) (5)

FIGURE 8. When the screen lattices are placed on top of each other, the
screens frequencies interfere, and moiré patterns start to emerge. Here,
we show two identical screens superimposed with two different relative
angles (a) and (b), which significantly influence the appearance of the
moiré. In the case that the moiré pattern frequency is low enough (b),
that is, |f moire| < HVSmin, the pattern might be visible, and the print
unacceptable.

2) SCREEN SET DESIGN
Color printing requires the design of a screen set, where each
screen is assigned to one channel (colorant): {si}#inksi=1 (usually
CMYK) [6]. When the screen lattices are placed on top of
each other, the screens’ frequencies interfere, and patterns
start to emerge (moiré) [7], [9]. If a moiré pattern frequency
is low enough, that is, |f moire| < HVSmin, the pattern will
be visible, and the print’s quality might be unacceptable [8].
(Fig. 8)
The moiré pattern frequency f moire is a linear combination

of the screens basis vectors (6), where Ef ij is the j
th basis vector

of color plane i, αij are integer coefficients, and the sum
∑
αij

denotes the moiré order [8].

Ef moire =
N∑
i=1

2∑
j=1

αij
Ef ij (6)

Finding a moiré-free screen set requires that the following
condition (7) be satisfied [8].

|Ef moire| > HVSmin or |Ef moire| = 0 (7)

Themost commonmoiré-free screen set for high resolution
analog print engines (offset) is the rosette zero-moiré screen
set [1], [4], [8]. This set is considered to be the best all-around
compromise for most images and applications as it forms
the least objectionable moiré—the rosette patterns [4]. The
screens in this set have equal resolution and a 30-degree
angle difference (usually 15◦/45◦/75◦ for the CMK planes
and 0◦ for the yellow plane) [4]. The zero-moiré condition
|f moire| = 0 dictates that both {|fi|} and {s

ang
i } should be

carefully pin-pointed to hold the condition. Even a small
deviation in the screen angle and resolution will cause severe
moiré (the HVS function is most sensitive to low-frequency
patterns [5]) [7]. A typical offset screen set has {|fi|}4i=1 = 175
LPI and {sangi }

4
i=1 = {0, 15, 45, 75} [4]. Digital print engine

screens are quantized to an integer number of pixels and,
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TABLE 1. The screen pool of regular screens for Rp = 812.8 DPI. The
rosette zero-moiré screen, commonly used with offset presses, is not
feasible.

therefore, can produce only a few unique angles and reso-
lutions (i.e., regular screens) [1], [10], [11]. For this reason,
designing a rosette zero-moiré screen set with regular screens
is not feasible. Table 1 shows the screen pool (available
regular screens) with 150 < fs < 225 for a print engine with
Rp = 812.8 DPI (Indigo print engine [35]). It is evident that
the pool of regular screens is very limited, and the rosette
zero-moiré screen set is not feasible. Generally, any moiré-
free screen set is not feasible within this screen pool [7].

3) INCORPORATING IRREGULAR SCREENS IN THE SCREEN
SET DESIGN
It is customary to use irregular screens [11] to cope with
the lack of available screens in low-resolution print engines.
In these screens, the halftone cell legs {(ai, bi)}clustersi=1 and
the halftone cell centers {(x icenter , y

i
center )}

clusters
i=1 do not fall

necessarily on the RP grid (Fig. 9).
The use of irregular screens dramatically increases the

number of available screens per print engine, thus enabling
one to design a screen set that satisfies (7) (moiré-free con-
dition) [8]. The screen pool size |P| for fs ∈ [150, 225] and
Rp = 812.8 DPI is given in Table 2 for both regular and irreg-
ular screens. The screen pool is constructed by varying the
halftone screen basis vector (a, b), such that fs ∈ [150, 225],
(a, b) ∈ Q and the halftone cells can be combined to a zero
angle dither array super cell (tile) [8].

In the case of an irregular screen, the lattice basis vec-
tors { Evi

ireg
}
2
i=1 can be non-integer, rational numbers (a, b) ∈

Q [8]. As pixels must have integer numbers, the halftone
cell center positions are rounded to the closest pixels when
spanning a halftone grid:

{(x icenter , y
i
center }

clusters
i=1

= span{round(n1 · Ev1
ireg
± n2 · Ev2

ireg)}clustersi=1 (8)

The rounding causes the irregular screen distance between
cells to be non-uniform (Fig. 9b); hence, irregular screens
are usually much noisier than regular screens [22]. The vast
majority (approximately 95% for a typical low-resolution
print engine [10]) suffer from disturbing patterns (quantiza-
tion patterns) that are visible on the print and which cus-
tomers find to be objectionable (unacceptable screens) [8].
The irregular screen pool for a typical low-resolution print

FIGURE 9. The halftone cell centers (x0, y0) fall on RP in the case of a
regular screen (a) and do not fall on the pixel grid in the case of an
irregular screen (b). As pixels must have integer numbers, the halftone
cell center is rounded to the closest pixel.

TABLE 2. Comparison of the size of the screen pool for regular and
irregular screens with fs in different ranges and high and low Rp values.

engine is of the order of hundreds of thousands; thus, it is
impractical to identify unacceptable screens by printing and
visually inspecting all the screens in the pool. Thus unaccept-
able screens need to be identified in the screen design process
pre-printing. This is usually done by a spectrum analysis
of the irregular screen. Fig. 10 shows the screen spectrum
of an irregular screen vs. a regular screen (equal resolution
and angle). The irregular screen spectrum contains additional
frequencies that are absent from the regular screen spectrum.
These additional frequencies cause quantization patterns to
appear in the print. The common practice to incorporate irreg-
ular screens in the screen design is to calculate these patterns
directly from the reciprocal screen lattice (Fourier representa-
tion of the screen lattice vectors (11)) followed by a threshold,
rule-based operation that determines if the screen is in the
acceptable or unacceptable domain [8], [11]–[13], [10].

4) SPECTRUM ANALYSIS OF IRREGULAR SCREENS
The spectrum of a regular screen is composed of fre-
quencies Efn1,n2 , which are a linear combination of the
screen reciprocal lattice basis vectors {Efi}2i=1 and all their
harmonics {ni · Efi} (9) [7].

Efn1,n2 = n1 · Ef1 + n2 · Ef2, n1, n2 ∈ Z (9)

In the case of a regular screen, each frequency in the
spectrum satisfies |Efn1,n2 | > fs, thus setting fs > HVSmin

ensures that the screen will not suffer from disturbing visible
low frequencies. (See (3) and (5) for the relation between
fs and Ef1 and Ef2.) This is not the case for irregular screens.
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FIGURE 10. Comparison of spectra. Regular screen (a) and its
corresponding spectrum (b) and irregular screen (c) and its corresponding
spectrum (d). The irregular screen spectrum contains additional
frequencies that are absent from the regular screen spectrum and are the
cause for visible patterns on the print.

In the case of irregular screens, the rounding effect (8) gen-
erates non-uniformities in the pixel locations, and additional
frequencies, that is, quantization frequencies, start to appear.
Fig. 11 shows an example of the quantization effect for the
irregular screen in Table 3. After the rounding, as seen in
Fig. 11b, a new low frequency Eqi appears. Eqi was not present
before the rounding, as observed in Fig. 11a.

The spectrum of an irregular screen is composed of both
regular Efn1,n2 (9) and irregular Eqn1,n2 frequencies. The lat-
ter are generated due to the residual error of the rounding
operation (8), which varies within the screen lattice (Fig. 9).
The error function is the residual of the spatial halftone basis
vectors Ev ireg1 , Ev ireg2 :

e(n1, n1) = (n1 Ev1
ireg
+ n2Ev

ireg
2 )mod1 n1, n2 ∈ Z

xmod 1 = x − round(x) (10)

Ev1
ireg and Ev2

ireg can be expressed as irreducible fractions
via p1, q1, p2, p2 ∈ N:

Ev ireg1 =

(
p1
q1
,
p2
q2

)
; Ev ireg2 =

(
−
p2
q2
,
p1
q1

)
(11)

Thus, the error function takes the form:

e(n1, n2) =
(
n1p1q2 − n2p2q1

q1q2
,
n1p2q1 − n2p1q2

q1q2

)
mod1

(12)

The error function is a discrete 2D saw-tooth function with
fundamental period T = lcm(q1,q2) · 1

fs
(lcm - least com-

mon multiple). The frequencies of the error function, that is,
the quantization frequencies Eqn1,n2 , and their corresponding
amplitudes |A|n1,n2 , are given by the Fourier series expansion

FIGURE 11. An example of the effect of the rounding operation (8) for an
irregular screen, introducing quantization frequencies to the screen (a) an
irregular screen before the rounding operation (b) an irregular screen
after the rounding operation. The latter suffers from a low-frequency
quantization pattern. The parameters for this screen are shown in Table 3.

TABLE 3. An irregular screen for Rp = 812.8 DPI.

of a saw-tooth function with period T (13):

Eqn1,n2 =
n1
T
· Ef1 +

n2
T
· Ef2, n1, n2 ∈ Z

An1,n2 ∝
1

n1 + n2
(13)

Fig. 12 presents the error function in the Ef1 direction for
the irregular screen that is given in Table 3. In this case,
T = 7 and Eqn1,n2 =

( n1
7 ,

n2
7

)
; An1,n2 ∝

1
n1+n2

5) THE RULE-BASED APPROACH
Current screen set design is carried out using the rule-
based approach. This approach predicts whether a screen
will suffer from visible quantization patterns when printed.
This approach has two steps: first, the lowest and strongest
quantization frequencies are calculated via (13). Then each
frequency Eq i

n1,n2 is compared with a dedicated harmonic
dependant threshold th′n1,n2 . The condition for screen accept-
ability is given by:

∀i : Eq i
n1,n2 > th′in1,n2 (14)

Themain idea behind this approach is the fact that the HVS
behaves as a low pass filter; thus, low quantization frequen-
cies are more visible to the human observer—and, therefore,
riskier [5], [32]. As the visibility is also a function of the
amplitude, which is inversely proportional to the order of the
harmonic (13), the thresholds th′in1,n2 are more permissive as
(n1, n2) increases.

It is not clear how to set the threshold values. As the
thresholds are a function of the printing process and the HVS
response to the print, the common practice is to set them
with an initial guess (based on a simplistic HVS function)
and fine-tune them using empirical measures (printing and
evaluating the patterns’ severity on the print) [1], [10]. For
the Indigo print engine [35] (Rp = 812.8 DPI), the thresh-
old values that were found to give the best result are given
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FIGURE 12. Error function of the irregular screen from Table 3 in the
Ef1 direction.

in Table 4 [10], [23]. Defining thi as the period of lowest
frequency, that is, the largest period, allowed per harmonic:
thi = 1

th′i
. The thresholds th′i are presented in units of the

length of the halftone cell hc.

IV. PROPOSED METHOD
A. SCREEN SET DESIGN WITH SCREEN CLASSIFIER
We propose a novel method for incorporating irregular
screens in the screen set design. The main idea behind
our approach is to divide the screen pool P into two non-
overlapping classes:Pacc, the set of all screens that are accept-
able for production, and Punacc, the set of all screens that are
unacceptable for production:

P = Pacc ∪ Punacc (15)

Thus, the task of differentiating irregular screens for a
certain print engine boils down to a two-class classification
problem. Therefore, our goal is to find a classifier C that takes
as input a screen that is defined by two numbers (fs, sang), and
classifies it as either acceptable or unacceptable for a given
print engine:

C(fs, sang) ∈ Pacc or C(fs, sang) /∈ Pacc (16)

The main steps of the method are listed below:
1) Construct the screen pool P for a given print engine.
2) Build a screen classifier C(fs, sang) using ML method-

ology and psycho-physical experiments.
3) Apply the screen classifier to the screen pool.
4) Define a target screen set resolution range (3).
5) Find a set of three points in the screen pool that

satisfy:
• Quantization-free: ∀i C(f is , s

ang
i ) ∈ Pacc.

• moiré-free: {(f is , s
ang
i )}3i=1 satisfy (7).

6) Assign the set {(f is , s
ang
i )}3i=1 to the colorants

{C,M ,K }.
7) Assign the colorant Y as follows: f ys = f ks ·1.10 s

y
ang =

1
2

(
skang − s

c
ang

)
.

This method is designed to yield a quantization-free,
rosette-like zero-moiré {C,M ,K ,Y } screen set within
the target resolution range for a dedicated print engine

TABLE 4. Threshold values found empirically for the Indigo print
engine [35] for the rule-based approach in units of halftone cell hc .

(as patterns in yellow ink have low visibility, we followed a
rule-based approach to design the screen for yellow ink [4]).
Fig. 13 shows the result of Step 1 for a typical low resolution
Rp = 812.8 DPI print engine (the pool is constructed by
varying the halftone screen basis vector parameters (a, b),
such that fs ∈ [0, 250], (a, b) ∈ Q and the halftone cells can
be combined to a zero angle dither array super cell (tile) [8]).
Each point in the 2D plot corresponds to one screen defined
by its LPI and angle (fs, sang). Blue points correspond to
regular screens (which are acceptable by definition), and red
points correspond to irregular screens on which the classifier
will be imposed.

The success of this method depends on the ability
of the screen classifier to distinguish between accept-
able and unacceptable irregular screens. In what fol-
lows, we will show how to use ML methodology and
psycho-physical experiments to build the screen classi-
fier. Fig. 14 shows a schematic flowchart of the proposed
method.

B. FOURIER-BASED FEATURE EXTRACTOR
To extract the screen features for the ML classifiers,
we calculate a 6-dimensional feature vector EQs (the quanti-
zation vector) for each screen. This is done by using (13) in
the following way: the 1st feature is the lowest quantization
frequency that satisfies

∑
j |nj| = 1 (1st harmonic); The

2nd feature is the lowest quantization frequency that satisfies∑
j |nj| = 2 (2nd harmonic); we continue to the 6th har-

monic (17).

Q1
s = argminn1,n2{|Eqn1,n2 |}

|n1|+|n2|=1

Q2
s = argminn1,n2{|Eqn1,n2 |}

|n1|+|n2|=2

Q3
s = argminn1,n2{|Eqn1,n2 |}

|n1|+|n2|=3

· · ·

Q6
s = argminn1,n2{|Eqn1,n2 |}

|n1|+|n2|=6

EQs =
(
Q1
s ,Q

2
s ,Q

3
s ,Q

4
s ,Q

5
s ,Q

6
s

)
(17)

The quantization vector stores the 6 lowest and strongest
quantization frequencies in the screen spectrum; thus, the
6-dimensional space it spans is the most suited for the
screen classification. The structure of the quantization vector
implies the feature importance: Qis importance decreases as
i decreases. This is because the amplitude of the quanti-
zation pattern is inversely proportional to the order of the
harmonic (13). As the HVS behaves as a low pass filter,
we take only the lowest frequency in each harmony [5], [32].
The quantization vector is also used in the rule-based screen
set design approach, although it is defined a bit differently
from this derivation [10].
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FIGURE 13. The screen pool of the HP Indigo print engine. Constructing
this pool is the first step of the proposed method. Each red or blue point
(fs, sang) in this graph represents an optional screen for this print engine.
Blue dots correspond to regular screens, and red dots correspond to
irregular screens. In what follows, a screen classifier will be developed
and applied to each point-screen in the pool.

C. APPLIED MACHINE LEARNING MODELS
It is hard to know in advance which ML model will yield the
best screen classifier. Therefore, we tested and compared sev-
eral ML models [21]. As both the print engine and the HVS
are non-linear functions [14], most of the models we explored
were non-linear as well. The models that we explored were:
Logistic regression (LG): is a linear model that predicts the

probability of a discrete outcome given the input variables.
For the screen classifier case, the variables are the screen
parameters (usually the quantization vector), and the outcome
is the probability that the screen will suffer from visible
quantization patterns (unacceptable).
K nearest neighbors (KNN): is a non-linear machine learn-

ing model in which data samples are classified according to
their distances from other data points. The usage of a KNN
classifier makes sense as acceptable screens should be closer
to each other in the quantization feature space. The number
of nearest neighbors, K, that participated in the voting was set
to 5, the default value in the KNN implementation [36].
Support vector machine (SVM): is an ML model in which

data can be transformed to a higher-dimensional space, such
that linear separation can be applied by a hyper-plane [16].
Utilizing SVM requires one to determine the best data trans-
formation and to fine-tune the hyper-plane parameters per the
classification challenge [18]. We have used an exponential
kernel with different preprocessing methods to improve the
SVM classifier performance.
Classification and regression decision trees (CART): are

greedy non-linear ML models in which the target cost func-
tion, the Gini purity index, is minimized in the learning
process. These models were preferred for several reasons:
First, the algorithm finds and sorts the features according to
importance during the learning process via the purity metric.
Second, CART models are highly non-linear models, thus

FIGURE 14. A schematic flowchart of the proposed method. The method
can be divided into two main parts: training the screen classifier to a
small, selected subset of the pool, followed by screen set design via
inference of the screen classifier to the entire pool. The typical number of
screens for the training is on the order of several hundred while the
entire screen pool is on the order of hundreds of thousands.

perform well even with challenging classification problems
(given enough data). Third, if the tree is shallow enough,
the CART model acts as a white box model; that is, the
prediction mechanism can be interpreted, and insights can
be gained. We have used simple visualization of the trees to
interpret the classifying mechanism of the ML model. One
main disadvantage of CARTmodels is their tendency to over-
fit, especially in cases where the models are too complicated.
In our case, the trees were relatively shallow, so we did
not have to limit the tree depth to regulate the tree. [37].
We preferred to use this relatively simple model over more
sophisticated ones (e.g., XGBoost, random forest and deep
learning) because it requires less data, is explainable, and (as
we will show) yields good results.

D. EVALUATION METRICS
We divided the data into 80% training and 20% testing sets.
As usual, the training set was used to explore different ML
models and to fine-tune hyper parameters while the testing
set was saved for the final evaluation of the selected and
fine-tuned ML model. We performed 10-fold cross valida-
tion [37], in which the training set was divided (again) into
training and validation sets 10 times, and the ML mod-
els were compared between the different folds [37]. Accu-
racy, which is the number of correct predictions out of
the total number of predictions, was used to compare the
performance between ML classifiers. Models that showed
low variation (low variance) between the different folds
and high accuracy were preferable. In our case, false pos-
itives (FPs) are screens that were tagged unacceptable by
subjective evaluation and acceptable by the classifier, false
negatives (FNs) are screens that were tagged acceptable by
subjective evaluation and unacceptable by the classifier, true
negatives (TNs) are screens that were tagged unacceptable by
subjective evaluation and unacceptable by the classifier, and
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true positives (TPs) are screens that were tagged acceptable
by subjective evaluation and acceptable by the classifier.
A confusion matrix was built for the testing set that provides
detailed information on the ML classifier performance. The
elements of thematrix are FP, FN, TN and TP, where high val-
ues in the diagonal elements of the confusion matrix indicate
a high model performance [15].

E. DATA STRUCTURE
Obtaining large amounts of real data is challenging because
generating the ground truth of the screen class required access
to a print engine, installing dedicated software patches, print-
ing several target jobs per screen and tagging each screen
by a human observer. We estimate approximately 0.5 day
per 10 screens. Thus, our first step was to explore the
ML models via simulation. In the simulation, the screen
class (acceptable/unacceptable) was tagged via the legacy
rule-based model (Section III-B5). In the second step, ded-
icated experiments and physical evaluations were done to tag
the screen class.

1) SIMULATION DATA STRUCTURE
We did the following to generate the data set for the sim-
ulation: the screen geometry parameters a and b (screen
basis vectors elements as shown in (5)) were varied between
[0, 20] with steps of 0.03 to create a screen pool of approx-
imately 300,000 screens in the ranges of fs ∈ [0, 300] lpi
and sang ∈ [0◦, 90◦]. Then, a smaller pool of 11,500
screens was constructed with uniform distribution within fs ∈
[0, 300] lpi and sang ∈ [0◦, 90◦]. Next, for each screen, the
6-dimensional quantization vector (6 lowest and strongest
quantization frequencies) was calculated via (17). To deter-
mine the screen class, we followed the legacy rule-based
approach [8], [10], [12]: if the six lowest quantization fre-
quencies of a given screen were higher than Indigo’s empir-
ical thresholds (Table 4), the screen was tagged as class 1
(acceptable); otherwise, it was tagged as class 0 (unaccept-
able). Two types of vector features were used to construct the
data set. The first feature vector is the 6-dimensional quan-
tization vector that was calculated (per screen) as described
above. The second feature vector is a 4-dimensional vector
that simply contained the screen basis vector Ev1, Ev2 elements
(the vectors were calculated via (5)). Table 5 shows the first
four data samples of the data set with the 6-dimensional quan-
tization vector as the feature vector. Each row corresponds to
one screen: [Q1

s ,Q
2
s , ..Q

6
s ] are the features, and the class is

the screen tag generated according to the methods described
above.

2) EXPERIMENT DATA STRUCTURE
To create data set for the ML training, we conducted psy-
chophysical experiments in which 443 designated screen
threshold matrices (2) were installed on the digital HP Indigo
10000 print engine [35], printed and evaluated. It was not fea-
sible to use more samples due to limited printing resources.
For that purpose, we created a pool of screens geometries in

TABLE 5. Four samples from the screen data set used to train the ML
models. Each row corresponds to one screen. [Q1

s , Q2
s , ..Q6

s ] is the feature
vector of each screen (quantization vector, in halftone-cell units). ‘‘Class’’
is the screen class. For the 300,000 screen data set, tagging was done by
simulation using the rule-based model. For the 433-screen data set,
tagging is based on subjective evaluation.

a way similar to that presented in the previous section. The
screen geometry parameters a and b (screen basis vectors
elements as shown in (5)) varied between [0, 20] with steps
of 0.03 to create a screen pool of approximately 300,000
screens in the ranges of fs ∈ [0, 300] lpi and sang ∈ [0◦, 90◦].
Then, a smaller pool of 443 screens was constructed out of
the 300,000 pool (this is the maximum number of screens
we were able to print) with uniform distribution within fs ∈
[0, 300] lpi and sang ∈ [0◦, 90◦]. The screens’ distributions
are shown in Figs. 15a-15b. The class of a screen (ground
truth) was found as follows: For each screen in the pool {(f is ,
sangi )}443i=1, the screen geometry parameters were used as an
input to the Indigo threshold screen generator that yielded
a threshold matrix according the input parameters [4], [8],
[35]. Each threshold screen matrix was installed on the target
HP Indigo press [35]. Once the threshold matrix screen was
installed on the Indigo print engine, a dedicated target job was
printed once using that threshold screen matrix. The job was
composed of one page that contained 30 5.5×5.5 cm2 patches
with values of K (monochrome black ink) increasing from
0% to 95% coverage. Three human subjects (HP Indigo
engineers) visually inspected and evaluated each printed job.
A screen was tagged as class 1 (acceptable) if all the subjects
agreed that none of the 30 patches contain visual quantiza-
tion patterns. Otherwise, the screen was tagged as class 0
(unacceptable). The results of the screen ground truth tagging
are presented in Fig. 15c. Of the 443 screens evaluated,
100 were judged to be unacceptable, and 343 were judged to
be acceptable. The fs and sang distributions are uniformwithin
the target ranges by design (Figs. 15a,15b). The features are
standardized to have zeromean and standard deviation of one.
The tagged data distribution, that is, the ground truth, reveals
that our data are imbalanced (Fig. 15c). As stated earlier, the
number of screens classified by the subjects as belonging to
class 1, that is, acceptable and free of visible quantization
frequencies, is 343, while only 100 samples belong to class 0.
To balance the data set, we randomly duplicated samples
from the two classes such that: N class=0

= N class=1
= 350.

After the duplication, N real
= 700. In addition to standard-

ization of the features, we have used two more preprocessing
methods: scaling, where the data are scaled to the range [0–1];
and normalization, where the data are transformed such that
each sample will have a unit norm length.
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FIGURE 15. Screen data distribution for the 443 screens that were
evaluated by the human subjects. (a) Screen resolution fs [lpi], (b) Screen
angle sang [deg], (c) Tagged data – ground truth (0 = unacceptable, 1 =
acceptable).

V. RESULTS
A. SIMULATION RESULTS
We randomly chose 200 samples from the simulated data set
(Section IV-E), 100 ∈ class = 1 and 100 ∈ class = 0, scaled
the features to be within the range ∈ [0, 1] and fed them to the
following ML classification models: support vector machine
(SVM), logistic regression (LR), linear discriminant (LDA),
K-nearest neighbors (KNN) and classification and regression
trees (CART). Each model was applied with the default set
of hyperparameters [36], and with the feature vectors pre-
processed using standardization. Table 6 shows the classifi-
cation accuracy performances and the variance between the
different folds after applying 10-fold cross validation. This
result implies that the binary decision tree (CART) is the
best model for our challenge. In addition, a binary deci-
sion tree has another important advantage: in case the tree
is small enough, its visualization might provide important
insights [37]. A visualization of the tree T 200

quant is given in
Fig. 16. Each leaf node contains the following information:
threshold value of the feature Qi, the Gini index—the cost
function grade [37], the total number of samples that reached
the node, the number of samples that reached the node that
belong to class 0/class 1: the value = [N class 0,N class 1],
node classification: pass/fail stands for class 0/class 1 (the
final classification is set, by the leaf at the very bottom
node). The features are ordered in decreasing order of the
Gini grade; that is, important features appear at the top of
the tree while less important features appear at the bottom.
In our case, the features have a physical interpretation: The
ith feature EQis corresponds to the i

th harmonic (Section IV-B).
Thus the importance of the features decreases as i increases.
Indeed, the tree T 200

quant was able to capture part of this
behavior.

The thresholds the tree found for the features presented
in each node correspond to the threshold empirical values
th′i that were shown in Section III-B5. The ability of T 200

quant
to restore the thresholds is given in Table 7. It is clear that
the model was able to restore the first threshold value th′1
(the most important feature) and found relatively close values
for th′2, th′4. The thresholds th′3, th′5 were quite different
from the simulation thresholds, and the tree did not use the

TABLE 6. Results of applying different ML models as screen classifiers
with the simulated data set of 100 samples from each class (total of
200 samples). The data was preprocessed using standardization (the
features were standardize to have zero mean and standard deviation of
one).

FIGURE 16. Visualization of the T 200
quant tree.

TABLE 7. Empirical thresholds that were used by the rule-based Fourier
model for the simulation vs. T 200

quant class 1 (blue nodes) threshold values
(qi ) taken from the left-most side of the tree in Fig 16. The level of the
node (depth) corresponds to the importance of the threshold in the
classification. The threshold values are in halftone-cell units.

6th feature. Thus, the accuracy on classification tree T 200
quant

is good, at 94%, and it can restore the threshold vector to a
certain extent. Could we do better? To answer this question,
we re-trained the CART with 500 samples and created a new
tree: T 500

quant . The accuracy obtained with T 500
quant is 99%. The

tree visualization is given in Fig. 17. The ability of T 500
quant to

restore the thresholds is given in Table 8. Not only is the T 500
quant

accuracy higher, but it also captures the feature importance
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FIGURE 17. Visualization of the T 500
quant tree.

TABLE 8. T 500
quant restored thresholds vs. the empirical threshold that

were used by the rule-based Fourier model for the simulation. The
threshold values are in halftone-cell units.

and restores the thresholds quite accurately. Although both
T 200
quant and T

500
quant act as good classifiers, T 500

quant is preferable,
as it acts as a white box model and fits perfectly to our
physical model. What would happen if we used the screen
lattice vectors instead of the quantization vector as the feature
vector? In this case, the model should learn the features from
the data; hence the number of samples in the data should be
larger. To understand how much larger, we did the following:
a new data set was created with four features: vx1, v

y
1, v

x
2, v

y
2,

where Ev x1 , Ev
x
2 are the screen lattice basis vectors (5) (in fact

there are only two independent features because the vectors
are orthogonal and have the same length). The screen class
was simulated as before (Section IV-E1). Table 9 shows the
first four data samples from this new data set.

Next, we fed the CART with 500 samples from this new
data set (250 ∈ class = 1 and 250 ∈ class = 0) and
developed a new tree T 500

lattice. This tree obtained an accuracy
of 88%, which is lower than T 200

quant or T
500
quant . To determine the

number of samples needed to reach the accuracies achieved
with T 200

quant and T
500
quant , we increased the number of samplesN

and re-trained the CART. The results are presented in Fig. 18.
About 5000 samples are needed to obtain 95%with TNlattice,

which is not feasible in our case. In addition, the trees TNlattice
are muchmore complicated than T 200

quant and T
500
quant , and do not

provide insights about the model behaviour. A comparison

FIGURE 18. Accuracy of the CART model as a function of N using the
screen basis vectors as the feature vector applied to the simulation data
set. Achieving accuracy of 95% using this feature vector requires more
than 5000 samples.

TABLE 9. First four samples of the data set with only the screen lattice
basis vectors as features. Each row corresponds to one screen. The
feature vectors are the screen lattice basis vectors, Ev1, Ev2 of each screen
in units of pixels pix , and the screen class, which is simulated by tagging
each screen as one of the two classes via the rule-based model.

TABLE 10. Accuracy comparison between the two different models that
were obtained by training with the quantization vector and the lattice
basis vectors, respectively, as a function of the number of samples N .
Using the quantization frequencies as feature vector dramatically reduced
the required number of samples needed to reach an accuracy of 95%.

between the models as a function of feature vectors and N is
presented in Table 10. The comparison validates that using the
quantization frequencies as the feature vector dramatically
reduced the required number of samples needed to reach an
accuracy of 95%. We conclude that the CART model with
the quantization vector as the feature vector requires sev-
eral hundred samples to reach high performance as a screen
classifier on the simulated data. Next, we will use the ML
methodologies to build a screen classifier using real data, that
is, data that were tagged via visual inspection.

B. EXPERIMENTAL RESULTS
Next, we evaluated the performance of the ML models
on the experimental data set (based on subjective evalua-
tion, Section IV-E2). The following models were checked:
logistic regression (LR), support vector machine (SVM),
K-nearest neighbors (KNN) and classification and regression
tree (CART). Each model was trained with the default set
of hyperparameters [36] four times: three times, each with
a different preprocessing operation and one time without pre-
processing. We divided our data into 80% training and 20%
testing and used 10-fold cross validation on the training set
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FIGURE 19. Accuracy comparison of ML classification models for
predicting acceptable and unacceptable irregular screens applied to the
experimental data set. The feature vector that was used is the screen
basis vectors. CART _0 gave the best results with an accuracy of 82%.

to evaluate the models. Later, the best model was applied
to the testing set to validate generalization to new data.
The accuracy of each model with the vector lattice-based
features when evaluated on the validation set with 10-fold
cross-validation is presented in Fig. 19. For each model and
preprocessing method, a box plot summarises the model
performance [21], followed by a table showing the results
with the best preprocessing method for eachMLmethod. The
line in each box represents the median of the accuracy. The
lower and upper edges represent the 25th and 75th percentiles,
respectively. The whiskers show extreme values for accuracy.
The following conventions for the preprocessing methods are
used: 0- no preprocessing, 1- re-scaling, 2- standardization
and 3- normalization. The dashed red line in Fig. 19 indicates
the accuracy of the rule-basedmodel on this data set. The dots
indicate outliers.

Next, we retrain all the models with the quantization vector
as the feature vector. Fig. 20 shows a comparison of the
differentMLmodels’ accuracy with the four different prepro-
cessing methods, based on 10-fold cross-validation applied to
the validation data set. The red line indicates the performance
of the classic rule-based model on this data set.

Using the quantization vector as a feature vector improved
the performance of all the ML models. With this feature
vector, all the models outperformed the rule-based model.
The best results of each model are summarized in the table
at the bottom of Fig. 20. These results agree with the sim-
ulation results (Section V-A): using the quantization vector
as a feature vector with a binary decision tree (CART_3) and
preprocessing by normalization is the preferred configuration
with an accuracy of 95% and variance of 2%.

Next, we applied the trained CART classifier T 443
quant , with

preprocessing by normalization on the testing set, which was
not used until this part. The confusion matrix is presented in

FIGURE 20. Summary of the ML model results with the quantization
vector as the feature vector applied to the experimental data set. All the
models have better performance than the rule-based Fourier model.
CART _3 achieved the best results with an accuracy of 95%.

TABLE 11. The confusion matrix of the T 443
quant model (CART _3) on the

testing set. gt denotes the ground truth class, and p is the class
prediction by the model. The accuracy for the T 443

quant model on the testing
set was 94%.

Table 11. The accuracy for the T 443
quant model on the testing set

was 94%, whereas the accuracy of the classic model on the
testing set was 64%. As the CART performance of the test set
is very similar to the cross-validation results of the training
set, we conclude that the model generalizes well to new data.
The maximal depth of the tree was chosen to be 25 after a
grid search [21] on the training set.

The Tree T 443
quant is more complicated than the trees found

in Section V-A (Fig. 21). Pruning the tree for a simpler model
[21] deteriorates the model performance. Thus, we conclude
that this is the simplest, highest performance tree for this data
set. The fact that the T 443

quant is more complicated than the trees
foundwith the simulation-based data set (Section V-A) can be
explained as follows: First, our rule-basedmodel is too simple
and does not capture the complexity of the problem. Second,
we were not able to produce a sufficiently large number of
samples. T 443

quant can still be interpreted as being relatively
small. The tree nodes represent physical quantities: frequency
thresholds and their corresponding harmonics.

1) DESIGNING A SCREEN SET WITH THE SCREEN CLASSIFIER
Next, we followed the screen design steps from Section IV-A.

1) We constructed the screen pool by varying the halftone
screen basis vector (a, b), such that fs ∈ [0, 250],
(a, b) ∈ Q. The result of this step is shown in Fig. 13.
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FIGURE 21. The tree T 443
quant : This tree is more complicated than the trees

obtained with the simulated data but still small enough to be interpreted.

TABLE 12. Result of applying the classification function CART _3 with tree
Tquant

433 to the set of irregular screens. The fraction of acceptable
irregular screens is only 7%.

2) The tree T 443
quant that was found in the previous part is

used as the screen classifier C(fs, sang).
3) We applied C(fs, sang) on the screen pool. The result is

presented in Fig. 22: blue points correspond to regular
screens, that is, C(fs, sang)) ∈ Pacc by definition. Red
points correspond to unacceptable irregular screens,
that is, C(fs, sang) /∈ Pacc. Green points corresponds
to acceptable irregular screens, that is, C(fs, sang) ∈
Pacc. Table 12 shows the result quantitatively of the
classification function applied to the set of irregular
screens: there are only 7% acceptable irregular screens
out of 107,727 possible screens.

4) We refined the screen resolution range; we used
fs ∈ [225, 255] lpi.

5) A dedicated software was used to swipe the screen
pool within the fs range to find screen triplets
{(f is , s

ang
i )}3i=1 that satisfy both the quantization-free

condition: ∀i C(f is , s
ang
i ) ∈ Pacc and the moiré-free

condition 7).
6) {C, M, K} colorants were assigned to the screen set

found in the previous part. The screen set is presented
in Table 13 (the Y colorant was found as described in
Step 7 in Section IV-A).

This screen set was tested on anHP Indigo print engine [35]
and proved to be quantization-free and moiré-free with high
print quality features. An attempt to design such a screen set
with the legacy rule-based approach resulted in visible quan-
tization frequencies (Fig. figure23) and thus, inferior print
quality. (We chose a challenging f is range. As f is increases,
the quantization patterns become much stronger [12], [13].)

VI. DISCUSSION
The simulation results showed that MLmodels can be used as
screen classifiers with high accuracy for the simulated data.

FIGURE 22. Result of applying the classification function T 443
quant with the

quantization vector as features for Rp = 812.8 DPI. Blue points
correspond to regular screens, red point correspond unacceptable
irregular screens, green points correspond to acceptable irregular screens.

TABLE 13. High resolution fs = 230 LPI rosette zero-moiré screen set for
a low-resolution print engine Rp = 812.8 DPI that was designed using the
proposed method. The screen set is moiré- and quantization-free (only
green points in Fig. 22 for each screen in the set).

The CART model gave the best results in the spot checking.
The CART model showed much better performance when
given smart features (the quantization vector), but even sim-
pler features (screen basis vectors) gave reasonable results.
The performance of the CART model as a function of the
number of samples was also explored. We showed that with
smart features, 500 samples were required to achieve an accu-
racy of 95%, whereas achieving similar results using sim-
pler features required several thousand samples. The CART
model was able to restore the threshold values that were
used to tag the data by the simulation and was also able to
learn the features’ importance (low and strong frequencies
are more important). The experimental results also showed
that ML models can be used as screen classifiers with high
accuracy for the data set that was evaluated by the human
subjects. Even with simple features, both CART and KNN
classifiers outperformed the classic rule-based method (with
Indigo empirical thresholds), while SVC and LG were infe-
rior. Using smart features boosted the performance of all the
ML models above that of the classic model. The CART (the
best model with both features) had an accuracy of 95% in
screen classification, whereas the classic rule-based approach
achieved 66% on the same data set.We validated the classifier
performance on a testing set, which yielded similar results.
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FIGURE 23. A comparison between the proposed method and the current
legacy rule-based method applied to HP Indigo print engines. Each image
shows a scanned patch of a halftone screen printed with the target
printer [35], with a constant gray level of 25%. Attempting to design a
screen set with the current approach resulted in visible quantization
frequencies: (a), (b) screens that were found to be acceptable by the
legacy rule-based method and unacceptable by the proposed method.
(c), (d) screens that were found to be acceptable by the proposed method
and unacceptable by the legacy rule-based method.

As the CART tree was relativity shallow, it was interpretable,
and we extracted the frequencies thresholds the tree used to
perform the screen classification. The screen design method
with classifier inference showed that only 7% out of approx-
imately 100,000 screens are quantization-free. A software
program was used to find a quantization-free screen set (out
of the 7% quantization-free screens that were found) that
also satisfies the moiré-free conditions. Although we chose a
challenging screen set resolution target, the proposed method
yielded a quantization-free screen set. Using the rule-based
approach to design a similar screen set resulted in a screen
set that suffered from visible quantization patterns.

VII. CONCLUSION
In this study, we have shown that machine learning methods
can be used to construct a screen classifier that predicts (with
high accuracy) whether a screen set will suffer from visible
quantization patterns when printed on a specific print engine.
The method to combine the classifier in the screen design
process was introduced, and a quantization-free screen set
was designed. Although the classifier we found fits the HP
Indigo print engine, the approach can be leveraged to any
digital print engine. In this case, a new classifier will have
to be constructed, and the experimental part will need to be
revisited using the target print engine. One disadvantage of
this method is that it requires tedious data collection, which

in some cases can be challenging. This method can be further
extended to include chrome, that is, to take into account the
effect color has on pattern visibility (this study included only
black ink). Another possible extension is to build a screen set
classifier to predict whether a screen set will produce visible
moiré patterns per print engine. Similar to this study, it will
require an experimental part with the designated print engine.
The quantization-free screen set we found in this study is now
under qualification, and we plan to release it in one of the
future HP Indigo products.
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