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ABSTRACT This paper proposes a complete network capacity analysis framework for low-earth-orbit (LEO)
mega-constellations, where a network capacity estimation problem considering the link packet loss rate
is formulated with the support of a time-variant network topology model and a task distribution model.
This problem is solved in two steps. First, without considering the link packet loss rate, an improved fully
polynomial-time approximation (IFPTA) algorithm is proposed to provide a sub-optimal solution to the
multi-commodity flow (MCF) problem, in which a simpler definition of a commodity is given and proved
to be equivalent to the original problem. Second, a Jackson-network-based capacity fallback approach
is proposed to control the link packet loss rate below a given threshold. Numerical results illustrate the
superiority of the proposed IFPTA algorithm in terms of accuracy and time complexity compared to existing
solutions. In addition, the capacity characteristics of mega-constellations are analyzed by utilizing the
proposed capacity analysis framework, including the relationship between constellation size and capacity,
network capacity bottlenecks, and the influence of task distributions.

INDEX TERMS LEO mega-constellation, network capacity, multi-commodity flow problem, Jackson
network.

I. INTRODUCTION
The low-earth-orbit (LEO) telecommunication constellation
network is foreseen as a merging interconnection method
for future sixth-generation (6G) systems [1], possessing the
advantages of seamless global coverage, high robustness, and
low delay compared with other space-based communication
systems. In recent years, the upsurge of LEO constellation
construction has reappeared around the world [2]. In particu-
lar, some LEO mega-constellation projects, such as Starlink,
Oneweb, and Lightspeed, have entered the deployment phase,
launching hundreds or thousands of satellites to forge giant
and broadband constellation networks [3]. The tremendous
constellation scale has resulted in a substantial increase in
the number of accessible users, providing a large network
capacity by cooperating with the application of laser inter-
satellite links (ISLs) and high-frequency user-to-satellite
links (USLs) [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Rute C. Sofia .

In constellation design, network capacity is an important
metric for evaluating the service capability of LEO constella-
tion networks. Unlike the ground network, the LEO network
shows complete symmetry, that is, each satellite has an equal
opportunity to shift above any user over time. Consequently,
it is impossible to increase the network capacity by expand-
ing congested links, which is a common solution for terres-
trial networks. Therefore, it is indispensable for constellation
designers to understand the network capacity performance of
the LEO constellation in different application scenarios and
ensure that the capacity meets the requirements. Therefore,
the capacity analysis of the LEO constellation is particularly
vital.

The network capacity dimensioning technique has been
widely studied. Dai. gave theoretical results of minimum
link capacity to meet the requirement when all nodes in the
network send an equal amount of traffic to every other node
in the same network except itself (‘‘all-to-all’’) [5], using
stochastic processing model, while the same goal was also
achieved by Sun et al. via ‘‘cut on a graph’’ method [6].
Liu et al. extended the above work to the LEO-MEO hybrid
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constellation and provided an explicit expression of the con-
stellation capacity in the ‘‘all-to-all’’ scenario of the 2D-Torus
network [7]. Werner et al. shifted the capacity dimensioning
problem into minimizing the worst-case link capacity, which
was solved using linear programming (LP) [8], [9]. Aiming
at the walker-star constellation, Xiao et al. used discrete
event simulation to analyze network capacity, as well as the
relationship between link bandwidth and link packet loss
rate of different routing algorithms [10]. However, theoretical
methods in [5]–[9] have very limited scope of application,
which are only competent for 2D-Torus topology, and the task
distribution can only be ‘‘all-to-all.’’ Moreover, both LP and
discrete event simulation are quite time consuming for the
capacity analysis of mega-constellations.

The network capacity analysis problem of the LEO con-
stellation can be classified as a multi-commodity flow (MCF)
problem [11] because the traffic between different origin-
destination pairs is not exchangeable. To make the traffic
throughput approach the upper bound of the network capac-
ity, a number of studies have been dedicated to both accuracy
and low-complexity. Documents based on Lagrange relax-
ation and linear programming have provided an algorithm
for solving arbitrary MCF problems [12], [13]. Garg and
Konemann proposed a fully polynomial-time approximation
(FPTA) algorithm [14], converting the LP problem intomulti-
ple iterations of shortest path routing with path length updat-
ing and traffic accumulation. Karakosta further reduced the
time complexity of the FPTA algorithm [15], using a Dijkstra
algorithm to calculate the path length of all commodities
sharing one source, and provided an explicit algorithm for
both network capacity and traffic on each edge. However, its
capacity result is not sufficiently close to the optimal value;
therefore, the link capacity cannot be effectively utilized.
Moreover, the aforementioned solutions do not consider the
influence of queuing in the network, which can suffer severe
packet loss when links are fully occupied. Research on capac-
ity analysis for LEO mega-constellations is still open.

In this paper, a complete framework of network capacity
analysis for LEO mega-constellation is envisaged, which has
low time complexity and considers the impact of queuing on
network capacity. The main contributions of this study are
summarized as follows.
• We propose a framework for network capacity analysis
that includes network topology modeling, task distribu-
tion modeling, and a network capacity estimation algo-
rithm. Subsequently, the network capacity estimation
problem considering the link packet loss rate is formu-
lated into anMCF problem. A less complex definition of
the commodity is given by proving its equivalence with
the original definition.

• This problem is solved in two steps. First, an improved
fully polynomial-time approximation (IFPTA) algo-
rithm is proposed to determine the maximum net-
work capacity without considering network queuing.
Then, the network capacity fallback is studied by utiliz-
ing the Jackson queuing network model, deducing the

network capacity to maintain the maximum packet-loss
rate under a threshold.

• Simulations are performed in two aspects. Firstly, the
algorithm performance is analyzed based on the metrics
of accuracy, complexity, and time sampling interval.
Second, we explore the capacity characteristics of the
LEO mega-constellation network, including the impacts
of constellation size, ratio of USL to ISL capacity, and
different task distributions.

• Based on the simulation results, we make two conjec-
tures of the network capacity by observation and justify
the correctness in the case of a 2D-torus network with a
uniform distribution. Therefore, an empirical algorithm
is proposed to provide a rough estimation of network
capacity when the constellation size is too large.

The remainder of this paper is organized as follows.
In Section II, the framework of the time-variant capacity
analysis system is presented, including the network topol-
ogy and task distribution modules. The MCF problem of
network capacity estimation is formulated in Section III and
solved using the proposed IFPTA algorithm while consid-
ering network queuing. Simulation results and discussions
are provided in Section IV, along with an empirical method
for capacity estimation. The paper is finally concluded with
section V, where the main findings of our work are high-
lighted.

II. MODELING OF CAPACITY ANALYSIS SYSTEM FOR LEO
MEGA-CONSTELLATION
A. ARCHITECTURE OVERVIEW
We consider a constellation-terrestrial network that con-
sists of a single-layer LEO constellation and ground users,
as shown in FIGURE 1. Satellites in the constellation are
connected with neighbors by laser inter-satellite links (ISLs).
Meanwhile, each terrestrial user connects with its visible
satellites with microwave user-satellite-links (USLs) in the
form of spot beams enabled by phased-array antennas, where
all links are bidirectional. We do not distinguish earth stations
and individual users in this work because their difference in
capacity is only in traffic throughput, which can be flexibly
modified in the task weight distribution model (Section II-F).
Among the users, there are traffic tasks, which are communi-
cation requirements through the constellation network. In this
study, we use the description of graph theory, where both
satellites and users are nodes, and both ISLs and USLs are
edges. As the objective is to estimate the network capacity,
its definition must be clarified. The network capacity of a
constellation-terrestrial network is defined as follows:
Definition 1: The network capacity λη (t) of a

constellation-terrestrial network at instant t is the maximum
possible flow of the network under a given topological con-
nection, link capacities, and service distribution such that
the maximum packet loss rate of edges does not exceed a
threshold η.
To dimension the maximum network carrying ability,

we propose a complete framework for network capacity
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FIGURE 1. The scenario of the constellation-terrestrial network, in which
terrestrial users deliver traffic tasks to each other through ISLs and USLs
in the constellation network.

analysis, as illustrated in FIGURE 2. The framework can
be decomposed into three modules: network topology, task
weight distribution, and capacity estimation. The network
topology module constructs a time-variant adjacency matrix
that describes the connections among nodes and edge capac-
ities by letting the element in the row v and the column
w be the edge capacity from node v to node w. The task
weight distribution module formulates a normalized matrix
that describes the task weight among user nodes, which rep-
resents the global task weight distribution.We denote the task
weight from user i to user j as the ratio of the amount of
traffic from user i to user j to the sum of all traffic between
any two user nodes. Because the actual global task weight
distribution is unknown, some typical distributions are given

FIGURE 2. The complete network capacity analysis framework for LEO
mega-constellations.

in this section. Finally, using the results of the aforementioned
modules as input, the capacity estimation module solves the
network capacity estimation problem in two steps: solving
the MCF problem by IFPTA algorithm and falling back the
obtained maximum capacity according to the required packet
loss rate. The construction method of the network topology
module and task weight distribution module is detailed in
this section from B to F, and that of the capacity estimation
module is given in Section III.

B. TIME-VARIANT NETWORK TOPOLOGY SNAPSHOT
In contrast to the ground network, the LEO satellites that form
the constellation network exhibit high-speed movement. Not
only the connection among satellites, but also the satellite-
user access relationships are highly dynamic. Therefore, the
network capacity is also time variant; therefore, it is necessary
to consider the impact of topology changes on the constel-
lation network capacity. The time-varying satellite-ground
network topology matrix can be expressed as

A(t) ∈ N × N , t ∈ [0,T ] (1)

where N is the total number of nodes of the constellation-
terrestrial network, including satellite and user nodes, and T
is the length of the simulation. However, the topology among
nodes changes frequently and is likely to be non-regressive.
Therefore, it is time-consuming to analyze the capacity by
traversing each topology connection state. Here, we use dis-
crete sampling with equal spacing for the topology variance.
In other words, the network topology is sampled as a series
of ‘‘snapshots’’ at a certain time interval. By taking NT + 1
samples in t ∈ [0,T ] with a sample interval1t = T/NT , the
time-varying network topology matrix can be represented by
a three-dimensional tensor:

A ∈ N × N × NT (2)

where A[t] ∈ N × N is a slice of the cube, called a ‘‘snap-
shot’’ of the network, representing the topological connection
of the network at the sampling time t . In this work, it is
assumed that the flow in each snapshot has reached a steady
state, that is, the incoming traffic in the network is equal
to the outgoing traffic at each moment; therefore, different
snapshots are independent of each other. Therefore, all net-
work modeling and capacity estimation processes below are
dedicated to ONE SNAPSHOT, and we omit the argument t
in the following expression for simplicity.

C. ADJACENCY MATRIX DESCRIPTION OF
CONSTELLATION-TERRESTRIAL NETWORK
Consider a constellation-terrestrial network topology snap-
shot at instant t , including NSat satellite nodes and NU user
nodes on the ground. In addition, the user node performs
two-way communication with other users, behaving as both
source and destination. However, user nodes do not for-
ward traffic as satellite nodes do. To avoid this, the sending
and receiving functions of a user node are equivalent to
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two nodes located in the same place without connection.
Thus, the set of constellation satellites can be expressed as
VSat =

{
v1, · · · , vNSat

}
, the set of ground users is VU ={

v1, · · · , vNU
}
, the set of ground sending nodes is VUS ={

v1, · · · , vNUS
}
, and the set of receiving ground stations is

VUD =
{
v1, · · · , vNUD

}
, where 0 < NUS ,NUD ≤ NU ,

N = NSat + NUS + NUD. We denote by V = {v1, · · · , vN }
the set includes all nodes in the network. Hereby, the network
topology can be represented by the block adjacency matrix
A ∈ N × N as:

A =

ASat 0 AUD
AUS 0 0
0 0 0

 . (3)

The square matrix ASat ∈ NSat × NSat is the adjacency
matrix of the low-orbit constellation that describes the topo-
logical connection relationship of the low-orbit constellation
network. AUS ∈ NUS × NSat and AUD ∈ NSat × NUD are
the connection relationship matrices from the sending node
to the satellite and from the satellite to the receiving node,
respectively. Because there is no connection between the
sending and receiving nodes or edges among ground users,
the corresponding parts are all-zero matrices.

D. CONSTELLATION MODEL
In this section, we focus on the topology of the constella-
tion merely, which is represented by the matrix ASat . The
LEO satellites in a constellation are distributed on NO orbital
planes, and each orbital plane has NSpO satellites, NSat =
NO × NSpO. According to its orbital plane distribution, the
constellation can be classified as Walker-Star and Walker-
Delta configurations.

TheWalker-Star configuration is mostly used in polar orbit
constellations, where the ascending nodes of the NO orbital
planes in the constellation are equally spaced within a range
of 180◦ longitude, as shown in FIGURE 3(a). In the same
orbital plane, satellites moving from the south pole to the
north pole are called ascending satellites; otherwise, they
are called descending satellites. The ascending and descend-
ing orbit satellites in the Walker-Star configuration are in
two hemispheres. The adjacent ascending and descending
orbiting satellites cannot establish ISLs owing to their high
relative speed, thus forming a reverse seam. Except for the
satellites on both sides of the reverse seam, each satellite in
the remaining orbital planes contains four ISLs, two of which
are connected to two adjacent co-orbiting satellites, and the
other two are in different orbits. The ISLs are connected to
the satellites in two adjacent orbital planes. The satellites on
both sides of the reverse seam contains three ISLs.

The walker-delta constellation configuration is primarily
used in low-inclination constellations. The ascending nodes
of the NO orbital planes in the constellation are equally
spaced at 360◦ longitude, as shown in FIGURE 3(b). The
orbits of theWalker-Delta constellation are evenly distributed
around the world; therefore, there is no reverse seam. Each
satellite in the constellation contains two ISLs connected

FIGURE 3. LEO constellations of 216 satellites with different
configurations.

with co-orbiting neighboring satellites, and the other two
with satellites in neighboring orbits. Interestingly, an ascend-
ing satellite might be geographically close to a descending
satellite because their orbits are crossed. However, the ISLs
between them are difficult to establish because of their high
relative speed, which is the same reason as the formation of
the reverse seam in the Walker-Star configuration. Therefore,
we can also assume that there are reverse seams everywhere
in the walker-delta constellation configuration.

Thus far, two types of constellation configurations have
been represented by the adjacency matrix ASat .The variable
aSati,j ∈ ASat is assigned as the capacity of the ISL from node i
to node j at the instant t , which can be represented as

aSati,j =

{
CISL , ∃

(
vi, vj

)
, ∀vi, vj ∈ VSat , i 6= j

0, Otherwise,
(4)

(
vi, vj

)
represents the connection where the first item points

to the second item and it is assumed that the capacity of the
ISLs is a constant CISL .

E. USER ACCESS MODEL
To get closer to reality, the access relationships between the
constellation and terrestrial users are determined by their
relative positions. However, the problem arises as to how
to model massive numbers of users worldwide. The idea
is to represent all users in a certain area by a single node
in the center. A common practice is to divide the Earth’s
surface into small grids at equal intervals of latitude and
longitude [16]. Consequently, there aremanymore user nodes
in polar regions than in equatorial regions, which is contrary
to the actual situation.

For this reason, we proposed an approximate equal-area
subdivision method for global user representation, which
generates earth surface subdivisions whose area almost
equals the target one. The ideal grid area is given as LX ×LY ,
where LX and LY are the lengths along the lines of latitude
and longitude, respectively. Algorithm 1 summarizes the
occurrence of the equal-area subdivision.

The algorithm firstly divides the earth area by NY rows,
which are in the shape of spherical belts, with the width as
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Algorithm 1 Approximate Equal-Area Global Subdivi-
Sion
Input: target length along line of latitude LX , target
length along line of longitude LY , Earth radius R
Output: total grid number NU , latitude boundaries ϕ

−

i
and ϕ+i , longitude boundaries θ

−

i,j and
θ+i,j,∀i ∈ [1, · · · ,NY ],∀j ∈ [1, · · · ,N i

X ]
Begin

1 NY ⇐
⌊
π · R

/
LY
⌋

2 1ϕ ⇐ π/NY
3 for each i ∈ [1, · · · ,NY ] do
4 ϕ−i ⇐ −π/2+ (i− 1) ·1ϕ, ϕ+i ⇐ −π/2+ i ·1ϕ
5 Si ⇐ 2πR2

(
cosϕ−i − cosϕ+i

)
6 N i

X ⇐
⌊
Si
/
(LXLY )

⌋
7 1θi ⇐ 2π/N i

X
8 for each j ∈

[
1, · · · ,N i

X

]
do

9 θi,j− ⇐ (j− 1) ·1θi, θ
+

i,j ⇐ j ·1θi
10 end for
11 end for
12 NU ⇐

∑NY
i=1 N

i
X

End

FIGURE 4. User distribution generated by Algorithm 1 with
LX = LY = 2000 km.

close to LY as possible. And all latitude boundaries ϕ−i and
ϕ+i can be obtained. Then, for each belt, the algorithm decides
the number for grids by taking the ratio of the belt area Si
to the target area LX × LY and rounding down. Thus, lon-
gitude boundaries θ−i,j and θ

+

i,j can also be calculated. So far,
we completed the partition of grids, which is a total of NU =∑NY

i=1 N
i
X . Thus, the coordinates of the user node in the grid gij

can be derived as
((
ϕ−i + ϕ

+

i

)
/2,

(
θ−i,j + θ

+

i,j

)
/2
)
, since the

user site in the center. It can be observed from FIGURE 4 that
users are almost uniformly distributed globally.

For each user, there is an effective elevation range, θbeam ∈
[θ0, π/2], forming a visibility cone with the user as the
apex. Therefore, by grasping all the coordinates of both
satellites and users at instant t , we can obtain the visi-
ble satellite set for user vU ∈ VU as VVisible (vU ) ={
v1, · · · , vNV

}
,VVisable (vU ) ⊂ VSat . Because each user is

on behalf of all satellite terminals in the grid, the user’s beam
number is unlimited, and each beam can be connected to
a satellite. Assuming that the line-of-sight (LoS) channel is
dominated between the satellite and the ground, the channel
model hvS ,vU from the user node vU to the visible satellite vS
can be expressed as

hvS ,vU =
√
ρvS ,vU · d

−2
vS ,vU , vS ∈ VVisable, vU ∈ VU , (5)

where dvS ,vU is the distance between vS and vU , and ρvS ,vU
denotes the channel gain at dvS ,vU = 1 m. Because the same
antenna is used for transmission and reception, ρvS ,vU =
ρvU ,vS and hvS ,vU = hvU ,vS . Thus far, the bidirectional channel
capacities between the satellite and user nodes are

CvS ,vU = B · log2
(
1+

∣∣hvS ,vU ∣∣2 PS/σ 2
)
, (6)

CvU ,vS = B · log2
(
1+

∣∣hvU ,vS ∣∣2 PU/σ 2
)
, (7)

where B denotes the channel bandwidth, PS and PU are the
transmit power for the satellite and user antenna, respectively,
σ 2 is the noise power. Then, we fill in the capacities into the
connection relationship matrices AUS and AUD. For ∀vS ∈
VVisible (vU ) and ∀vU ∈ VUS , aUSvS ,vU ∈ AUS and aUDvU ,vS ∈ AUD
can be expressed as

aUSvS ,vU =

{
CvS ,vU , ∃ (vS , vU )
0, otherwise,

(8)

aUDvU ,vS =

{
CvU ,vS , ∃ (vU , vS)
0, otherwise.

(9)

F. TASK WEIGHT DISTRIBUTION MODEL
The task weight model cooperates with the user-access
model. As mentioned earlier, the task weight from user i to
user j is the ratio of the amount of traffic from user i to user j
to the sum of all the traffic between any two user nodes. In the
capacity analysis, we assumed that the network tasks always
increase in proportion to the fixed task weight distribution;
that is, the sending node of each ground user generates tasks
to the receiving nodes of other ground users according to
a certain proportion. Because the satellite itself does not
generate tasks, all tasks originate from the sending node set
VUS , and eventually flow to the receiving node set VUD. As a
result, the proportions of generated tasks are summarized to
form a task weight matrix, B ∈ NUS × NUD:

B =

 β1,1 · · · β1,NUD
...

. . .
...

βNUS ,1 · · · βNUS ,NUD

 , (10)

where βi,j ∈ B represents the proportion of traffic sent by
the ground node vi ∈ VUS to the ground node vj ∈ VUD,
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∀i ∈ [1, · · · ,NUS ], and ∀j ∈ [1, · · · ,NUD]. The i-th row
represents all tasks sent by vi, and the j-th column represents
all tasks received by vj, with∑

i

∑
j

βi,j = 1. (11)

Because the capacity of the low-orbit constellation network
is closely related to the distribution of ground tasks, it is
necessary to make assumptions regarding the distribution
of ground tasks according to different application scenar-
ios. However, the actual task distribution model is not yet
clear; therefore, we create four types of hypothetical distri-
bution models to explore the impact of different distributions
on network capacity: two-point distribution, global conver-
gence distribution, global population density distribution, and
global uniform distribution.

a) Point-to-point distribution: Traffic flow from one user
to another. The element βi,j ∈ B of the task weight
matrix can be expressed as:

βi,j =

{
1, i = isend , j = jrecv, i 6= j
0, otherwise.

(12)

b) Global convergence distribution: All user nodes deliver
the same amount of traffic to one node in backhauling
scenarios. The element βi,j ∈ B of the task weight
matrix can be expressed as:

βi,j =


1

NUS − 1
, ∀i, j = jrecv, i 6= j

0, otherwise.
(13)

c) World population distribution: This task distribution
is associated with global population density data [17].
By dividing the global population data into grids in the
same manner as in Section 2.1D, and by adding up
the population data in the grids, the total population
Qi in the grid i can be obtained, where i ∈ [1,NU ].
The element βi,j ∈ B of the task weight matrix can be
expressed as:

βi,j =


Qi · Qj∑

i

∑
j
Qi · Qj

, i 6= j

0, i = j.

(14)

d) Global uniform distribution: The aforementioned
‘‘all-to-all’’ model, in which every node in the world
generates the same amount of traffic to every other
node, where the element βi,j ∈ B of the task weight
matrix is represented by:

βi,j =


1

NUSNUD −min (NUS ,NUD)
, i 6= j

0, i = j.
(15)

III. NETWORK CAPACITY ESTIMATION
This section discusses the calculation method for low-
complexity constellation capacity considering queuing. The
algorithm flow is divided into two parts: MCF capacity
measurement and Jackson-network-based capacity rollback.
The former replaces the high-complexity LP algorithm and
proposes an improved fully polynomial-time approxima-
tion (IFPTA) algorithm to estimate network capacity from the
perspective of the flow model. Based on the capacity results
obtained in the first part, the latter considers network queuing
and packet loss, uses the nature of the Jackson network to
analyze the relationship between network capacity and packet
loss rate, and provides the packet loss on the target edge.
Finally, a calculation method for the capacity roll-back index
under the target packet loss rate threshold was presented.

A. PROBLEM FORMULATION
For LEO mega-constellations, the capacity estimation prob-
lem with link packet-loss rate constraints can be described
by the MCF problem. Because the task weight distribution
is fixed, it can be further summarized as the maximum con-
current flow problem. The linear programming form of this
problem is

maximize
f k
(v,w)

λ (16)

s.t.
∑

w∈V
f k(v,w) −

∑
w∈V

f k(w,v)

=


0, v /∈ VUS , v /∈ VUD
0, v ∈ VUD, v 6= vk ∈ VUD
λβv,vk , v ∈ VUS , vk ∈ VUD
−λβk , v = vk ∈ VUD,
∀v ∈ V , ∀k ∈ {1, · · · ,NUS} (17)

βk =
∑NUS

i=1
βi,k , ∀k ∈ {1, · · · ,NUD} (18)∑NUD

k=1
f k(v,w) ≤ av,w, ∀v, w ∈ V , av,w ∈ A (19)

f k(v,w) ≥ 0, ∀k ∈ {1, · · · ,NUD} (20)

L(v,w) < η (21)

where k ∈ [1, · · · ,NUSNUD] is the commodity of traffic,
representing the traffic between a source-destination pair
(S-D pair), f k(v,w) is the traffic of commodity k routed in edge
(v,w), L(v,w) is the packet loss rate of edge (v,w), and η is
the link packet loss rate threshold. The idea is simple: for
each commodity, the traffic is conservative for each node, that
is, its traffic income should equal its outcome. λ denotes the
factor of the task weight matrix, B. It is worth noting that
because the sum of the elements in B equals 1, the physical
meaning of λ is the total throughput of the entire network.
Therefore, the objective of this MCF problem is to solve for
the maximum value of λ.

However, constraint (21) cannot be simply determined
because the link packet loss rate is statistical. Therefore,
we propose a two-step approach. First, without considering
the link packet loss rate, the remaining problem is solvable
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MCF. Second, we utilize a Jackson-network-based capac-
ity fallback approach to control the link packet loss rate
below a given threshold, without loss of optimality. In the
first step, although the linear programming algorithm can
solve the MCF problem, it faces the operational time prob-
lem. The complexity of the linear programming algorithm
is O(N 3.5

var ), where Nvar denotes the number of variables.
Consequently, an enormous amount of time is required for
LP calculation when faced with a large number of nodes in
a mega-constellation network. In practice, the running time
of a single snapshot is often calculated in units of hours or
days. Consequently, LP is incapable of capacity analysis for
mega-constellation configurations, particularly when multi-
snapshots and multi-user distributions are mentioned. In the
following, we give a less complex definition of the notion
‘‘commodity’’ based on which the low complexity IFPTA
algorithm is proposed to substitute LP.

B. LESS COMPLEX DEFINITION OF COMMODITY
As mentioned earlier, a commodity is all traffic between an
S-D pair; therefore, the number of commodities in our sce-
nario is NUSNUD, which is extremely large when the number
of ground users is large. Therefore, we seek a low-complexity
method for commodity definitions. To achieve this goal,
we must prove the following lemma:
Lemma 1: In a directed graph, all the traffic originating

from the same node constitutes a directed acyclic graph when
the network reaches its maximum capacity.

Proof: We prove this by a contradiction. A network
reaching its maximum capacity means that no traffic distribu-
tion can be found to increase the total traffic. In other words,
there is no traffic distribution that can reduce traffic on any
edge while maintaining the same capacity. Assume that a
loop is formed by traffic flows from the same source when
the network reaches its maximum capacity, and the loop is
composed of multiple paths. We perform following steps.

Step 1: Arbitrarily take two adjacent paths P1(s →
a → b → t1) and P2 (s→ b→ c→ t2) of different
commodities in the loop with traffic f1 and f2, respec-
tively, as shown in the upper part of FIGURE 5 (a). Then,
we redistribute the traffic such that the two edges in the
loop become one edge, which can be discussed separately
from the following two situations. When f1 ≥ f2, f1 in
commodity P1 can be split into P′1 (s→ b→ t1) : f2 and
P′2 (s→ a→ b→ t1) : f1− f2. Meanwhile, f2 in commodity
P2 can be reassigned to P′3 (s→ a→ b→ c→ t2) : f2,
as shown in the lower part of FIGURE 5(a). Similarly, when
f1 ≤ f2, reassign f1 in commodity P2 as P′1 (s→ b→ t1) : f1
and split P2 into P′2 (s→ a→ b→ c→ t2) : f1 and
P′3 (s→ b→ c→ t2) : f2− f1. In either case, the total traffic
of each edge in the graph remains unchanged, and the two
edges in the loop become one.

Step 2: Repeat Step 1 until only two edges remain in the
loop, as shown in the upper part of Fig. 5(b).

Step 3: Redistribute the traffic flows in the upper part
of FIGURE 5(b). Assume that f1 ≥ f2, split f1 in P1 into

FIGURE 5. Traffic flows merging diagram for Lemma 1. (a) Step 1. (b) Step
2 & Step 3.

P′1 (s→ e→ t1) : f2 and P′2 (s→ d → e→ t1) : f1 − f2.
Reassign f2 in P2 to P′3 (s→ d → t2) : f2, as shown in the
lower part of FIGURE 5(b).

Thus far, after redistribution, the traffic in edge (d → e) is
reduced to f1−f2, and that in edge (e→ d) becomes 0, which
contradicts the assumption. Therefore, there is no loop in the
traffic from the same source, that is, all flows from the same
node form a directed acyclic graph.
With the support ofLemma 1, we can redefine commodity

to reduce its number, as in Definition 2.
Definition 2: A commodity of traffic flows in a constel-

lation network refers to all the traffic originating from the
same source node. Traffic flows between commodities are not
exchangeable.

The consistency of the new definition can be proved by the
following theorem.
Theorem 1: In the MCF problem, combining all com-

modities from the same source into one does not change the
capacity result of the MCF problem.

Proof: Assuming that the original problem has reached
the optimum, we merge all commodity traffic flows with a
shared source. It can be seen fromLemma 1 that when the sys-
tem reaches its maximum capacity, all flows from the same
source constitute a directed acyclic graph; therefore, the traf-
fic on each edge will not decrease after merging. Thus, the
solution to the new problem is not less than that of the original
problem.

Assuming that the optimal value of the merged commodity
is greater than that of the original problem, the merged com-
modity traffic can be split into subtraffic flows of S-D pairs.
Then, there must be a subtraffic flow of the new problem
that is greater than the corresponding flow of the original
problem, which means that the result of the original problem
is not optimal, contradicting the assumptions. Therefore, the
solution to the new problem is not greater than that of the
original problem.

18426 VOLUME 10, 2022



N. Wang et al.: Capacity Analysis of LEO Mega-Constellation Networks

In summary, the solution to the new problem is equivalent
to the original problem.

Therefore, it is proven that the traffic originating from the
same source can be defined as the same commodity. This
definition sharply reduced the number of commodities from
NUSNUD to NUS .

C. IMPROVED FULLY-POLYNOMIAL-TIME
APPROXIMA-TION ALGORITHM
We propose the IFPTA algorithm to replace LP, the workflow
of which is shown in Algorithm 2. The oriented edge from
node v tow is represented by (v,w), where capacity is denoted
by av,w. f

s,d
(v,w) ∈ F is the traffic component of the S-D pair

s and d within edge (v,w), satisfying
∑

s
∑

d f
s,d
(v,w) ≤ av,w.

F ∈ N × N × NR is the MCF tensor that records the traffic
distribution of each commodity at each edge.MatrixBZoom =
σB is the scaling of task weight matrix B, σ ∈ R+, to control
the number of iterations. δ ∈ R+ is a small positive constant
used to initialize the weight of each edge.

Themain idea of the algorithm is to set the weights for each
edge in the network. According to Definition 2, the Dijkstra
algorithm can be used to calculate the smallest weight sum
path for a commodity in the one-time calculation instead of
the NUD times. Traffic flows are routed through those paths
subject to B. Those traffic flows are accumulated on the path,
increasing the involved edge’s weight according to the ratio
of traffic to edge capacity. Finally, the traffic distribution of
theMCF problem is determined through adequate repetitions.
The accuracy of the algorithm is controlled by the iteration
step ε ∈ (0, 1). The smaller the ε, the higher is the accuracy
of the algorithm; in other words, the closer it is to the optimal
value. The algorithm possesses four levels of nested loop. The
objective of the first-level loops is to balance traffic through
multiple iterations. The break condition is set as � ≥ 1 to
determine themaximum iteration number by setting the upper
bound for the non-descending variable �. All source nodes
are traversed by the second-level loop, in which the third-
level loop is responsible for ensuring that all tasks in B′Zoom
are allocated. The shortest path from the current source to all
destinations is also calculated in this loop using the Dijkstra
algorithm. In addition, in the third-level loop, the weight of
edges also increases according to the amount of added traffic,
influencing the path choice of the next loop. Finally, the
fourth-level loop traverses all the destination nodes to route
tasks according to the current shortest path.

Our improvement mainly lies in the generation of the scale
factor, which converts infeasible traffic into feasible traffic,
so that the algorithm throughput is closer to optimal. In this
approximate solution, because the traffic of each edge is
likely to exceed its capacity after all iterations are completed,
the traffic must be scaled down. The method adopted in [15]
is to estimate an upper bound log1+ε av,w · (1+ ε) /δ of the
traffic that can be allocated on each edge and then reduce the
allocated traffic by log1+ε (1+ ε) /δ so that the flow is less
than its capacity. However, because an estimated upper bound

Algorithm 2 Improved Fully-Polynomial-Time Approx-
imation (IFPTA)
Input: adjacency matrix A, task weight matrix B,
iteration step ε, scaling factor σ of task weight matrix,
weight initialization constant δ
Output: maximum network capacity λmax,
multi-commodity traffic tensor f s,d(v,w) ∈ F
Initialize: edge weight l(v,w) ⇐ δ/av,w, f k(v,w) ⇐ 0,
∀av,w ∈ A, BZoom = σB, � = 0
Begin

1 while � < 1 do
2 B′Zoom ⇐ BZoom
3 for each s = 1 : NUS do
4 while

∑
i B
′
Zoom(s, i) 6= 0 do

5 [P (:, d) ,Ds]⇐ dijkstra(A, s), calculate the
minimum weight path P (s, :) and the weight
Ds from node s to the rest nodes

6 A∗ ⇐ A, a∗v,w ∈ A
∗

7 for each d = 1 : NUD do
8 Cb ⇐ bottleneck capacity of P (s, d) in

A∗

9 if B′Zoom (s, d) ≤ Cb do

10
f s,d(v,w) ⇐ f s,d(v,w) + B

′
Zoom (s, d) ,
∀ (v,w) ∈ P (s, d)

11
a∗v,w ⇐ a∗v,w − B

′
Zoom (s, d) ,
∀ (v,w) ∈ P (s, d)

12 f tempd ⇐ B′Zoom (s, d)
13 B′Zoom (s, d)⇐ 0
14 else do
15 f s,d(v,w) ⇐ f s,d(v,w) + Cb,∀ (v,w) ∈

P (s, d)
16 f tempd ⇐ Cb
17 B′Zoom (s, d)⇐ B′Zoom (s, d)− Cb
18 End if
19 end for

20 �⇐ �+ ε
∑

d

(
f tempd · Ds (d)

)
21 l(v,w)⇐ l(v,w)

(
1+ ε ·

∑
d f

temp
d
Cl

)
, ∀v,w ∈ V

22 end while
23 end for
24 end while

25 f s,d(v,w) ⇐
f s,d(v,w)

max
s,d

(
f s,d(v,w)

/
av,w

) ,∀av,w ∈ A,∀s, d, s 6= d

26 λ⇐
∑

s
∑

d
∑

v f
s,d
(v,d),∀d ∈ VUD,∀s ∈ VUS ,∀v ∈ V

End

is used as the scale factor, the capacity of each side is often
not fully utilized in the actual implementation.

Herein, we present a new method for calculating the scal-
ing factor. The traffic allocated to each edge can be measured
as a numerical solution. Therefore, the maximum traffic-to-
capacity ratio max

v,w

(
f s,d(v,w)/av,w

)
can be calculated and used
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as a scaling factor for traffic reduction in F. This means
that the feasible traffic in F is no less than that obtained
using the methods in [15], for at least one edge possesses
traffic reaching the upper bound of the edge capacity, without
changing the traffic distribution in F. In other words, λmax
could be closer to the optimal value. According to [15],
the algorithm complexity of FPTA is O(ε−2(M2

+ NUDN )),
which is much lower than the linear programming algorithm
complexity O((NUD(4N − q))3.5).

D. CAPACITY FALLBACK BASED ON QUEUEING NETWORK
According to the aforementioned capacity analysis algorithm,
the planning-based algorithm can estimate the maximum
traffic that the constellation-terrestrial network can bear in
a snapshot. However, constraint (21) was not considered.
In the IFPTA algorithm, themaximum traffic is reached under
the assumption that all traffic flows are regarded continu-
ous, which is unrealistic. In actual networks, information is
formed in discrete packets and the arrival interval between
packets is random. Consequently, queuing or even packet loss
is inevitable when the edge load is high. In our case, it can be
observed from the IFPTA algorithm in the previous section
that the traffic of at least one edge reaches its capacity. From
the perspective of queuing, the edge is severely congested,
and a large number of packets are discarded, which means
that the network is not usable. To avoid this, a fallback of the
estimated traffic is necessary to obtain a reachable estimation
of the network capacity by balancing the traffic and packet
loss rate of the edge. In this section, we use Jackson network
theory to analyze the fallback of network capacity. We define
the fallback as
Definition 3: The fallback of the network capacity is the

reduction in the maximum traffic flow that can be borne by
the network to control the maximum packet loss rate under a
given threshold.

Assuming that the packet length in the network follows an
exponential distribution with mean L, where L � min(av,w).
The packet input of each source node obeys a Poisson
stochastic process with an arrival rate of γ . Thus, the service
time of each queue is an independent exponential distribution,
with mean service rate of edge (v,w):

µ(v,w) =
av,w
L

(22)

According to Jackson’s theorem, the packet transmission
on each edge of the network can be regarded as an indepen-
dent M/M/1 queue if the following conditions are satisfied:
1) packets arriving from outside the network obey the Pois-
son distribution and 2) service rate obeying the independent
exponential distribution, which exactly meets our case. Thus,
the probability that the number of packets in the queue (v,w)
equals n is

p(v,w) (n, γ ) = ρ(v,w) (γ )n
(
1− ρ(v,w) (γ )

)
(23)

where ρ(v,w) = γ /µ(v,w) and 0 ≤ ρ(v,w) ≤ 1 show the
occupancy rate of the edge. For an edge with a queue length

FIGURE 6. Relationship between packet loss rate and edge occupancy
rate.

of Nq packets, we define the theoretical packet loss rate of the
edge as the ratio of the expectation of the number of packets
exceeding the queue length to that of the total number of
packets on the edge:

PPL(v,w)
(
ρ(v,w),Nq

)
=

E
[
n > Nq

]
E [n]

=

∑
∞

n=Nq+1 p(v,w) (n) · (n+ 1)∑
∞

n=1 p(v,w) (n) · (n+ 1)

= ρ
Nq
(v,w)

[
1+Nq

(
ρ(v,w) − ρ

2
(v,w)

)]
. (24)

The packet loss rate is a function of the edge occupancy rate
ρ(v,w) and queue length Nq, and the influence of the two on
the packet loss rate is shown in FIGURE 6. It can be observed
that by appropriately rolling back the edge occupancy rate,
the packet loss rate of the edge can be significantly allevi-
ated. Meanwhile, longer queues have a good buffering effect
such that when the edge reaches the same packet loss rate,
the magnitude of the capacity rollback is greatly reduced.
However, regardless of the amount of Nq, the packet loss rate
always increases to 100% when an edge is fully occupied,
which emphasizes the significance of the fallback of capacity
estimation.

For a fixed queue length, we set η ∈ [0, 1] as the packet loss
rate threshold of the edge. Themaximum edge occupancy rate
ρ̂(v,w) can be solved by

ρ̂
Nq
(v,w)

[
1+ Nq

(
ρ̂(v,w) − ρ̂

2
(v,w)

)]
= η (25)

where ρ̂(v,w) can be solved numerically. Because the tasks are
distributed according to a certain proportion, the estimated
traffic distribution in F is also fixed, which means that the
fallback of one edge is equivalent to that of all traffic flows in
the network. However, according toAlgorithm 2, at least one
edge is fully occupied. Therefore, ρ̂ (η) denotes the global
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capacity fallback factor, ρ̂ (η) = ρ̂(v,w) (η) ,∀v,w ∈ V .
The network capacity and MCF tensor after fallback can be
expressed as

λη = ρ̂ (η) · λmax, (26)

Fη = ρ̂ (η) · F. (27)

It should be emphasized that the aforementioned process
of network capacity estimation is only for one snapshot. This
should be executed for all snapshots generated in Section II-B
to obtain the capacity variation over time. The entire process
of network capacity analysis for LEO mega-constellation is
summarized in Algorithm 3.

Algorithm 3 Network Capacity Analysis Process for
LEO Mega-Constellation
Input: constellation ephemeris for t ∈ [0,T ], snapshot
interval 1t , ideal size of global area subdivision LX ×
LY , link capacity of ISLs CISL , threshold of link packet
loss rate η, link queue length Nq
Output: network capacity with link packet loss rate
constraints λη, MCF tensor F
Begin

1 Sample the constellation ephemeris with 1t , generate
NT snapshots.

2 Create approximate equal-area global subdivision
following instructions in Algorithm 1, and determine
the location of all ground users.

3 Determine the type of task weight distribution, and
calculate task weight for each ground user, forming the
task weight matrix B.

4 Solve equation (25) to find the capacity fallback factor
ρ̂ (η).

5 For each snapshot do
6 Generate adjacency matrix ASat of the satellite

constellation at the present snapshot
7 Generate AUS and AUD, which are the

constellation-terrestrial connection relationship
matrices for both directions.

8 Form network topology adjacency matrix A.
9 By taking A and B as parameters, calculate the

maximum network capacity using the IFPTA
algorithm in Algorithm 2, obtaining the maximum
network capacity λmax and the multi-commodity
traffic tensor F.

10 Execute network capacity fallback as (26) and (27)
11 End for

End

IV. SIMULATION RESULT AND DISCUSSION
In this section, the simulation results utilizing the proposed
algorithm are demonstrated from two perspectives. The first
is the algorithm performance analysis, which discusses the
ability of network capacity estimation from the metrics of
accuracy, complexity, and time sampling interval. The second

is an exploration of the capacity characteristics of LEOmega-
constellation networks. The proposed algorithm is used to
analyze the attributes of the constellation network, including
the relationship between the capacity and constellation scale
or configuration, capacity bottleneck analysis, and the rela-
tionship between service distribution and capacity.

The simulation parameters are as follows: Both Walker-
Star and Walker-Delta constellation configurations were
adopted in the simulation. To equalize the number of satellites
with different constellation configurations, we utilized the
method of exchanging the number of orbital planes and satel-
lites per orbit of the two configurations to ensure the rational-
ity of the configuration. For example, for a constellation with
a scale of 384 satellites, when the Walker-Star configuration
was adopted, there were 16 orbital planes and 24 satellites
per orbit, and two parameters shifted when the Walker-Delta
configuration was adopted. The orbital inclinations for the
two configurations are 90◦ and 60◦, respectively, with the
same orbital height H = 1000 km. The snapshot sampling
step was 30s, and the simulation time T was one orbit period
of the satellite, which is 105 s for H = 1000 km. Link
capacity of ISLs were CISL = 1 Gbps. For global area
subdivision, the ideal length along the line of latitude and
longitude was LX = LY = 2000 km. The beam number was
unconstrained for both satellites and ground users because
the ground user was a representation of all users in the grid.
For the parameters of the IFPTA algorithm, we used the
iteration step ε = 0.4, and the weight initialization constant
was δ = 10−10. We assume that the average length of
the packets is 1000 Byte. The threshold of the edge packet
loss rate was set to η = 0.05, with a link queue length of
Nq = 1s × 2µ(v,w).

A. ALGORITHM PERFORMANCE ANALYSIS
In this section, we focus on the algorithm performance
from three dimensions: accuracy, time complexity, and sam-
pling interval, which are the basis of constellation network
estimation.

The accuracy of the capacity estimation algorithm depends
on the optimality of the planning-based algorithm, which is
IFPTA in our case, compared with the original FPTA and
classical LP. However, although the solution obtained by LP
can be considered optimal, its runtime is considerably high
for a network that possesses hundreds of nodes and multi-
commodity traffic flows. Therefore, for the comparison of
accuracy in an acceptable way for all candidates, we use
a simplified 2-D torus network with fewer nodes for the
network topology model, and the uniform distribution for
the task model, where each node sends an identical amount
of traffic to all nodes except itself in a 2-D torus network.
The edge capacity is assumed to be 1 Gbps. The comparison
results are shown in FIGURE 7. The throughputs of the
proposed IFPTA and original FPTA are given with different
iteration step lengths ε. It can be observed that under the same
iterative step length, the improved result is better than before,
and it is close to the LP result when ε is small, that is, close
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FIGURE 7. Accuracy comparison of LP, FPTA, and proposed IFPTA, under
simplified circumstance of 2-D torus network and ‘‘all-to-all’’ uniform
distribution.

to the upper bound. At the same time, the IFPTA algorithm is
less sensitive to ε, which means that we can still obtain results
close to optimal even using a larger ε, which is equivalent to
reducing the complexity of the algorithm.

To further explain the reason for using IFPTA instead of
LP, the time complexity comparison, with the same simu-
lation circumstance as in the accuracy comparison, is given
in FIGURE 8, in which the time complexities of LP and
IFPTA with various ε values are compared. We use loga-
rithmic representation of the ordinate. IFPTA has a much
lower time complexity than LP, at least 1/104 in the case
of ε = 0.1. This advantage can be further expanded with
larger ε and larger network scale. Therefore, by comparing
both the capacity and time complexity, we can conclude that
the IFPTA algorithm saves significant time complexity with
a tiny price of accuracy, which is acceptable and controllable.

FIGURE 8. Time complexity comparison between LP and IFPTA with
different iteration step length.

As for the choice of sampling interval 1t , the time step
of this algorithm cannot be infinitely small because of the
hardware resources limit. Therefore, an appropriate sampling
interval should be selected to increase calculation efficiency.
FIGURE 9 shows the results of the capacity change over
time for the same constellation and same time period under
different sampling intervals 1t . It can be seen that as the
granularity of the snapshot becomes finer, the capacity results
can more accurately reflect the capacity changes brought
about by the changes in the constellation-terrestrial connec-
tion relationship.

FIGURE 9. Influence on network capacity variation of time sampling.

When the sampling interval is 60s or 30s, it can only reflect
the trend of the capacity on a large time scale, but the minute-
level step length may lose some extreme conditions, thereby
affecting the judgment of the highest or lowest possible
capacity. The details are the most abundant when the step size
is 1s and 5s, but this will lead to a huge amount of calculation
in the estimation in hours or even days. It is worth noting that
the larger the constellation scale, the more frequent are the
topology changes of the satellite-ground network. Therefore,
for a denser constellation scale, it is necessary to reduce the
step size appropriately such that the simulation can traverse
each topology.

B. RELATIONSHIP BETWEEN CONSTELLATION SIZE AND
CAPACITY
The following analysis uses the capacity analysis method
proposed in this study as a tool for calculating and analyzing
capacity under different constellations and task distributions.
First, we consider the capacity performance of the satellite
network. For these estimations, we remove the restriction
of the satellite-to-ground beam capacity, which is set to be
CvS ,vU = 4 Gbps as the sum of all ISL capacities for
a satellite. For each type of configuration, the size of the
constellation is enlarged with a fixed ratio of the number of
orbits to the number of satellites per orbit, which is 2:3 and
3:2 for Walker-Star and Walker-Delta, respectively.
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FIGURE 10 is a box plot showing the trend of network
capacity versus constellation size for the four combinations
of constellation configuration, Walker-Star or Walker-Delta,
and task distribution, uniform or world population. Each box
represents the statistical result of the network capacity over
time obtained using Algorithm 3. In addition, we use linear
functions to fit the mean capacity of the different sizes for
each combination. As shown in FIGURE 10, we propose two
conjectures.

FIGURE 10. Network capacity versus constellation size for different
combinations of constellation configuration and task weight distribution.

Conjecture 1: With the same number of satellites, the
capacity of the Walker-Star configuration is approximately
half that of the Walkers-Delta configuration.
Conjecture 2: The average constellation capacity has an

affine relationship with the number of orbits or the number
of satellites per orbit.

For these conjectures, we cannot deduce a mathemati-
cal proof because of the complexity and irregularity of the
constellation-terrestrial network. However, we can at least
theoretically explain the correctness of these conjectures in
simplified scenarios. TheWalker-Delta constellation network
is similar to the 2D-Torus network, and becomes a 2D-Torus
network when the phase factor is 0. Thus, is the Walker-
Star configuration, except that there are reverse seams. When
the task distribution is uniform, the network capacities for
Walker-Delta and Walker-Star are as follows:

CDelta =
8
(
NONSpO − 1

)
CISL

NO
, NSpO ≤ NO (28)

CStar =
4
(
NONSpO − 1

)
CISL

NO
, NSpO ≥ NO (29)

where NO is the orbit number in a constellation shell, and
NSpO is the number of satellites per orbit. The proof was
derived from [5] and [7]. Both (28) and (29) have the same
form, except for CDelta = 2 × CStar under the given cir-
cumstance, which is consistent with our simulation results.
Moreover, although proportional relationships are derived

in (28) and (29) with simplified network conditions, the
simulation result in the complete system model yields similar
conclusions, which are linear. Therefore, it can be considered
that conjectures 1 and 2 are likely correct.

Thus, we can use the above conclusions to obtain a low-
complexity empirical estimation method for the network
capacity. When the constellation scale is large, the capacity
estimation problem of the constellation network is extremely
time-consuming. Therefore, we can roughly estimate the
capacity of a large-scale constellation by estimating sev-
eral constellation networks that have the same or similar
NO/NSpO, but with a smaller scale, and then obtain the net-
work capacity of the original large network according to
Conjecture 2. The implementation of the empirical method
is presented in Algorithm 4.

Algorithm 4 Empirical Algorithm for Constellation
Capacity Estimation
Input: target constellation network size (NO,NSpO)
Output: average capacity of the target Cempirical
Begin

1 Find at least two smaller constellations possessing the
same ratio of the number of orbits to the number of
satellites per orbit as NO/NSpO.

2 Formulate capacity dimensioning problems for smaller
constellations. The task distribution and the user
sub-division remain the same as the original problem.

3 Solve minor problems formulated in the previous step
using Algorithm 2, and obtain the mean capacity values.

4 Use least squares estimation with linear model to fit the
mean capacity values, get the slope α̂ and intercept κ̂ of
the line.

5 Calculate the empirical capacity of the
mega-constellation network by Cempirical = α̂NO + κ̂ .
End

We can perform a simple test using this estimation method.
Consider the scenario (40,60) Walker-Star constellation with
a uniform task distribution as an example. According to the
method above, we can calculate the estimated mean capacity
equals to 332.14 Gbps, and the simulation usingAlgorithm 2
obtains 331.86 Gbps. The deviation is within 1/1000 in this
example.

C. BOTTLENECK ANALYSIS
In this section, we analyze the impact of the ratio of USL
capacity to ISL capacity RUI on network capacity to deter-
mine the bottleneck of network capacity. Because the capac-
ity of USLs varies with distance, RUI is defined by the ratio of
USL capacity at a reference distance dref = 1000km to ISL
capacity as

RUI =
CvS ,vU

(
dvS ,vU = dref

)
CISL

(30)

Here, we believe that the task is uniformly distributed
because when RUI is small, all USLs will be fully
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occupied indiscriminately, thus showing a uniform distribu-
tion. We take both the Walker-Star and Walker-Delta constel-
lations of 384 satellites as examples. The simulation results
are shown in FIGURE 11.

FIGURE 11. The network capacity versus the USL to ISL ratio.

It can be seen that for both constellation configurations,
the network capacity growth has basically a proportional
tendency with RUI increasing when RUI is small. Clearly,
USLs are the bottleneck of the network capacity at this
stage. However, the capacity growth here cannot be simply
represented by its average, since its variation range is also
expanded while RUI increases. More precisely, the upper and
lower bounds of the capacity grow individually with different
slopes until the capacity touches the ceiling, as indicated by
the dotted line.

When comparing the two constellation configurations,
it is interesting that the capacities of both configurations
are very close when RUI ≤ 1/4, which is in sharp con-
trast with the capacity comparison when RUI is high. Mean-
while, the Walker-Star constellation reaches its maximum
capacity at RUI = 5/8, whereas the position for Walker-
Delta is RUI = 1. These results indicate that theWalker-Delta
configuration is quite sensitive to adequate USL capacity;
otherwise, its advantages will be reduced. In contrast, the
Walker-Star configuration demands much less USL capacity
to reach its capacity ceiling, which is easier to satisfy.

D. TASK WEIGHT DISTRIBUTION ANALYSIS
Finally, we discuss the influence of different task weight
distributions on network capacity. Based on the same constel-
lation of 384 satellites, four types of task weight distributions
are illustrated in FIGURE 12: point-to-point, global con-
vergence, world population distribution, and global uniform
distribution, as introduced in Section II-F. We set CvS ,vU =
4 Gbps in this part.

The sending and receiving points in the first distribution are
chosen as the two furthest ends of the Earth on the equator

FIGURE 12. The network capacity versus task weight distributions.

to avoid the influence of the single-hop relay. It is aston-
ishing that the network capacity in this scenario is incred-
ibly low compared with the potential of the network. This
is because the number of accessible satellites for a ground
station is limited by the elevation angle and the capacity
bottleneck depends on the minimum number of ISLs that
can leave or reach the access satellite zones. The capacity of
the Walker-Delta configuration in this distribution is slightly
higher because ground stations can access both ascending
and descending satellites, which means more usable ISLs.
Therefore, although the network has many idle ISLs, they
are not helpful. This is exactly the same problem as the
global convergence distribution, where the bottleneck is at
the network zone above the receiver station. The solution to
this problem is to use multiple ground stations for access, and
the ground stations are geographically dispersed as much as
possible to relieve pressure on the local network.

In contrast, when tasks are widely distributed around the
world, the network capacity has better performance, as shown
by the global population distribution and global uniform
distribution in FIGURE 12. The global uniform distribution
has the highest capacity among the four distributions because
the tasks exhibit good symmetry, similar to the constellation
network. No local jamming occur in the network before all
ISLs are evenly occupied. However, the world population
distribution is far from uniform, that is, 35% of the population
is concentrated in China and India, and almost 0% in ocean
areas, which occupy 71% of the Earth’s surface. The network
capacity in this distribution is less than half that under a
uniform distribution.

V. CONCLUSION
The current study analyzes the network capacity of
LEO mega-constellations. A time-variant constellation-
terrestrial network model was established, and various task
weight distribution models were considered to present the
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characteristics of the network under different use cases. Based
on the simpler definition of a commodity, the network capac-
ity determination with the limit of maximum packet-loss
rate is fulfilled by the combination of the proposed IFPTA
algorithm and the capacity fallback approach. The most obvi-
ous finding to emerge from the simulation result is that the
network capacity has an affine relationship with the number
of orbits or the number of satellites per orbit, which can be
used for rough capacity estimation. The results also indicate
that the Walker-Delta configuration has nearly double the
capacity compared to Walker-Star when the USL bandwidth
is adequate, and the gap shrinks otherwise. Finally, it is shown
that the network capacity is significantly influenced by task
distributions.
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