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ABSTRACT Short-term load forecasting (STLF) is necessary for system operators; however, its difficulty
has been increasing since distributed resources, particularly behind-the-meter (BTM) PV resources, have
been introduced to power systems. This study proposes a framework for STLF for holidays considering
the four major factors that affect the net load profiles —calendar, trend, weather, and BTM PV. The target
holiday is first paired with historical holidays following its calendar factor, which are defined as ‘‘similar
days.’’ Subsequently, in terms of the remaining three factors, the differences between the historical holidays
and target holidays are calculated, and their effects on load differences (factor-induced load differences)
are quantified and reflected. Finally, for each pair, the modified load profiles are generated and combined
to obtain a daily load profile of the target holiday. The proposed framework was implemented on a case
study of Korean national holidays, and its forecasting accuracy was compared with conventional forecasting
methods. The accuracy metrics show that the proposed framework outperforms conventional methods. The
results suggest that the proposed framework can be applied to STLF for holidays to improve forecasting
accuracy.

INDEX TERMS BTM PV resources, genetic algorithm, holiday load forecasting, short-term load
forecasting, weather sensitivity.

I. INTRODUCTION
Day-ahead short-term load forecasting (STLF) is imple-
mented daily to ensure the reliability of a power system and
to establish a power-generation schedule. Through accurate
forecasting, power systems can be operated cost-effectively,
and decisions regarding unit commitment and energy markets
can be made correctly.

The daily load profile is closely associated with numerous
factors that have different impacts on the load profile, such
as economic growth, human activity, and weather conditions.
Themain challenge associated with STLF is that these factors
overlap and affect load profiles simultaneously. In addition,
their impacts on load are dynamic rather than static. Thus,
each ‘‘factor-induced load’’ must be disintegrated from the
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historical load profiles and quantified for accurate forecast-
ing. Load profiles are affected by the ‘‘calendar effect’’ and
‘‘weather effect.’’ They have a major impact on the intraday
pattern and the level of load profiles. Additionally, over a
long term, the base load changes because economic growth
affects the total electricity consumption. Recently, the most
critical issue in the power system has been the increasing
penetration of distributed resources that are known to be
particularly variable and uncertain. This issue could be a
barrier to system security and optimal operation [1]. Owing
to the high variance of distributed resources’ generation
output, considering the generation of distributed resources
when operating power systems and markets has become
significant [2]. Among the distributed resources, behind-the-
meter (BTM) resources are unobservable and therefore pose
a major challenge in the field of load forecasting. BTM
resources, especially BTM photovoltaics (PV), significantly
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reduce the net load profiles. Therefore, it is necessary
to consider BTM PV generation when performing STLF.
Research on PV generation forecasting has increased rapidly
over the past few years. In addition, several attempts
have been made to associate solar power forecasting with
load forecasting [3]. A wide variety of load forecasting
methodologies have been developed in previous research.
A univariate STLF model has been proposed [4] based on
the linear regression and historical pattern of load, where the
training set for fitting a regression model is composed of
the k-nearest neighbors of an input load profile. A seasonal
autoregressive integrated moving average with exogenous
variables (sarimax) model, which is a type of time series
model, has also been proposed [5]. The regarded external
variables include lagged hourly load data and calendar
effects. Despite their high explanatory power, models based
on regression or time series models require a much higher
level of sophisticated work in modeling the relationship
between explanatory variables and response variables, such
as selecting features and capturing weather effects.

Moreover, a machine learning-based method has been
attracting attention due to its high prediction accuracy.
A deep neural network algorithm utilizing historical load
patterns as input variables has been proposed [6]. The
model in [6] uses a convolutional neural network (CNN)
for feature extraction from historical load data. In [7], an
artificial neural network (ANN) for STLF has been proposed,
which considers various combinations of load data as input
variables. In [8], a bat algorithm-based backpropagation
approach is introduced, which utilizes weather factors such
as temperature and humidity and reduces the requirements
of trial and error in a training phase. In [9], Long Short-
Term memory (LSTM) and an ensemble algorithm XGBoost
shows better accuracy than ARIMA in predicting time series
data. XGBoost has also been adopted as a short-term load
forecasting method in [10]. However, the use of forecasting
models based onmachine learning has limitations: themodels
require high computing capability and sufficient data for the
training phase, and it is difficult to interpret their output and
weights.

In the case of holidays, load forecasting is challeng-
ing because of the following reasons: (1) The calendar
effect is dominant on holidays; thus, the load profiles of
holidays show unique patterns and have been treated as
anomalous observations. (2) Holidays occur infrequently,
even irregularly, so the historical data are insufficient. (3)
Since various factors as well as calendar factors influence
load profiles of holidays in different ways, it is difficult to
quantify the impact of individual factors. Previous studies
have proposed holiday load forecasting methods using load
profiles of past holidays based on the assumption that the
future shares a similar pattern and distribution as the historical
data [1]. These studies have primarily employed statistical-
based methods since the machine-learning-based forecasting
model requires a sufficient amount of training data to build
an accurate forecasting engine; however, historical data on

holidays are insufficient. In [11], a regression-based holiday
load forecasting model has been designed for the public
holidays of Germany, and several approaches to deal with
holidays are analyzed. In [12], a rule-based autoregressive
moving average model for French public holidays has been
proposed. The model proposed in [12] considers intraday,
intraweek, and intrayear seasonality using a SARMA model.
However, external effects such as the weather effect have not
been considered in [11] and [12]. In [13], a classification
for special days has been presented, and a linear regression
has been adopted to model the effect of holidays on the
load considering categorical variables that identify each
type of holiday. However, only the temperature-derived
weather features, such as cooling and heating degree days,
have been considered as exogenous variables. A hybrid
prediction model for holiday load forecasting has also been
proposed. In [14], holiday load profiles are decomposed
into daily extremum and load shape and both are predicted
independently using the load profiles of similar days. The
daily extremum of load profiles is predicted by a machine
learning model (XGBoost), and the hourly load shape is
obtained from the mean of similar dates’ historical load
shapes. In [15], a fuzzy linear regression model is employed
for short-term load forecasting on holidays and is built
from the load data of previous years. Moreover, a fuzzy
polynomial regression method for holidays and a process of
weather feature selection usingmutual information have been
proposed [16]. However, these models do not consider BTM
PV generation and adopt a simple mean for forecasting the
normalized hourly pattern of load profiles on holidays.

The differences between the models proposed in the
literature are tabulated in Table 1. The related studies are
compared in terms of forecasting target, methodology, and
input data. Among the previous approaches, only a few
studies have attempted to consider various weather features
as input variables and the BTM PV effect in the prediction
of holidays’ load profiles. Moreover, several methods that
utilize historical load have adopted a simple mean approach
for forecasting the hourly load shape of target holidays.
Due to the aforementioned problems, this study proposes a
framework for holiday load forecasting that considers four
major factors: calendar, trend, weather, and BTM PV. Given
a target holiday, pairs of similar days are selected, and each
load profile of a similar day is modified by quantifying the
load differences (factor-induced load) in terms of each factor.
The modified load profiles of similar days are combined to
provide a final load forecasting for the target holiday. The
main contributions of this study are as follows.

1) To reflect the calendar effect on each target holiday,
an in-depth analysis of historical load profiles of
Korean holidays is presented, and a rule-based similar
day selection process is proposed. Korean holidays are
classified into two types according to their historical
load profiles, and a set of similar days are determined
according to the given target holiday’s holiday type and
day of the week.
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TABLE 1. Detail comparison of related works.

2) Various weather features related to load profiles are
introduced, and adaptive weather feature selection
is implemented to determine a set of input weather
features. A total of 20 weather features are classified
into ‘‘primary features’’ or ‘‘secondary features,’’
depending on how each feature is created. Weather
features are evaluated based on the statistical analysis
of historical weather observations and forecasts. Then,
the main idea of ‘‘correlation-based weather feature
selection’’ is employed to select features relevant to the
target variable and not redundant with other weather
features.

3) Nonlinearity and time-variant properties of the weather
effect are controlled by applying ‘‘weather threshold
and sensitivity matrix (WTSM),’’ which is defined
for every pair of targets and similar days. Regarding
the availability of weather forecast data, a ‘‘reference
period (RP)’’ is introduced to determine the WTSM.

4) A method for combining each modified load profile
using adaptive weighted average and determining each
weight is proposed, while most published articles
adopted a simple mean for the combination.

The remainder of this paper is organized as follows:
Section II describes the problem addressed in this paper.
Section III proposes the framework and provides a detailed
description of the methodology. Section IV describes the per-
formance of the proposed method and discusses the results.
Then, the forecasting accuracy of the proposed method
is compared with that of the conventional method (fuzzy
linear regression). Section V presents a case study on Korean
national holidays, conducted to verify the effectiveness of the
proposed method.

II. PROBLEM DISCUSSION
For a pair of target holidays and similar days, a load
difference between them may exist. The difference is
attributed to various factors; therefore, it is necessary to
quantify each factor-induced-load difference. Let LDsimday(h)
and LDtarget (h) be the historical net load of one similar day
at hour h and a net load of the target holiday at hour h,
respectively. Thus, a mathematical approximation expressed
in (1) can be obtained.

LDtarget (h) ≈ αh × LDsimday(h)+ βh, (1)

where αh and βh represent the coefficients reflecting the load
difference between similar days and target holidays. In this
study, it is assumed that BTM PV generation forecasts and
estimated observations are available for the system operator.

This study aims to design a mathematical model that
adjusts the load profiles of similar days to that of the target
holiday. It is implemented by incorporating each factor-
induced effect on the load. Specifically, a rule-based similar-
day selection module is constructed to reflect the calendar
effect. It selects historical days according to the target holiday
type and the day of the week. In addition, the reconstituted
load method is utilized to compensate for the BTM PV
effect. Given the observed and forecasted values of BTM
PV generation, it compensates for the reduction in the load
profile caused by PV generation. The effect of the BTM
PV can be eliminated by applying the reconstituted load
method. In this method, the historical net load (NetLD(h))
is reconstituted by adding the given historical BTM PV
generation (GENBTM (h)) into the historical load as follows.

RLD(h) = NetLD(h)+ GENBTM (h) (2)
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TABLE 2. Classification of solar PV resources.

To forecast the net load (NetFcstLD(h)), the sys-
tem operator subtracts the forecasted BTM generation
(FcstGENBTM (h)) from the forecasted reconstituted load
(FcstRLD(h)) as follows.

NetFcstLD(h) = FcstRLD(h)− FcstGENBTM (h) (3)

Then, the trend and weather effects are isolated. The trend
effect is incorporated into (1). There are two key steps when
estimating the weather effect. First, weather feature selection
is performed to adaptively determine a set of input weather
features. Second, the WTSM is introduced to reflect the
weather sensitivity to the load and is determined by a genetic
algorithm (GA).

III. METHODOLOGY
The overall framework of the proposed STLF model is
illustrated in Fig. 1. The model consists of three modules:
a rule-based similar day selection module, a weather feature
selection module, and a load forecasting module where
similar days’ load profiles are modified using the weather
threshold and sensitivity matrix.

A. DATA SET
1) LOAD PROFILE AND PV GENERATION DATA
In this study, two datasets were established: observed data and
forecasted data. The former includes historical load profiles,
BTM PV generation, and weather observations. The latter
includes forecasted weather data and PV generation data.
Historical domestic load profile and PV data were acquired
from the Korea Power Exchange (KPX) with a 1-h temporal
resolution. The PV generation output is the aggregated
amount of generation from PV resources. PV resources in
Korea are mainly classified into three types according to their
trading mechanism, (a) participation in the wholesale electric
market, (b) power purchase agreement, and (c) net metering,
as shown in Table 2.

BTM PV resources refer to PV resources, and the hourly
generation of these resources is invisible to the system
operator [17]. Resource (a) participates in the wholesale
electric market; thus, such resources are observable to
the system operator. In this case, (b) and (c) are BTM
PV resources. As the penetration of BTM PV resources
increases, they cause a significant decline in the net load and
complicate the forecasting of load demand. In practice, the
load reconstituting method is applied by independent system
operators (ISOs) for load forecasting [18].

TABLE 3. Weather feature comparison dataset.

2) WEATHER DATA
Weather observation and forecast data from the Korean
Meteorological Administration (KMA) were obtained from
eight cities (Seoul, Suwon, Incheon, Wonju, Gwangju,
Daejeon, Daegu, and Busan). Weather observation data
were acquired from the KMA Automated Synoptic
Observing System (KMA-ASOS), and weather forecast
data were obtained from KMA Local Weather Fore-
casts (KMA-LWF) and Medium-Range Weather Forecasts
(KMA-MRWF).

KMA-LWF publishes weather forecasts eight times a day
every three hours. These 3-h interval data were transformed
into hourly data by linear interpolation to utilize weather
data for hourly load forecasting. Weather forecast data
were established considering the availability of data at the
forecasting time. Therefore, the forecasting data published
at 8:00 a.m. on the forecasting day were used in this
study. The weather dataset comprises a total of 20 weather
features, including primary and secondary weather features,
as shown in Table 3. The primary features refer to raw
weather data provided by the weather forecasting system,
and the secondary features refer to the features created via
feature engineering using primary features. In this study,
six primary features (TA, HM, RN, WS, CC, and SI) and
14 secondary features were adopted. Secondary weather
features include eight temperature-derived indices (TDIs):
CDH, XCR, HDH, XHR, TA06, TA12, TA24, and TA48; five
temperature-humidity–derived indices (THIs): TW, TD, HI,
WBGT, and DI; and one temperature-wind-speed–derived
index (TWI): WC. TDIs are derived by transforming TA, and
THIs and TWIs are created by combining primary features.
These features are introduced to reflect the compositive and
interactive weather effects beyond a single primary weather
feature [29].
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FIGURE 1. The overall framework of the proposed short-term load forecasting method.

FIGURE 2. Result of time series decomposition of the hourly load
demand over 10 years by the period of 8760 h.

FIGURE 3. Average load profile by DOW for normal days from
2017 to 2018.

B. SELECTING SIMILAR DAYS FOR HOLIDAYS
1) CHARACTERISTICS OF THE HOLIDAY LOAD PROFILE
Compared with normal days, holidays exhibit significant
reductions in electric energy consumption and abnormal

hourly load patterns. In this study, four attributes (calendar,
trend, weather, and BTM PV) were assumed to be the major
factors affecting load demand on public holidays. Each of
them affects the load profile at different time resolutions,
such as yearly, daily, and hourly frames. The trend effect is
observed by time series decomposition, as shown in Fig. 2.
The overall load consumption has such a trend every year.
The calendar attributes create an intraweek cyclic pattern and
level along with the day of the week (DOW). Fig. 3 displays
the average load profile according toDOWof two years (2017
and 2018). From Tuesday to Friday, the load profiles follow
similar patterns. AlthoughMonday is also aweekday, the load
profiles in the morning hours are low. Saturdays and Sundays
are distinguished from each other by daytime load profiles.
Based on the shape of their intraday patterns, they can be
classified into four DOW groups as follows:

DOW1 = {Mon}
DOW2 = {Tue, Wed, Thu, Fri}
DOW3 = {Sat}
DOW4 = {Sun}

In Korea, there are 13 public holidays, most of which
follow the Gregorian (solar) calendar, which has fixed dates.
However, some Asian cultural countries have holidays that
follow the lunar calendar [30]. In Korea, Lunar New Year,
Korean Thanksgiving, and Buddha’s Birthday follow the
lunar calendar. Depending on the year, the Gregorian dates
for holidays following the lunar calendar span almost a
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FIGURE 4. Electricity demand on mondays for three weeks, compared
with those on corresponding holidays (New year’s day and
christmas day).

month. Therefore, it is important to separately correct the
load demand difference due to the weather difference when
performing STLF utilizing the historical load profiles of
corresponding holidays. Table 4 describes 13 holidays in
Korea, following the lunar calendar (L) or solar calendar (S),
and the ranges of their Gregorian dates. Lunar New Year
(Seollal) and Korean Thanksgiving (Chuseok) include three
consecutive holidays; thus, each of them is distinguished by
a number that follows their abbreviated labels. On holidays,
an abnormal electric load pattern and level arise. In Fig. 4, the
electric load profiles on Monday for three weeks (December
25, 2017, January 1, 2018, January 8, 2018, which are
Christmas Day, New Year’s Day, and normal Monday,
respectively). Although they are all Mondays, they show
different patterns and levels. The load profiles of New
Year’s Day and Christmas Day demonstrated much lower
consumption than that of the following normal day on the
same DOW. Given each line plot with dot-shaped markers,
which refer to New Year’s Days, the daily load profiles
of New Year’s Days do not follow the typical pattern
according to their DOWs, and they exhibit a unique pattern
regardless of them. Conversely, by observing the load profiles
represented as line plots with triangular-shaped markers,
it can be observed that Christmas Days’ load profiles exhibit
a different pattern based on their DOWs. The load profile of
Christmas Day on Sunday (December 25, 2016) showed a
drastic decrease of levels during the day compared with those
of a Monday (December 25, 2017) and a Tuesday (December
25, 2018). It can be inferred that the hourly load pattern of a
holiday follows either a typical pattern of its DOWor a unique
pattern of its holiday type.

For a comparison of the shapes of holidays’ load profiles,
the historical load profiles were normalized according to (4).
The normalized daily load profile was determined by dividing
the hourly electricity load by the sum of that day, such
that the integral of the normalized profile for each day
becomes 1 [31].

Vt = Pt/
∑

Pt (4)

TABLE 4. List of korean holidays.

FIGURE 5. Mean squared error (MSE) of the normalized load pattern
between holidays and the normal days preceding and following the
holidays for one week. The data cover ten years from 2010 to 2019.

Fig. 5 presents the mean squared error of the daily
normalized load patterns between holidays and the nearest
normal days that precede or follow each holiday. The normal
days that are parsed to calculate dissimilarities with the
target holiday have the same DOW as the target holiday.
In addition, some holidays (NYD, LN1–LN3, and KT1–
KT3) show relatively high dissimilarity with the normal
days preceding and following them. Therefore, they are not
likely to follow a typical load pattern based on their DOW;
rather, they follow their unique patterns. It is concluded
that two calendar attributes–holiday type and DOW–affect
load profiles of holidays. Based on their characteristics of
load patterns, holidays can be classified into the following
categories:
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FIGURE 6. Framework of rule-based similar day selection module.

TABLE 5. Comparison of the ratio (%) of electricity consumption.

(1) Type I holidays: The load pattern follows their holiday-
type characteristics.

(NYD, LN1∼LN3, and KT1∼KT3)
(2) Type II holidays: The load pattern follows their DOW

characteristics.
(IMD, ELD, LBD, CHD, BDD, KMD, KID, NFD, HGD,

and CHR)
Table 5 shows the ratio of the daily electricity consumption

of holidays and the average electricity consumption of normal
days in the previous three weeks with the same DOW as
the holiday. In general, electricity consumption on holidays
considerably decreases compared to that of normal days
(up to 10.1 %p), but when holidays fall on weekends,
no significant decrease is recorded (up to 1.4 %p). It can be
inferred that weekends close in time to the target holidays
show similar levels of electricity load consumption. If the
target holiday is a Type II holiday and falls on weekends, its
load profile might be similar to that of recent weekends.

Some Type II holidays are in temporal proximity with each
other. Referring to Table 6, Labor Day, Children’s Day, and
Buddha’s Birthday are all held in May. Likewise, National
Foundation Day and Hangul Day are both in early October,
showing similar load patterns if they are in the same DOW
group. The indicated characteristics of holidays’ load profiles
are summarized as follows:

(1) A load profile of a holiday follows either a typical
pattern of its DOW or a unique intraday pattern according
to its holiday type.

(2) If a Type II holiday falls on a weekend, its daily load
consumption is similar to that of the recent normal weekends.

TABLE 6. Average first difference of hourly scaled weather features.

(3) The load profiles of Type II holidays which are
in temporal proximity share similar patterns and levels
according to their DOW group.

2) RULE-BASED SIMILAR DAY SELECTION
In this study, a similar day is defined as a day with similar
calendar attributes to the target holiday and is considered a
similar calendar day. Therefore, the remaining weather and
trend effects can be isolated. In this paper, a similar day
selection (SDS) module employing a rule-based selection
algorithm has been proposed. The overall operation of the
SDS selection module is shown in Fig 6. Based on the
three characteristics of holidays’ load profiles, the SDS
module classifies four selection cases from three conditional
statements. Once the selection case is determined, the most
recent three days that satisfy the conditions for each case are
finally selected as similar days. The three sets of candidates of
similar days are listed as follows: 1) corresponding holidays
in preceding years, 2) recent weekends, and 3) other holidays
in temporal proximity. A mechanism to select holidays in
temporal proximity with the target holiday has been proposed
to optimize the historical load profiles. The two benefits
of including holidays in temporal proximity as candidates
of similar days are as follows: 1) more recent data can be
utilized, and 2) the shortage of corresponding holiday data
can be overcome.
Case A: For Type I holidays, similar days were selected

based on the rule of Case A. Since Type I holidays follow
their unique load patterns, their similar days are selected from
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FIGURE 7. Four stages of the weather feature selection module.

the corresponding holidays in preceding years regardless of
their DOW group.
Case B: For Type II holidays that fall on weekends, the

most recent three days of the same DOW were selected as
similar days.
Case c: In this case, the target holiday is a Type II

holiday, which is nearer to other holidays. The candidates of
similar days include the corresponding holidays of preceding
years and other holidays in temporal proximity. Among these
candidates, the most recent three days that are in the same
DOW group with the target holiday are selected as similar
days.
Case D: In this case, the target holiday is a Type II holiday,

and no other holidays in temporal proximity exist. Thus, the
candidates of similar days are the corresponding holidays of
preceding years. Among these candidates, the most recent
three days that are in the same DOW group with the target
holiday are selected as similar days.

C. SELECTING INPUT WEATHER FEATURES
Through the weather feature selection (WFS) module, a set
of input weather features is determined by selecting some
features among a total of 20weather features from the dataset.
The weather dataset includes various weather features;
however, the use of only a subset of input weather features
by removing features irrelevant to the target and redundant to
other features is more efficient. In this section, the proposed
procedure of feature reduction and selection to effectively
estimate the weather-induced load demand is illustrated. This
procedure follows four stages as shown in Fig. 7. In Stage 1,
the primary weather features that have low compatibility
between observation and forecast are removed. Then, the
following three stages are performed for the remaining
weather features for each target holiday; thus, the overall
stages can adaptively determine the set of input weather
features.

1) WFS: STAGE 1. REMOVE PRIMARY FEATURES WITH
POOR ACCURACY
In Stage 1, the observed/forecasted primary weather data
are analyzed to measure their correspondence. Each weather
feature has a different unit, as presented in Table 3. Weather

FIGURE 8. (a) Boxplot of the observed primary weather features from
January 1, 2017, to December 31, 2019. (b) Squared forecast error of the
primary weather features from January 1, 2017, to December 31, 2019.
(c) Absolute scaled error of the primary weather features from January 1,
2017, to December 31, 2019.

features are scaled in the range [0,1] based on the observed
weather data according to (5) to make them scale-free and to
analyze their distribution.

Wt =
Wt −Wmin

Wmax −Wmin
(5)

This study focuses on the distribution of scaled weather
features and weather forecasting errors to evaluate the
compatibility and usefulness of each feature. Moreover, it is
essential to evaluate the primary weather features because
weather forecast errors can lead to load forecasting errors.
Fig. 8 (a) presents a boxplot of the scaled value of observed
weather features for the recent three years (2017-2019). Each
horizontal line of the boxes represents the quartile of the
feature, and dots represent the outliers using the interquartile
range (IQR) rule.

As shown in Fig. 8 (a), the ratio of outliers in RN is
exceptionally high (20.05%) compared to other features,
especially compared to the SI, which has the second-highest
(3.29%) ratio of outliers. Given that the distribution of
precipitation values is concentrated at 0 because most of the
rain falls intensively during a specific period, it can be said
that the RN has high kurtosis. This can lead to poor estimation
of weather sensitivity because of the biased distribution of
features. Fig. 8 (b) shows a scatter plot of the squared forecast
error of the scaled primary weather features. Besides, the
forecast error ofWS is extraordinarily high and variant. Given
that all features are scaled into a range of 0 to 1, the forecast of
CC also presents a substantially high error. It can be inferred
that the forecasts and observations for WS and CC are not
compatible. Fig. 8 (c) shows the absolute scaled error (ASE)
of the primary weather features. The ASE is an accuracy
metric of forecasts that is independent of the scale of the data.
According to (6), it is defined as the difference between a
forecast and an observation divided by the average one-step
naive forecast computed in-sample. It can replace the mean
absolute percentage error (MAPE), which is likely to produce
infinite values due to division by zero [32]. The scaled
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FIGURE 9. Plot of low-variance features—CDH, HDH, XCR, XHR. CDH and
XCR show quasi-constant values in winter and so do HDH and XHR in
summer.

weather features can have zero values; therefore, an ASE is
adopted to evaluate the forecast accuracy. In Fig. 8 (c), both
RN and WS show a high and variant ASE.

ASE t =

∣∣∣∣∣ et
1

n−1 ×
∑n

i=2 |Yi − Yi−1|

∣∣∣∣∣ (6)

Table 6 shows the average absolute value of the first
difference for both the hourly observation and forecast of
primary weather features. The first difference values of the
observation and forecast of RN, CC, and WS are very
different from each other. Three primary weather features
(RN,WS, and CC) exhibit the following characteristics: high-
kurtosis, high forecasting error, and inferior correspondence
between the observed and forecasted data. Thus, in this study,
these three primary features were removed from the set of
input features.

2) WFS: STAGE 2. REMOVE THE FEATURES WITH LOW
VARIANCE
Fig. 9 shows that some weather features, especially
temperature-derived features (CDH, HDH, XCR, and XHR),
are quasi-constant during a specific period. They are intro-
duced to reflect the cooling and heating load consumption and
occur only when the dry temperature is higher or lower than a
specific value. This means that these features have a variance
close to zero when the dry-bulb temperature value does not
meet such conditions. Features with low variance are assumed
to have no effect on the load demand and are included in the
final set of input weather features based on their variance.
For example, HDH and XHR do not affect the load profile
during the days of midsummer, and neither does CDH and
XCR during the days of winter. Therefore, in Stage 2, weather
features with a variance lower than a predetermined small
variance threshold were filtered out.

3) WFS: STAGE 3. SELECT SECONDARY FEATURES
ADAPTIVELY
Certain weather features are valid only for a specific period.
Since secondary weather features are created by combining
or transforming primary features, their physical character-
istics that are related to the load demand are considered.
Fig. 10 shows that the heat index becomes a humidity-
dependent variable when the temperature is considerably

FIGURE 10. Dry-bulb temperature, relative humidity, and heat index.
While heat index is a weather feature to show the complex effect of
dry-bulb temperature and relative humidity, it shows a larger value in
winter than in summer.

low. Although the heat index was introduced to measure the
combined effect of relative humidity and air temperature, its
value is higher in winter than in summer. This is because
simple mathematical calculations based on formulas can
produce irrational results. Thus, secondary weather features
must be selected adaptively depending on the target holiday.
KMA provides the forecast value of ‘‘discomfort index’’ and
‘‘heat index’’ only for 4 months from July to September.
In addition, the ‘‘windchill’’ forecast is available for only
5months, fromNovember toMarch. Referring toKMA, three
weather features (DI, HI, and WC) are selected only if the
target holiday is included in the period depicted above.

4) WFS: STAGE 4. APPLICATION OF CFS
The WFS procedures select features that involve two
characteristics: 1) relevance to the target feature and 2) not
being redundant with the other weather features. Thus,
a correlation-based feature selection (CFS) approach is
considered for determining the input features of the proposed
model. The CFS uses a correlation-based heuristic as a metric
to evaluate the goodness of features [33]. By adopting the
CFS approach, the number of features can be reduced, and
‘‘multicollinearity’’ can be prevented. The CFS approach
considers the correlation coefficients of feature-to-output
and feature-to-feature. The original CFS method adopts a
heuristic to evaluate a subset of features as follows:

MeritS =
k ¯rcf√

k + k(k − 1) ¯rff
, (7)

where
k : number of features in S;
¯rcf : average feature class (target) correlation;
¯rff : average feature–feature intercorrelation.
Starting with an empty set, a search strategy (usually the

best-first searching algorithm) expands a feature subset by
adding a single feature and finally chooses the best subset
of features. However, when the original heuristic expressed
in (7) was applied, either an extremely high or extremely
low number of features was selected. Thus, in this study,
only the main idea of the CFS approach was adopted by
considering features that were highly correlated to the target
and removing those that were highly intercorrelatedwith each
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other. The process of the proposed WFS method is presented
in Algorithm 1.

Algorithm 1 : Stage 4 - WFS Algorithm
Input: RLD (Reconstituted load)

Winit =
{
wtx |ρRLD,wta ≥ ρRLD,wtb , (1 ≤ a ≤ b ≤ N )

}
(A set of weather features)

Output:Winput (A set of input weather features)
Initialize: k ← 1;Winput ← ∅;Wremoval ← ∅;

while k ≤ N do
Gk = {wtx |ρwtx ,wtk ≥ threshold, k < x ≤ N
if wtk /∈ D then
Winput ← Winput ∪ {wtk}
Wremoval ← Wremoval ∪ Gk

else
pass

end
k ← k + 1

end

The proposed WFS method is a simple and fast ‘‘rank-
and-select’’ method. First, the total N weather features are
ranked according to the correlation coefficient with the
target feature (load demand) from the first to the N -th
features. Two empty sets were initially defined for features
that include the selected features (Winput ) and removed
features (Wremoval). The weather feature searching process
is performed iteratively in the order of the ranking of each
feature. For the k-th weather feature, wtk , a setGk of features
highly correlated with wtk is determined by a predefined
threshold value (0.8). If wtk has not yet been included in
Winput and Wremoval , then wtk is added to Winput and all
elements of Gk are added to Wremoval . Finally, after the
searching process is over, Winput has features that are highly
correlated with the target value, andWremoval has features that
are highly correlated with the features included inWinput .

D. FORECASTING BASED ON LOAD MODIFICATION
BY WTSM
After selecting similar days and determining a set of input
weather features for the target holiday, in this module,
weather-induced load between a similar day and target
holiday is estimated using WTSM according to the following
procedures:
Step 1: Determine a WTSM for a pair of the target holiday

and a similar day.
Step 2: Produce a modified load profile for a similar day

by applying a ‘‘load modifying function’’ that takes WTSM
as an input argument.
Step 3: Make a final load forecast by calculating the

weighted average of themodified load profile for each similar
day obtained from Step 2.

A four-dimensional matrix WTSM,M i,j for target holiday
and similar day, was defined by concatenating four matrices,
as shown in (8).

[
TH i,j(t,w)

]
is a ‘‘threshold matrix’’, and

[
WTSi,j(t,w)

]
is a ‘‘sensitivity matrix’’. As presented in (9)

and (10), each matrix is a two-dimensional array whose rows
and columns represent ‘‘time slot’’ and ‘‘weather feature,’’
respectively. The parameter t indicates ‘‘time slot,’’ and a
parameter w indicates each ‘‘weather feature,’’ which is an
element of a set of input weather features,Winput . A time slot
t is defined as a section divided into equal intervals for 24 h
per day. Therefore, th is defined as the time slot at hour h.
A threshold matrix contains the value of weather data and can
determine the applicability of the weather sensitivity matrix.
In weather-sensitive seasons, the electric load responds to
changes in weather, but under certain weather conditions,
it may be insensitive. This means that the electric load does
not respond monotonically to changes in weather. Thus, a
threshold matrix is introduced to reflect this nonlinearity
between the load and weather. A sensitivity matrix contains
the value of load-weather sensitivity for each weather feature.
The load-weather sensitivity varies over time; thus, the
response of the load demand to changes in weather conditions
is not consistent over time. In this study, a total number of
time slots was considered as T = 4.

M i,j =

[
[THupper

i,j (t,w)] [WTSupperi,j (t,w)]
[TH lower

i,j (t,w)] [WTSloweri,j (t,w)]

]
(8)

[
TH i,j(t,w)

]
=

TH i,j(1,w1) · · · TH i,j(1,wN )
...

. . .
...

TH i,j(T ,w1) · · · TH i,j(T ,wN )


(9)

[
WTSi,j(t,w)

]
=

WTS i,j(1,w1) · · · WTS i,j(1,wN )
...

. . .
...

WTS i,j(T ,w1) · · · WTS i,j(T ,wN )


(10)

Taking WTSM as one of the input arguments, the load-
modifying function f is defined as shown in (11). It takes
several arguments related to two time periods, i(in this case,
a similar day) and j(in this case, a target holiday), and outputs
the array of modified load for 24 h (MLoad i,j).

f : MLoad i,j = f



M i,j,

GRji,
RLoad i,
WT fcstj ,

WTobsi ,

SOLj


(11)

MLoad i,j =
[
MLoad i,j (h)

]
(12)

RLoad i = [RLoad i(h)] (h = 0, 1, · · · , 23) (13)

MLoad i,j(h) = GRji × RLoad i(h)

+

∑
w∈S

{(
WT fcstj (h,w)−WT obsi (h,w)

)
×

(
WTSupperi,j (th,w)× U (h,w)
+WTS loweri,j (th,w)× L (h,w)

)
−BTM j(h)

}
(14)
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GRji =

∑j
d=j−365days

∑h=23
h=0 RLoadd (h)∑i

d=i−365days
∑h=23

h=0 RLoadd (h)
(15)

U (h,w) =

{
1 if WT fcstj (th,w) > THupper

i,j (th,w)

0 otherwise
(16)

L (h,w) =

{
1 if WT fcstj (th,w) < TH lower

i,j (th,w)

0 otherwise
(17)

where

GRji : ratio of the total load consumption in
the previous 365 days from day j
and dayi;

RLoad i(h) : reconstituted load
on dayi at hour = h;

WT fcstj (h,w) : weather forecast of weather
feature w at hour = h on day j;

WT obsi (h,w) : weather observation of weather
feature w at hour = h on day i;

WTSupper (th,w) : weather sensitivity
value of weather feature w at
timeslot = th when U (w, h) = 1;

WTS lower (th,w) : weather sensitivity
value of weather feature w at
timeslot = th when L (w, h) = 1;

BTM j(h) : BTM PV generation forecast
at hour = h on day j.

The hourly modified historical load of a similar day is
obtained using (14) by incorporating four major factors. The
BTM PV and calendar effect are incorporated by employing
the reconstituted load method and similar day selection; thus,
the remaining two major factors are isolated. The coefficient
GRji is multiplied by the historical hourly load profile to
consider the yearly load demand increase. The summation
term in (14) incorporates the effect of weather on the load
profile. When the threshold conditions (16) and (17) are
satisfied at hour h, the weather effect is incorporated by
adding a weather-induced load. For the selected weather
features, weather-induced load terms were added every hour.
The forecasted BTM PV generation over hours is subtracted
to forecast the net load of the target holiday. The problem P0
is designed to determine the optimal WTSM that minimizes
the error rate (MAPE) between the modified load and real
load, as shown in (18). Avg (X) returns the mean value of all
elements in matrix X , and X |∗| converts every element to its
absolute value. The subscripts i and j denote similar days and
target holidays, respectively.

P0 : min
M i,j

g0
(
M i,j,

)
g0
(
M i,j,

)
= Avg

((
MLoad i,j − Load j

Load j

)|∗|)

= Avg


1

Load j


f



M i,j,

GRji,
RLoad i,
WT fcstj ,

WTobsi ,

BTM j


− Load j



|∗|
(18)

However, it is impossible to know the future real load of
the target holiday, Load j, while performing load forecasting.
Thus, the following two assumptions are made and an
alternative approach is proposed to overcome this limitation.
Assumption 1: The set of input weather features related to

the load is similar within a short period.
Assumption 2: The amount of change in the electricity

demand in response to weather changes on one day is similar
to that of the adjacent period.

Thus, the RP is introduced to utilize known data. It refers
to the period that covers the preceding normal days adjacent
to a specific day, as shown in Fig. 11. Each RP, Ref i and
Ref j, illustrated in Fig. 11, has the same length (7 days) and
consists of days in the same order. Based on the above two
assumptions, M i,j, which is to be determined, is coupled
with MRef i,Ref j , which is the WTSM between Ref i and
Ref j. For both RPs, weather, load profiles, and BTM PV
generation data are available. Finally, f and g are related,
and the optimization problem P1 is designed to determine the
optimal WTSM in (19).

P1 : min
MRef i,Ref j

g1
(
MRef i,Ref j

)
g1
(
MRef i,Ref j

)
=Avg

(MLoadRef i,Ref j − LoadRef j
LoadRef j

)|∗|

=Avg


1

LoadRef j


f



MRef i,Ref j ,

GRji,
RLoadRef i ,
WT fcstRef j

,

WTobsRef i
,

BTMRef j


− LoadRef j



|∗|
(19)

The GA, which is a search process based on the laws
of natural selection and genetics, was adopted in this study
to find an optimal MRef i,Ref j [34]. The key advantage of
using a GA is in its computational efficiency. It is suitable
for handling nonlinear objective functions and constraints
for multiple decision variables. For the coupled problem P1,
the objective function g1(MRef i,Ref j ) is a nonlinear and non-
differentiable function, and the number of decision variables,
all elements of MRef i,Ref j , is large. Other methods such as
the least-square method and the gradient method often fail
in the search if the model structure is not differentiable or
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FIGURE 11. The reference periods for a target holiday and a similar day. They are introduced to design the alternative
problem (P1).

linear in parameters [35]. The real-coded GA is implemented
by employing the following steps:
Step1 (Initialization): Randomly generate the initial

population with population size Np.
Step2 (Evaluation of objective function for the initial

population): Evaluate each chromosome in the initial pop-
ulation using objective function values.
Step3 (Copy): Copy and transfer the fittest chromosomes

to the next generation by the elite ratio Pe.
Step4 (Selection): Select parents among the chromosomes

of the current generation by the ratio of the parents’ ratio Ppto
reproduce the population of the next generation.
Step5 (Crossover): Produce a new generation by combin-

ing the parents selected from the Selection phase with the
probability of Pc.
Step6 (Mutation): Replace the randomly selected original

genes in each chromosome with random values using the
probability of Pm.
Step7 (Evaluation of objective function): Evaluate each

chromosome in the current population using objective
function values.
Step8 (Termination condition check): Check if the termi-

nation condition is satisfied. If yes, terminate the iterative
procedure.
Step9 (Repeat steps): If the termination condition is not

satisfied, repeat Step3–Step8 until the termination condition
is satisfied.

Conventionally, the termination condition ends the search
when an upper limit on the number of generations is
reached [36]. OnceWTSM linked to a pair of similar day i and
target holiday j has been determined asM∗i,j through GA, the

final value of the objective function is vi = g1
(
M∗i,j

)
. The

daily load prediction results are generated for each selected
similar day through (14). Weighted averaging was adopted
to combine these results. Each weight for a modified similar
day’s load is determined based on the final value of the
objective function, vi. The weight of the modified load profile
of similar day i is defined in (20).

ui =
1/vi∑Ns
l=1 1/vl

, (20)

where

ui : combination weight for a similar day i;
vi : the final value of the objective function of GA

for a similar day i;
Ns : number of similar days for the given target holiday

Finally, the forecasted daily net load profile of a given
target holiday is expressed as follows:

NetFcstLD(h) =
∑Ns

l=1
ul ×MLoad l,j(h) (21)

IV. CASE STUDY
In this section, the proposed method is compared to three
benchmarks—the fuzzy linear regression, XGBoost, and
LSTM. They were tested on holidays in 2018 and 2019. The
fuzzy linear regression has been adopted as a method for
short-term load forecasting on holidays by KPX, the ISO of
Korea. MAPE and RMSE were used as the evaluation metric
for accuracy; it is expressed as follows.

MAPE =
1
H

∑H

h=1

∣∣∣∣∣ Ŷh − YhYh

∣∣∣∣∣× 100(%), (22)

RMSE =

√
1
H

∑H

h=1
(Ŷh − Yh)

2
, (23)

where
Ŷh : forecasted load at hour h (MW);
Yh : actual load at hour h (MW);
H : forecasting time horizon (hours)
The details of the GA parameters applied to the proposed

method are illustrated in Table 7.

TABLE 7. Parameters of the genetic algorithm.

The schemas in the datasets used in this case study are
described in Table 8.
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TABLE 8. Description of datasets: The starting point of acquired data.

FIGURE 12. Load forecasting for New Year’s Day (Tuesday, Jan. 1, 2019).
(a) Actual load profiles of similar days and the target holiday.
(b) Predictions from each similar day and the forecasted load of the
target holiday.

Holiday load forecasting was performed for New Year’s
Day (Type I holiday) and Korean Independence Day (Type II
holiday) in 2019 for 24 h using the proposed method. Both
holidays fall in the weather-sensitive season (winter and
summer).

NewYear’s Day is a Type I holiday; therefore, according to
the rule illustrated in Fig. 6, the corresponding holidays of the
preceding years are selected as similar days. Fig. 12(a) shows
the actual load profiles of the target holiday and similar days.
They share similar intraday load patterns, but their daily
energy consumption differs. Fig. 12(b) shows the modified
load of each selected similar day and the final forecasted
net load, which is the weighted sum of the modified loads.
These values converged to the actual load profile of the
target holiday, and the forecasting error (MAPE) was 3.29%.
Through the WFS module, four weather features were
selected for the target holiday. Fig. 13 shows the scaled

FIGURE 13. Weather-induced load between (a) the target holiday (Jan. 1,
2019) and (b) the similar day (Jan 1, 2017).

FIGURE 14. Weather-induced load between the target holiday (Jan. 1,
2019) and the similar day (Jan. 1, 2017).

weather forecast and observation of a pair of the target and
similar days. The overall temperature and relative humidity
of the target holiday were lower than those of a similar day.
This can lead to a higher heating load and less lighting load
on the target holiday. Fig. 14 presents the hourly weather-
induced load of New Year’s Day due to different weather
conditions between the target holiday and a similar day. Given
the positive weather-induced load caused by the difference in
HDH and TA12, it can be inferred that the proposed method
estimated the weather effect correctly.

Since Korean Independence Day falls in the weather-
sensitive season, its load forecast error rate is usually
high. In addition, the heatwave period and rainy season
in summer may likely overlap within this day, and a
continuous and cumulative effect of high temperature can
occur. Figs. 15(a) and (b) show the case of load forecasting
on Korean Independence Day in 2019. According to the SDS
rule, corresponding holidays in the same DOW group are
selected as similar days. Fig. 15(b) shows the modified load
profiles of the selected similar days. The forecasting error
of the proposed method was 2.30%. Fig. 16 shows that the
similar day was cooler and rainier than the target holiday;
therefore, the weather conditions of these days were different.
It can be inferred that fewer cooling requirements and more
lighting load on the target holiday occurred. Fig. 17 shows
the weather-induced load between the target holiday and
one of the similar days and reveals that the decrease in
the load demand was induced by the difference in dry-
bulb temperature, temperature averaged over 24 h, wet-bulb
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FIGURE 15. Load forecasting for Korean Independence Day (Thursday,
Aug. 15, 2019). (a) Actual load profiles of the similar days and the target
holiday. (b) Predictions from each similar day and the forecasted load of
the target holiday.

FIGURE 16. Weather-induced load between (a) the target holiday (Aug.
15, 2019) and (b) the similar day (Aug. 15, 2018).

temperature, extra-cooling requirements, and humidity
between the similar day and the target holiday.

It took approximately 9,313 s to forecast the load demand
on holidays subject to the case study, and it was found
that it takes 282 s on average for each holiday. The results
were obtained on a PC with Intel Xeon 16Core (2.1Ghz)
and 128 GB RAM. Table 9 shows the forecasting errors of
the proposed method and fuzzy linear regression.

The proposed method in Table 9 shows that the average
annual MAPE in 2018 and 2019 was 1.76% and 2.62%,
respectively, improving forecasting accuracy in comparison

FIGURE 17. Weather-induced load between the target holiday (Aug. 15,
2019) and the similar day (Aug. 15, 2018).

TABLE 9. Holiday load forecasting results: MAPE (%).

TABLE 10. Holiday load forecasting results: RMSE (MW).

with benchmarks models. Specially, compared to the fuzzy
linear regression, which is the benchmark model with
the best forecasting accuracy, the decreases in the MAPE
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TABLE 11. Holiday load forecasting results: Variance of hourly MAPE.

values are approximately 1.11%p and 1.06%p in 2018 and
2019. Table 10 shows the RMSE comparison values using
2018 and 2019 data. The proposed method in this table
shows a significantly smaller RMSE value compared to the
benchmark models. These results prove that the proposed
model is excellent not only in prediction accuracy but also in
prediction precision. The prediction accuracy of LSTM and
XGBoost models is lower compared to other models. It is
presumed to be due to the limitation of the amount of training
data depending on the characteristics of holidays that lack
past data. In particular, such a phenomenon is well confirmed
on holidays (LN1-3, KT1-3) following the lunar calendar.

Table 11 shows the variance of the hourly MAPE, a metric
used to evaluate the stability of the forecasting accuracy.
A small variance of the hourly forecast error means that
the intraday patterns of the predicted load profiles and
real profiles are consistent. The proposed method showed a
smaller overall variance than the other benchmark models.
This implies that the hourly pattern of the load forecasting
result of the proposed method is consistent with that of the
actual load profile.

To verify the effectiveness of the proposed method, three
variations of the proposed framework were created, and
their performance was each evaluated using the MAPE.
A description of each variation is as follows.

1) V1: A model that reflects only the trend, calendar, and
BTM PV effect. This model adopts all three modules
in the proposed framework, while all elements of the
WTSM are applied to load modification that is equal to
zero, so the weather-induced load is ignored.

2) V2: A model that reflects the trend, calendar, BTM PV,
andweather effect. Thismodel adopts all threemodules
in the proposed framework, while not any combination
method of the modified similar days’ load profiles is
applied.

3) V3: A model that reflects the trend, calendar, BTM
PV, and weather effect. This model adopts all three
modules in the proposed framework whereas a simple
mean method is applied for combining the modified
similar day’s load profiles.

4) V4: A model that reflects the trend, calendar, BTM
PV, and weather effect. In addition, it adopts all
three modules in the proposed framework, and the
combination method based on weighted average is
applied to it. V4 equals the final framework proposed
in this paper.

FIGURE 18. Graphical comparison of load forecasting error (MAPE) for
holidays in (a) 2018 and (b) 2019 for the proposed framework (V4) and its
variations (V1∼V3). The yearly average value of MAPEs of V3 is 1.83% in
2018 and 2.67% in 2019. As shown in Table, the yearly average value of
MAPEs of the proposed framework is 1.76% in 2018 and 2.62% in 2019.

Figs. 18 (a) and (b) show the MAPE for holidays in
2018 and 2019, respectively. In the case of V1 and V2,
the height of the bars of Fig. 18 is the average value of
the MAPEs comparing the actual net load with the similar
days’ modified load profiles. The vertical lines represent their
confidence interval. V1 had a larger mean of the MAPEs
than V2, because V1 does not consider weather effects in
forecasting. Judging from the fact that the confidence interval
of the MAPEs of V2 is smaller than that of the V1, which
means that themodified load profiles converge together, it can
be inferred that the proposed framework effectively reflects
weather effect by including various weather features and
selecting input weather features. The combining methods are
adopted to V3 and V4; thus, the height of the bars stands
out of the MAPE of the final load forecast results. As shown
in Fig. 18, V4 had the best performance. Furthermore,
by comparing the yearly mean value of the MAPEs between
V3 and V4, it can be concluded that the performance of load
forecasting has been improved in both years by applying the
proposed combining method.

V. CONCLUSION
In this study, a framework for holiday load forecasting that
integrates four significant factors, calendar, trend, weather,
and BTM PV, was proposed. The main idea of the proposed
framework was to forecast a target holiday by modifying
historical load profiles of similar days and combining them.
A rule-based SDS module was introduced to reflect the
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calendar effect. An adaptive WFS was introduced into the
proposed framework to determine a set of input weather
features. The mathematical model adopting a load modifying
function was designed to integrate the trend and weather
effect. For the quantification of weather-induced load,
aWTSMwas defined and determined byGA. Compared with
the traditional fuzzy linear regression method, the proposed
method achieves better forecasting accuracy with a yearly
averaged MAPE of 1.76% and 2.62% for Korean holidays in
2018 and 2019, respectively. Furthermore, the results show
that the proposed method is stable, given the fact that the
variance of the forecasting error is low.

The extension of the proposed framework can be applied
to day-ahead load forecasting for holidays to enhance
forecasting accuracy. First, the described method of selecting
weather features based on the analysis of the collected
weather data can be a used as a guide to determine a
set of input weather features. Second, the introduction of
the WTSM used to reflect nonlinearity and time-variant
properties of the weather has the advantage of quantitatively
grasping the change in the demand of electricity based on the
weather features from the perspective of the system operator.
Finally, the described approach to determine the weights for
combining modified load profiles can also be utilized. Future
work will be focused on developing the proposed framework
for more challenging work, such as reducing forecasting
errors attributed to the inaccuracy of BTM PV generation
forecasting.
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