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ABSTRACT Hypersonic glide vehicle (HGV) has brought severe challenges to the existing defense system
due to its characteristics of high maneuverability, high speed and high precision. Simultaneously, these
characteristics also bring great difficulties to trajectory prediction. In this paper, a method for HGV motion
state recognition and trajectory prediction based on deep learning is proposed. The proposed method consists
of two modules, namely the motion state recognition module and the trajectory prediction module. The
motion state recognition module can identify the HGV’s motion state according to state information, and
divide it into eight categories. The softmax function is added to the state recognition module to calculate the
probability of each motion state. The trajectory prediction module comprises a nonlinear prediction part and
a linear prediction part. According to the result of motion state recognition, the appropriate prediction scheme
is adopted to better extract the linear and nonlinear characteristics of HGV trajectory, which improves the
robustness and prediction accuracy of the proposed method. The experimental results of HGV trajectory
prediction show that the proposed method can maintain good stability when the HGV maneuver state
changes, and has higher accuracy than the four benchmark methods.

INDEX TERMS Hypersonic glide vehicle, trajectory prediction, sequence to sequence, deep learning, state
recognition.

I. INTRODUCTION
HGV is an aircraft with a speed above Mach 5 and flying
in near space [1]. Compared with a conventional ballistic
missile, HGV has stronger maneuverability and can strike
any target in the world within two hours [2]. It has changed
the traditional combat style and has significant military
application value, which has attracted the great attention of
various countries [3], [4]. At this time, the high speed and
high maneuverability of HGV also bring difficulties to its
trajectory prediction.

Trajectory prediction refers to the prediction of a target’s
motion trajectory or trend within a period of time in the
future [5]. The trajectory of HGV is different from that of the
aircraft and the ballistic missile, which has the characteristic
of ‘‘jumping’’ in the longitudinal direction and can maneuver
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in a wide range in the lateral direction. Thus the trajectory
prediction of HGV is more complicated.

Presently, related studies on HGV trajectory prediction
have rarely been reported, and the existing researches mainly
adopt parameter extrapolation or data-driven methods. The
method based on parameter extrapolation mainly achieves
trajectory prediction by establishing a dynamic or kine-
matic model to estimate and extrapolate the parameters.
Wang et al. [6] proposes a trajectory prediction method
that combines the flight state and flight intention of HGV,
and verifies the effectiveness of the method in simulation
experiments. However, it is sometimes difficult to judge flight
intention in practice. Han et al. [7] achieves the prediction
of HGV in the height direction through the autoregressive
moving average model, but it could be unable to obtain the
three-dimensional state of HGV. Zhai et al. [8] defines a
set of new aerodynamic parameters, and extrapolates them
based on the least square method to realize the trajectory
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prediction of HGV. Li et al. [9] proposes a trajectory pre-
diction method based on empirical mode decomposition of
aerodynamic acceleration, and extrapolates the aerodynamic
acceleration by the least square method to realize trajectory
prediction. In addition, the data-driven method mainly
realizes trajectory prediction through machine learning or
deep learning [10], [11]. Yang and He [12] applies the
generalized regression neural network to the HGV trajectory
prediction by taking advantage of its nonlinear advantages,
thus reducing the prediction error. Cheng et al. [13] proposes
a HGV trajectory prediction algorithm combining support
vector machine and extended Kalman filter, and conducts
trajectory prediction experiments under balanced gliding and
jumping gliding of HGV, respectively. The above studies
have made much progress in the trajectory prediction of
HGV, but there are still some limitations. On the one hand,
the above methods are based on the historical motion state
of HGV, which will seriously affect the prediction effect
when the HGV maneuver state changes. On the other hand,
the above methods can only achieve trajectory prediction in
a short period of time, and the prediction accuracy is not
satisfactory.

In recent years, deep learning networks such as
recurrent neural networks [14], convolutional neural
networks [15], [16] and long short-term memory net-
works [17], [18] have attracted wide attention, and have
shown good performance in feature extraction, pattern
recognition and time series prediction [19]–[23]. In this
paper, a motion state recognition and trajectory prediction
method of HGV is proposed based on deep learning
theory. In order to verify the proposed method, we conduct
simulation experiments on radar tracking data and compare
the performance with the current mainstream methods. The
main contributions of this paper are as follows.

a) Five identification parameters are selected from the
HGV state information by analyzing its maneuvering charac-
teristics and control parameter model, and the HGV motion
state can be effectively judged based on them.

b) A motion state recognition model based on the
ConvLSTM network is designed, which can automatically
extract the characteristics of HGV motion trajectory and
classify the maneuvering state through the softmax classifier.

c) A trajectory prediction method based on motion
state recognition is proposed, including a nonlinear feature
extraction module and a linear feature extraction module. The
nonlinear feature extraction module is composed of a seq2seq
network structure, and the linear feature extraction module is
composed of a perceptron. Thus, the proposed method can
flexibly select the prediction scheme according to the motion
state of HGV, and has better accuracy.

The rest of this paper is organized as follows. Section 2 cre-
ates the motion equation and control parameter model of
HGV, and introduces the details of the establishment of the
trajectory library. Section 3 introduces the specific details of
the motion state recognition and trajectory prediction method
of HGV. Section 4 verifies the performance of the proposed

method through simulation experiments. Section 5 concludes
the paper.

II. PRELIMINARIES
In this section, we introduce some background technologies
of HGV, including the equation of motion, the longitudinal
and lateral control parameters model, and the establishment
of the trajectory library. These background technologies are
the theoretical basis for HGV trajectory prediction.

A. THE EQUATION OF MOTION
In theVelocity-Turn-Climb (VTC) coordinate system, assum-
ing that the earth model is a uniform sphere, the formula
of six-freedom motion of HGV is established without
considering the effect of earth’s oblateness [24], [25].

ṙ = v sin θ

λ̇ =
v cos θ sin σ
r cosφ

φ̇ =
v cos θ cos σ

r
v̇ = −aD − g sin θ

θ̇ =
aL cos v

v
+
v cos θ
r
−
g cos θ
v

σ̇ =
aL sin v
v cos θ

+
v cos θ sin σ tanφ

r

(1)

where r, λ, ϕ, v, θ and σ are state variables of HGV, which
denote the geocentric distance, longitude, latitude, velocity,
velocity inclination and velocity course angle, respectively.
ωe is the earth rotation rate. aL is the aerodynamic lift
acceleration. aD is the aerodynamic drag acceleration. The
expressions of aerodynamic lift acceleration and aerody-
namic drag acceleration are expressed as follows:

aL =
L
m
=

1
2
ρv2 ·

CL(α)S
m

aD =
D
m
=

1
2
ρv2 ·

CD(α)S
m

(2)

where L is the aerodynamic lift, D is the aerodynamic
drag, CL(α) is the aerodynamic lift coefficient, CD(α) is
the aerodynamic drag coefficient. α and v are the control
parameters, representing the attack angle and the bank
angle, respectively. S is the HGV reference area. ρ is the
atmospheric density. m is the HGV mass.

B. CONTROL PARAMETER MODELING
The HGV trajectory can be divided into a longitudinal
trajectory and a lateral trajectory. By stacking the maneuvers
in two directions, more complex maneuvers can be realized
to increase the flexibility of the HGV trajectory, thereby
avoiding the detection and no-fly zones. Next, we will
introduce the longitudinal and lateral control parameters
model.

1) LONGITUDINAL CONTROL PARAMETER MODEL
There are two main maneuvering states of HGV in the
longitudinal direction, namely balanced gliding state and
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jumping gliding state. In the balanced gliding state, the force
on HGV in the longitudinal direction is balanced, and the
changing rate of velocity inclination is zero. According to
the motion equation of HGV, the control parameter model
under the condition of balanced gliding state should satisfy
the following equation [26]:

L cos υ
mv

+
1
v
(
v2

r
− g) cos θ = 0 (3)

In addition, the longitudinal aerodynamic force of HGV is
also impacted by the attack angle. HGV can achieve balanced
gliding in the longitudinal direction only when the change
rate of velocity inclination angle is equal to zero and the attack
angle remains constant at the same time.

If the conditions of balanced gliding are not satisfied, HGV
will be in the state of jumping gliding. HGV can change the
jump amplitude and jump frequency through the change of
the attack angle. Since the speed of HGV during the initial
gliding phase is relatively high, the aerodynamic heat is the
main constraint that affects the flight. A larger attack angle
should be used to increase the altitude of the lowest point
when the HGV descends. As the speed of HGV decreases,
aerodynamic heat is no longer the main constraint. In order
to increase the range of HGV, the attack angle should be
adjusted to increase the lift-drag ratio as much as possible.
Therefore, the attack angle is modelled as a function of speed.

αc =


αmax

αmid + αbal sin
[

π

v1 − v2
(v− vmid)

]
αmax(L/D)

(4)

αmid =
(
αmax + αmax(L/D)

)
/2 (5)

αbal =
(
αmax − αmax(L/D)

)
/2 (6)

vmid = (v1 + v2)/2 (7)

where αmax and αmax(L/D) are the maximum attack angle and
the maximum lift-drag ratio attack angle, respectively. L/D is
the lift-drag ratio.

2) LATERAL CONTROL PARAMETER MODEL
The lateral maneuver of HGV is mainly affected by the bank
angle. In order to improve the offensive and defensive ability,
HGV can perform a variety of lateral maneuvers, such as no
maneuver, C-shaped maneuver, and S-shaped maneuver.

No lateral maneuver can reduce the kinetic energy
consumption of HGV and increase the range, but it will also
increase the probability of being intercepted. The bank angle
is usually set to zero when HGV is no maneuver in the
lateral direction. The C-shaped maneuver generally refers to
left-turn or right-turn, and the trajectory is relatively stable.
The bank angle is usually set to a constant when HGV is
a C-shaped maneuver in the lateral direction. The S-shaped
maneuver refers to HGV makes multiple turns in the lateral
direction, which can increase its maneuverability. The bank
angle should be reversed several times when HGV performs

TABLE 1. Initial parameter range of the trajectory.

FIGURE 1. Typical maneuver trajectories of HGV.

a S-shaped maneuver. The model of bank angle is defined as:

vc =


vc, 1σthreshold < 1σ

v−c , −1σthreshold ≤ 1σ ≤ 1σthreshold

−vc, 1σ < −1σthreshold

(8)

where1σthreshold is the error threshold of the velocity course
angle. v−c is the bank angle of HGV at the previous moment.

3) ESTABLISHMENT OF TRAJECTORY LIBRARY
Various maneuver trajectories of HGV can be generated
by designing different initial variables and different control
parameter models. The HGV trajectory library generated in
this paper contains 2,430 trajectories with a total of 4.734mil-
lion trajectory points, covering all kinds of maneuvering
modes of HGV. The value range of the initial parameters
of HGV is shown in Table 1. Several typical maneuvering
trajectories are shown in Figure 1.

III. METHODOLOGY
In this section, we introduce the overall idea of HGV
trajectory prediction. The trajectory prediction method based
on motion state recognition is proposed, and the technical
details of the motion state recognition module and the
trajectory prediction module are reported, respectively.

A. FRAMEWORK
HGV has strong maneuverability and diverse motion states.
Its three-dimensional trajectory can be decomposed in the
longitudinal direction and lateral direction, as shown in
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FIGURE 2. HGV 3D maneuver trajectory decomposition. (a) Turning
maneuver trajectory decomposition. (b) Weaving maneuver trajectory
decomposition.

FIGURE 3. Framework of the trajectory prediction method.

Figure 2. It can be seen that the HGV maneuver trajectory
has both nonlinear and linear characteristics. Therefore, the
trajectory features ofHGVcannot bewell extracted by simply
using a nonlinear model or linear model. It is necessary
to design a trajectory prediction network that can extract
both nonlinear and linear features, and select the appropriate
prediction scheme according to the motion state of HGV.
So a trajectory prediction method based on motion state
recognition is proposed. The proposed method includes two
parts, namely the motion state recognition module and the
trajectory prediction module, and its structure is shown in
Figure 3.

FIGURE 4. HGV maneuver classification.

The motion state recognition module takes identification
parameters as input, extracts the data change characteristics
through a deep neural network, and uses the softmax function
to output the probability corresponding to each motion state
of HGV.

The trajectory prediction module comprises a nonlinear
prediction part and a linear prediction part, which improves
the accuracy and robustness of the proposed method. In this
way, the proposed method can extract the nonlinear and
linear features and better deal with trajectory prediction in
the simple maneuver state and complex maneuver state of
HGV.

B. MOTION STATE RECOGNITION MODULE
1) MOTION STATE CLASSIFICATION
The maneuver of HGV in the longitudinal direction can
be divided into balanced gliding and jumping gliding, and
the maneuver in the lateral direction can be divided into
no maneuver, left-turn maneuver, right-turn maneuver and
weaving maneuver. Therefore, eight maneuver categories
can be obtained by combining the longitudinal and lateral
maneuvers of HGV, as shown in Figure 4.

2) INDENTIFICATION PARAMETERS SELECTION
According to the relevant knowledge of flight dynamics [27],
the HGV maneuvering process is accompanied with the
change of various parameters, including height, height
change rate, velocity inclination, velocity course angle and
the change rate of velocity course angle. The height, height
change rate and velocity inclination are mainly sensitive to
the maneuver of HGV in the longitudinal direction. The
velocity course angle and the change rate of velocity course
angle are mainly sensitive to the maneuver of HGV in the
lateral direction.

Height is the vertical distance between the center of mass
and ground. Height change rate can be obtained by the
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difference method, and the equation is

1h =
dh
dt
=
h (tk+1)− h (tk)

tk+1 − tk
(9)

where tk is the current time.
The velocity inclination refers to the angle between the

velocity axis and horizontal direction, which is positive
upward and negative downward. The velocity course angle
refers to the angle between the projection of velocity on the
horizontal plane and the due north direction, which is positive
to the right and negative to the left. The change rate of velocity
course angle can also be obtained by the difference method.

Next, the variation law of each identification parameter
will be introduced when HGV performs different maneuvers
in the longitudinal and lateral directions. When HGV is in a
balanced gliding state in the longitudinal direction, the height
and the height change rate change smoothly, and the velocity
inclination is close to zero. When HGV is in a jumping
gliding state in the longitudinal direction, the height, height
change rate and velocity inclination all oscillate regularly.
When HGV has no lateral maneuver, the velocity course
angle remains unchanged, and the change rate of velocity
course angle is basically zero. When HGV turns left, the
velocity course angle decreases continuously, and the change
rate of velocity course angle is negative. When HGV turns
right, the velocity course angle increases continuously, and
the change rate of velocity course angle is positive. When
HGV performs weaving maneuver, the velocity course angle
and the change rate of velocity course angle change in
oscillating. Accordingly, the mapping relationship between
HGV maneuver state and identification parameters can be
analyzed. The change of identification parameters can be
captured by the state recognition method, and the maneuver
state of HGV can be judged.

3) MOTION STATE RECOGNITION MODEL
The identification parameters constructed in this paper are
multidimensional time series data, which can fully reflect
the motion characteristics of HGV, and has both temporal
and spatial characteristics. Combining the advantages of
convolutional neural network (CNN) in local feature extrac-
tion [28] and long short-term memory network (LSTM)
in time series processing [18], [29], a state recognition
model based on convolutional long short-term memory
network (ConvLSTM) is designed.

ConvLSTM combines the advantages of LSTM and CNN,
and its main improvement is that the convolution operation
is used to replace the matrix multiplication operation in
LSTM [30]. The network structure of LSTM and ConvLSTM
is shown in Figure 5. Therefore, it can better extract the
characteristics and laws of time series information, and
has been widely concerned in time series classification and
prediction. The specific calculation process of ConvLSTM is
described as follows:

it = σ (W xi ∗ X t +Whi ∗H t−1 + bi) (10)

FIGURE 5. The network structure of LSTM and ConvLSTM. (a) LSTM
network structure. (b) ConvLSTM network structure.

f t = σ
(
W xf ∗ X t +Whf ∗H t−1 + bf

)
(11)

ot = σ (W x0 ∗ X t +Wh0 ∗H t−1 + b0) (12)

Ĉ t = tanh (W xc ∗ X t +Whc ∗H t−1 + bc) (13)

Ct = f t ◦ C t−1 + it ◦ Ĉ t (14)

H t = ot ◦ tanhC t (15)

where X t is the current input, H t−1 and H t represent the
output of the previous moment and the current moment,
respectively. C t−1 and C t represent the cell state at the
previous time and the cell state at the current time,
respectively. C t represents newly generated information.
W xi,Whi,W xf ,W lf ,W x0,Wh0,W xc,Whc, bi, bf , b0 and bc
are corresponding weight matrices and offset vectors, respec-
tively. σ represents sigmoid function. tanh and * represent
tanh function and convolution operation, respectively. o rep-
resents the element-by-element multiplication.

Then, the ConvLSTM network output is connected to the
full connection layer, and the HGV motion is classified by
the softmax activation function to obtain the corresponding
probability of each motion state. The calculation formula is
defined as follows:

P i = softmax (W x ∗H t + bx) (16)

where W x and bx are the weight matrix and offset vector of
the softmax layer, respectively.

The input of the motion state recognition model is a
multidimensional data group composed of identification
parameters, and the output is the probability vector corre-
sponding to the motion state category. In order to improve
the efficiency of the model, the output probability vector
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FIGURE 6. The seq2seq model structure.

is further processed. When the maximum value of the
probability vector is greater than or equal to 80%, it is
adjusted to 100%, and the probability value corresponding
to the rest states is zero. At this time, the output is a one-hot
vector. When the maximum value of the probability vector
is less than 80%, the elements are arranged and accumulated
from large to small, and stop when the cumulative value is
greater than or equal to 80%. The elements participating in
the accumulation are normalized, and the remaining elements
are set to zero. At this time, the output is a new probability
vector.

C. TRAJECTORY PREDICTION MODULE
The input of the trajectory prediction module includes the
output of the motion state recognition module and the
historical trajectory information of HGV, and the output is
the predicted trajectory of HGV. The trajectory of HGV can
be decomposed into the lateral trajectory and longitudinal
trajectory. We first predict the trajectory of HGV in the
lateral plane and longitudinal plane, respectively, and then
combine them into three-dimensional coordinates of HGV.
Since the HGV trajectory has both linear and nonlinear
characteristics, the trajectory prediction module consists of
a linear prediction part and a nonlinear prediction part.

1) NONLINEAR PREDICTION PART
The nonlinear prediction part is designed as a sequence to
sequence (seq2seq) architecture [31]. The seq2seq model can
extract the hidden data rules, especially when the length of
the input sequence and the output sequence are different.
So it is suitable for capturing the hidden laws in the HGV
trajectory [32], [33]. It usually consists of two parts: an
encoder and a decoder. The structure is shown in Figure 6.

During encoding, a fixed-dimensional vectorCenc,k , which
is called a semantic vector, can be generated by the
encoder from the input information of HGV trajectory
xk−N , xk−N+1, · · · , xk . It contains the hidden features of
HGV trajectory changing with time. During decoding, the
decoder takes the semantic vector as the initial hidden state.
The features of the input information can be extracted to
realize trajectory prediction by decoding the semantic vector.
The whole working process can be simplified as follows:

Cenc ,k = Encoder (xk−N , xk−N+1, · · · , xk)
P (xk , xk+1, · · · , xk+M | xk−N , xk−N+1, · · · , xk)

= Decoder
(
Cenc ,k

) (17)

where Encoder(·) represents an encoding network, Decoder(·)
represents a decoding network, Cenc ,k is the context
vector passed between the encoder and the decoder.
(xk−N , xk−N+1, · · · , xk) represents the input sequence.
(xk , xk+1, · · · , xk+M ) represents the output sequence. k is the
current moment. N and M represent the sequence length of
the input and output, respectively.

The encoder and decoder networks can be designed as
RNN or LSTM, or other types of networks. In this paper, the
encoding and decoding networks are designed as ConvLSTM
networks because the motion trajectory of HGV has temporal
and spatial characteristics. The calculation process of the
ConvLSTM network has been introduced in Section 3.2.3.

To increase the judgement ability of the decoder output, the
self-attention mechanism is added to calculate the weight of
each state of the encoder. The weight value corresponding to
each state vector is calculated by the softmax function [34].

ak =
exp(ek )∑

k ek
(18)

where ak represents the weight value of the k-th state vector.
ek is the score function, which is expressed as

ek = VT tanh(WThi + b) (19)

where V ,W and b are parameters that can be learned during
model training. T represents matrix transpose.

2) LINEAR PREDICTION PART
A complex model maybe not the best model, and only
a suitable model can produce the best results. The linear
prediction part is added to the trajectory prediction model
mainly to compensate for the strong nonlinear characteristics
of the complex neural network model. We design the linear
prediction part as a perceptron, and set the number of network
layers to one. The calculation process can be expressed as
follows:

Y t = W tX t + bt (20)

where W t and bt are the weight matrix and offset vector,
respectively.

IV. EXPERIMENTS
In this section, we design an experiment to verify the predic-
tion performance of the proposed method. The experiment is
carried out in three typical HGV flight scenarios.

A. EXPERIMENTAL DETAILS
1) EXPERIMENTAL DATA
This experiment is carried out in two steps. The first step is to
verify the motion state recognition ability of the model. The
second step is to verify the trajectory prediction ability of the
model.

The data used in the motion state recognition module is
the trajectory library data established in section 2.2.3. The
data set contains the state information and identification
parameters information of HGV. The samples of 80% are
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TABLE 2. Parameter settings of HGV trajectory.

TABLE 3. Parameter settings of radar and environment.

selected as the training data and the remaining 20% are
selected as the verification data.

The data used in the trajectory prediction module is
the radar tracking data. We verify the performance of the
trajectory prediction method in three typical HGV flight
scenarios, respectively. The parameter settings of the three
HGV trajectories are shown in Table 2. Trajectory one is
the trajectory of HGV in a simple maneuver state, trajectory
two is the trajectory of HGV in a complex maneuver state.
The parameter settings of the observation radar and the
external environment are shown in Table 3. The method in
the Ref. [22] is used to filter the radar observations to obtain
the tracking trajectory.

2) EVALUATION CRITERION
In order to objectively evaluate the prediction performance
of the model, two indicators are used to measure the error of
trajectory prediction, namely root mean square error (RMSE)
and mean square error (MAE). The formula is defined as
follows:

RMSE =

√√√√ 1
N

N∑
i=1

(XP − Xt)2 (21)

MAE =
1
N

N∑
i=1

|XP − Xt | (22)

where XP is the predicted position of HGV, Xt is the real
position of HGV. N is the prediction duration.

3) MODEL CONFIGURATION AND TRAINING
The model code is written in Python 3.7.6 and implemented
by the TensorFlow framework. The simulation is conducted
on a mobile workstation with an Intel Core i7-10510U
processor and 16G memory.

FIGURE 7. Hierarchical structure of motion state recognition model.

The network of the motion state identification module has
five layers, including two ConvLSTM network layers, one
dropout layer, and two full connection layers. The structure,
parameters, and other configurations are shown in Figure 7.

The prediction module includes a nonlinear prediction part
and a linear prediction part. The nonlinear prediction part
adopts the encoder-decoder structure. The encoding network
is designed as two ConvLSTM network layers. The decoding
network is designed as two ConvLSTM network layers and
one Dense layer. The linear prediction part consists of a
perceptron. The batch size of the above network is set to
128 and the training epoch is set to 100. The time window
size is 120, and the learning rate is 0.001.

In the above models, an adaptive moment estima-
tion (Adam) optimizer is selected as the optimization method
to update the parameters in the model according to the error
gradient. Adam is an extension of the traditional stochastic
gradient descent algorithm, which can calculate the adaptive
learning rate of each parameter and make the model converge
more efficiently. The cross entropy is selected as the loss
function to adjust the weight update speed according to the
size of the error.

B. PERFORMANCE ANALYSIS OF MOTION STATE
RECOGNITION
The accuracy of motion state recognition will directly affect
the performance of trajectory prediction. The high recog-
nition accuracy can provide reliable support for trajectory
prediction. The RNN model, CNN model and LSTM model
are selected as comparison models, and the time step and
learning rate settings are the same as those of the ConvLSTM
network. These deep learning models are trained by using the
data in the trajectory library. The loss curve and accuracy
curve of training are shown in Figure 8. The recognition
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FIGURE 8. Training results of different models.

FIGURE 9. Model recognition accuracy histogram.

TABLE 4. Accuracy comparison of models.

accuracy of the ConvLSTM model on the training set and
the validation set is shown in Table 4, which can be visually
displayed in the form of a histogram, as shown in Figure 9.

It can be seen that the accuracy of the RNN model and
LSTM model is significantly lower than that of the other
two models, which indicates that although the RNN model
and LSTM model have advantages in dealing with long-
term dependence problems, they cannot extract data features
well. CNN model can better extract local features through
convolution operation, and has achieved high accuracy in
the training and verification set. However, the recognition

FIGURE 10. Trajectory one. (a) The real trajectory and tracking trajectory.
(b) Changes of control parameters.

accuracy rate of the ConvLSTM model is the highest.
It achieves 97.41% accuracy on the verification set, and has
the best recognition effect on the motion state of HGV.

C. PERFORMANCE ANALYSIS OF TRAJECTORY
RREDICTION
1) BENCHMARK MODELS
In order to verify the prediction effect of the proposed model,
the following benchmarkmodels are selected for comparison:
ConvLSTM model Chen et al. [35], SA-ConvLSTM model
Li et al. [36], SS-DLSTM model Zeng et al. [37] and
EMD_AA model Li et al. [9]. ConvLSTM model is a
widely used comparison method. SA-ConvLSTM model and
SS-DLSTM model represent the most advanced methods in
recent years. EMD_AAmodel is the current mainstream non-
neural network method for trajectory prediction. The hyper
parameters of ConvLSTMmodel, SA-ConvLSTMmodel and
SS-DLSTMmodel are derived by the trial-and-error method.
The function design in EMD_AA model is the same as that
in literature [9]. Each model is run ten times and the average
value is taken for comparison.

The simulation is carried out on three types of HGV
trajectories, respectively. The performances of different
models are compared.

2) TRAJECTORY RREDICTION OF JUMPING GLIDING
WITHOUT LATERAL MANEUVER
The real trajectory and tracking trajectory of HGV in the
jumping gliding without lateral maneuver state are shown
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TABLE 5. Comparison of model prediction accuracy of trajectory one.

FIGURE 11. The prediction of trajectory one.

in Figure 10(a), and the corresponding control variables are
shown in Figure 10(b).

The proposed method and the benchmark models are used
to predict trajectory one, and the result is shown in Figure 11.

The RMSE and MAE values of each model in the
longitudinal and lateral directions are calculated, as shown
in Table 5, where the prediction duration is set to 90 s.
It can be seen that the prediction performance of the deep
learning model is better than those of the EMD_AA model
in the longitudinal direction. This is because the longitudinal
trajectory of HGV is nonlinear, and the deep learning model
has a stronger fitting ability and feature extraction ability for
nonlinear data. However, the prediction results of the deep
learning model are generally worse in the lateral direction.
The reason may be that the lateral trajectory of HGV is linear,
and the linear prediction part is needed to compensate for the
nonlinear characteristics of the complex neural networks.

In addition, it can be noted that the lateral prediction
error of HGV is much larger than the longitudinal prediction
error. The reason is that the longitudinal maneuver range of
the HGV is basically within 60km. In contrast, the lateral
maneuver range reaches thousands of kilometers, which is
much larger than the longitudinal maneuver range. Therefore,
a small prediction error in the lateral will cause a significant
decrease in accuracy. Meanwhile, the proposed model adds a
linear module, so the lateral prediction error is smaller.

FIGURE 12. The prediction error boxplot of trajectory one.

The prediction error boxplot is shown in Figure 12.
It can be concluded that the proposed model maintains a
better prediction accuracy and is better than other models.
The EMD_AA method also maintains good stability when
predicting the trajectory, which indicates that the EMD_AA
method can deal with the trajectory prediction of HGV in the
simple maneuver state.

The error boundary is analyzed according to the 3δ
principle. The standard deviation between the predicted
trajectory of the proposed method and the real trajectory is
calculated. The longitudinal prediction error region and the
lateral prediction error region are drawn, as shown in Fig-
ure 13(a) and Figure 13(b). To analysis the three-dimensional
prediction error, we select seven prediction points from the
prediction trajectory to compare with the real trajectory
points, and the error ellipsoid is used to represent the
error boundary in three directions according to the 3δ
principle, as shown in Figure 13(c). It can be seen that the
longitudinal prediction error region is divergent with the
increase of prediction time, and the lateral prediction error
region changes relatively stable because the lateral trajectory
changes linearly.

3) TRAJECTORY RREDICTION OF JUMPING GLIDING WITH
LATERAL WEAVING MANEUVER
The real trajectory and tracking trajectory of HGV in
the jumping gliding with lateral weaving maneuver state
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FIGURE 13. The variation of prediction error region of trajectory one.
(a) The variation of longitudinal prediction error region. (b) The variation
of lateral prediction error region. (c) The variation of three-dimensional
prediction error ellipsoid.

are shown in Figure 14(a), and the corresponding control
variables are shown in Figure 14(b).

The predicted trajectory is shown in Figure 15. Under the
complex maneuvering mode of HGV, the proposed model
adopts the nonlinear prediction part in both longitudinal and
lateral directions.

The RMSE and MAE values of each model in the
longitudinal and lateral directions are calculated, and
the results are shown in Table 6. It can be seen that
the prediction error of each model has been increased
due to the complex trajectory of HGV. The prediction
error of the EMD_AA model increases rapidly because the
EMD_AA model assumes that the maneuver mode of HGV
remains unchanged. Figure 16 shows the prediction RMSE
error boxplot of HGV. The proposed model maintains the

FIGURE 14. Trajectory two. (a) The real trajectory and tracking trajectory.
(b) Changes of control parameters.

FIGURE 15. The prediction of trajectory two.

FIGURE 16. The prediction error boxplot of trajectory two.

optimal accuracy in the complex maneuvering trajectory
of HGV. The result shows that the proposed model can
adapt to different HGV maneuvering trajectories. Compared
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TABLE 6. Comparison of model prediction accuracy of trajectory two.

FIGURE 17. Model recognition accuracy histogram. (a) The variation of
longitudinal prediction error region. (b) The variation of lateral prediction
error region. (c) The variation of three-dimensional prediction error
ellipsoid.

with other models, it has achieved the best prediction
performance.

FIGURE 18. Trajectory three. (a) The real trajectory and tracking trajectory.
(b) Changes of control parameters.

The error boundary between the predicted trajectory of the
proposedmethod and the real trajectory is calculated by using
the same method as in the 4.3.2 section. The longitudinal
prediction error region, the lateral prediction error region and
the three-dimensional prediction error ellipsoid are drawn
according to the 3δ principle, as shown in Figure 17. It is
clear that the longitudinal prediction error region is divergent
with the increase of prediction time. Since there is an
intersection between the predicted and real trajectories, the
lateral prediction error region increases first, then decreases
and then increases again.
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FIGURE 19. The prediction of trajectory three.

FIGURE 20. The prediction error boxplot of trajectory three.

4) TRAJECTORY RREDICTION OF BALANCED GLIDING WITH
LATERAL WEAVING MANEUVER
Balanced gliding is also an important maneuvering mode for
HGV. We select the balanced gliding with lateral weaving
maneuver trajectory for prediction. The real trajectory and
tracking trajectory are shown in Figure 18(a), and the
corresponding control variables are shown in Figure 18(b).

The trajectory for the next 90 seconds is predicted and
the corresponding prediction results are shown in Figure 19.
The RMSE and MAE values corresponding to each model
in the lateral and longitudinal directions are calculated,
as shown in Table 7. Figure 20 shows the prediction RMSE
error boxplot of HGV.

It can be seen that the RMSE value and MAE value
of the proposed model are the smallest in both the lateral
and longitudinal direction. The longitudinal prediction error
region, the lateral prediction error region and the threedimen-
sional prediction error ellipsoid are drawn according to the 3δ
principle, as shown in Figure 21. The longitudinal prediction
error of HGV in the balanced gliding mode is significantly
lower than that in the jumping gliding mode, but the total
prediction error is still large due to the weaving maneuver
of HGV in the lateral direction.

The single-step time-consuming of each model is shown
in Figure 22. It can be seen that the SS_DLSTM model
consumes the most time due to the large number of
parameters that need to be optimized. The ConvLSTMmodel
adopts a convolution structure, which reduces the number

FIGURE 21. The variation of prediction error region of trajectory three.
(a) The variation of longitudinal prediction error region. (b) The variation
of lateral prediction error region. (c) The variation of three-dimensional
prediction error ellipsoid.

FIGURE 22. Computational complexity analysis.

of parameters, and its timeliness is better than that of
SS_DLSTM. The EMD_AA model requires the least time,
but it cannot cope with the trajectory prediction of HGV
in the complex maneuver state. Considering the prediction
effect and time consumption, the proposed model has the
most application value.
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TABLE 7. Comparison of model prediction accuracy of trajectory three.

V. CONCLUSION
In this paper, a sequence-to-sequence deep learning network
model based onmotion state recognition is proposed for HGV
trajectory prediction. The main conclusions are as follows:

1) The current maneuver state of HGV can be effectively
judged according to the identification parameters of HGV,
including height, height change rate, velocity inclination,
velocity course angle and the change rate of velocity course
angle;

2) The trajectory prediction method based on motion state
recognition can effectively reduce the prediction error caused
by the HGV maneuver and has good robustness.

Meanwhile, the model also has the following limitations:
1) The model consumes a long time, and it is necessary to

optimize themodel further or explore a better cycle prediction
scheme;

2) The prediction performance of the model is greatly
affected by the training set, so it is necessary to study further
how to construct and optimize the training set;

3) Trajectory prediction is realized based on the tracking
data, so improving the tracking accuracy is also helpful to
improve the trajectory prediction accuracy.
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