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ABSTRACT The early diagnosis of Parkinson’s disease (PD) has always been a difficult problem to be solved
clinically. At present, there is no clinical auxiliary diagnostic index for reference. We attempted to extract
potential biomarkers for early PD from the currently used scalp EEG detection methods in clinical practice.
We calculated the phase synchronization index to quantify the synchrony of EEG channels in various
frequency bands (delta, theta, alpha and beta bands) of early PD. The results showed that the synchronization
of early PD in the delta band was significantly lower than the healthy level, and the brain region reflecting
the lower synchronization was located in the temporal lobe, the posterior temporal lobe, the parietal lobe (the
posterior center) and the occipital lobe. Moreover, this lower synchronicity is consistent with weaker brain
functional connections. Besides, by constructing functional brain network, the graph theoretic topological
features of each frequency band of early PD are presented. We have found that early PD has characteristics of
small world network in the delta and beta bands, and functional integration and separation characteristics of
brain network in early PD are significantly abnormal in the delta, theta, alpha and beta bands. These results
indicate that early PD has significant pathological changes from the perspective of brain function network
analysis, and its characteristics can be described by multiple features, which may provide auxiliary guidance
for the clinical diagnosis of early PD, and also provide theoretical support for the brain function changes of
early PD.

INDEX TERMS Parkinson’s disease, brain functional network, frequency variability.

I. INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative dis-
order without pathologic treatment, characterized by motor
symptoms (resting tremor, bradykinesia, rigidity and abnor-
mal gait) and non-motor symptoms (depression, anxiety, cog-
nitive decline, etc.) [1]-[3]. Patients usually need to seek
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treatment after 50 to 80% of the Substantia Nigra pars com-
pacta (SNc) has been destroyed [4]. This suggests that the
destructive process of SNc begins several years before the
diagnosis of the early stage of PD, and with the progres-
sive development of the disease course, the PD patient will
gradually lose the corresponding function, and then reach the
stage of disability. Therefore, early-stage clinical diagnosis
plays a key role in the control of the progression of PD
and the delay of its disabling stage. However, due to the
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diverse clinical symptoms of early PD and the absence of
reliable clinical biomarkers at present, it has been difficult
to diagnose early PD accurately [5]. In consequence, it is an
urgent problem to find out the significant biomarker of early
PD, and the reliable biomarker will be an excellent auxiliary
index to reduce the clinical misdiagnosis rate. Neuroscience
deems that the human brain is a network with functional
(synchronization of neural activity) and anatomical (neural
synapses) connections [14], during these, functional brain
connectivity presents the temporal dependence of neuronal
activity between two brain regions anatomically separated or
not [16], and it also refers to the neural co-activities of dif-
ferent brain areas to reflect the transient interaction between
two specific regions in the human brain [15]. What’s more,
studies [17], [18] have shown that functional network plays an
important role in explaining the brain function and activities.
In recent years, there has been an increase number of studies
investigating the changes of network structure and functional
connections in PD [6]-[9]. Several studies of functional
magnetic resonance imaging (fMRI) have shown abnormal
functional connectivity patterns between and within the nodes
of major networks including the default mode, sensorimo-
tor, executive-attention, and salience networks in PD (for a
meta-analysis see [10]). Similarly, the brain has been stud-
ied as a complex network based on EEG signals, which
can reflect the dynamic interaction between different regions
of the brain by constructing and analyzing the local and
global characteristics of the network composed of nodes and
edges [11], [12]. Suo et al. found the configurations of brain
functional network in PD were correlated to the severity of
the disease [13]. Besides, other researchers have used graph
theory to study the entire brain functional network, and these
studies would be useful as a possible marker for the evalua-
tion of PD associated with mild cognitive impairment (MCI)
[14], [19]. During the clinical brain imaging techniques,
electroencephalogram (EEG) has the advantages of higher
temporal resolution, lower cost, stronger repeatability, and
can study the oscillation of the cerebral networks non-
invasively [20]-[22]. Theoretically, EEG can reflect func-
tional markers of synaptic and neuronal integrity, and it is
sensitive to the subtle alterations in brain activities prior
to structural changes in neurodegenerative diseases such as
PD [23]. This study is the first work to explore the char-
acteristics of spontaneous brain activities in early PD by
quantitative analysis of multi-channel EEG signals. Firstly,
we used PLI method to quantify the whole brain of EEG
signals in early PD and the phase synchronization between
each pair of channels. Then, the brain functional network
was reconstructed based on PLI matrice, and graph the-
ory indicators were extracted to explore the characteristic
attributes of the whole brain functional connectivity in early
PD. Finally, the characteristics of spontaneous brain activity
in early PD were analyzed, and the role of these characteris-
tics as an auxiliary for the clinical diagnosis of early PD was
prospected.
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Il. MATERIALS AND METHODS

A. SUBJECTS

We recruited 29 patients with early-stage of PD from the
department of Neurology of Tianjin Medical University
(20 female patients: aged range of 53-74, average age of
62 years old; 9 male patients: aged range of 52-74, average
age of 63 years old). All of the patients had been diagnosed as
primary PD with 3.2 & 2.5 years’ disease duration, and they
had been off medication for more than 12h before collect-
ing EEG. In addition, 22 gender-matched and age-matched
healthy subjects with no history of psychiatric or neurolog-
ical illness were recruited as the control group (11 females,
aged of 54-70, average age of 62; 11 males, aged of 51-74,
average age of 65). There is no history of mental illness
and cerebrovascular disease in normal control group and no
significant difference between the two groups in gender, age
or education level. This study is approved by the Ethics
Committee of Tianjin Medical University General Hospital,
China. In addition, written consent is provided by all subjects
or their legal representatives after full understanding of the
study purpose and study procedures.

B. EEG RECORDING AND PREPROCESSING

Fig.1 presents all of the steps of the EEG signal analysis. The
subjects were asked to sit comfortably in a low-light environ-
ment, with their eyes closed and awake. We placed 19 Ag-
AgCl electrodes on the scalp, including channels Fpl, Fp2,
F3, F4, C3, C4, P3, P4, O1, 02, F7, F8, T3, T4, TS, T6, Fz,
Cz, Pz according to the international standard 10-20 system.
Four additional channels were placed to record left and right
electrooculogram (EOG), electromyogram (EMG), electro-
cardiogram (ECG) signals of subjects during the collection
process. All the EEG preprocessing steps were performed
in MATLAB 2018a. Firstly, EEG signals were processed by
a 1-45 Hz band-pass zero-phase shift filter, so as to filter
out the 50 Hz power frequency interference and ensure the
phase information of the original signal remains unchanged.
Then fast Independent Component Analysis (fastiICA) was
used to remove artifacts. FastICA algorithm decomposed 19-
channel EEG signals into IC components that are statisti-
cally independent of each other through a hybrid matrice.
Then we analyzed the correlation between the extracted
IC components and the EOG, EMG and ECG signals. The
IC component whose absolute value of correlation coeffi-
cient is greater than 0.5 is considered as component that has
strong correlation with a certain artifact signal. We zeroed
out these IC components (PD group: 0.6207 &+ 0.7277; HC
group: 1.0455 + 1.0450) and multiplied them by the resulting
mixture matrice to obtain the EEG signals with the artifacts
removed. Finally, the manual screen was used to remove some
large noise interference signals which were difficult to be
filtered by filtering and fastICA method. Finally, we used
“eegfiltfft” tool package in eeglab toolbox to filter the signal
into four sub-bands delta (1-4Hz), theta (4-8Hz), alpha (8-
13Hz), and beta (13-30Hz).
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FIGURE 1. A flowchart structure about materials and methods. (a) EEG
data acquisition. (b) EEG signal preprocessing steps. (c) Construction of
functional connectivity network based on phase lag index (PLI). (d) Graph
theory analysis.

C. FUNCTIONAL CONNECTIVITY NETWORK

The synchronous activity of brain neurons represented the
transmission of information in the brain. The phase lag
index (PLI) was a method to quantify the phase synchroniza-
tion level between two time series. In the field of nonlinear
dynamics, Stam et al. [24] first proposed the phase lag index
and quickly used it to describe the degree of phase syn-
chronization between two time series signals. In this study,
PLI was used to describe the phase synchronization level
between electrodes of EEG signals and constructed brain
functional networks. It can be used to reflect the degree of
synchronous oscillation of EEG signals in different brain
regions and to indicate the correlation between different brain
regions. The formula was as follows:

PLI = |(sign[A¢ ()Y, k=1,2,...,N (1)

where A¢ (#;) represented the asymmetry of the phase differ-
ence distribution of the two signals in time #.

The functional connection matrice based on PLI algo-
rithm is fully weighted. The application of topological fil-
tering transforms a fully-weighted network into a sparser
weighted network, which is often used to visualize the
brain connectivity distribution. We adopt proportional thresh-
old method as a topology filtering technique in this part
before visualizing the functional brain networks. This
method “thresholds™ the connectivity matrice by preserving
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a proportion p (0 < p < 1) of the strongest weights. The
threshold value of sample proportion is defined as 0.3 in our
study to ensure that there are no isolated nodes in the network.
All other weights are set to 0.

D. GRAPH THEORY METRIC

Brain functional network is a mathematical representation
of the real complex system of the brain. In mathematics,
we used the term “‘graph” to describe a network. In graph
theory analysis, graph theory parameters could well describe
the functional state of the network, such as the information
transmission rate between different nodes, the clustering abil-
ity of local areas in the network, the importance of different
nodes in information exchange, and so on. The following
parameters could be used to describe the topology of the
functional network. The following parameters are calculated
based on the fully weighted functional connection matrice
obtained by PLI.

The clustering coefficient represented the degree of func-
tional separation of the network [25]. It was used to quantify
the ability to form small communities within a network. The
clustering coefficient of each node in the network was defined
as the number of connecting edges that actually existed with
this node in its neighborhood divided by the maximum num-
ber of connecting edges that may exist. Its calculation formula
was as follows:

N
Zq,h:l ApqQqhQhp

C, =
T k(1)

@)
where a4, agn, and aj), represented an edge that was adjacent
to node p. k, was the degree of the node p. The clustering
coefficient of the global network was defined as the average
of the clustering coefficients of all nodes, and its calculation
formula was:

1 N
=52C 3)
p=1

For an adjacency matrice ¢ with N nodes, node p and
node g were connected to form edges.

The network shortest path length can evaluate the aggre-
gation ability of the network. It represented the integration of
the graph and the speed at which information was transmitted
over the network. The arithmetic average of the shortest path
length of all nodes in the network was taken as the shortest
path length of the global network, and the formula was:

1 N
zﬁﬁﬂiﬂq 4)
p.q=1

where [,, was defined as the shortest path length between
nodes p and q.

Global efficiency was used to quantify whether the net-
work was efficient in processing and transmitting informa-
tion. The lower the global efficiency was, the higher the
cost the network would pay for information interaction [26].

21349



IEEE Access

W. Zhang et al.: Analysis of Brain Functional Network Based on EEG Signals for Early-Stage PD Detection

k%
05 . '
045+ !
. 04 L 2 -
A~ 035+ = —_ —
- 1 +
; - = H
0.25 - EI =
0.2¢ | | | | | | -\L- _\L
ePD-3 HC-8 ePD-0 HC-8 ePD-a HC-a ePD- HC-B

FIGURE 2. Intergroup differences of PLI of the synchronization matrice between early PD and healthy

control (HC) in delta, theta, alpha and beta bands.

It described the global characteristics of the network, and the
formula was:

1 Moo

“ v ®

, _
piaen v
Local efficiency was used to measure the efficiency of local
information processing and transmission of the network, and
it also implied whether the network had a certain defense
capability against external supply [27]. The local efficiency
formula of node p was as follows:

Voo

L(p)=———
‘ kp (kp — 1) pqgeN Ipq

(6)
And the local efficiency of the network could be deduced as
follows:

1
Le= 5D Lp) )

peN

E. STATISTICAL ANALYSIS

The one-way analysis of Variance (ANOVA) was used to
evaluate statistical differences between early-PD group and
HC group in delta, theta, alpha and beta bands. And multi-
ple correction tests were performed. The index P, calculated
from the mean and variance of characteristic parameters in
each state, represents the significance of differences between
groups. In order to control type error caused by multiple com-
parisons of multiple sub-bands or electrodes, we used false
discovery rate (FDR) to correct the results. For the parameters
extracted in this paper, we assumed that p < 0.05 (*) and
p < 0.01 (*%) indicates the level of significant difference of
different degrees.

Ill. RESULTS

In order to study whether the synchronization level of brain
activity in patients with early PD has a state that is typ-
ically different from the healthy level, we calculated the
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average parameters of PLI-based synchronization matrice of
29 patients with early PD and 22 HC subjects respectively.
As shown in Fig.2 and Table 1, the mean values of resting
state whole brain PLI (rs-hb PLI) of early PD at all studied
frequency bands was lower than healthy levels. Particularly,
the statistical analysis shows that the rs-hb PLI of delta
band under the early PD state is significantly lower than
that of the healthy state with p < 0.01, and their mean
values and the corresponding variance are 0.4288 (0.0254)
and 0.4623 (0.0432), respectively. It is evident that the syn-
chronization level of early PD in the delta band is lower than
healthy level, indicating that there is abnormal synchroniza-
tion of brain activity in early PD.

Fig.3 shows the PLI of the individual electrode in the
resting state between early PD group and the HC group in four
frequency bands. As shown in Fig.3, in the delta band, the PLI
value of each channel of PD is lower than that of the healthy
level, among which the PLI values of channel C3, C4, P3, P4,
0Ol, 02, F7, F8, P7, P8, Cz, and Pz are significantly reduced
(p < 0.01), while the PLI values of PD in other frequency
bands are not significantly different from that of the healthy
level.

These channels with significant differences between the
PD group and the HC group in the delta band are shown
in Fig.4. The red solid circles represent channels with sig-
nificant differences, and the yellow solid circles represent
no significant differences. These results demonstrate that in
the delta band, the synchronization strength in early PD is
significantly weaker than in HC, especially in the cerebral
central region (channels C3, C4, Cz), the medial-temporal
lobe (channels T7, T8), the posterior temporal lobe (channels
P7, P8), the parietal lobe (the posterior center) (channels P3,
P4, Pz), and the occipital lobe (channels O1, O2).

In order to supplement the analytical perspectives in
addition to the whole-brain and synchrony index of each
channel, we reconstructed weighted functional connectiv-
ity of the brain in the early PD state and the healthy
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FIGURE 3. Intergroup differences of PLI of each single electrode in four frequency bands between
early PD group and HC group. The * in red indicates the p value less than 0.01.

state, respectively. We averaged all the weighted functional
connectivity matrices of two groups respectively. Fig.5 shows
the functional connectivity matrices of all the frequency
bands between early PD group and HC group, where the
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edges represent the PLI values and the nodes correspond to
EEG channels. Then we applied proportional thresholding
(here, the threshold value is defined as 0.3) to fully-weighted
functional connection matrices that averaged in group level.
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TABLE 1. The PLI of the whole brain in each frequency band.

o (mean, S. D.) [ (mean, S. D.)

4 (mean, S. D.) 6 (mean, S. D.)
Early PD  0.4288 + 0.0254
HC 0.4623 4+ 0.0432
p-value 0.0011 0.3630

0.3489 £ 0.0162
0.3542 4+ 0.0246

0.3170 £ 0.0159
0.3196 £ 0.0205
0.6108

0.2424 £0.0318
0.2426 4 0.0230
0.9778

The functional brain network was shown in Fig.6. Clearly
there were significant differences in brain functional connec-
tivity patterns between the early PD group and the HC group.
In the all different frequency bands, some new functional
connectivities appeared (marked in yellow solid line) in the
early PD group, while some another disappeared (marked in
black dotted line) compared to the HC group in the whole
brain. For example, there was no connectivity between Fpl
and Fp2 in the HC group in delta, theta and alpha band
while early PD group existed (yellow solid lines), and there
was no connectivity between T7 and C3 in the early PD
group in delta band while HC group existed (black dotted
lines). Besides, in delta frequency band, all the functional
connectivities of early PD group were stronger than those of
HC group (Fig. 6(a)). As shown in Fig. 6 (b), most functional
connectivities were enhanced and a small amount of these
connectivities were weakened in the early PD group in the
whole brain in theta frequency band. On the contrary, most
of the functional connectivities were weakened in the left
brain of early PD, and the unique functional connectivities
in the early PD group compared to HC group were mainly
distributed between the left and right brain in the alpha band
as shown in Fig. 6 (c). In the beta frequency band, the
functional connectivities of left-right brain were enhanced in
the early PD group, while functional connectivities in the left
brain were significantly reduced as shown in Fig. 6 (d).

The pathological changes in functional connectivity in PD
patients are consistent with the abnormality of synchroniza-
tion in each lead. For channels such as C4, P3, P4, Ol,
02, T7, T8, P7, and P8, PLI values of the early-PD were
significantly reduced in the delta band (Fig.3). Combine the
results of Fig.3 and Fig.5, the results of the average functional
connectivity matrice indicate that the connectivity strength of
these electrodes with difference significantly to other brain
regions is also weaker than HC group on average. At the same
time, their functional connectivity with other channels has
also become stronger (Fig.6). No significant characteristics
of the cerebral activities in early-PD were found in other
frequency bands.

Furthermore, four graph derived features including cluster-
ing coefficient (C), shortest path length (L), local efficiency
(Le), and global efficiency (Ge) of all the frequency bands
between early-PD group and HC group were extracted from
the respective corresponding functional brain networks. One-
way ANOVA analysis was applied to compare the charac-
teristic distribution of the four features of the functional
brain network among these frequency bands between the two
groups.
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FIGURE 4. The brain regions of resting state PLI in the delta band that
have significant differences between the early PD patients and HC
subjects. The red solid circles indicate channels with significant statistical
differences, while the yellow solid circles indicate channels with no
statistical differences.

As shown in Fig.7 (a), the clustering coefficients of all
frequency bands (including the delta, theta, alpha and beta
bands) in early-PD group are significantly higher than those
in HC group with p < 0.01. Besides, as we can find in
Fig.7 (b), the values of shortest path length of theta and alpha
bands in early-PD group are significantly higher than those
in healthy subjects with p < 0.01. What’s more, the local
efficiency and global efficiency of the early-PD group are
significantly stronger than those of the HC in delta, alpha,
and beta bands with p < 0.01 as shown in Fig.7 (¢) (d). These
statistical analyses have shown that there are significance dif-
ferences among specific frequency bands in the brain network
structure between early-PD patients and healthy subjects,
which illustrated that patients with early PD have abnormal
characteristic brain activity in specific frequency bands.

IV. DISCUSSION
In this paper, the methods of phase synchronization, com-
plex network and graph theory were used to analyze the
multichannel EEG signals of the patients with early-PD to
reveal the characteristics of the brain network and the cere-
bral activities at the state of early-PD without medication.
The results showed that the features of the brain functional
network of early-PD were unified and significantly different
from the healthy level, and the graph theory derived features
set based on the brain functional network could be used as an
appropriate marker to assist in the diagnosis of early PD.
We used the values of PLI to quantify the synchronization
of pair-wire channels. It was found that whole-brain synchro-
nization in the delta band in early PD was significantly lower
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FIGURE 5. Functional connectivity matrice in all the frequency bands between early PD (a) and HC (b) groups.
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FIGURE 6. Corresponding brain functional networks between early PD and HC groups in four different
frequency bands: (a) delta; (b) theta; (c) alpha; (d) beta. The size of the node represented the number of
the functional connectivity (degree) of the corresponding channel. The differences of functional
connectivity between the two groups in each frequency band were shown by using lines with different

colors and line-types. Yellow solid lines denoted the connectivity that only existed in early PD. Black
dotted lines denoted the connectivity that did not exist in early PD but existed in HC. Blue solid lines
denoted the connectivity in early PD was stronger than HC, while green solid lines denoted the

connectivity in early PD was smaller than HC.

than the healthy level. In the delta band, the synchronization
strength in the bilateral posterior temporal, parietal and occip-
ital lobes are significantly reduced in early PD group com-
pared to the healthy level. Suarez et al. found that compared
to non-demented PD, PD with dementia (PDD) was char-
acterized by lower intertemporal synchronization strength
in delta [28]. Compared to PD patients, PDD patients had
lower mean PLI values in the fronto-temporal and parieto-
temporo-occipital areas of the delta [29]. These findings are
similar to the abnormalities in early PD, and we speculated
that the synchronization intensity of delta frequency band
forewarns the abnormal changes in the cognition level of
early PD as reflected by the state of the brain network.
Besides, the PLI matrices in the delta band showed that the
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functional connectivity of early PD is significantly lower
than the healthy level at the same brain regions. Related to
this, there is a study that shows that patients with PD have
reduced gray matter (GM) volume in brain regions,including
the left temporal lobe, left middle temporal, middle temporal
gyrus, parietal lobe, postcentral gyrus, left inferior parietal,
left medial frontal gyrus, supplement motor area [7], and this
finding was also backed up by other investigations [30], [31].
The location of atrophy in PD GM volume found in these
studies is consistent with our findings on the scalp EEG,
which suggests that the synchronous decrease of EEG signals
and the function connectivity reduce in such regions in the
delta band in the early stage of PD may reflect the area and
level of atrophy in the brain GM.
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FIGURE 7. The graph theory features of early-PD group and HC group in §, 6, o, 8 bands with a, b, c,
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respectively. The parentheses marked with ** indicate a significant difference (p < 0.01 with FDR
corrected) between the groups in which the parameter is located.

Moreover, the brain network features were extracted by
using graph theory analysis, and we have calculated the
clustering coefficient, shortest path length, local efficiency,
and global efficiency respectively. It can be seen that most of
the network properties of early-PD were significantly higher
than those of HC. Compared with random networks, small
world networks (SWNs) have higher clustering coefficient
and shorter path length [32], [33]. They deliver information
more efficiently and meet competing demands for integration
and separation of functions [34], [35]. We can find that in
the theta and alpha bands, early PD has the higher cluster-
ing coefficient and longer path length, therefore, it can be
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inferred that in these particular frequency bands, the brain of
early PD doesn’t have a representative characteristic of SWN.
One study has found that the abnormal path length in the
theta band is associated with deterioration of global cogni-
tive function, while an exception in the shortest path length
in the alpha band is associated with deterioration of motor
function [36]. In addition, in delta and beta bands, there
are higher clustering coefficient and normal path length in
early PD. The clustering coefficient is used to quantify the
ability to form small communities within a network [25].
These findings indicate that in the delta and beta bands of
early PD, the brain network has an abnormally enhanced
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degree of small module aggregation. What is also interesting
is that, in the delta, alpha and beta bands, both local and
global efficiency are relatively improved. This phenomenon
indicates that early PD has a higher information transmis-
sion efficiency than healthy person in these frequency bands.
This abnormal increase in information transmission ability is
reflected in the process of information interaction between
single brain region and other brain regions, and it also exists
in the global brain. Some studies have observed that exces-
sive synchronization between the basal ganglia,cortex and
muscles leads to the phenomena similar to our findings [37],
[41], [42]. This activity can be partially reversed by deep
brain stimulation and levodopa, and its presence is associated
with motor retardation in Parkinson’s disease [38]. It has
been suggested that dysfunctional basal ganglia subcortical
input compensates for this increased network efficiency [39].
Another study suggests that this increased integration occurs
in networks with higher energy costs and may therefore put
the network under stress [40], and these source factors may
be the internal reasons that lead to various clinical symptoms
in early PD. Such specific brain network characteristics may
reveal the specific brain activity of early PD. These findings
may have important potential implications for the diagnosis
of early-PD, even in the pre-symptomatic phase, as well as
for tracking disease progression.

In our study, we explored the static functional connectivity
patterns of brain network in early PD but ignored the dynamic
characteristics of the brain network. Dynamic functional con-
nectivity may provide more information about brain function
in early PD. Besides, we didn’t apply surrogate analysis to
detect significant connections but follow a fully-weighted
connectivity analysis. Topological filtering technique such as
Minimum-cost spanning trees can be used for exploring the
dynamic functional connectivity of brain networks in early
PD in the next work.

V. CONCLUSION

In early PD, there was a significant decrease in brain synchro-
nization and functional connectivity in the delta band, and the
most significant brain regions were located in bilateral poste-
rior temporal lobe, parietal lobe and occipital lobe. Interest-
ingly, this lower synchronicity is consistent with weaker brain
functional connections. Such early PD abnormalities may
serve as an early warning of cognitive decline in PD patients.
What’s more, there are significance differences among spe-
cific frequency bands in the brain network structure between
early PD patients and healthy subjects. Such specific brain
network characteristics may reveal the specific brain activity
of early PD. The graph theory derived features set based on
the brain functional network could be used as an appropriate
marker to assist in the diagnosis of early PD.
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