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ABSTRACT This paper develops neural network models that can recognize Parkinson’s disease (PD) at
its early stage. PD is a common neurodegenerative disorder that presents with progressive slow movement,
tremor, limb rigidity, and gait alterations, including stooped posture, shuffling steps, festination, freezing of
gait, and falling. Early detection of PD enables timely initiation of therapeutic management that decreases
morbidity. However, correct recognition of PD, especially in early-stage disease, is challenging because the
aging population, which has a high PD prevalence, also commonly exhibits progressive gait slowness due
to other disorders, such as joint osteoarthritis or sarcopenia. Therefore, developing a reliable and objective
method is crucial for differentiating PD gait characteristics from those of the normal elderly. The aim of this
study was to develop neural network models that could use the participants’ motion data during walking to
identify PD. We recruited 32 drug-naive PD patients with variable disease severity and 16 age/sex-matched
healthy controls, and we measured their motions using inertial measurement unit (IMU) sensors. The IMU
data were used to develop neural network models that could identify patients with advanced-stage PD with an
average accuracy of 92.72% in validation processes. The models also differentiated patients with early-stage
PD from normal elderly subjects with an accuracy of 99.67%. Another independent group of participants
recruited to test the developed models confirmed the successful discrimination of PD-affected from healthy
elderly, as well as patients at different severity stages. Our results provide support for early diagnosis and

disease severity monitoring in patients with PD.

INDEX TERMS Parkinson’s disease, PD stage, IMU, neural network, gait.

I. INTRODUCTION

The aging of today’s society is associated with an increasing
number of patients suffering from neurodegenerative disor-
ders. One of these disorders is Parkinson’s disease (PD), and
current estimates indicate that the number of people with
PD will rise more than twofold, from 4 million in 2005 to
9 million by 2030 [1]. The clinical presentations of PD
include progressively slowing movements, limb rigidity, rest
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tremor, and posture instability [2]. Unfortunately, even those
patients who receive dopaminergic treatment or deep brain
stimulation still deteriorate with increasing age, and their
mortality rate is two- to three-fold higher than that of the
general population [3]. Therefore, recognizing PD in its early
stage is critical for initiating proper treatments to decrease
morbidity and ease the medical burden in the elderly.

The clinical severity of PD can be divided into five stages,
called the Hoehn-Yahr Stages I-V [4]. In Stage I, the patients
experience unilateral symptoms, such as asymmetrical gait
or hand swing; in Stage II, the disease influences are bilateral
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and the patient’s stability degrades; in Stage III, the disease
affects the central reflex mechanism, and the patient tends to
fall because of trunk instability; in Stage IV, the patient needs
a wheelchair and other assistive devices; and in Stage V, the
patient is wheelchair bound or even bedridden. Patients with
PD can be classified as having early-stage or advanced-stage
disease. In its early stages, denoted in this paper as Early_PD
and defined as Hoehn-Yahr Stage <2, the symptoms include
asymmetrical movement reduction of one limb, asymmetrical
hand movements, and shuffling when walking, with a pre-
served posture reflex [S]-[7]. In the advanced stages, denoted
here as Adv_PD and defined as Hoehn-Yahr Stage >2, the
symptoms are more progressed and include postural reflex
losses, festinating gaits that cause walking instability, and
increased risk of falling.

However, early detection of PD is challenging because the
normal aging population might also exhibit progressive gait
slowness, termed senile gait, due to joint osteoarthritis or
sarcopenia [8], [9]. Therefore, the aim of the present study
was to develop a neural network model that could help physi-
cians recognize the PD gait based on motion characteristics
occurring during walking. The model would also facilitate
monitoring of the PD disease severity stages for appropriate
medication adjustment and intervention.

Advances in technology are now improving the early,
timely, and accurate diagnosis of PD, especially when
machine-learning techniques are applied. For example,
Saad et al. [10] designed a Bayesian classifier that
used features derived from video images to recognize
freezing of the gait in patients with PD. Similarly,
Tripoliti et al. [11] extracted features from multiple inertial
measurement units (IMUs) and detected the freezing of gait
with an accuracy of 96.11% by applying a Random Forest
algorithm. Rocha et al. [12] analyzed gait parameters associ-
ated with skeleton joints provided by the Kinect and was able
to distinguish three groups: Non-PD subjects, PD patients in
the STIM ON state, and PD patients in the STIM OFF state.
Daliri [13] proposed a diagnosis method to differentiate sub-
jects with PD from healthy control subjects using the ground
reaction forces obtained from sensors underneath both feet.

Wahid et al. [14] applied a multiple regression normal-
ization strategy to extract gait characteristics and applied
three machine-learning strategies to recognize PD. In that
study, the Random Forest algorithm achieved the highest
accuracy of 92.6%. Caliskan et al. [15] applied a deep neural
network (DNN) classifier to diagnose PD based on a pub-
lic speech data set. Compared with other traditional meth-
ods, the DNN model provided a better accuracy of 86.10%.
Baby et al. [16] applied wavelet transformations to obtain
gait features from vertical ground reaction forces, and they
developed an artificial neural network that classified patients
with PD with an average accuracy of 86.75%. Sama et al. [17]
used data collected from a triaxial accelerometer placed on
the waists. Application of support vector machines (SVMs)
detected bradykinesia in patients with PD with an accuracy
of 90%.
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Kim et al. [18] proposed a tremor assessment system
that quantified PD severity with an accuracy of 0.85 using
a convolutional neural network and the accelerometer and
gyroscope signals from a wrist module. Haq et al. [19] com-
pared the performance of DNN with other machine-learning
methods using public voice signals. The DNN outperformed
other approaches and showed an accuracy of 98%, a speci-
ficity of 95%, and a sensitivity of 99%. Bilgin and Akin [20]
used public force data and proposed multilayer perceptron
neural networks to distinguish amyotrophic lateral sclero-
sis (ALS) from other neurodegenerative diseases, such as PD
and Huntington disease (HD). They applied leave-one-out
cross validation, which gave an accuracy of 82.14%, 78.79,
and 96.55% in discriminating ALS from PD, HD, and healthy
controls, respectively.

Abdulhay et al. [21] extracted features from public gait
data and applied machine-learning techniques to achieve an
accuracy of 92.7% for diagnosing PD. Rastegari et al. [22]
calculated gait features based on signals from shoe sen-
sors and developed a feature selection method to recognize
three groups: healthy elderly persons, geriatric persons, and
patients with PD. Hoang ef al. [23] applied vertical ground
forces from a public data set to develop a stacked convo-
lutional neural network that could classify gaits between
patients with PD and healthy controls with an accuracy
of 88.7%. Hu et al. [24] proposed a graph convolution neu-
ral network to detect freezing of gait by visual informa-
tion and achieved an accuracy of 0.887 in the experiments.
Solana-Lavalle et al. [25] applied k-nearest neighbor (KNN),
multilayer perceptron, SVM, and Random Forest to detect
patients with PD using public vocal features. The models
could detect PD with an accuracy of 94.7%, a sensitivity
of 98.4%, a specificity of 92.68%, and a precision of 97.22%.

Sivaranjini and Sujatha [26] applied the AlexNet model to
detect PD based on normalized public magnetic resonance
imaging data. The results showed an accuracy of 88.90%,
a sensitivity of 89.30%, and a specificity of 88.40% in recog-
nizing PD. Aydin and Aslan [27] applied the ViBe algorithm
and the Hilbert-Huang transform and were able to recognize
patients with PD with an accuracy of 98.79% using the
gait features derived from sensors on the bottom of feet.
Maachi et al. [28] proposed a DNN, which used gait features
extracted from ground reaction forces, to identify PD severity
with an accuracy of 85.3%. Karan and Sahu [29] combined
variational mode decomposition and Hilbert spectrum analy-
sis to select features from speech signals for investigation of
voice tremor in patients with PD. The model could classify
PD with an accuracy of 91% and 96% with the vowel /a/
and the word /apto/, respectively. Gunduz [30] proposed a
PD diagnosis system that applied vocal features and classified
PD with an accuracy of 91.6%.

Similar techniques have been applied for the recogni-
tion of patients with mild cognitive impairment (MCI). For
example, Yang et al. [31] applied functional near-infrared
spectroscopy (fNIRS) signals to recognize patients with
MCI and achieved an accuracy of 60%, 76.67%, and up
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to 90.62% using a statistical method, linear discriminant
analysis (LDA), and a convolutional neural network (CNN),
respectively. Yang et al. [32] then extracted three types of
features from the fNIRS signals and identified MCI patients
with an accuracy of 90.37% by applying CNN models.
Yoo et al. [33] proposed a channel-wise feature extrac-
tion method for the fNIRS data to diagnose MCI patients.
They then applied LDA and SVM to achieve an accuracy
of 83.33%. Yang et al. [34] applied the VGG19 pre-trained
CNN model and the classification-based transfer learning
method to the temporal features from fNIRS signals at the
resting state. Their model could recognize MCI patients with
an accuracy of 97.01%.

Because the feature extraction process could have altered
important signal characteristics, Guayacan and Martinez [35]
proposed a 3D convolutional network to recognize patients
with PD from gait videos without extracting special features.
Their model classified PD with an accuracy of 94.89 by
highlighting the spatiotemporal patterns. In the present study,
we measured the participants’ motion data and directly
applied those data to develop a neural network model capable
of distinguishing a PD gait from that of a healthy elderly per-
son, while also differentiating Early_PD from Adv_PD with
high accuracy as a surrogate disease-monitoring gait marker
for disease progression. This paper is arranged as follows:
Section II describes the experimental settings. We recruited
PD patients and age- and gender-matched healthy participants
for the experiments and measured their motions by IMUs.
Section III introduces the structure of the neural network
models for detecting PD and its stages. Because the symp-
toms of PD might vary as the stage progresses, the model
consists of two sub-models that classify the data as Adv_PD,
Early_PD, or Non-PD. Section IV presents the model devel-
opment procedures, in which we applied the k-fold cross-
validation method for model training and validation. New
subjects were then recruited to test the developed models.
Finally, we draw conclusions in Section V.

Il. DATA COLLECTION

This section describes the experiments conducted to collect
the clinical data. We invited patients with PD and healthy
elderly control subjects to participate in the tests. Their kine-
matic data were measured by IMUs and applied to develop
the neural network model for detecting PD and classifying its
stages.

We recruited 32 patients with PD and measured their
clinical motion data. The recruitment criteria for selecting
patients with PD included: (1) a diagnosis of PD based
on the United Kingdom PD Society Brain Bank clinical
diagnostic criteria [36]. (Patients were excluded if they had
signs of atypical parkinsonism or other secondary cause—
related parkinsonism features); (2) a Hoehn-Yahr Stage [4]
determined by an experienced movement disorder specialist
(Dr. Lin CH); (3) the absence of any other musculoskele-
tal disorders that might influence the typical PD motions;
(4) the ability to walk ten meters indoors without support
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TABLE 1. Basic data of the participated subjects.

Subjects with PD : Health Control Group
No.  Gender Age Stage Side | No. Gender Age
PDI M 72 I R | NI F 67
PD2 F 64 I L | N2 F 62
PD3 F 67 1 L | N3 F 69
PD4 M 52 I R | N4 M 56
PD5 F 69 I R | N5 M 77
PD6 F 67 I L | N6 F 58
PD7 M 68 I R | N7 M 76
PD8 F 73 I L | N8 M 61
PD9 F 81 i L | N9 F 57
PD10 F 65 I L | NIO M 76
PDI11 M 69 I L | NIl F 78
PDI12 F 53 i R ! N2 F 64
PDI3 M 62 I L NI3 F 60
PD14 M 49 I L | N4 F 66
PDI15 M 74 1 L | NIS M 85
PDI16 M 66 10 L | NI6 F 63
PD17 M 79 IO R !
PDI8 F 56 I Lo
PDI19 M 77 I R
PD20 M 84 I R |
PD21 F 74 I L |
PD22 M 70 I R !
PD23 M 73 IO R
PD24 F 61 I R
PD25 M 78 I R |
PD26 M 79 I L |
PD27 F 72 I R !
PD28 F 66 I L
PD29 M 72 IO R
PD30 F 70 IV L
PD31 M 75 IV L i
PD32 F 80 IV L |

or aid devices; and (5) a Mini-Mental State Examina-
tion [37] score higher than 24. We also recruited sixteen
age- and sex-matched healthy subjects as the control group.
All subjects’ data are listed in Table 1; the designations
PDI-PD16 indicate the patients with Early PD, while
PD17-PD32 indicate patients with Adv_PD, and N1-N16 are
the healthy elderly controls. The patients’ stages and affected
sides were evaluated by doctors who had more than 15 years
of daily experience with PD patients. All test subjects signed
informed consent forms approved by the Institutional Review
Board of National Taiwan University Hospital (IRB number:
202012017RINA), as shown in Appendix A, before joining
the study.

We applied the APDM OPAL system [38] with wearable
IMUs to record each subject’s kinematic data. Wear-
able IMUs have frequently been used in motion analy-
ses [11], [15], [17], [19] because of their advantages of
portability, low cost, and fast data acquisition. In this paper,
we developed a neural network model based on the data
measured by the OPAL system. The specifications of the IMU
system are illustrated in Table 2. Because PD might influence
a patient’s motions as the disease progresses, we attached
five IMUs to each subject’s shanks, lower arms, and waist,
as shown in Figure 1.

During the experiments, all subjects were required to walk
at their most comfortable pace, forward and back, along
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TABLE 2. Specifications of the OPAL IMU system [25].

Dimensions 43.7x39.7x 13.7 mm
Weight <25 g (with battery)
Resolutions 17.5 bits

Sampling rates 20 to 128 Hz
Transmission range 30m line of sight
Ranges of the accelerometer +200g

Ranges of the gyroscope + 2000 deg/s

Ranges of the magnetometer + 8 Gauss

(c) on the waist (d) The IMU orientation.

FIGURE 1. The IMUs for experiments.

a straight line about ten meters in length. A research assistant
accompanied each subject because of safety concerns about
the patients with PD. Each IMU recorded the 3-axial accel-
erations and 3-axial angular velocities with a sampling rate
of 128 Hz. These measured data revealed that patients with
PD at different stages tended to have varied IMU responses.
For example, Figure 2 shows the angular velocities of the
left shanks of subjects N16, PD7, and PD29 on the sagittal
plane [39] (i.e., wy in Figure 1(a)). Notably, each gait cycle
contains three important gait events [40]: mid-swing (MS),
heel-strike (HS), and toe-off (TO).

angular velocity (degreelsec)
i s 3 8 3
angular velocity (degreelsec)
5 s 5 8

angular velocity (degreelsec)
i s 3 8 3

time (seconds)

(c) PD29

time (seconds)

time (seconds)

(a)N16 (b) PD7

FIGURE 2. Angular velocities of the left shank on the sagittal plane.

A complete gait cycle comprised a stance phase (from HS
to TO) and a swing phase (from TO to HS), which took
about 60% and 40%, respectively, of the gait cycle duration in
healthy persons. The MS usually happened when the angular
velocity reached its maximum in the gait cycle; therefore,
we were able to further divide the gait responses into gait
cycles according to the MS events, as shown in Figure 3. Note
that the gait cycles tended to be smoother and more regular in
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the healthy subjects than in the patients with PD, whose gaits
contained trembles and vibrations. However, distinguishing
patients with PD from the healthy elders was still challenging,
as the elderly healthy subjects also tended to have similar gait
slowness and quakes because of other disorders. In addition,
the swing phases tended to be shorter in the Adv_PD subjects
than in the Early_PD subjects or the control groups. For
instance, subject PD29 had a noticeably longer stance phase
and a shorter swing phase because of a festinating gait, which
caused a shorter swing phase but a faster speed and easily led
to falling forward.

- 8 8 8 &

degreelsec
degreelsec
degree/sec

gb L1

%
(c) PD29

(b) Pf:)?

(a) N16

FIGURE 3. Left gait cycles.

Apart from the differences in gait responses, the arm swing
was also an important differentiating characteristic of patients
with PD, especially at the different stages. For example, the
angular velocities of the lower arms on the sagittal plane
(i.e., w; in Figure 1(b)) for subjects N16, PD7, and PD29 are
illustrated in Figure 4. Because PD usually affects one side
unilaterally at the early stage, subject PD7 tended to have a
more asymmetrical arm swing when compared with subjects
N16 and PD29. This difference could be a significant feature
for distinguishing Early_PD.

angular velocity (degreelsec)
angular velocity (degreelsec)
5 & s 8 8 8

time (seconds)

(c) PD29

time (seconds)

(b) PD7

time (seconds)

(a) N16

FIGURE 4. Swing of the lower arms on the sagittal plane.

These limb responses are normally applied to identify PD
and to classify its stages. However, this evaluation is often
subjective, meaning that different clinicians might arrive at
different diagnoses. Therefore, we need an objective method
for detecting PD and classifying its stages. In the next section,
we apply the IMU data to develop a neural network model
that can differentiate Adv_PD, Early_PD, and healthy elderly
groups.

Ill. NEURAL NETWORK MODELS FOR PD RECOGNITION

This section applies the clinical IMU data to develop a neu-
ral network model for detecting PD and its stages. Many
machine-learning methods are available, including KNN,
SVM, and Random Forest [41]. Among them, neural net-
works have the advantages of exploring large amounts of
input data and automatically selecting the operation to extract
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FIGURE 5. Architecture of the neural network models.

data features that can support nonlinear transformations with
high accuracy and robustness [42], [43]. Therefore, we pro-
posed a neural network model to identify PD and classify its
stages. The model comprised two sub-models: sub-model I
and sub-model II. Sub-model I estimates whether the input
IMU data are Adv_PD, while sub-model II classifies the input
data as Early_PD or Non-PD if the IMU data are not Adv_PD.
The architecture of the models is shown in Figure 5 and
consists of the input layer, three convolutional layers, the
flatten layer, three fully connected layers, and the output
layer.

We integrated the synchronized IMU data as the model
input. We first separated the IMU data according to the MS
events of the gait responses because the gait motions were
repeated and periodic. The IMU data were partitioned accord-
ing to the MS events on the left or right sides, depending
on which side was affected. We then normalized the IMU
data by dividing them into one hundred points in each gait
cycle, because the subjects might have varied their walking
speeds and the data length may have differed in each gait
cycle. Finally, we constituted the input data, as follows:

X=[Xgr Xer Xra X Xw], (H
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where the subscripts RF, LF, RA, LA, and W represent the
IMU data measured from the right foot, left foot, right arm,
left arm, and waist, respectively. Each IMU data point also
consisted of 3-axial angular velocities and 3-axial accelera-
tions, as follows:

in which w; € R'93 and ¢; e R!I93 for i =
RF,LF,RA, LA, or W. That is, the input X is a combination
of five IMUs with a dimension of 100x 30. The subjects’ IMU
data are provided in Appendix B. As an example, an input
X from PD22 is shown in Appendix C, where the IMU data
were synchronized and partitioned by the left MS. Because
the characteristics of the IMU data cannot be easily connected
to the motions associated with PD, we developed a neural
network to identify PD and its severity.

We then applied a selection matrix to pick suitable data
for the two sub-models. For sub-model I, we chose the
IMU data on the affected side by setting the selection
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matrix S as follows:

[ Toxe6 0 ]
0 0
SE=1 0 Isxo :
0 0
L 0 0 J430x12
c 0
Isxe 0
sk=1 0 0 | eRr¥0x1Z 3)
0 Isxe

The reason for doing this was that Adv_PD tends to have
freezing arm movements and gait disorders (e.g., tremors and
short swing phases) that affect the foot motions, especially
on the affected side. For example, we set X = XSf =
[XRF XrA ] for PD1 because the affected side was the right
side, while we set X = XSF = [ X.r Xia | for PD2 because
the affected side was the left side.

Similarly, we chose the angular velocities on both arms and
the waist IMU data for sub-model II by setting the selection
matrix S, as follows:

0
Sp=| M |eR" 4)
N
where
133 0 0 0
1 0 0 0 0 12x12
M=10 15, o ol
0 0 0 O
N = [0 16><6] e RO*12

such that X = XS, = [wra @4 Xw |. This helped
in distinguishing Early_PD from the healthy control group,
because PD tends to affect the unilateral side, especially
with respect to arm movements, at the early stage. Therefore,
the asymmetry of arm swings can be regarded as an impor-
tant characteristic of Early_PD. Furthermore, Early_PD also
tends to have a greater number of unstable trunk motions than
is observed in healthy subjects. Therefore, the waist IMU data
can also be applied to recognize deterioration due to PD onset.

Using the selected IMU data )_(, the models were then
applied using three convolutional layers with the maximum
pooling sizes of 2, a flatten layer, and three fully connected
layers to generate an output layer. Each convolutional layer
has several filters containing a window and a max-pooling,
as illustrated in Figure 5 and Table 3. The model parameters
number more than sixty thousand and cannot be illustrated
here. The flatten layer was then used to link the convolutional
layers and the fully connected layers. Each fully connected
layer contained 70 neurons.

We used RelLLU [44] as the activation function for the
convolutional layers and the fully connected layers. We then
applied the sigmoid function [45] as the activation function
of the output layer to generate two neurons. The output of
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sub-model I'is Y1 =[1 O] orY; =[0 1], which indicates
whether the input IMU data are Adv_PD or not Adv_PD,
respectively. If the input data are classified as not Adv_PD,
then sub-model II is applied to estimate whether the input
belongs to Early_PD or Non-PD, denoted as Y = [1 0]
or Y = [0 1], respectively. Note that sub-model I and
sub-model II have the same architecture but different model
parameters because they were trained individually. During the
training process, we set the batch size at 300 and the epoch
at 40. We chose Adam as the optimizer and applied Dropout
with a dropout rate of 10% to each hidden layer.

TABLE 3. Model dimensions.

Description Dimensions
Input X € R00x12
1D Convolution (5 filters, kernel size=3) C, € R49%5
1D Convolution (8 filters, kernel size=20) ¢, € R1°%8
1D Convolution (64 filters, kernel size=5) ¢, € R5%64
Flatten F € R320x1
Fully-Connected (70 neurons) F, € R70%1
Fully-Connected (70 neurons) F, € R70x1
Fully-Connected (70 neurons) F; € R70X1
Output Y €R¥

IV. RESULTS AND DISCUSSION

This section introduces the model development procedures,
including model training, validation, and testing, as shown in
Figure 6. We collected 6540 gait cycles from the 48 subjects
in Table 1, and we applied the k-fold cross-validation method
with k = 5 (i.e., we divided the normalized data set fivefold
for model training and validation). Each time, we used four
parts to train the model and the remaining part to validate
the model. Ultimately, we built five models (A, B, C, D,
and E), where each model consisted of the two sub-models:
sub-model I and sub-model II. We then recruited new patients
with PD and new healthy elderly subjects to test the five
models.

-le
, o §
*.‘.E

idation
[ ] &
- &
I — €D Result
None_PD Early_PD Adv_PD y“
Modal

FIGURE 6. Training and validation of the neural network models.

The performance of a neural network model is usually rep-
resented as a confusion matrix [46], as illustrated in Table 4.
Based on the confusion matrix, the model performance can
be evaluated by the following indexes:

TP+TN

T TN TN o)
TP+FP+FN+TN

Accuracy =
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TABLE 4. The confusion matrix.

Ground truth
Positive Negative
. .. _ Positive TP FP
Model Prediction Negative FN ™™
. TP
Precision = ———, (6)
TP+FP
Sensitivit TP 7
nsitivity = ———,
VY = TPAFN
Specifici N ®)
ecificity = ,
peciclty = TN Fp
2.TP
Fl — score = ——. ©)
2 - TP+FP+FN

We combined the two sub-models to classify the input data
as Adv_PD, Early_PD, or Non-PD. The confusion matrix can
be represented as Table 5. The performance of sub-model I in
identifying Adv_PD is defined as follows:

Accuracy
_ M1 +Mo+Mr3+M3zr+M33
M1 +Mia+Mi3+Mo +Mo+Myz+M31 +M3zp+M3;z

(10)
Precision
M
= . : (11)
M +Mipp + M3
Sensitivity|
M
= o : (12)
M1 + My + M3,
Specificity;
_ My + M3 + M3 + M33 (13)
My + M3+ My + My + M3y + M33~
F1 — score
2-M
11 (14)

2 My + My + Mz + My + My

Similarly, the performance of sub-model II in recognizing
Early_PD is quantified as follows:

Accuracy, = M + M3 (15)
My + My3 + May + Ma3’
M
Precision, = i, (16)
My + Mo
M
Sensitivityy = ———2 (17)
My, + M3,
M
Specificity, = ————— (18)
M3 + M33
2-Mpy
Fl — scorey = (19)

2-Mpy + My + Mz’

The confusion matrixes in the model validation processes
are illustrated in Table 6, where the five models achieved
an average Accuracy; of 92.72%, an average Precision;
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TABLE 5. Confusion matrix for the three-class classification models.

Ground Truth
Adv PD Early PD Non-PD
Model Adv_PD M, M, M,
Prediction Early PD M, M, M,
Non-PD M, M, M,

of 79.86%, an average Sensitivity; of 99.51%, an average
Specificity; of 90.02%, and an average F'I —score of 88.60%
for identifying Adv_PD. For differentiating Early_PD and
Non-PD, the five models achieved an average Accuracy;
of 99.67%, an average Precisiony of 99.71%, an average
Sensitivity, of 99.24%, an average Specificity, of 99.86%,
and an average FI — scorey of 99.48% in the validation
processes.

TABLE 6. Confusion matrix for model validation.

Ground Truth
Model Prediction Adv_PD  Early PD Non-PD
A Adv_PD 365 71 60
Early PD 0 247 4
Non-PD 0 2 559
B Adv_PD 363 28 49
Early PD 2 289 3
Non-PD 1 2 571
C Adv_PD 389 46 63
Early PD 0 245 1
Non-PD 1 4 559
D Adv_PD 358 55 36
Early PD 1 269 0
Non-PD 0 2 587
E Adv_PD 368 47 48
Early PD 0 267 0
Non-PD 2 1 575

Finally, we recruited another independent set of 36 drug-
naive patients with PD and 18 healthy elderly controls to test
the developed neural network models. The patients’ stages
and affected sides were labelled by doctors with more than
15 years of daily experience with PD patients. These sub-
jects’ data are shown in Appendix D, and their IMU data
are illustrated in Appendix B. Note that these gait data were
not applied in either the training or the validation processes.
We partitioned their IMU data according to the right MS and
the left MS. For the subjects with PD, only the data on the
affected sides were used for sub-model I to identify Adv_PD.
For example, TS1 was a patient at the advanced stage, with
the right side as the affected side. Therefore, we applied the
IMU data from the right foot and the right arm [XRF XRrA ] to
sub-model I. For the healthy subjects (TS37-TS54), we used
the IMU data on both sides for sub-model I. We then applied
the angular velocities from the arms and the IMU data
on the waist [ wga @ra Xw | to sub-model II to differentiate
Early_PD from Non-PD.

19039



IEEEACC@SS C.-H. Lin et al.: Early Detection of Parkinson'’s Disease by Neural Network Models

We applied the five models (A, B, C, D, and E) to classify N . z
PD and the PD stages of these 54 subjects. The identification K Ve Wrp
results of all models are illustrated in Appendix E. The model
classified a subject as Adv_PD if more than 50% of the
subject’s gaits were identified as Adv_PD. Otherwise, the
subject was labeled as not Adv_PD, and sub-models II were
applied to distinguish the subject as Early_PD and Non-PD.
Similarly, a subject was categorized as Early_PD if more
than 50% of the gaits that were not Adv_PD gaits were
identified as Early_PD. Otherwise, the subject was labeled
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Because each model provides independent verdicts on all " WiF w?y ;
subjects, different models might give conflicting predictions. i | F
|
|

For example, TS20 is a patient at the early stage. One of the
5 sub-models I classified TS20 as Adv_PD, and then 1 of
the 5 sub-models II estimated TS20 as Non-PD. That is, the
developed models were trained to classify PD by recogniz-
ing the important characteristics through the complex layer
structures, but they might learn incorrect features, especially
when the training data are limited. Therefore, we proposed
a voting mechanism, where the final decision was made by
the verdicts of a majority of the models. For instance, TS20 Wia
was estimated as Early_PD, because 4 sub-models I estimated ]
the subject as not Adv_PD and 4 sub-models II estimated
the subject as Early_PD. Similarly, TS41 and TS44 were
both classified as Non-PD because 3 sub-models I estimated ) N , y
the subjects as not Adv_PD and 5 sub-models II judged 4 R4 o ORa . afia
the subject as Non-PD. The prediction results based on this ) . &
voting mechanism are illustrated in Table 7. g

First, all patients at the advanced stage were successfully
classified as Adv_PD. Second, fifteen of the eighteen patients
at the early stage were correctly classified as Early_PD, while
three of them were estimated as Non-PD. Third, seventeen
of the eighteen healthy controls were recognized as Non-
PD, while one (TS46) was estimated as Adv_PD. Ultimately,
the developed neural network models and voting mechanism
achieved an Accuracy; of 98.15%, a Precision; of 94.74%, L aia T ay, 7
a Sensitivity; of 100%, a Specificity; of 97.22%, and an |
FI — score; of 97.30% for identifying Adv_PD in the testing
processes.. Second, for classifying Early_PD and Non-PD, . i ;
the neural network models and voting mechanism achieved an (d) IMU data from the left arm
Accuracy, of 91.43%, a Precisiony of 100%, a Sensitivity, of
83.33%, a Specificity, of 100%, and an F1 —score; of 90.91%
in the testing processes.
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TABLE 7. Model predictions for the testing subjects.

s Ik ",
Q
gN

Ground Truth

Prediction Adv PD Early PD Non-PD al,

Adv PD 18 0 1

Early PD 0 15 0 ) ot e T

Non-PD 0 3 17 (e) IMU data from the waist

FIGURE 7. The IMU data of PD22.

V. CONCLUSION
This paper investigated the identification of PD patients. patients with PD from the normal elderly population and,
We developed neural network models for distinguishing furthermore, for differentiating patients with early-stage
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PD from those with advanced-stage PD. Early detection of =~ TABLE 8. Basic data of the testing subjects.
PD enables the timely initiation of therapeutic management

to reduce disease progression and decrease patient morbidity. Subjects  Gender Age PD Stage  Side
Early differentiation of a PD gait from a senile gait that might TS1 F 77 Adv-PD R
be common in the normal elderly population is sometimes TS2 F 68 Adv-PD R
challenging; therefore, establishing an objective model for TS3 F 86 Adv-PD R
classifying gait characteristics is important when treating TS4 M 88  Adv-PD R
patients with PD, as well as patients with different levels of TS5 M 75 Adv-PD R
disease severity. Ts6 M 84  Adv-PD L
In this paper, we used clinical data measurements to TS7 M 79  Adv-PD L
develop neural network models that can detect and classify TS8 F 67 Adv-PD L
PD based on a subject’s motion data obtained from IMUs. TS89 M 71 Adv-PD L
Because the symptoms of PD might vary significantly as TS10 M 3 Adv-PD L
the disease progresses, the proposed models consisted of TS11 M 2 Adv-PD R
two sub-models. The first sub-model estimated whether izg 112 32 ijzllzg i
the data were compatible with Adv_PD, while the second TS14 M 81 Adv-PD L
sub-model distipguished Early_PI? fr(.)m the healthy control TS15 M 79 Adv-PD R
group. We appl}ed .the k-fold validation Ipethod for model TS16 M 50 Adv-PD L
training anq vahdatl'on, and the model achieved an accuracy TS17 F 70 Adv-PD R
f)f 92.72% in Qetectlng Adv_PD and an accuracy of 9?.67% TS18 F 7 Adv-PD L
in distinguishing Early_PD in model validation. Finally, TS19 F 76 Early-PD R
we recruited new subjects to test the developed models. TS20 M 87 Early-PD R
Because the trained models made independent judgments TS21 F 59 Early-PD R
and might provide conflicting results, we also introduced TS22 F 56 Early-PD R
a voting mechanism that provided final verdicts based on TS23 F 54 Early-PD L
the estimations of the majority of the models. The results TS24 F 78 Early-PD L
confirmed the effectiveness of the neural network models TS25 F 79 Early-PD L
and the voting mechanism in successfully distinguishing the TS26 F 67 Early-PD L
Adv_PD, Early_PD, and control groups. These results indi- TS27 F 66 Early-PD L
cate that the developed neural network models could help TS28 M 76 Early-PD L
physicians to diagnose PD at an early stage, thereby allowing TS29 F 69  Early-PD R
timely treatment in the golden time window offered during TS30 M 51  Early-PD R
the transition from a senile gait to a diseased gait pattern. TS31 M 50  Early-PD R
The models and voting mechanism could also be applied to TS32 M 71 Early-PD R
differentiate Early_PD from Adv_PD as a surrogate moni- TS33 M 78  Earlly-PD R
toring gait marker for disease progression in PD. A future TS34 F 77 Early-PD L
large-scale study enrolling more patients with PD is needed TS835 F 66  Early-PD R
to validate the effectiveness of our established structure. ol L Z0RSEar y=PIDEET
We could also apply the IMU data from the testing subjects T837 M 69 Non-PD
to develop new neural network models and add them to the ;;ig II:/I ;§ EZE?B
voting mechanism to improve the accuracy of PD predictions. TS40 F 65 NonPD
In the future, we plan to extend these PD gait models to TS41 F 7 Non-PD
dist.inguish patiept.s yvith PD from those wit.h atypical parkin- TS42 F 7 Non-PD
sonism that can initially present with PD-like symptoms but TS43 M 77 Non-PD
has a worse future prognosis. The develo.p'ed rpodel struc- TS44 F 7 Non-PD
tures might also be applied to the classification of other TS45 F 69 Non-PD
diseases, such as the discrimination between benign tremors TS46 F 76 Non-PD
and early PD, if enough samples are available. TS47 F 74 Non-PD
TS48 M 74 Non-PD
TS49 F 77 Non-PD
APPENDIX A TS50 F 73 Non-PD
The studies were approved by the Human Subject Research TS51 F 67 Non-PD
Ethics Committee of the Institutional Review Board (IRB), TS52 F 69 Non-PD
available at: http://140.112.14.7/~sic/PaperMaterial/IRB_ TS53 M 71 Non-PD
PD.pdf TS54 M 74 Non-PD
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APPENDIX B
The IMU data of all participants are available at: http://140.
112.14.7/~sic/PaperMaterial/PD_Appendix_B_IMU_data.

zip

APPENDIX C
The IMU data of PD22. See Figure 7.

APPENDIX D
Basic data of the testing subjects. See Table 8.

APPENDIX E
http://140.112.14.7/~sic/PaperMaterial/PD_Appendix_E.pdf
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