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ABSTRACT This work discuss the stabilization issue for a class of fractional-order nonlinear systems
together with time delay, parametric uncertainties and actuator faults. Precisely, the considered system
comprises of two delays namely distributed delay and time-varying delay. Moreover, the occurrence of the
actuator faults and fractional parametric uncertainties may induce poor performance of the systems. To over-
come these issue, a non-fragile fault-tolerant controller is designed which makes the system asymptotically
stable with the specified mixed H∞ and passive performance index. A fractional Razumikhin theorem is
applied to handle the distributed delay term in the stabilization analysis. With the aid of suitable Lyapunov-
Krasovskii functional, the sufficient conditions are established in terms of linear matrix inequalities together
with Razumikhin stability theorem for getting the required results. By virtue of this, the controller gainmatrix
is obtained by solving the obtained LMIs and the graphical results are simulated using FOMCON toolbox.
Later, the potency of the developed results are validated by virtue of three numerical examples including a
rocket motor chamber.

INDEX TERMS Fractional-order nonlinear systems, distributed delay, reliable controller, gain perturbation,
fractional uncertainties, mixed H∞, passive performance.

I. INTRODUCTION
The concept of fractional calculus has been demanding con-
siderable attention in recent years. This is primarily due to the
long-range memory property and the historical dependence.
Specifically, the fractional-order (FO) dynamical systems
are more accurate than the integer-order systems, hence the
stability and stabilization analysis of FO systems are more
intricate than the systems of integer-order. Despite their com-
plexity, fractional-order systems have acquired significant
attention due to their remarkable applications in the field of
control engineering and several works have been presented
in literature [1]–[5]. For instance, the robust stabilization
problem for FO systems under interval uncertainties is dis-
cussed in [1] and [2]. An adaptive observer-based design
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for a nonlinear FO system is given in [3]. The authors in [4]
and [5] studied the robust dissipativity-based control problem
for uncertain nonlinear FO systems via output feedback and
state feedback, respectively. Generally, most of the practical
applications might not be linear in nature. Therefore, it is
of utmost importance to consider the nonlinearity in the
fractional-order control systems upon studying their stability
and stabilization analysis [6]–[10]. In [6], a nonlinear FO
system with time-delays is considered and the stability is
achieved via LMI-based design through observer-based con-
trol problem. The authors in [9] have studied the stability
analysis by developing sufficient conditions for FO nonlinear
systems with time-varying delay.

Moreover, time-delays are ineluctable during the appli-
cation of the FO nonlinear control systems in real-world
processes. In general, there exist constant and time-varying
delays that represent the time-lag during transmission,
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processing and so on. Such presence of delays may influ-
ence the qualitative properties of the system and may affect
the stability of the control systems. Hence, the study on
fractional-order nonlinear control systems with delays is sig-
nificant. In addition, the propagation delays are distributed
over a period of time and may influence the control sys-
tem to oscillate more. Hence, it is mandatory to investi-
gate the stability and stabilizability of control systems with
time-dependent and distributed delay. The fractioning and
partitioning nature of distributed delays has been attracting
the researchers and a great number of noteworthy results
on integer-order systems with distributed-delayed have been
obtained [11], [12]. However, in fractional-order systems, the
presence of an integral term in the system poses a difficulty
in calculating the fractional derivative of the Lyapunov func-
tion. Recently, this problem demands considerable attention
among the researchers and hence few works on stability and
stabilization of fractional-order distributed delay system is
discussed in [14]–[18]. However, in this work, the integral
term in the system state will be dealt by virtue of LMIs
with the help of Cauchy matrix inequality and Razumikhin
stability theorem.

In addition to the time-delays, another concerning issue
regarding the stabilization of FO control systems is actu-
ator failure. The control systems may undergo unexpected
changes due to the failure of the actuators during the trans-
mission of signals that may cause instability or degrade the
system performance. Hence, it is important and necessary
to construct a suitable controller that could be tolerant to
faults. As a result, there are so many works that exhibit the
prominence of fault-tolerant controller [19]–[21]. In [19], the
problem of fault occurrence in T-S fuzzy fractional-order sys-
tems is handled by considering a robust H∞ adaptive sliding
mode fault-tolerant controller. On another research front, the
fragility of the designed controller may be caused by certain
variations in its gain parameters which may deteriorate the
controller performance. Some attempts have been made to
tackle this variation by considering a non-fragile controller
in [22]–[24]. In [23], a resilient controller is devised to over-
come the effect of gain perturbations for a class of FO linear
delayed systems. The authors in [24] discussed the issue
of perturbation in gain matrices by designing a non-fragile
passification controller for a class of FO nonlinear systems
in conjunction with time-dependent uncertainties with the
bounded norm.

At the same time, the system may face difficulties in the
form of uncertainties due to inaccuratemodelling and approx-
imations etc, hence it is necessary to deal with them during
modelling of the system. In particular, the fractional para-
metric uncertainties are more general than the norm bounded
uncertainties and are useful in modelling the changes caused
by the environment, identification errors and so on [25]–[27].
The authors in [25] obtained the non-fragile fault detection
filter design for delayed singular Markovian jump systems
with the presence of linear fractional parameter uncertainties.
Over the past few decades, H∞ control is considered to be an

effective approach for disturbance attenuation. Additionally,
the passivity theory has also been implemented for some
complex control systems for disturbance attenuation. From
the practical point of view, some system requires either one of
these performances at a particular point of time. To facilitate
this problem, a unified mixedH∞ and passive performance is
considered and is widely applied in several works of literature
for dealing with the disturbances [28]–[30].

On the other hand, the Lyapunov functional-based
approach is applied for the study on the stability of the system
under both integer and fractional-order [23], [27]. Among
which, the construction of Lyapunov functional and finding
its derivative plays a major role in the stability and stabiliza-
tion of control systems. Nevertheless, the product rule and
Leibnitz rule will not hold similar to the case of integer-order
ones for fractional derivatives. Thus, in order to examine the
stability and stabilization of control systems, the derivative
of Lyapunov functions in the fractional sense is intricate.
Motivated by the aforementioned facts, it is interesting to
develop a non-fragile fault-tolerant (NFT) controller for a
class of fractional-order nonlinear systems with time-varying
delay, distributed delay, fractional parametric uncertainties
and disturbances. Hence, we develop the NFT controller for
the above-said system with mixed H∞ and passive perfor-
mance index γ̂ . Furthermore, the contribution of this work is
listed as:
• Stabilization problem of FO nonlinear systems with
time-varying delay, distributed delay, fractional para-
metric uncertainties and exogenous disturbances is
formulated.

• On the account of actuator faults and gain perturbations,
an NFT controller is devised.

• The distributed delay is considered in the form of an
integral term in the system state, which will be solved in
the way of linear matrix inequalities along with Cauchy
matrix inequality and Razumikhin stability theorem.

• Specifically with Lyapunov stability theory, the LMIs
are obtained to attain the asymptotical stability with
mixed H∞ and passive disturbance attenuation.

• Finally, the theoretical results are verified by presenting
three numerical examples including the practical appli-
cation of a system of rocket motor chambers. The last
example validates the proposedwork in comparisonwith
the conventional state feedback control method.

II. PRELIMINARIES AND SYSTEM DESCRIPTION
In this section, let us address the stabilization problem of the
FO nonlinear control system in terms of Caputo fractional
derivative. The prime motive for considering the fractional
derivatives is that it gathers the entire information of the
function, unlike the integer-order derivatives which focus
only on the adjacent points. On this account, we present the
Caputo fractional derivative definition for a function f (t) [2]
with fractional-order α as

CDαt0 f (t) = Iq−αt0
dq

dtq
f (t)
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=
1

0(q− α)

∫ t

t0
(t − s)q−α−1f (q)(s) ds, (1)

where q is a positive integer with the constraint 0 ≤ q −
1 ≤ α < q; Iαt0 f (t) =

1
0(α)

∫ t
t0
(t − s)α−1f (s) ds and 0(.)

is a gamma function. From now, we adopt Dα to notate the
Caputo derivative for convenience.

Now, let us analyse the FO uncertain nonlinear control sys-
tem in accordance with time-varying and distributed delays as
follows

Dαx(t) = Āx(t)+ Āτx(t − τ (t))+ Ād
∫ t
t−d x(s)ds

+h(x(t))+ B̄uF (t)+ Bwd(t),
y(t) = Cx(t),
x(t) = ϕ(t), t ∈ [−τ, 0],

(2)

where x(t) ∈ Rn, y(t) ∈ Rm and uF (t) ∈ Rp implies the
vectors of state, output and faulty control input respectively,
h(x(t)) is a nonlinear function with respect to the current
state x(t), d(t) ∈ L2[0,∞) denotes the disturbance func-
tion and ϕ(t) is a function that is continuously differentiable
representing the initial condition on t ∈ [−τ, 0]. τ (t) is
the time-dependent delay function sufficed by the constraint
0 ≤ τ (t) ≤ τ and τ̇ (t) ≤ τ̄ and d ∈ R+ represents the
distributed delay. Ā, Āτ , Ād are time invariant matrices with
fractional uncertainties described as

[
Ā Āτ Ād

]
=

[
A Aτ Ad

]
+ H2(t)

[
F1 F2 F3

]
,

B̄ = B+ H2(t)F4
2(t) = U (t)(I − VU (t))−1, I − V TV > 0,

(3)

where U (t) is a known matrix function satisfying
UT (t)U (t) ≤ I and the matrices A,Aτ ,Ad ,B,Bw and C are
compatibly dimensioned known constant matrices.

It should be mentioned that there may be undesirable
changes in the control systems owing to the occurrence of
actuator faults. As a consequence, it is vital to consider a fault-
tolerant controller that can automatically retrieves the system
performance even in the presence of faults. Accordingly, the
control input which is resistant to faults is designed as follows

uF (t) = Ru(t), (4)

where R = diag{r1, r2 . . . rp} is the actuator fault matrix
satisfying 0 ≤ rminl ≤ rl ≤ rmaxl ≤ 1 , l ∈
{1, 2, . . . , p}. Moreover, if rl takes the value 1, then the
actuator works normal, else if it takes the value 0, then the
actuator fails to work. On this note, the actuator undergo
partial failure if it takes the value (0, 1). Consequently,
we define, Rmax = diag{rmax1 , rmax2 , . . . , rmaxl }, R

min
=

diag{rmin1 , rmin2 , . . . , rminl }, R0 =
rmaxl +rmaxl

2 ,R1 =
rmaxl −rminl

2 ,
then the matrix R can be rewritten as

R = R0 + R16, 6 = diag{e1, e2, . . . , el}, el ∈ [−1, 1].

(5)

Further, the non-fragile state-feedback controller u(t) can be
taken in the following form

u(t) = K̄x(t), (6)

where K̄ = K+1K, wherein K is the controller gain matrix
that is to be evaluated, here1K is the controller gain variation
that takes the form LG(t)S, where L and S are appropriately
dimensioned constant matrices; Also, G(t) is any function in
matrix form fulfilling the condition GT (t)G(t) ≤ I .
Therefore, with the aid of equations from (2)-(6), the con-

sequent closed-loop fractional-order nonlinear system can be
obtained as

Dαx(t) = (Ā+ B̄RK̄)x(t)+ Āτx(t − τ (t))
+Ād

∫ t
t−d x(s)ds+ h(x(t))+ Bwd(t),

y(t) = Cx(t).

(7)

On this note, some of the prerequisite lemmas and defini-
tions which play a crucial part in the derivation analysis is
recalled here.
Assumption 1: For given a matrix N of suitable dimen-

sion, the nonlinear vector function h(x(t)) is said to sat-
isfy the global Lipschitz condition hT (x(t))h(x(t)) ≤

xT (t)NTNx(t).
Definition 1 [29]: For given scalar θ and d(t) ∈

L2[0,∞), if the inequality
∫ t
0 (−γ̂

−1θyT (v)y(v) + 2(1 −
θ )yT (v)d(v))dv ≥ −γ̂

∫ t
0 d

T (v)d(v)dv}, ∀t > 0 holds, then
the system (7) is said to be asymptotically stable under zero
initial conditions with satisfied mixed H∞ and passive per-
formance index γ̂ > 0.
Lemma 1 [4]: Given a vector of continuous and differ-

entiable function χ (t) ∈ Rn and a positive definite matrix
P ∈ Rn×n, we have

Dα(χT (t)Pχ (t)) ≤ (χT (t)P)Dαχ (t)

+(Dαχ (t))TPχ (t),∀α ∈ (0, 1], t ≥ t0.

Lemma 2 (Razumikhin-Type Stability[2]): For some con-
tinuous and non-decreasing functions β1, β2, β3 with β2
strictly increasing and β1(0) = β2(0) = β3(0) = 0, suppose
that a number p > 1 and a continuous differentiable function
V : R× Rn

→ R exists so that:
1) β1(||χ ||) ≤ V(t, χ(t)) ≤ β2(||χ ||), for t ∈ R,

χ ∈ Rn

2) DαV(t, χ(t)) ≤ −β3(||χ ||) if V(t + s, χ(t + s)) <
pV(t, χ(t)),∀s ∈ [−d, 0], t ≥ 0, then the zero solution
of the system (2) is asymptotically stable.

III. MAIN RESULTS
This section summarizes the stability analysis of the closed-
loop system (7) by deriving adequate conditions. More
precisely, by selecting a relevant Lyapunov-Krasovskii func-
tional and making use of Razumikhin theorem, the stabi-
lization of the addressed FO nonlinear control system (2) is
assured by the non-fragile fault-tolerant control law along
with prescribed disturbance attenuation level. In particular,
the properties of Caputo fractional derivative and fractional
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integral are adopted to prove the mixed H∞ and passive dis-
turbance attenuation performance. In the following theorem,
the desired conditions supporting the stabilization analysis
are presented.
Theorem 1: For given scalar α ∈ (0, 1), positive scalars

d, τ̄ , ε, γ̂ and known matrices R0,R1, the considered sys-
tem (2) is asymptotically stabilized by the NFT controller (4)
and meets the mixed H∞ and passive performance, suppose
there exists positive-definite matrices P,Q, scalars µj, j =
1, 2, 3 and matrix Y of compatible dimension thereby satis-
fying the subsequent LMI:

ϒ[13×13] < 0, (8)

where the terms of ϒ are furnished as ϒ1,1 = AX +BR0Y +
XTAT

+ (BR0Y )T + Q̄ + dεX , ϒ1,2 = AτX , ϒ1,3 =

Bw − (1 − θ )XCT , ϒ1,4 = I , ϒ1,5 = dAdX , ϒ1,6 =

XNT , ϒ1,7 =
√
θXCT , ϒ1,8 = µ1H , ϒ1,9 = XFT1 +

Y TRT0 F
T
4 , ϒ1,10 = µ2BR0L, ϒ1,11 = XST , ϒ1,12 =

µ3BR1, ϒ1,13 = Y T , ϒ2,2 = −(1 − τ̄ )Q̄, ϒ2,9 = XFT2 ,
ϒ3,3 = −γ̂ , ϒ4,4 = −I , ϒ5,5 = −dX , ϒ5,9 =

XFT3 , ϒ6,6 = −I , ϒ7,7 = −γ̂ , ϒ8,8 = ϒ9,9 = −µ1,

ϒ8,9 = V T , ϒ9,10 = µ2F4R0L, ϒ9,12 = µ3F4R1, ϒ10,10 =

ϒ11,11 = −µ2, ϒ10,13 = RT , ϒ12,12 = ϒ13,13 = −µ3.
Furthermore, the controller gain matrix K is determined by
K = YX−1.

Proof: Predominantly, we aim to stabilize the consid-
ered system (2) by using the designed NFT controller (4)
which will be proved by selecting a suitable Lyapunov-
Krasovskii functional in the subsequent manner

V(t) = V1(t)+ V2(t), (9)

here V1(t) = xT (t)Px(t),V2(t) = D(−α+1)
∫ t
t−τ (t) x

T (s)Q
x(s) ds. Then, with the support of Lemma 1 and the linearity
nature of the Caputo fractional-order derivative, the fractional
derivative along the trajectories of the system state is acquired
as follows

DαV(t) ≤ xT (t)PDαx(t)+ (Dαx(t))TPx(t)+ xT (t)Qx(t)

−(1− τ̄ )xT (t − τ (t))Qx(t − τ (t)),

= xT (t)P
[
(Ā+ B̄RK̄)x(t)+ Āτx(t − τ (t))

+ Ād

∫ t

t−d
x(s)ds+ h(x(t))+ Bwd(t)

]
+
[
(Ā+ B̄RK̄)x(t)+ Āτx(t − τ (t))

+ Ād

∫ t

t−d
x(s)ds+ h(x(t))+ Bwd(t)

]T
Px(t)

+xT (t)Qx(t)

−(1− τ̄ )xT (t − τ (t))Qx(t − τ (t)),

≤ xT (t)[P(Ā+ B̄RK̄)+ (Ā+ B̄RK̄)TP+ Q]x(t)

−(1− τ̄ )xT (t − τ (t))Qx(t − τ (t))

+2xT (t)PĀτx(t − τ (t))+ 2xT (t)Ph(x(t))

+2xT (t)PĀd

∫ t

t−d
x(s)ds+ 2xT (t)PBwd(t).

(10)

Further, the term 2xT (t)PĀd
∫ t
t−d x(s)ds is computed in view

of the procedure as in [17] and by employing Lemma 2.1
in [17], Lemma 2 and Cauchy matrix inequality, we have

2xT (t)PĀd

∫ t

t−d
x(s)ds

≤ dxT (t)PĀdP−1ĀT
d Px(t)

+
1
d

(∫ t

t−d
x(s)ds

)T
P
(∫ t

t−d
x(s)ds

)
,

≤ dxT (t)PĀdP−1ĀT
d Px(t)+

∫ t

t−d
x(s)TPx(s)ds

≤ dxT (t)PĀdP−1ĀT
d Px(t)+

∫ 0

−d
x(t + s)TPx(t + s)ds

≤ dxT (t)PĀdP−1ĀT
d Px(t)+ ε

∫ 0

−d
x(t)TPx(t)ds

( since V(t + s,x(t + s)) < εV(t,x(t)))

H⇒ 2xT (t)PĀd

∫ t

t−d
x(s)ds ≤ dxT (t)PĀdP−1ĀT

d Px(t)

+dεx(t)TPx(t). (11)

Subsequently, with the aid of Assumption 1, the nonlinear
term in (10) can be computed as

2xT (t)Ph(x(t)) ≤ xT (t)PTPx(t)+ hT (x(t))h(x(t))

≤ xT (t)PTPx(t)+ xT (t)NTNx(t). (12)

Then, substituting the obtained inequalities (11) and (12)
in (10), we get the following inequality according to mixed
H∞ and passivity condition

DαV(t)+ γ̂−1θyT (t)y(t)− 2(1− θ )yT (t)d(t)

−γ̂ dT (t)d(t) ≤ ηT (t)[3]3×3η(t),

where η(t) =
[
xT (t) xT (t − τ (t)) dT (t)

]T and31,1 = PĀ+
PB̄RK̄ + ĀTP + (B̄RK̄)TP + Q + dPĀdP−1ĀT

d P + dεP +
PTP+NTN + γ̂−1θCTC,31,2 = PĀτ ,31,3 = PBw− (1−
θ )CT ,32,2 = −(1− τ̄ )Q,33,3 = −γ̂ .
In light of fractional uncertainties, gain fluctuations and

fault, by applying the S-procedure and Schur complement
lemma to the above matrix inequality, the matrix 3 can
be reformulated as [3̂]13×13. The elements of 3̂ are cat-
egorized as follows: 3̂1,1 = PA + PBR0K + ATP +
(BR0K)TP + Q + dεP, 3̂1,2 = PAτ , 3̂1,3 = PBw − (1 −
θ )CT , 3̂1,4 = PT , 3̂1,5 = dPAd , 3̂1,6 = NT , 3̂1,7 =√
θCT , 3̂1,8 = µ1PH , 3̂1,9 = FT1 + KTRT0 F

T
4 , 3̂1,10 =

µ2PBR0L, 3̂1,11 = ST , 3̂1,12 = µ3PBR1, 3̂1,13 = KT ,

3̂2,2 = −(1 − τ̄ )Q, 3̂2,9 = FT2 , 3̂3,3 = −γ̂ , 3̂4,4 =

−I , 3̂5,5 = −dP, 3̂5,9 = FT3 , 3̂6,6 = −I , 3̂7,7 = −γ̂ ,

3̂8,8 = −µ1, 3̂8,9 = V T , 3̂9,9 = −µ1, 3̂9,10 =

µ2F4R0L, 3̂9,12 = µ3F4R1, 3̂10,10 = −µ2, 3̂10,13 =

RT , 3̂11,11 = −µ2, 3̂12,12 = −µ3, 3̂13,13 = −µ3.
The matrix 3̂ can be linearized by applying the congru-

ence transformation on both sides with the diagonal matrix
diag{X ,X , I , I ,X , I , I , I , I , I , I , I , I }. Let us denote P−1 =
X ,XQX = Q̄,KX = Y , then we readily retrieve the linear
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matrix inequality ϒ in (8). Now, if the LMI condition (8)
holds, then we can acquire

DαV(t)+ γ̂−1θyT (t)y(t)− 2(1− θ )yT (t)d(t)

−γ̂ dT (t)d(t) ≤ 0. (13)

Further, the preceding inequality (13) is integrated with
respect to t by the limits from 0 to Tf , we attain

I1DαV(Tf )+
∫ Tf

0
γ̂−1θyT (t)y(t)

−2(1− θ )yT (t)d(t)− γ̂ dT (t)d(t)dt ≤ 0. (14)

By incorporating the Property 1 and 2 from [4], I1DαV(Tf )
can be rewritten as

I1DαV(Tf ) = I1−αIαDαV(Tf ),
= I1−α(V(Tf )− V (0))
= I1−αV(Tf )− I1−αV (0), (15)

where I1−αV(0) = 1
0(1−α)

∫ Tf
0 (Tf − t)−αV (0) dt =

0 ∀ Tf ≥ 0 and I1−αV(Tf ) =
1

0(1−α)

∫ Tf
0 (Tf −

t)−αV (t) dt ≥ 0. Hence, from the inequality (15), we get

I1DαV(Tf ) ≥ 0.

Substituting the above inequality in (14), we easily get∫ Tf

0
γ̂−1θyT (t)y(t)− 2(1− θ )yT (t)d(t)

−γ̂ dT (t)d(t)dt ≤ 0,

H⇒

∫ Tf

0
−γ̂−1θyT (t)y(t)+ 2(1− θ )yT (t)d(t)dt

≥

∫ Tf

0
−γ̂ dT (t)d(t)dt. (16)

Therefore, it can be concluded from (13) and (16) that the
considered FO nonlinear system (2) is stabilized by utilising
the non-fragile fault-tolerant controller (4) with the required
mixed H∞ and passive performance index. Thus, the proof is
completed.

Meanwhile, if the time-varying delays and nonlinearity
nature are omitted, then the addressed system in (2) will
be remodelled as uncertain fractional-order system with dis-
tributed delays in the subsequent manner{
Dαx(t) = Āx(t)+ Ād

∫ t
t−d x(s)ds+ BuF (t)+ Bwd(t),

y(t) = Cx(t),
(17)

Corollary 1: For given scalar α ∈ (0, 1), θ ∈ (0, 1),
positive scalars d, ε, γ̂ and known matrices R0,R1, the con-
sidered system (17) is asymptotically stabilized by the NFT
controller (4) with the mixed H∞ and passive performance,
suppose there exists a matrix Y of compatible dimension,
a positive-definite matrix P and scalars µz, z = 1, 2, 3 so that
the subsequent LMI satisfies:

9[10×10] < 0, (18)

where the terms of9 are furnished as91,1 = AX +BR0Y +
XTAT

+ (BR0Y )T +dεX , 91,2 = Bw− (1− θ )XCT , 91,3 =

dAdX , 91,4 =
√
θXCT , 91,5 = µ1H , 91,6 = XFT1 +

Y TRT0 F
T
4 , 91,7 = µ2BR0L, 91,8 = XST , 91,9 =

µ3BR1, 91,10 = Y T , 92,2 = −γ̂ , 93,3 = −dX ,
93,6 = XFT3 , 94,4 = −γ̂ , 95,5 = 96,6 = −µ1, 95,6 =

V T , 96,7 = µ2F4R0L, 96,9 = µ3F4R1, 97,7 = 98,8 =

−µ2, 97,10 = RT , 99,9 = 910,10 = −µ3. Further, the
controller gain matrix K is determined by K = YX−1.
On the other hand, in the absence of distributed delays and

nonlinearity, the addressed system in (2) will be remodelled
with τ (t) = τ as follows{
Dαx(t) = Āx(t)++Āτx(t − τ )+ BuF (t)+ Bwd(t),
y(t) = Cx(t),

(19)

Corollary 2: For given scalar α ∈ (0, 1), θ ∈ (0, 1),
positive scalars τ, ε, γ̂ and known matrices R0,R1, the con-
sidered system (19) is asymptotically stabilized by the NFT
controller (4) with the mixed H∞ and passive performance,
suppose there exists a matrix Y of compatible dimension,
a positive-definite matrix P and scalars µz, z = 1, 2, 3 so that
the subsequent LMI satisfies:

9̂[10×10] < 0, (20)

where the terms of 9̂ are furnished as 9̂1,1 = AX +BR0Y +
XTAT

+ (BR0Y )T + dεX , 9̂1,2 = AτX , 9̂2,2 = −(1 −
τ̄ )Q̄, 9̂1,3 = Bw − (1 − θ )XCT , 9̂1,4 =

√
θXCT , 9̂1,5 =

µ1H , 9̂1,6 = XFT1 + Y TRT0 F
T
4 , 9̂1,7 = µ2BR0L,

9̂1,8 = XST , 9̂1,9 = µ3BR1, 9̂1,10 = Y T , 9̂3,3 =

−γ̂ , 9̂3,6 = XFT3 , 9̂4,4 = −γ̂ , 9̂5,5 = 9̂6,6 = −µ1,

9̂5,6 = V T , 9̂6,7 = µ2F4R0L, 9̂6,9 = µ3F4R1, 9̂7,7 =

9̂8,8 = −µ2, 9̂7,10 = RT , 9̂9,9 = 9̂10,10 = −µ3. Further,
the controller gain matrix K is determined by K = YX−1.

IV. NUMERICAL EXAMPLES
The applicability of the estimated theoretical results is ver-
ified in this section by presenting three numerical exam-
ples. Especially, in Example 1, the efficacy of the designed
NFT controller is endorsed through a fractional-order nonlin-
ear system with appropriate system matrices. Moreover, the
proposed controller is applied to a system of rocket motor
chambers and the corresponding results are depicted with
simulations in Example 2. A comparative study is made in
Example 3 to show the effectiveness of the proposed control
strategy.
Example 1: Let us consider the following parameters for

a fractional nonlinear system with time-varying delay and
distributed delay;

A =
[
−0.6 −2.1
−1 −0.3

]
, Aτ =

[
0.3 0.2
0.1 0.4

]
,

Ad =

[
0.1 0.3
0.4 0.2

]
, B =

[
0.2 0.5
0.4 0.2

]
,

C =
[
0.2 0.4

]
, and Bw =

[
0.7
0.2

]
.
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FIGURE 1. State responses of the system.

In light of the fractional parametric uncertainties in the
system model and the gain perturbations in the control law,
the corresponding matrices are considered as follows

H =
[
0.4 0.7

]T
, F1 =

[
−0.1 0.2

]
,

F2 =
[
0.2 0.13

]
, F3 =

[
0.4 0.7

]
,F4 = 0,V = 0.4,

=
[
−0.7 0.5

]T and S =
[
−0.3 0.4

]
.

Further, the delay bounds with respect to time-varying
delay and distributed delay is adopted as τ̄ = 0.3 and
d = 0.3. The fault function of actuator present in the input
signal is fixed in the range 0.3 < R < 0.9 such that the
parameters R0 and R1 takes the value 0.6 and 0.3 respectively.
Besides, the signal representing the external disturbance d(t)
for the system is selected as d(t) = exp(−0.4t) sin(5t). Then,
the nonlinear function present in the system takes the form
h(x(t)) = x1x2 − x21 and other parameters are selected as

N =
[
0.2 0.4
0.8 0.7

]
, ε = 0.4. Also, when θ = 0.5, the mixed

H∞ and passive performance is accounted with disturbance
attenuation level γ̂ that is selected as 0.7. The fractional-
order α is chosen as 0.6 with initial conditions x(0) =[
0.5 0.2

]T . With the above set of parameters, the stability of
the system is addressed by obtaining the feasible solutions
in Theorem 1 via MATLAB LMI toolbox and FOMCON
toolbox. Moreover, the controller gain matrix under different

FIGURE 2. Trajectories of system states under different fractional-orders.

TABLE 1. Obtained gains under different performance index.

performances is provided in Table 1. Upon considering
the above parameters and the determined controller gain
matrix, the simulated results of the established system under
fractional-order α = 0.6 with mixed H∞ and passive per-
formance are presented in the Figs.1-6. The response of the
system states in the presence and absence of the controller is
presented in Fig.1. From Fig. 1 (a), the prominence of the
NFT controller in stabilizing the system is revealed. Also,
in Fig. 1 (b), the unavailability of the controller has created
a great impact on the system such that it leads the curves to
diverge to a greater extent. Additionally, to manifest the iden-
tity of the considered FO system, the behaviour of the system
under different fractional-order is depicted in Fig. 2. Thus, the
NFT controller is competent enough to tackle and stabilize
the system under different fractional-orders. The response
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FIGURE 3. Control responses of the system.

of the NFT controller and the non-fragile controller in the
absence of actuator faults is presented in Fig. 3. In response
to the presented controllers in Fig. 3, the dynamics of the
system states under the occurrence of actuator fault is por-
trayed in Fig. 4. It is evident from this figure that when the
actuator becomes faulty, the NFT controller has the potential
to provide better performance in achieving stability compared
with the non-fragile controller. Consequently, the response of
the output curve of the considered fractional-order nonlinear
system is displayed in Fig. 5. In addition, various distur-
bance attenuation performances can be reduced from mixed
H∞ and passive performance. Suppose if θ takes the values
1 or 0, then the disturbance approach will be reduced to
H∞ or passivity performance respectively with disturbance
attenuation index γ̂ . On this note, with the obtained gain
values in Table 1, the depiction of the system behaviour under
different performance is given in Fig. 6. On the whole, it can
be concluded that the considered FO nonlinear system with
time-varying delay, distributed delay, fractional uncertainties,
disturbance and actuator faults achieve the stabilization by
virtue of the proposed NFT controller.
Example 2: Let us study the stabilization of liquid

mono propellant rocket motor with a pressure feed-
ing system. By assuming the non-steady flow and con-
sidering non-uniform lag, the combustion chamber and
the pressure feeding system is represented by dynamical

FIGURE 4. State responses using the NFT controller (4) and non-fragile
controller.

FIGURE 5. Output responses of the system.

model as follows [14]

Dασ (t) = (υ − 1)σ (t)

+

∫ 1

0
[β(t − δ(ς ))− υσ (t − δ(ς ))]dς,

Dαβ1(t) =
1
ξJ

[
−φ(t)+

p0 − p1
21p

]
,

Dαβ(t) =
1

(1− ξ )J
[−β(t)+ φ(t)− pσ (t)] ,

Dαφ(t) =
1
E
[β1(t)− β(t)] ,

where σ (t) = (p(t)− p̃)/p̃ so that p̃(t) is the instant pressure
occuring in combustion chamber with p̃ is its value in steady
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FIGURE 6. State responses under H∞ (θ = 1) performance and passive
(θ = 0) performance.

state; β1(t) = (ṁi(t) − ṁ)/ṁ such that ṁ(t) is the instant
mass flow upstream of capacitance and ṁ is the value of ṁi
in steady state with ṁi(t) as the instant mass rate of the liquid
propellant; β(t) = (ṁi − ṁ)/ṁ; φ(t) = (p1(t) − p̃1)/(21p)
for p̃1 takes the value in steady operation of p1(t) which is the
instant pressure in the feeding line at a particular point where
the capacitance denoting the elasticity is present;1p = p̃1−p̃
denotes pressure drop in the injector during steady operation;
ξ, υ,E, J respectively represents the fractional length for the
pressure supply, pressure exponent, elasticity parameter and
inertia parameter of the line; t represents the reduced time that
is normalized with gas residence time; p0 is the regulated gas
pressure; δ = τ̂ /ςg is the reduced time lag with ςg, τ̂ as the
time of gas residence and time lag in steady operation. Let us
take the control input as u = (p0 − p1)/(21p) and the values
of parameters are chosen as J = 2, δ(ς ) = dς, p = 1, ξ =
0.1,E = 1. Next, the modelled system is altered as follows

Dαx(t) = Āx(t)+ Ād

∫ t

t−d
x(s)ds+ BuF (t),

where x(t) =
[
σ (t) β1(t) β(t) φ(t)

]T with the matrices

A =


υ − 1 0 0 0
0 0 0 −5

−0.5556 0 −0.5556 0.5556
0 1 −1 0

 ,

FIGURE 7. State responses and control responses.

TABLE 2. Various disturbance attenuation performance.

Ad =


−υ
d 0 1

d 0
0 0 0 0
0 0 0 0
0 0 0 0

 and B =


0
5
0
0

 .
Based on the above setting, we would also consider the

disturbance term additionally with the coefficient matrix
Bw =

[
0.4 0.1 −0.2 0

]T and the disturbance function
d(t) = exp(−0.4t) sin(2t). Further, the analysis is car-
ried out by choosing the fractional-order α = 0.9 and
by considering υ = 0.5, d = 1. The fault func-
tion is assumed to take the value R ∈ (0.2, 0.6) and
the parameter ε = 0.1. Then, the matrices pertaining
to the uncertainties and gain fluctuations are chosen as

H =


0.5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,V = 0.2,F1 = 0.1A,F3 =

0.1Ad ,F4 = 0,R = 0.5, S =
[
−0.5 0.7 0.6 0.4

]
. By

utilizing the designed control algorithm and by making use of
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FIGURE 8. Tendency of system states for different time lag.

Corollary 1, the feasibility is computed with performance
index γ̂ = 0.4 and the controller gain matrix is obtained as
K =

[
91.3705 −10.4238 −85.1332 −63.5359

]
.

With the account of all the above parameters, the results on
stability analysis for the combustion chamber of the rocket
motor are presented in Figs. 7-8. Especially, the dynamics
of the system states and trajectory of control input is plotted
in Fig. 7 (a) and Fig. 7 (b) respectively. It can be viewed
from this figure that the stability of the system is ensured
through the proposed NFT controller even in the presence of
exogenous disturbance. Also, the control trajectory stabilizes
the system state under the fractional-order α = 0.9. The con-
sidered dynamical system of rocket motor undergoes time-lag

that is chosen as d . When this time lag changes, the dynamics
of the state trajectories are clearly shown in Fig. 8. From this
figure, it can be viewed that the system states are able to attain
stability evenwhen the states degradewith respect to different
time lags, which reveals the efficiency of the proposed control
law. The disturbance attenuation index γ̂ under different
performances is evaluated and tabulated in Table 2. It can be
seen that the optimized mixedH∞ and passivity performance
level is better than H∞ and passivity cases. Hence, it can
be concluded that the prescribed mixed H∞ and passivity
performance is effective over external disturbances. It can be
concluded that the considered system is stabilized by the non-
fragile fault-tolerant controller in spite of different time lag,
actuator fault, gain fluctuations and disturbances.
Example 3: Consider the uncertain fractional-order lin-

ear system as in Example 2 of [13] with the parameters as
follows:

A =

−3 2 1
2 −5 1
3 1 −4

 , Aτ =

 1 0 0
0 1 0
−1 0 −1

 ,
B =

11
0

 , Bw =
[
0.1 0.5 0.2

]T
,

H =
[
0.1 0.1 0.2

]T
, τ = 0.1,

F1 =
[
0.1 0.1 0.1

]
, F2 =

[
0.1 0.1 0.1

]
,

F4 = 0.1, V = 0.4, L = 0.5,

S =
[
0.2 0.3 −0.1

]
and α = 0.9.

The fault function is chosen in the range R ∈ (0.2, 0.6) and
disturbance vector is considered as d(t) = exp(−t) sin(5t).
Under initial conditions x(0) =

[
1 −2 3

]T and with the
aid of Corollary 2, the controller gain matrix is obtained as
K =

[
−16.9227 −10.2482 −7.8420

]
. For the comparison

purpose, the state trajectories under the control law designed
in [13] is plotted in the Fig. 9 along-with the state dynamics
of the proposed NFT control scheme. In view of more vali-
dation, we also present the state dynamics of [13] under the
influence of actuator faults. The corresponding states under
controller [13] tend to oscillate more under the presence
of faults whereas the proposed NFT controller is efficient
enough to tackle the faults which is clearly pictured in Fig. 9.
It can also be viewed from this figure that the proposed NFT
control law suppresses the effects of actuator faults andmakes
the system states to converge to zero quickly even under the
influence of gain fluctuations and external disturbances. This
shows the significance of developed non-fragile fault-tolerant
control design.
Remark 1: To the best of the authors’ knowledge, there

are some studies addressing the problem of stability and sta-
bilization of control systems with distributed delays. In par-
ticular, the authors in [11] and [12] developed an impulsive
and state feedback control for integer-order distributed delay
systems. These works have been solved with the help of Lya-
punov approach and LMI based criteria. Moreover, there are
some works on distributed delay systems [14]–[18]. In [14],
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FIGURE 9. Responses of system states under the controller proposed and
controller in [13].

the stability of uncertain FO neutral systems with distributed
delays and input saturation is reported. Besides, the authors
in [17] studied the state feedback control design for polytopic
uncertain FO system with distributed delays. However, the
problem of non-fragile fault-tolerant control design for non-
linear FO system subject to time-varying delay, distributed
delay, fractional parametric uncertainties and external dis-
turbance is not yet reported. In particular, the product rule
and Leibnitz rule Dα(uv) = (Dαu)v + u(Dαv) does not hold
for fractional-order systems. Moticated by the above works,
in this paper a novel NFT control protocol is proposed to
obatin the required perfromance for the addressed system (2).

V. CONCLUSION
The problem of non-fragile stabilization of fractional-order
nonlinear system with distributed delay, time-varying delay
and actuator faults is studied. A non-fragile fault-tolerant con-
troller is designed to assure the stabilization of the addressed
system even when the actuator faults, gain fluctuations and
fractional parametric uncertainties occur. Then, by means of
the Lyapunov approach in conjunction with the Razumikhin
stability theorem, some adequate constraints are derived by
the virtue of linear matrix inequalities which are then solved
to acquire controller gain. Finally, three numerical examples
including the rocket motor chamber model are manifested to
validate the efficacy of the derived results.

REFERENCES
[1] J. Lu, Z. Zhu, and Y. Ma, ‘‘Robust stability and stabilization of multi-order

fractional-order systems with interval uncertainties: An LMI approach,’’
Int. J. Robust Nonlinear Control, vol. 31, no. 9, pp. 4081–4099, Jun. 2021.

[2] P. Li, L. Chen, R.Wu, J. A. T.Machado, A.M. Lopes, and L. Yuan, ‘‘Robust
asymptotic stability of interval fractional-order nonlinear systems with
time-delay,’’ J. Franklin Inst., vol. 355, no. 15, pp. 7749–7763, Oct. 2018.

[3] I. N’Doye, T. Laleg-Kirati, M. Darouach, and H. Voos, ‘‘H∞ adaptive
observer for nonlinear fractional-order systems,’’ Int. J. Adapt. Control
Signal Process., vol. 31, no. 3, pp. 314–331, Jun. 2016.

[4] D. T. Hong, N. H. Sau, and M. V. Thuan, ‘‘Output feedback finite-time
dissipative control for uncertain nonlinear fractional-order systems,’’Asian
J. Control, Jul. 2021, doi: 10.1002/asjc.2643.

[5] L. Chen, H. Yin, R. Wu, L. Yin, and Y. Chen, ‘‘Robust dissipativity and
dissipation of a class of fractional-order uncertain linear systems,’’ IET
Control Theory Appl., vol. 13, no. 10, pp. 1454–1465, Jul. 2019.

[6] V. Phat, P. Niamsup, andM. V. Thuan, ‘‘A new design method for observer-
based control of nonlinear fractional-order systems with time-variable
delay,’’ Eur. J. Control, vol. 56, pp. 124–131, Nov. 2020.

[7] A. Abdollah and F. Mehdi, ‘‘Stabilizing controller design for nonlinear
fractional order systems with time varying delays,’’ J. Syst. Eng. Electron.,
vol. 32, no. 3, pp. 681–689, Jun. 2021.

[8] I. N Doye, K. N. Salama, and T.-M. Laleg-Kirati, ‘‘Robust fractional-
order proportional-integral observer for synchronization of chaotic
fractional-order systems,’’ IEEE/CAA J. Automatica Sinica, vol. 6, no. 1,
pp. 268–277, Jan. 2019.

[9] P. Rahmanipour andH.Ghadiri, ‘‘Stability analysis for a class of fractional-
order nonlinear systems with time-varying delays,’’ Soft Comput., vol. 24,
no. 22, pp. 17445–17453, Nov. 2020.

[10] D. C. Huong, L. B. Thong, and D. T. H. Yen, ‘‘Output feedback control and
output feedback finite-time control for nonlinear fractional-order intercon-
nected systems,’’ Comput. Appl. Math., vol. 40, no. 6, Sep. 2021.

[11] H. Li, L. Zhang, X. Zhang, and J. Yu, ‘‘Stability of nonlinear distributed
delay system with parameter uncertainties: Integral-based event-triggered
impulsive control strategy,’’ Int. J. Robust Nonlinear Control, vol. 31,
no. 18, pp. 9055–9073, Dec. 2021, doi: 10.1002/rnc.5746.

[12] H. Li, C. Li, D. Ouyang, S. K. Nguang, and Z. He, ‘‘Observer-based
dissipativity control for T–S fuzzy neural networks with distributed time-
varying delays,’’ IEEE Trans. Cybern., vol. 51, no. 11, pp. 5248–5258,
Nov. 2021, doi: 10.1109/tcyb.2020.2977682.

[13] F. Qi, Y. Chai, L. Chen, and J. A. Tenreiro Machado, ‘‘Delay-dependent
and order-dependent guaranteed cost control for uncertain fractional-order
delayed linear systems,’’ Mathematics, vol. 9, no. 1, p. 41, Dec. 2020.

[14] Z. S. Aghayan, A. Alfi, and J. A. T. Machado, ‘‘Robust stability of uncer-
tain fractional order systems of neutral type with distributed delays and
control input saturation,’’ ISA Trans., vol. 111, pp. 144–155, May 2021.

[15] D. Boyadzhiev, H. Kiskinov, M. Veselinova, and A. Zahariev, ‘‘Stability
analysis of linear distributed order fractional systems with distributed
delays,’’ Fractional Calculus Appl. Anal., vol. 20, no. 4, pp. 914–935,
Aug. 2017.

[16] H. Zhang, R. Ye, S. Liu, J. Cao, A. Alsaedi, and X. Li, ‘‘LMI-based
approach to stability analysis for fractional-order neural networks with dis-
crete and distributed delays,’’ Int. J. Syst. Sci., vol. 49, no. 3, pp. 537–545,
Feb. 2018.

20006 VOLUME 10, 2022

http://dx.doi.org/10.1002/asjc.2643
http://dx.doi.org/10.1002/rnc.5746
http://dx.doi.org/10.1109/tcyb.2020.2977682


S. Sweetha et al.: NFT Control Design for Fractional-Order Nonlinear Systems With Distributed Delays

[17] C. H. Dinh, V. T. Mai, and T. H. Duong, ‘‘New results on stability
and stabilization of delayed caputo fractional order systems with convex
polytopic uncertainties,’’ J. Syst. Sci. Complex., vol. 33, no. 3, pp. 563–583,
Jun. 2020.

[18] Y.-J. Zhang, S. Liu, R. Yang, Y.-Y. Tan, and X. Li, ‘‘Global synchronization
of fractional coupled networks with discrete and distributed delays,’’ Phys.
A, Stat. Mech. Appl., vol. 514, pp. 830–837, Jan. 2019.

[19] X. Zhang, W. Huang, and Q.-G. Wang, ‘‘Robust H∞ adaptive sliding
mode fault tolerant control for T-S fuzzy fractional order systems with
mismatched disturbances,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 68, no. 3, pp. 1297–1307, Mar. 2021.

[20] X. Zhang and Y. Zhang, ‘‘Fault-tolerant control against actuator failures
for uncertain singular fractional order systems,’’ Numer. Algebra, Control
Optim., vol. 11, no. 1, p. 1, 2021.

[21] S. Xu, G. Sun, and W. Sun, ‘‘Fuzzy logic based fault-tolerant attitude con-
trol for nonlinear flexible spacecraft with sampled-data input,’’ J. Franklin
Inst., vol. 354, no. 5, pp. 2125–2156, Mar. 2017.

[22] M. Parvizian, K. Khandani, and V. J. Majd, ‘‘An H∞ non-fragile observer-
based adaptive sliding mode controller design for uncertain fractional-
order nonlinear systems with time delay and input nonlinearity,’’ Asian
J. Control, vol. 23, no. 1, pp. 423–431, Jan. 2021.

[23] L. Chen, R. Wu, L. Yuan, L. Yin, Y. Chen, and S. Xu, ‘‘Guaranteed
cost control of fractional-order linear uncertain systems with time-varying
delay,’’ Optim. Control Appl. Methods, vol. 42, no. 4, pp. 1102–1118,
Jul. 2021.

[24] F. Qi, Y. Chai, L. Chen, Y. Chen, and R. Wu, ‘‘Passivity-based non-
fragile control of a class of uncertain fractional-order nonlinear systems,’’
Integration, vol. 81, pp. 25–33, Nov. 2021.

[25] G. Liu, J. H. Park, S. Xu, and G. Zhuang, ‘‘Robust non-fragile H∞ fault
detection filter design for delayed singular Markovian jump systems with
linear fractional parametric uncertainties,’’ Nonlinear Anal., Hybrid Syst.,
vol. 32, pp. 65–78, May 2019.

[26] Y. Luo, B. Song, J. Liang, and A. M. Dobaie, ‘‘Finite-time state estimation
for jumping recurrent neural networks with deficient transition proba-
bilities and linear fractional uncertainties,’’ Neurocomputing, vol. 260,
pp. 265–274, Oct. 2017.

[27] X.-H. Chang, J. Xiong, and J. H. Park, ‘‘Fuzzy robust dynamic output
feedback control of nonlinear systems with linear fractional parametric
uncertainties,’’ Appl. Math. Comput., vol. 291, pp. 213–225, Dec. 2016.

[28] Q. Zheng, H. Zhang, Y. Ling, and X. Guo, ‘‘MixedH∞ and passive control
for a class of nonlinear switched systems with average dwell time via
hybrid control approach,’’ J. Franklin Inst., vol. 355, no. 3, pp. 1156–1175,
Feb. 2018.

[29] L. Su and D. Ye, ‘‘Mixed H∞ and passive event-triggered reliable con-
trol for T–S fuzzy Markov jump systems,’’ Neurocomputing, vol. 281,
pp. 96–105, Mar. 2018.

[30] Q. Zheng, Y. Ling, L. Wei, and H. Zhang, ‘‘Mixed H∞ and passive control
for linear switched systems via hybrid control approach,’’ Int. J. Syst. Sci.,
vol. 49, no. 4, pp. 818–832, Mar. 2018.

S. SWEETHA received the B.Sc. and M.Sc.
degrees in mathematics from Bharathiar Univer-
sity, Coimbatore, Tamil Nadu, India, in 2016 and
2018, respectively, where she is currently pursuing
the Ph.D. degree with the Department of Applied
Mathematics. She is also a Junior Research Fellow
with Bharathiar University, funded by INSPIRE
Program, Department of Science and Technology,
Government of India. Her current research inter-
ests include dynamical systems and robust control
theory.

R. SAKTHIVEL received the B.Sc.,M.Sc.,M.Phil.,
and Ph.D. degrees in mathematics from Bharathiar
University, Coimbatore, India, in 1992, 1994,
1996, and 1999, respectively. He worked as
a Lecturer with the Department of Mathemat-
ics, Sri Krishna College of Engineering and
Technology, Coimbatore, from 2000 to 2001.
From 2001 to 2003, he was a Postdoctoral Fellow
with the Department of Mathematics, Inha Univer-
sity, Incheon, South Korea. From 2003 to 2005,

he was a Japan Society for the Promotion of Science (JSPS) Fellow with
the Department of Systems Innovation and Informatics, Kyushu Institute
of Technology, Kitakyushu, Japan. He was a Research Professor with the
Department of Mathematics, Yonsei University, Seoul, South Korea, until
2006. He was a Postdoctoral Fellow (Brain Pool Program) with the Depart-
ment of Mechanical Engineering, Pohang University of Science and Tech-
nology, Pohang, South Korea, from 2006 to 2008. He worked as an Assistant
Professor and an Associate Professor with the Department of Mathemat-
ics, Sungkyunkwan University, Suwon, South Korea, from 2008 to 2013.
From 2013 to 2016, he was a Professor with the Department ofMathematics,
Sri Ramakrishna Institute of Technology, India. He has been a Professor with
the Department of Applied Mathematics, Bharathiar University, since 2016.
He has published over 380 research papers in reputed Science Citation Index
journals. His current research interests include systems and control theory,
optimization techniques, and nonlinear dynamics. He jointly with his foreign
research collaborators, published a book and a good number of book chapters
in Springer. He has visited Japan, Malaysia, South Korea, Brazil, Germany,
Australia, China, and Saudi Arabia, as a Visiting Researcher. He has contin-
uously received the most coveted ‘‘Highly Cited Researcher’’ Award for the
last four years 2017, 2018, 2019, and 2020, consecutively from the Clarivate
Analytics, USA. He has been on the Editorial Board of international journals,
including IEEE ACCESS, Journal of the Franklin Institute, Neurocomputing,
Advances in Difference Equations, Neural Processing Letters,Mathematics,
and Journal of Electrical Engineering & Technology.

D. J. ALMAKHLES (Member, IEEE) received
the B.E. degree in electrical engineering from the
King Fahd University of Petroleum and Miner-
als, Dhahran, Saudi Arabia, in 2006, and the mas-
ter’s (Hons.) and Ph.D. degrees from The Uni-
versity of Auckland, New Zealand, in 2011 and
2016, respectively. Since 2016, he has been with
Prince Sultan University, Saudi Arabia, where he
is currently the Head of the Communications and
Networks Engineering Department. He is also the

Director of the Science and TechnologyUnit and Intellectual PropertyOffice,
Prince Sultan University. He is also the Leader of the Renewable Energy
Research Team and Laboratory. His research interests include power elec-
tronics, control theory, crewless aerial vehicles, renewable energy systems,
and FPGA applications. He is a member of the IEEE Power Electronics and
the IEEE Control Society. He is a Reviewer Member of various international
journals and conferences, including the IEEE and IET.

S. PRIYANKA received the B.Sc. degree in
mathematics from Avinashilingam Deemed to
be University, Coimbatore, Tamil Nadu, India,
in 2016, and theM.Sc. degree in mathematics from
Bharathiar University, Coimbatore, in 2018, where
she is currently pursuing the Ph.D. degree with the
Department of Applied Mathematics. Her current
research interests include dynamical systems and
robust control theory.

VOLUME 10, 2022 20007


