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ABSTRACT The 3D maps are used for self-positioning estimation and path planning for the autonomous
navigation of robots in urban areas. This paper presents a framework that generates globally consistent
3D maps from the pose graph of existing simultaneous localization and mapping (SLAM) methods. Our
approach corrects a pose graph by performing a 3D alignment with building information on publicly available
maps. The framework automatically finds an appropriate anchor pose for the alignment and optimizes the
pose graph according to the constraints obtained by the alignment. However, there are situations where it
is difficult to automate 3D alignment because of measurement errors as well as errors in publicly available
maps. To minimize operational costs, the proposed framework incorporates a user interface (UI) that allows
users to check the results of 3D map alignment and make simple corrections. The framework was evaluated
by conducting 3D mapping experiments in an urban area in Japan, and 3D mapping was performed over
a distance of approximately 15 kilometers. The experimental results showed that the framework could
automatically select anchor poses with high probability and generate 3D city maps with an average of
approximately five manual operations per km by the user. The accuracy of the 3D mapping was evaluated by
comparing it with a manually corrected reference trajectory based on an accurate 3Dmap from a commercial
mobile mapping system (MMS). The 3D maps had an average absolute position error of 5.5, which is the
lowest error compared to the maps generated by other open source software (OSS) SLAM methods.

INDEX TERMS Global consistency 3D mapping, mobile robot, publicly available maps, urban area.

I. INTRODUCTION
Various mobile robots use a city 3D map as prior knowledge
to perform autonomous navigation. In particular, 3Dmaps are
useful for self-pose localization [1], [2] and path planning
in mobile robot navigation [3], [4]. With accurate global
3D maps of urban areas it is possible for mobile robots to
navigate autonomously in a wide city area. The goal of this
study is generating globally consistent 3D maps for mobile
robots operating in urban areas.

The simultaneous localization and mapping (SLAM) is
often used for 3D mapping for mobile robots. It is to perform
sequential scan matching on the data collected by a mobile
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robot’s sensors. Numerous SLAM methods have been intro-
duced in recent years [5]–[8]. The sequential scan matching
results in cumulative position errors that increase with the
number of observations.Whenmapping on a large scale, as in
the case of a city, these cumulative errors increase, so that the
maps produced by multiple observations do not overlap and
cannot be used for navigation.

These errors can be corrected by pose graph optimiza-
tion [9]. These method needs anchor poses that provides a
global position and orientation as additional information for
SLAM correction. Some of these methods include a loop
closure function to obtain the anchor pose of returning to
the same place. However, the loop closure function can-
not correct the overall distortion and must include a loop
in the driving trajectory. The accurate absolute coordinates
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are required to obtain accurate anchor poses. The global
navigation satellite system (GNSS) is often used to acquire
an absolute coordinate system. This system suffers from a
few system errors owing to the loss of signal and multipath
propagation, especially in urban areas.

This paper presents a framework for semi-automatic glob-
ally consistent 3D mapping for mobile robots. The proposed
method is aimed at generating 3D maps in urban areas with
many buildings where it is difficult to obtain GNSS. Our
approach corrects 3D maps using the 3D alignment of the
scanned data to a publicly available map. The resulting 3D
alignment is added as a constraint to the pose graph and is
subjected to an optimization process. However, the 3D align-
ment fails because of the errors between the measurements
and the publicly available maps. An example of such error
is an instance when the wall of a building measured by the
sensor is not in publicly available maps. Such failures greatly
reduce the accuracy of 3D maps. Although it is difficult
to avoid such failures automatically, they are easily visible
to the user. To reduce the operational cost, our framework
automatically extracts anchor pose candidates for alignment
and has a user interface (UI) to confirm or modify the 3D
alignment results. The user can check and fix the anchor pose
from the anchor pose candidates and perform pose-graph
optimization by checking the alignment results on the user
interface. The optimization eliminates cumulative errors and
generates a globally consistent 3D map. Fig. 1 shows a glob-
ally consistent 3Dmap generated by the proposed framework.
The 3D map (color point clouds) coincides with the publicly
available maps (gray point clouds).

FIGURE 1. 3D map (color point clouds) that is globally consistent with
buildings displayed on a publicly available map (gray point clouds).

II. RELATED WORK
The airborne laser scanning (ALS) [10] and mobile map-

ping systems (MMS) [11] are the major solutions for city
mapping. The ALS technology has attracted significant inter-
est in the field of mapping community mainly because of
the increasing applications across a wide spectrum. An ALS
survey is carried out by shining an active laser beam with
a light detection and ranging (LiDAR) from a fixed-wing
aircraft towards the ground. The integration with a GNSS and

IMU determines the three-dimensional position of objects
generating a cloud of points. It can generate a large-scale
3D model from scanning sequences in a single aerial survey.
The ALS uses real-time kinematics (RTK) or post-processing
kinematics (PPK) technique to observe a GNSS receiver
positioned on a geodesic vertex in order to obtain good accu-
racy. The ALS cannot easily obtain information about objects
on the ground that are under trees or along the facades of
buildings.

The MMS measures roads using a car mounted with mul-
tiple sensors, such as lasers, cameras, and GNSS. The MMS
can retrieve dense point clouds of ground objects along the
roads. Because the point clouds are mainly around roads,
the resulting 3D map will be sparse away from the road.
For city robot navigation, mapping methods must meet the
requirements of low cost and meet space restrictions.

The SLAM is often used to generate 3D maps for
autonomous robot navigation. Recent SLAM methods such
as LOAM [7] and Cartographer [8] can generate 3D maps
using only LiDAR and inertial measurement unit (IMU) data.
The errors accumulate during long observations and distort
the resulting 3D map. It is difficult to guarantee the accu-
racy of 3D maps without access to absolute positions in a
town-scale environment. Many studies have addressed these
issues using the SLAM. The accumulated error is reduced by
detecting loops using the Euclidean distance, feature points,
or segmentation results [12]–[14]. Although these techniques
reduce the local accumulated errors, they do not always have
global consistency. For example, even if the loop of the tra-
jectory is closed, the loop may be significantly distorted from
the actual trajectory. Moreover, the driving route is restricted
because it must include a loop.

To deal with these problems in urban areas, the use of
publicly available maps has been proposed. The road net-
work of publicly available maps has often been incorpo-
rated into SLAM for autonomous vehicles running on the
road [15], [16]. The OpenStreetSLAM [17] uses publicly
available maps to improve the accumulated error of visual
odometry (VO) algorithms. The researchers used chamfer
matching to align the detected path with the road network
extracted from publicly available maps. [18] corrected the
Monte Carlo filter localization results by alignment 3D laser
range finder data with road network.

For mobile robots that move not only on roads but also on
sidewalks and indoors, the building information is often used
for correction. Hentschel et al. represented buildings as 2D
line features. This line map was used to calculate the esti-
mated locations of certain robots [19]. In [20], the accuracy
of self-positioning was improved by using visual SLAM and
building information. [21] improved the graph-based SLAM
by using the 2D alignment of building information and a
laser scanner. They used 2D iterative closest point-based
(ICP-based) matching to align with the building information.
Although these studies improved 2D SLAM for generating
globally consistent maps in urban areas by using publicly
available maps, they did not address the issue of 3D map
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FIGURE 2. Overview of semi-automatic 3D mapping framework.

modification. [22] modifies the SLAM by alignment with
building wall and 3D LiDAR data. This method is similar to
our method, but it assumes that the 3D city model and sensor
observations are accurate. The publicly available maps may
contain errors. For instance, they may not include data on
buildings that were constructed after themapswere produced.
The pose graph optimization requires accurate anchor poses.
If an anchor pose is substantially incorrect, the pose graph
optimization will not converge.

To prevent anchor poses that contain such obvious errors
from being selected, the proposed framework includes a UI
that allows users to easily check and modify the 3D align-
ment. Our framework improves graph-based SLAM from the
results of aligning 3D LiDAR data with the building walls of
publicly available maps. We are able to construct 3D maps
mainly from LiDAR observations in urban areas where many
buildings are prone to GNSS inaccuracies.

III. SEMI-AUTOMATIC TOWN-SCALE 3D MAPPING
Our framework generates globally consistent city 3Dmaps

that coincide with publicly available maps. The framework
extracts anchor pose candidates automatically and performs
pose graph optimization with the anchor poses, which are
aligned with 3D building information of publicly available
maps. It possesses a UI that can easily confirm and modify
the alignment results to prevent the failure of pose graph opti-
mization because of the errors in the publicly available maps.
The UI guarantees the accuracy of the 3D map at minimal
operational costs because it is easy for the user to correct
obvious mistakes in the anchor pose alignment process.

An overview of the proposed 3D mapping framework is
shown in Fig. 2. The UI was enclosed in a red box. First,
a robot is driven through an urban area to obtain sensor
data. The SLAM methods calculate the robot’s trajectory
at each time point in the form of a pose graph. Next, the
anchor-candidate selection part determines the anchor candi-
dates from the sensor scans. The anchor pose candidates are
the anchor poses that perform the alignment with the walls
of the building. The anchor alignment part then aligns the
selected anchor poses with the building wall of the publicly

available map using the ICP algorithm. The UI checks or
modifies the alignment results such as the failure to detect
walls or converge to a different place. The user can easily
check and modify the anchor poses and execute an optimiza-
tion in the UI. Finally, the 3D map is improved by pose graph
optimization using the selected anchor poses and pose graph.

A. POSE GRAPH GENERATION
Many SLAMmethods have been proposed for 3Dmapping

by mobile robots. The proposed framework can be used with
any SLAM pose graph. In the SLAM process, a time series of
the robot poses X is expressed as the nodes of a pose graph.
The robot pose graph X = {x1, · · · , xn, · · · , xN} has a state
value vector xn at time i. Each state value vector consists of a
translation vector tn = (tnx , tny, tnz) and a rotational compo-
nent consisting of a quaternion qn = (qnx , qny, qnz, qnw).

B. 3D REFERENCE DATA ON PUBLICLY AVAILABLE MAP
As reference information for alignment, this module uses

the building shape information from publicly available maps.
Here, we used OpenStreetMap (OSM) [23] and the digital
elevation model (DEM) as reference information.

The OSM is a free, editable map of the entire world that
is released with an open-content license. The OSM data
express points as nodes [latitude, longitude] and express
ways as edges connecting nodes. The OSM data can be
easily obtained and used through an overpass API1. The
user can obtain building data by sending the query ‘‘tag:
building=yes’’ via the API. The received data included the
attributive tags and contours of buildings that were expressed
in a closedway. A 3Dmeshwas constructed from the building
data. The contours are mostly 2D outlines on the cartographic
projection plane, but some contours possess 3D shapes of
buildings. The building data also included tags that contained
floor level and height. To represent the building as a 3Dmesh,
3D contours were used directly, and 2D outlines were located
either at the specified height or height from the floor level.
In the OSM, the geodetic system isWGS84 and is represented
by latitude and longitude data (EPSG:4326).

1https://overpass-turbo.eu/
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FIGURE 3. 3D reference information of publicly available maps depicted
as 3D point clouds.

The DEM data is a data set that divides the ground sur-
face into squares of equal spacing, and each square has an
elevation value for the center point. The DEM is provided
by the Geospatial Information Authority of Japan (GSI) 2.
The elevation information was provided through an API. 3

The elevation data form a dense point cloud and are used
as the ground information. The point cloud of the ground
is constructed by placing points at 0.1–m intervals on a
delimited mesh. Fig.3 illustrates an example of reconstructed
buildings and ground information of publicly available maps
that are represented as 3 point clouds. For DEM point clouds,
the geodetic systemwas JGD2011, and the projection was the
planar orthogonal coordinate system 9 (EPSG:6677).

C. ANCHOR-CANDIDATE SELECTION
The anchor candidates are selected from the pose graph

obtained by SLAM. This part evaluates the LiDAR scan at
each time frame for selecting anchor candidates. The anchor
pose candidates should include many vertical planes because
the anchor pose is aligned to the walls of the building infor-
mation.

The anchor pose candidate selection process performs
plane detection on the scanned LiDAR point cloud at each
time frame by using the RANSAC algorithm [24], as shown
in Fig.4. Next, the anchor pose candidates that have a high
ratio of detected plane points to the total number of observed
points are selected. The anchor candidates were selected from
frames with the highest ratios. The user can adjust the number
of anchor candidates using two parameters: the plane ratio
threshold rth and frame interval h. The plane ratio threshold
rth determines the minimum plane ratio, whereas the frame
interval determines the minimum number of frames between
the anchor candidates. The plane ratio was set according to
the number of buildings in the environment. It is necessary
to set a higher value for environments with many buildings.
The frame interval should be set according to the speed of
the robot and the environment. If this interval is set to a
low value, the robot will get many anchor candidates, but it
will get multiple anchor candidates for the same wall of the

2https://www.gsi.go.jp/ENGLISH/
3 https://cyberjapandata2.gsi.go.jp/general/dem/scripts/getelevation.php

FIGURE 4. Example of building wall detection from LiDAR data: (a) raw
point cloud; (b) plane detected in red point cloud.

building, which will require extra checking in the UI. The
selected frames of the anchor candidates are then passed to
the anchor-alignment UI.

D. ANCHOR ALIGNMENT IN THE UI
This process aims to align an anchor candidate with a publicly
available map and discard alignment results with obvious
mistakes. The anchor pose alignment and pose graph opti-
mization are performed offline. Fig. 5 shows the screen of
the UI, which displays the building information from publicly
available maps, LiDAR data, pose graph, anchor candidates,
and operation button. Fig. 6 shows an example of the use of
UI for alignment. The process of alignment and optimization
is shown in Algorithm 1.

FIGURE 5. Screen of the UI.

The initial pose and LiDAR scan are shown in the UI. The
user sets the start position and pose by referring to a publicly
available map. It is fixed by ICP alignment with the 3D OSM
model. The approximate initial pose can also be specified
using the GNSS. In this study, we set the approximate pose
using the mouse on the UI.

Next, the UI displays the robot’s pose for the next anchor
candidates, pose graph, LiDAR observation, and detected
plane. The anchor pose aligns the detected plane with a 3D
mesh of the building information using an ICP algorithm. The
user can check the scanned data on the UI and observe if the
data differ significantly from the publicly available maps or if
the ICP alignment has failed. The user can decide what to do
next by clicking on the three buttons ‘‘Confirmation,’’ ‘‘Pose
correction,’’ and ‘‘Rejection’’
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FIGURE 6. Example of UI processing in anchor alignment: (a) shows a failure of alignment; (b) the user corrects the pose manually, where the orange
arrow shows the setting pose; (c) Retry the ICP alignment; (d) The pose graph is corrected until the current pose is based on the anchor poses.

Algorithm 1 Process of Anchor Alignment Using the UI.
Input: pose graph: X, anchor pose candidates: Z′

Output: optimized pose graph: X∗

1: anchor poses: Z = []
2: x0← set initial pose in the UI
3: for each Z′ do
4: while do
5: z′i← align anchor pose with OSM using ICP
6: check alignment result and push the button in the UI

7: if button = Pose correction then
8: z′i← correct anchor pose in the UI
9: end if
10: if button = Rejection then
11: break
12: end if
13: if button = Confirmation then
14: Z← z′i add anchor poses
15: PoseGraphOptimization(X,Z)→ X∗

16: X∗ = X
17: break
18: end if
19: end while
20: end for
21: return X∗

When the anchor pose was located at a long distance from
the building, as shown in Fig. 6 (a), the user pushes the
‘‘Pose correction button.’’ This process can correct the current
anchor pose manually in the UI (Algorithm 1 line7-9). The
user can freely specify the 6DoF pose of the anchor. In the UI,
the user canmodify the approximate position of the anchor by
clicking and draggingwith themouse, as shown by the orange
arrow in Figure 6(b). If more detailed coordinates are needed,
the user can freely specify the 6DoF pose by setting the values
with the keyboard. The UI retries the alignment using the
initial pose. The UI displays the results of ICP alignment.
Fig. 6 (c) shows the observed LiDAR data and anchor pose
after the ICP alignment.

When the selected anchor pose candidate is unsuitable
for optimization, the user pushes the ‘‘Rejection’’ button.
The unsuitable anchor pose candidates are the ones wherein

(a) the wall surface of the 3D buildings is not included in the
LiDAR scan or (b) the wall surface of the 3D buildings in
the LiDAR scan is not registered in the OSM. By excluding
the alignment results with obvious mistakes, the accuracy of
the overall pose-graph optimization process can be guaran-
teed(Algorithm 1 line10-12).
When the alignment result is correct, the user pushes the

‘‘Confirm’’ button, which adds the current anchor pose candi-
date to the anchor poses and performs graph-based optimiza-
tion(Algorithm refalg1 line13-18). The optimization process
is described in section III. Fig. 6 (d) shows that the pose graph
is corrected by optimization process.

These process are repeated until the last anchor pose candi-
date has been processed. Here, we used a robot operating sys-
tem visualization (Rviz) 4 for the implementation of the UI.

E. POSE GRAPH OPTIMIZATION
The pose graph consists of nodes and edges. The nodes rep-

resent robot poses. A node xi represents the state value vector
in the pose graph X = {x1, · · · , xi, xj, · · · , xN} obtained
from the SLAM. An edge between two nodes xi, xj represents
a constraint cij that transforms xi to xj. The constraint is
calculated by 	, which is a standard motion composition
operator [25].

cij = xi 	 xj. (1)

The error function e(x)ij is calculated from the difference
between the constraint cij and the transformation of the
one-step optimized pose graphĉij:

e(x)ij = cij − ĉij. (2)

As the error functions are typically nonlinear, we linearize
e(x)ij around the current best estimate:

e(x+1x)ij = e(x)ij + Jij1x, (3)

where Jij represents the Jacobiaan matrix. The goal of the
optimization step is to find a configuration of nodes X∗

such that the overall graph is maximally consistent with the
observations:

X∗ = argmin
X

 N∑
ij

eij(x)
T �ij eij(x)

 . (4)

4http://wiki.ros.org/rviz
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Here, �ij represents the information matrix of a constraint,
which relaxes the differences in the space of the state value,
such as the one between the translation and rotation vectors.
Two static diagonal information matrices are used: straight
�st
ij and curved �cv

ij . The SLAM tends to have possess fewer
errors in the translational direction when the robot travels in a
straight line and more errors in the rotational direction when
the robot is in the middle of a curve. Thus, the value of the
information matrix to be used is determined from the change
in the pose 1rotij

�ij =

{
�st
ij (1rotij < rotthre)

�cv
ij (1rotij ≥ rotthre),

(5)

where rotthre is the threshold for detecting the curve from the
attitude change. These values should be set according to the
type of mobile robot used. If the mobile robot is moving in a
complex way, the value should be high, and if it is moving in
a linear manner, the value should be low.

The constraints of the anchor pose list Zmap were added
to the SLAM pose graph optimization. The error function
emapk (x) of the anchor pose is expressed as

emapk (x) = zmapk − ẑk . (6)

where ẑk represents the one-step optimized pose xi, as seen
from the origin. The error function owing to the anchor pose
is expressed as follows:

Fmap(X) =
K∑
k

emapk (x)T �m
k emapk (x). (7)

The aim of the optimization problem is to find a configu-
ration X∗ of nodes that minimizes the sum of the two error
functions:

X∗ = argmin
X

 N∑
ij

eij(x)
T �ij eij(x)+ Fmap(X)

 . (8)

The optimization process repeats and updates X∗ until the
end of the anchor pose. We implemented this optimization
process with p2o [26], which is a compact and portable
implementation for solving graph optimization problems.

IV. EVALUATION
Our framework was evaluated by 3D mapping in an

urban area. The results of the 3D maps are shown below
after showing the experimental setting. Anchor pose selec-
tion was evaluated by calculating the precision and recall.
The total number of pose graphs and the number of anchor
poses indicate that the optimization process is possible with
a sufficiently small number of operations. Finally, the pose
graphs were evaluated by calculating the absolute position
error against the reference trajectory and by comparing the
pose graph obtained by our framework with those of other
open source software (OSS) SLAM methods.

A. EXPERIMENTAL SETTING
Fig. 7 shows the mobile robot (Whill Model CR) for

collecting the data. Table 1 shows the key specification of
used sensors. The robot mounted LiDAR (Velodyne VLP-16)
and IMU (Xsens MTi-300 AHRS) sensors. The used Lidar
scanner measures 360◦ of 3D information using 16 lasers.
As the number of scanners increased, more distant walls
could be detected. With this VLP-16, walls can be detected
at a distance of approximately 20 meters. The collected 3D
point clouds were not filtered and corrected only by the IMU
data.

FIGURE 7. Robot and sensors.

TABLE 1. Key specifications of the LiDAR and IMU sensors.

The experiments were performed in Aomi, Koto-ku,
Tokyo, Japan. The running routes are shown in Fig. 8. The
routes were on the sidewalk and a pedestrian crossing, and
the average speed of the mobile robot was 1.6 m/s, including
stops for up to approximately 100 s because of the halt at
traffic signals. The total running time and distance were 3 h
0 min 36 secs and 14.36 km. The details of each route are
summarized in Table 2.

The Cartographer, which is a state-of-the-art method, was
used to obtain the pose graph. To compare the pose graph
with those of the existing methods, the 3D maps were gen-
erated using the OSS SLAM methods, including normal
distribution transform (NDT) mapping, LeGO-LOAM, and
Cartographer. NDT mapping is implemented in the autoware
project5, which is an offline process and does not include a
loop closure feature. The LeGO-LOAMandCartographer run
online and include a loop closure feature. The Cartographers
also include a map optimizer function that operates on the

5https://github.com/Autoware-AI/autoware.ai
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TABLE 2. Experimental run data.

TABLE 3. Information matrix of optimization.

submaps. Table 3 summarizes the parameters of the static
information matrix in the pose graph optimization. In par-
ticular, the values represent the diagonal components of the
matrix. Because our mobile robot travels straight on a paved
road, the rotation threshold rotthre was set to 10 ◦/s.
To evaluate the error of the optimized trajectory, the abso-

lute position error (APE) was calculated from the reference
trajectory. The APE is based on two absolute relative poses:
the reference pose xref ,n and the estimated pose xest,n at
timestamp n:

En = xest,n 	 xref ,n
= M(xref ,n)−1 ·M(xest,n) ∈ SE(3) (9)

APE = ||En − I4×4||F , (10)

whereM is a 4× 4-transform matrix and I4×4 is unit matrix.
The APE value represents the magnitude of the distortion
caused by the cumulative error of the SLAM. We used the
evo [27] tool, which is a Python package for evaluating
odometry and SLAM. The reference path was based on a 3D
map built with a commercial MMS and optimized by man-
ually setting anchor poses every 500 frames of LiDAR data.
Manual anchor poses were recorded using the proposed UI
tool. The reference path represents the trajectory in the ideal
case when enough anchors are obtained at regular intervals. 6

B. MAPPING RESULTS
The 3D mapping was performed for each route. Fig. 9

shows the final results. The colored point clouds are illus-
trated on the grey OSM building map. Each color is con-
sistent with the line colors shown in Fig. 8. Because the
optimized maps have a common coordinate system on the

6The data set is released on github:
https://github.com/aistairc/City3DmapData

FIGURE 8. Running routes for collecting data.

FIGURE 9. Generated 3D maps generated by modifying cartographer with
the proposed framework.

OSM, all 3D maps fit closely with other trials. Each 3D
map has global consistency and does not witness significant
distortions. Fig. 9 shows enlarged views of the optimized 3D
maps in each area surrounded by the white squares in Fig. 9.
The optimized 3D maps correspond to building information
from the OSM. The shapes of the trees and sidewalks were
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TABLE 4. Total number of selected anchor pose candidates and user
operations.

correct. This indicates that the 3D map is also locally correct
and can be used for robot navigation.

Table 4 shows the number of anchor pose candidates
selected by our method and the number of user operations.
These results reflect the number of manual corrections and
rejections that were made. Our method selected 114 anchor
pose candidates from a total of 62424 pose graphs. The
number of anchor pose candidates that the user had to confirm
was small enough for the size of the overall pose graph.
Additionally, our method correctly selected scans contain-
ing many planes as anchor pose candidates. The user made
33 pose corrections to the selected anchor pose candidates
and rejected 40 of them. The pose correction was necessary
when the SLAM accumulation error was large and the ICP
alignment did not converge. The user corrected the anchor
pose by performing the ICP again with a manually input
initial position aligned with the wall, such as in Fig. 6(b).
The rejections occurred when the detected plane was not
registered inOSM (Fig. 10(a)) or when the detected planewas
not a plane of a building (Fig. 10(b)). These pose candidates
were eliminated manually. The average number of operations
by the user is approximately five per kilometer: two pose
corrections and three rejections. These results show that a
globally consistent 3D map can be generated with a small
number of user operations.

C. ANCHOR POSE SELECTION
This evaluation confirmed whether the anchor pose candi-

date could be used for alignment. We used a pose graph from
the same cartographer that we used for mapping. The pro-
posed method is compared with the following methods: The
equal division method (baseline) arranges the anchor pose
candidates at equal intervals in the pose graph; the number
of intervals in this case is the same as that in the proposed
method. The other method is the ‘‘beside-buildings’’ method.
This method simply selects the representative points of the
anchor pose that pass through the side of the building as
the anchor pose candidates. The representative anchor pose
is the nearest to the center of the building. Table 5 lists the

TABLE 5. Results of anchor-pose candidate selection.

FIGURE 10. Examples of anchor pose candidates rejected by user.

precision, recall, and F-measure for all six routes. The walls
to be detected are the ones within 20 m of the reference
trajectory. The anchor pose can see these walls were used
as ground truth, and each method was compared. It is up to
the user to determine if the estimation result is incorrect. The
proposed method achieves the highest results. In particular,
because the proposed method considers whether the scan
information includes the wall surface, the anchor pose can
be estimated with higher results than in the beside-buildings
method, which simply uses the pose graph at the side of the
wall surface. Fig. 11 shows the trajectory before and after
optimization. The light blue arrow represents the selected
anchor poses, and the yellow line represents the building wall
near the reference trajectory to be detected. The results show
that the proposed method can select an effective anchor pose
near the wall surface.

FIGURE 11. The modified pose graph in route 5 with selected anchor
poses.

D. POSE GRAPH OPTIMIZATION
Fig. 12 summarizes the RMSE and maximum APEs (the

number in parentheses represents the maximum value). The
proposed framework had a lower cumulative error on all
routes than those of the other methods. It produced a mapping
within a certain error range regardless of the mileage or
presence or absence of loops on the route. The average RMSE
was 5.51, and the maximum value was 33.1. The average
error, converted to a Euclidean distance, was 0.7 m, which
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FIGURE 12. RMSE and (maximum value) of APE errors.

FIGURE 13. Comparison of pose graphs in route 5 generated with OSS
SLAM methods.

indicates that our framework is sufficiently accurate and can
use publicly available maps for the navigation task.

Fig. 13 shows the pose graphs for route 5; Fig. 13 (a) is a top
view of the pose graphs and Fig. 13 (b) is a longitudinal pro-
file. The other SLAMs show several deviations in their final
positions because of a few degrees of deviation in the curve
position. The NDT SLAM seems to overlap the trajectory
of the reference in the top view, but the longitudinal profile
shows that it is greatly deviated in the vertical direction.
When the observed angle of incidence is large, the depth
measured by LiDAR can be biased. As a result, when the
mobile robot is moving on the ground surface, the observed

FIGURE 14. Comparison of pose graphs in route 6 generated by proposed
method and LeGO-LOAM method.

point from the ground may be slightly bent, and the estimated
trajectory may drift along the vertical direction. The figure
shows that the proposed optimization reduces these drifts
along the vertical direction. These trends were similar for
all the routes. These results of optimized pose graph are also
included in the released data.

Fig.14(a) also shows the manual alignment of the LeGO-
LOAM trajectory. Manual alignment means that the whole
trajectory is manually translated or rotated so that the APE is
minimized. Although the overall error of the LeGO-LOAM
pose graph is reduced by the loop closure, the entire trajectory
is distorted, so it does not overlapwith the reference trajectory
in manual alignment. This is an example where the loop
closure is successful but the result does not correspond to the
published map. Fig.14(b) shows the trajectory optimized by
the proposed method. In the proposed method, the distortion
of the whole trajectory is corrected by the anchor pose, so that
the trajectory is consistent with the reference trajectory. This
result shows that the proposed method can correct the distor-
tion of the whole trajectory, which cannot be corrected by the
conventional loop-closing function.

V. CONCLUSION
This paper proposes a semi-automatic 3D mapping frame-

work for generating globally consistent 3D maps. The pro-
posed framework uses the wall information of the building
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as constraints and the 3D alignment results of the LiDAR
observations, and thus, the existing SLAM pose graphs can
be modified offline. To reduce the operational costs, it auto-
matically extracts anchor pose candidates for alignment and
has a user interface to confirm and modify the alignment
results. The proposed frameworkwas evaluated by generating
3D maps in a real urban environment in Japan. The exper-
imental results show that 3D maps of the urban area with
approximately five operations per kilometer were generated.
The proposed method modifies the pose graph of the cartog-
rapher, which is a state-of-the-art SLAM method, to reduce
the absolute position error to approximately 5.5, on average.
These values were minimal compared to those of other OSS
SLAMs, such as NDT and LeGO-LOAM.

Our future work will include the implementation of a
town-scale autonomous navigation using globally consistent
3D maps. The globally consistent maps can be added to the
information on publicly available maps, such as semantic
maps. The publicly available maps have useful information
for navigation, such as pointing out sidewalks and pedestrian
crossings. The meaningful 3D maps will enable autonomous
navigation. In this study, we did not deal with the informa-
tion matrix of publicly available maps. The accuracy of the
alignment depends on the shape of the surrounding buildings.
To enhance the accuracy of 3Dmaps, it is necessary to design
an information matrix that considers these error sources.
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