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ABSTRACT Automotive radar sensors are vital in Advanced Driver Assistance Systems (ADAS). To be
more precise, their ability to explicitly measure the relative velocity to its targets is essential in Adaptive
Cruise Control (ACC) and Emergency Braking (EB) applications. Nevertheless, ADAS are getting more
and more complex, due to constantly increasing demands regarding safety and performance. As a result,
to speed up the development and validation time of ADAS, part of the testing is performed in simulations.
Replacing some of the test drives by the runs in virtual environments not only reduces the cost of a product,
but also helps in fully safe execution of dangerous corner cases. However, to enable reliable testing of radar-
based ADAS in virtual environments, high-fidelity radar sensor models are required. In order to prove the
reliability of a given model, a proper evaluation process has to be conducted. This paper presents an end-
to-end, straightforward methodology for performance assessment and fine-tuning of radar sensor models.
To show how the full pipeline of the framework can be executed, an exemplary radar sensor model has been

incorporated. The successful fine-tuning of the model proves the usefulness of the introduced method.

INDEX TERMS Mathematical modelling, sensor modelling, simulation, radars, virtual validation.

I. INTRODUCTION

In recent years the automotive industry has focused on the
intensive development of Advanced Driver Assistance Sys-
tems (ADAS), e.g. Emergency Braking (EB) or Adaptive
Cruise Control (ACC), that support a driver in dangerous
situations and, if necessary, take the control of a car. Usually,
such applications have the following parts: sensing, object
detection and decision making. Sensing and object detection
modules are oftentimes coupled, forming an automotive per-
ception system. The perception module has two main roles.
First, to gather measurements from a given sensor, such as
camera, lidar or radar. Then, based on raw sensor measure-
ments, to fit an oriented bounding box (OBB) to each object
that is visible from the sensor perspective. A list of OBBs
generated in a given scene is called object list. It is worth
mentioning, that an automotive perception system can also
use multi-sensor data as an input. In that case, a high-level
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fusion of outputs from multiple object detectors needs to be
performed.

Taking into account that complexity of ADAS is rapidly
growing, an immense effort must be made in order to prove
the robustness of a given system. Moreover, potential multi-
sensor input makes the system and its validation even more
complicated. To properly assess the reliability of an ADAS
in all possible road conditions and scenarios, a million miles
of test drives has to be conducted [1]. Performing such tests
entirely on the real road might be too time-consuming and
also expensive. Therefore, to reduce the cost of a product,
virtual environments are incorporated. It is mainly due to
the fact, that a high-fidelity simulation allows to verify the
system behaviour in any given road scenario (and under
different weather conditions) in a relatively short period
of time. Also, the reliability of the product itself can be
increased, since dangerous corner cases can be safely repro-
duced within a virtual environment. The process of testing
a real system in a simulation is usually called the virtual
validation.
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In order to make the virtual validation reliable and robust,
the realism of a simulation should be proved. In other words,
3D scene rendered by a given simulator have to precisely
emulate a real scenario, including road profile, static objects,
objects in move and weather conditions. However, a photo-
realistic simulation itself is not enough to reliably test an
ADAS, e.g. ACC. To make the simulation robust, a proper
input to the ADAS, written in the same format as in the
production setup, has to be provided. In other words, sensor
models precisely imitating raw measurements of a real sensor
have to be incorporated into the virtual environment.

One of the key sensors that has to be considered within
the simulation is radar. Its measurements are sparse and noisy
compared to data provided by camera or lidar sensors. On the
other hand, an explicit measure of the relative velocity of
a target is provided, which is vital in applications like EB
or ACC. Also, weather conditions have a little influence on
radar performance. Unfortunately, free to use, state-of-the-
art simulation environments, e.g. [2], [3], lack accurate radar
sensor models [4].

Radar modelling task is challenging, due to the amount
of effects that highly influence its measurements, like micro
Doppler effect caused by rotating wheels or multi-path prop-
agation of the electromagnetic wave [5]. Nevertheless, radar
sensor modelling topic can be handled on many abstrac-
tion layers. According to [6], three main approaches can be
defined based on state-of-the-art research papers: black-box
models [7]-[9], that are usually based on deep neural net-
works, physical models explicitly simulating all radar effects
and components [10]-[13] and generic models that combine
deterministic geometrical models with the noise injection in
order to derive radar detections [14]-[16]. The choice of
the approach depends on the application. However, taking
into account the ratio of modeling and validation time to
the expected quality, a well-designed generic radar sensor
model (GRSM) can be treated (in most cases) as a good
compromise. For instance, there is no need to gather huge
amounts of training data that is a prerequisite for a neural-
network-based solution. Also, the number of components
to be emulated is significantly lower compared to physical
models.

According to the best knowledge of the authors, robust
radar sensor model being able to thoroughly reproduce radar
measurements in real-time still does not exist, regardless
of the virtual scene complexity. However, a novel GRSM
introduced in [16] can be treated as a good starting point for
further work, based on the results presented by the authors.
Nevertheless, before improving a baseline model, there is a
requirement to introduce some performance metrics, in order
to compare subsequent sensor model versions.

As shown in a comprehensive survey [17], evaluation of
simulation models is still an open research area. What is
more, the verification method strictly depends on an appli-
cation. The novelty of this paper is based on an introduction
of an end-to-end methodology for GRSMs evaluation. The
method provides a straightforward fidelity assessment of a
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given GRSM using a set of simple metrics. As a result, new
extensions added to the baseline model can be easily verified,
by checking if the overall sensor model performance has
improved. Also, thanks to the proposed method, fine-tuning
of a given model is easily achievable.

In order to prove the usefulness of the approach and to
show how the full pipeline of a performance assessment can
be carried out, the proposed validation framework has been
explicitly employed in the fine-tuning process of the GRSM
introduced in [16]. The obtained results clearly show that the
optimized model outperforms the one with the original set-
tings. The straightforward validation methodology together
with the successful fine-tuning of the GRSM is the main
contribution of that work.

The structure of this paper is organized as follows.
In Section II, a background of radar sensor modelling is pre-
sented. Section III shortly describes the incorporated GRSM.
In Section IV the details of the proposed validation frame-
work are depicted. Section V comprehensively explains the
evaluation process and the results of the sensor model fine-
tuning procedure.

Il. RADAR SENSOR MODELLING APPROACHES

As mentioned in [6], three main approaches for radar sensor
modelling can be found in the literature. This section presents
basics of automotive radar sensors operation and gives an
overview of the radar modelling techniques.

A. RADAR BACKGROUND

Radar (radio detection and ranging) is a sensor that transmits
a set of electromagnetic waves, which bounce off from var-
ious objects and static scenery. The electromagnetic echo is
captured by radar antennas and transformed from the time
to frequency domain using a digital signal processing unit.
Then, given the transformed signal, radar signal processing
algorithms extract the desired information from the clutter.
There are several radar sensor types but usually Frequency-
Modulated Continuous-Wave (FMCW) radars are employed
in automotive industry. FMCW systems are able to simul-
taneously measure radial distance to a given target and its
relative velocity w.r.t. the host vehicle. Additionally, FMCW
radars oftentimes use multiple transmitting and receiving
antennas. Thanks to an array of antennas, a measure of an
angle in the horizontal plane is enabled, calculated w.r.t. the
radar boresight. It is worth mentioning, that range, relative
velocity and angle to a point on a given object form a single
radar detection. As a consequence, considering these three
measurement sources, an FMCW radar can return multiple
detections per single target (e.g. car). A result of a single
scan through the radar field-of-view is then a point cloud of
detections. Please note that in some automotive applications a
radar detection can explicitly refer to an outcome of an object
detection algorithm (a so-called tracking process), that is used
to find an OBB for each object in the radar field-of-view,
based on the raw point cloud. Nevertheless, in this paper a
tracking part is separated from an FMCW scanning procedure
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and its product is called object list rather than detection
list.

Unfortunately, raw radar data (point cloud) obtained from
the radar signal processing chain is sparse and still contain
huge amount of ambiguities and noise. Therefore, a radar
sensor model should take this fact into account and generate
a synthetic point cloud of a high fidelity. What is more,
in order to enable the virtual validation of ADAS, the sensor
model integration with a given virtual environment is needed,
to make sure that the synthetic measurements are calcu-
lated in real-time and explicitly based on simulation data.
Additionally, a radar sensor model must have a configurable
mounting position and orientation, to support cases where
multiple radar sensors are mounted on a vehicle equipped
with an ADAS. An example way of handling this, is to define
mounting positions and orientations of each radar sensor (and
its corresponding model in the virtual environment) w.r.t.
to a fixed reference coordinate system. As a result, even
though each radar sensor returns a point cloud w.r.t. its own
coordinate system, transformations to the reference coordi-
nate system is possible, explicitly defined by the mounting
offsets. Despite the fact that an ultimate automotive simulator
does not exist yet [4], several tools for virtual validation are
available on the market, e.g. [2] or [3].

B. BLACK-BOX RADAR MODELLING

Considering current advances in architectures and training
processes of neural network algorithms, there is also a pos-
sibility to incorporate artificial intelligence in the radar mod-
elling area. In other words, it is feasible to find a mapping
from a simulation-based data to synthetic radar detections,
based on training data. That approach is called black-box
modelling, since there is no explicit implementation of the
radar model components. Several black-box radar models
have already been introduced in the literature [7]-[9] with
satisfactory results. However, taking into account the com-
plexity of the radar systems, development of a robust and
scene-independent black-box radar model would require an
immense amount of labelled data from wide range of road
scenarios. Unfortunately, data gathering and labelling pro-
cesses are both time-consuming and expensive. Therefore,
a more generic approach should be used for the radar sensor
modelling. In particular, there is a need of the model being
more independent from real data, so that it can be used in
virtual validation of ADAS in case real sensor suite is not yet
ready for test drives campaigns.

C. DETAILED RADAR MODELLING

An opposite way to create a radar sensor model is to explicitly
simulate all components of a given radar system from the
electromagnetic wave propagation to signal processing chain.
Such models are usually called physical models or white-box
models. The development of a white-box model itself is data-
independent and only small amount of data is required to fine-
tune a given model. That is a significant advantage compared
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to black-box modelling, where a labelled training dataset is a
prerequisite.

Physical models are usually based on ray-tracing algo-
rithms [10]-[12]. As shown in [12] a real-time implemen-
tation of a physical model in a simulation environment is
possible. However, a reliable emulation of the electromag-
netic wave propagation using simulation data and other radar
components require a bulk of computational resources. What
is more, due to the fact that all components of an automotive
radar system have to be explicitly emulated, the development
of a white-box model requires huge expertise in radar sys-
tems. In general, as a consequence, it is difficult and time-
consuming to implement and fine-tune a real-time capable
white-box radar sensor model.

D. GENERIC RADAR MODELLING

To simplify the development time of the radar sensor model
an alternative approach can be used. The goal is to derive
a set of synthetic radar detections (a point cloud) explicitly
using high-level simulation data - without detailed modelling
of the radar physics. To achieve that, a scattering-centers
concept known from radar cross-section studies can be used.
It states that the electromagnetic scattering from an elec-
trically large target can be approximated with a sparse set
of points - called scattering-centers (SCs) - located on that
target [14]. Each point (a single SC) corresponds to a single
radar detection, represented by range, relative velocity and
angle values. In other words, instead of emulating directly
the propagation of the electromagnetic wave together with
the signal processing chain, synthetic radar detections can be
obtained by generating SCs from a high-level simulation data
(so-called ground truth, i.e. set of bounding boxes). Unfor-
tunately, raw synthetic detections (SCs) do not encapsulate
physics of a given radar sensor. Therefore, a noise model has
to be additionally incorporated, to ensure that the synthetic
point cloud has similar stochastic properties to the real sensor
measurements.

In such a manner, generation of SCs is sensor-independent.
Only noise model has to be fine-tuned to real measurements.
As aresult, a radar model developed using this approach can
be called generic radar sensor model (GRSM). GRSMs can
be easily used in rigorous hardware-in-the-loop (HIL) sim-
ulations of ADAS, due to their relatively low computational
complexity. Also, they do not require large, labelled datasets
as black-box models do. A well-designed white-box model
will be in general more accurate than a GRSM. However, con-
sidering the development time and computational complexity,
a GRSM can be sufficient for HIL applications, if only its
noise model is well-designed.

IIl. GENERIC RADAR SENSOR MODEL

The term generic radar sensor model (GRSM) introduced in
the previous section and used further for the need of this
work applies to any radar sensor model that is not based
on neural networks and that mimics the behaviour of a real
sensor without a detailed modelling of its physics. The goal of
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a GRSM is to derive a set of synthetic radar detections (set of
range, relative velocity and angle tripples) of a high-fidelity.
The simulated point cloud has to be acquired using as low
computational resources as possible in order to meet strong
real-time requirements of the HIL simulations of ADAS.

To conduct a fine-tuning procedure of a GRSM using the
validation framework, a novel GRSM introduced in [16] has
been incorporated. The model is based on Open Simulation
Interface (OSI) data format [18] and consists of two main
parts:

o Deterministic Geometrical Model that generates set of
SCs (raw synthetic detections) based on data provided
by OSI,

o Stochastic Model that injects noise over time to raw
synthetic data.

In this section, a brief description of OSI data format and
details about the used GRSM are presented.

A. OPEN SIMULATION INTERFACE DATA FORMAT

OSI defines a high-level abstraction layer for data exchange
in virtual environments for virtual validation purposes. To be
more precise, a well-organized structures are defined, where
high-level simulation data is stored. In OSI-based simu-
lation, each sensor model is fed with data stored in an
OSI::SensorView structure. That is a so-called ground-truth
that contains information about all objects in a given scene,
where vehicles and static scenery are represented by oriented
bounding boxes (OBBs). Each object in OSI::SensorView is
defined w.r.t. a global coordinate system of a given simulator.
The output from each sensor model executed in a given sim-
ulator is then written in an OSI::SensorData structure, which
stores synthetic sensor measurements, defined w.r.t. a sensor
coordinate system. It is worth mentioning that OSI, apart from
OBBs and synthetic detections, defines structures for storing
simulation metadata, such as: object classification, environ-
mental conditions, lanes description, lane assignment, etc.

B. DETERMINISTIC GEOMETRICAL MODEL

The goal of the geometrical model is to generate a set of
scattering-centers (SCs). Currently the geometrical model
generates detections only for vehicles - namely, for each vehi-
cle type defined in the OSI::VehicleClassification structure.

SC point cloud play a role of a spatial simulation of the
electromagnetic wave scattering. Therefore, the location of
points on a given object have to be accurately aligned with the
places, from which the electromagnetic wave is most often
scattered back to the sensor. As a result, each object type
within the model has a unique set of SCs that take into account
the shape and curvatures of that object.

To handle this properly, a separate 3D vehicle model
is generated for each OSI vehicle type defined in the
OSI::VehicleClassification structure [18]. Each model con-
tains a set of interconnected triangular polygons, scaled
to the default dimensions of the given type. The example
sets of polygons generated for OSI::TYPE_SMALL_CAR and
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FIGURE 1. Examples of vehicle models generated within the sensor
model.

FIGURE 2. Scattering-centers generated for small car and truck with
semitrailer.

OSI::TYPE_SEMITRAILER (truck with semitrailer) are pre-
sented in Figure 1.

Also, in order to properly generate detections the follow-
ing metadata must be defined for each polygon: its mid-
dle position, normal vector, area and material type. The
middle position of a given polygon explicitly represents
a single SC. The SCs corresponding to the polygons of
OSI::TYPE_SMALL_CAR and OSI::TYPE_SEMITRAILER
are shown in Figure 2.

To sum up, using the polygons generated for all OSI vehicle
types, the following procedure represents deterministic part
of the GRSM:

1) For each vehicle, rendered at the given time moment
by a simulation environment like [2], the information
about its OBB and type is extracted. Data collected
from all objects form a ground truth message, which
is stored in a OSI::SensorView message.

2) Then, for each vehicle in the ground truth, the triangular
polygons corresponding to the type of that vehicle are
scaled to the dimensions of the OBB.

3) In the next step, range r, azimuth ¢ and elevation 6
are calculated separately for all of the generated poly-
gons. It is worth mentioning that the calculations are
performed w.r.t. the sensor coordinate systems (SCS),
defined by the viewing angle of the sensor model. This
case is presented in Figure 3.

4) Also, for each SC, the relative velocity along the view-
ing angle is calculated.

5) Finally, using (r, ¢, 6, v) gathered from all the vehicles
available in the ground truth, the field-of-view and
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FIGURE 3. Radar detection definition w.r.t. the viewing angle for a given
scattering center.

occlusions filters are applied, in order to get rid of the
detections (SCs) that are not visible from the sensor
model perspective. In other words, each point that is
not covered by the sensor range or is shadowed by an
obstacle is deleted and not acknowledged as detection.
The remaining elements form a set of raw sensor model
detections.

It is worth noting down, that even though the current
GRSM version is able to generate point cloud of detections
only for vehicles, the model can be easily extended to support
also other targets detectable by radar sensors, e.g. guardrails,
bicycles, poles, etc. In order to achieve this it is necessary
to build a 3D geometrical model (consisting of triangular
polygons) for a given target. Also, the high-level data of this
object has to be extracted from the simulation environment
and stored properly in an OSI message. In other words, if the
SCs are provided for an object, the GRSM is able to generate
a set of detections based on them.

C. STOCHASTIC MODEL

Taking into account the stochastic properties of the real sys-
tem in sensor model detections, the obtained deterministic
measurements have to be modified. First, a radar-specific
noise is injected to range, azimuth and elevation estimates.
The noise is a normally distributed random variable with
mean equal zero and variance defined by using both radar sys-
tem specification and the estimated signal-to-noise ratio [16].
Also, to mimic the sparsity of the real data, a statistic test
is executed separately for each SC that removes some of the
elements from the raw detection list. In particular, the i;;, SC is
acknowledged as a detection only when the measured signal
x;, calculated from that SC, exceeds the current threshold
th; [16]:

X > th,' (1)
X = \/P>Sl + N(Ov anzoise) (2)

thy = \J202 . erf T (1 — 2Pp) (3)

o P represents an estimation of the received signal power
amplified by the radar system gain,

where:
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« N(O, anzoise) is the probability distribution of the system
noise - normal random variable with zero mean and
variance equal to anzm.s o

o erf~! stands for the inversion of the error function that

depends on the probability of false alarm Pry.

The values of all the parameters defined above highly
influence the fidelity of the sensor model point cloud,
e.g. its sparsity and the distribution of points. Therefore,
in order to increase the plausibility of the sensor model output
as much as possible, a proper fine-tuning algorithm has to be
executed. The role of that procedure is to modify the values
of the parameters (selected initially from the radar system
specification) using real radar measurements as a reference.
The procedure has to be executed until the score from a given
set of metrics meets the desired criteria. In particular, in the
used GRSM the number and the distribution of points depend
on both P and th;. In each Py estimation, the structure
of a given target is reflected, since the Py value is mostly
based on the radar cross section value that is calculated using
area, material and an angle to the radar boresight of the iy,
SC. However, it turns out that both Py; and th; are affected
by the value of the noise figure parameter F,[dB]. As a
result, the location and the sparsity of SCs can be explicitly
controlled via the F, parameter, so that the resulted point
cloud accurately emulates real measurements.

IV. VALIDATION FRAMEWORK

Development and testing of ADAS in simulation environ-
ments (virtual validation) requires accurate sensor models
emulating a given automotive perception system. However,
in order to properly assess a sensor model performance,
synthetic data has to be compared to data from sensor logs,
i.e. synthetic detections returned from a GRSM have to be set
against detections from a real radar sensor.

To answer this problem, a straightforward framework is
introduced in this paper. Using that methodology, a given
GRSM can be explicitly fine-tuned based on real measure-
ments. As a consequence, the fidelity of the GRSM itself
can be easily boosted - thus increasing the reliability of the
whole simulation environment. The proposed methodology
extends the idea presented in [6]. The concept adopts the
property of automotive radar systems, where additionally an
object list (set of OBBs) generated on top of a point cloud of
detections is provided. The assumption of the method is high-
fidelity radar detections (point cloud) result in realistic object
list. Therefore, a GRSM performance evaluation metrics can
be explicitly defined based on the comparison of the real
radar object list to the object list generated using simulated
detections.

To be more precise, a set of object-based metrics are
defined that return an evaluation score of a GRSM. On top
of this it is possible to explicitly compare detections point
clouds as shown in the original GRSM paper [16]. In such a
manner, object-based comparison can be treated as an addi-
tional source of information in the sensor model fine-tuning
process.
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A. COORDINATE SYSTEMS DEFINITION

In order to compare real and synthetic data, sensor measure-
ments need to be gathered. In particular two sources of data
are essential:

« Object list from a radar object detector for calculating
object-based metrics,

o OSI-based labels obtained from a reference sensor to
generate a GRSM detections.

However, in order to reliably collect the data, mount-
ing positions for all radar sensors have to be properly
selected on a test vehicle. Most importantly, it is neces-
sary to choose a reference coordinate system. In this case
a vehicle coordinate system (VCS) is selected. VCS is
defined as a right-handed Cartesian coordinate system, with
x-axis pointing to the front, y-axis pointing to the left and
z-axis pointing upwards. Its origin is set in the middle of
the front bumper of the test vehicle, in the ground level.
Then, using VCS, all sensor mounting positions and ori-
entations can be defined. In other words, each sensor pro-
vides its measurements w.r.t. its sensor coordinate system
(SCS). Nevertheless, an SCS origin is defined w.r.t. VCS,
in the sensor mounting position and according to the sensor
orientation.

Different radar sensors setups are used in vehicles
equipped with ADAS. In that case it is assumed that a
vehicle has four corner radar sensors: front left (FL), front
right (FR), rear left (RL) and rear right (RR). Also, on top
of the radar sensors, an object detection algorithm is exe-
cuted in real-time during the test drive. The object detector
returns an object list expressed w.r.t. VCS. The configura-
tion of the radar sensors on the host vehicle is shown in
Figure 4

B. DATA DESCRIPTION

In order to evaluate a GRSM, both real radar measurements
and ground truth (labels written as oriented bounding boxes)
are required. To achieve this goal, a test drive has been per-
formed on a two-way highway road. Then, to acquire proper
ground truth, the data from the reference sensor has been
labelled. Finally, radar measurements and ground truth have
been synchronized.

1) GROUND TRUTH

At a given time frame, the ground truth data contain a set of
oriented bounding boxes (OBB), which are defined using the
following parameters:

¢ position: [x, y, z] [m] of the OBB center expressed w.r.t.
VCS,

« orientation: [yaw, pitch, roll] [rad], defined w.r.t. VCS
using the right-handed convention,

o dimensions: [length, width, height] [m],

e object type: mapped to the elements
OSI::VehicleClassification structure.

An example frame of the recorded ground truth is presented
in Figure 5.

of the,

18262

FIGURE 4. Host vehicle with radar sensors.

—--=- Target Vehicles
—— Host Vehicle

FIGURE 5. Example frame of data with host vehicle and labels.

2) RADAR MEASUREMENTS
A radar sensor returns a point cloud of detections. A single
detection is defined by:

« range R [m] (radial distance to a given SC),

o azimuth ¢ [rad],

o elevation 6 [rad],

« radial velocity [m/s] (a change of range in the direction
of the incident angle).

Additionally, the data from a radar-based object detection
algorithm (oftentimes referred as tracker) has been recorded.
The incorporated object detector takes as input detection lists
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FIGURE 6. Example frame of real data: radar measurements and labels.

from four corner radars and returns a set of two-dimensional
OBBs (object list, tracks). Each OBB is defined using:

« position: [x, y] [m] of the 2D OBB center, expressed w.r.t
VCS,

« orientation: yaw [rad] defined w.r.t VCS using the right-
handed convention,

o dimensions: [length, width] [m].

An example frame of all types of recorded data, including
radar object list, radar detections and labels, is visualized in
Figure 6, where:

« to each radar a color is assigned: red - rear right, green -
rear left, blue - front right and yellow - front left,

« dashed lines represent the field-of-view area of a given
radar sensor,

« dots represent radar detections,

o black-dashed boxes are the radar tracks,

« gray boxes represent labels.

As it is visible on the graph, objects generated from
the tracker (black-dashed boxes) and labels (gray boxes)
are accurately aligned. As a consequence, the data is valid
in terms of synchronization and extrinsic calibration. Also,
an important fact can be observed in the presented plot
- radar sensors return huge amount of detections on road
edges. This is captured by the tracker that generates a set of
objects (tracks) on top of that detections.

C. RESIMULATION

Apart from real tracks, a synthethic object list is required to
evaluate a GRSM using the proposed methodology. To be
able to associate real and synthetic tracks, the simulated data
has to be generated using the recorded ground truth (labels).
This can be achieved in two steps:

1) Generation of synthetic radar detections (point cloud)
by feeding the GRSM with recorded labels.

2) Feeding the simulated detections to radar tracking
algorithm.

This process is called resimulation, due to the fact that
the production radar tracking algorithm is executed in offline
mode using the simulated detections. Also, it is worth to
mention, that the GRSM should be executed four times - each
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FIGURE 7. Example frame of synthetic data together with labels.

time using the extrinsic calibration of one of the four radar
Sensors.

An example frame of resimulated data (sensor model
detections and synthetic object list) is presented in Figure 7,
where the meaning of colors is the same as in the case of
the figure 6. As it can be noticed in the graph, radar objects
are generated only on the OBBs from ground truth. However,
this is an expected behaviour, since the current version of the
GRSM does not generate detections on static scenery.

D. END-TO-END METHODOLOGY
Taking into account all of the components, the simplified flow
of the framework can be defined as follows:

1) Data gathering from a test drive, such as: radar detec-
tions, radar object list and measurements from a refer-
ence sensor, e.g. camera or lidar.

2) Reference data labelling in order to produce a list of
OBBs for each object in the recorded scenario. The
annotated object list at each time frame is called ground
truth. Also, each OBB in the ground truth is called
label.

3) Synchronization of radar data and ground truth

4) Generation of synthetic detections from a GRSM using
ground truth as input

5) Generation of synthetic radar object list using GRSM
detections

6) Comparison of real and synthetic object list using a set
of defined metrics.

7) Fine-tuning of GRSM parameters to obtain the best
possible evaluation score

The pipeline listed above is presented with details in
Figure 8.
where:

o label"is an iy, OBB in the ground truth at time frame ¢,
represented by its type, dimensions, position w.r.t. VCS
and orientation w.r.t. VCS,

o sc/isan Ji scattering-center generated for the iy, label,

« extrinsic calibration stores mounting position and orien-
tation of the radar sensor k € [1, 4],

e R, ¢, 6, v are the range, azimuth, elevation and
relative velocity estimates respectively for the j
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FIGURE 8. Block diagram of the framework.

scattering-center of the k; GRSM (a single detection
expressed w.r.t. ky SCS),

. trackﬁézl is an ny, element of the real radar object list,

. track‘;f;h is an myy, element of the synthetic radar object

list.

To put it in a different way, the input of the framework
at a given time moment is a set of labels and the extrinsic
calibration of the real sensors. The output from the system is
an evaluation score of a GRSM. It is calculated based on a set
of object-based metrics that take into account the associated
real and synthetic radar tracks. The score can be explicitly
used to fine-tune the parameters of the given GRSM. It is
worth mentioning, that to robustly assess the fidelity of a
given GRSM, a point-cloud-based comparison should be exe-
cuted together with an object-based evaluation, e.g. using the
methodology proposed in the original GRSM paper [16] or a
metric based on a deep neural network classifier [19]. That
is because, the object-based evaluation may not be enough
to check if the sensor model is generating a proper amount of
radar-specific noise or if the sparsity of the data is comparable
to the real measurements. Nevertheless, as it is shown in this
paper, the object-based evaluation provides highly valuable
feedback that can be incorporated in the sensor model fine-
tuning process. If necessary, a point-cloud-based comparison
can be easily added to the framework,

V. SENSOR MODEL EVALUATION

Two sets of radar object lists (tracks) are available for the
framework at a given time moment: real and synthetic. Real
object list is taken from the data gathered during the test drive.
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This object list is treated as a reference, because it encap-
sulates the desired radar-specific noise. In particular, the
real tracks will not be accurately sticking to their associated
ground truth OBBs. Instead, their parameters, e.g. positions,
will be floating proportionally to the current amount of noise.

It is assumed, that a GRSM provides a high-fidelity point
cloud when the synthetic object list, obtained from the resim-
ulation, is as close as possible to the reference, in the meaning
of the generated amount of noise. Let us treat the noise
encapsulated in an object list as a random variable X that is
normally distributed with mean p and standard deviation o.
Therefore, two random variables can be defined for real and
synthetic object lists respectively: Xyeqr ~ N (ireal s orze ) and
Xsynth ~ N (Wsynth, oszymh). The goal of the fine-tuning is to
change the GRSM parameters in the way, that the distribution
of Xsynm gets as close as possible to X,.,;. However, to enable
such fine-tuning, the metrics for comparing probability distri-
butions have to be well-designed and the sensor model itself is
required to have a configurable noise profile. For the GRSM
used in this paper, the level of clutter is explicitly controlled
via the noise figure parameter F,[dB] and therefore its fine-
tuning (evaluation) is possible.

A. DATA ASSOCIATION
As it was mentioned before, radar data is extremely sparse
and contain a lot of clutter. This fact influences radar tracks
that are noisy compared to ground truth OBBs. However,
looking at the deviations between radar tracks and the associ-
ated ground truth OBBs, it is possible to identify the param-
eters of both: noise probability distributions X, and Xsyum.
In order to make the comparison between probability dis-
tributions reliable, each label has to be associated with only
one real and only one synthetic radar track. As a result,
the associated data is a set of {labeli, trackieal, tmckﬁymh} :
i € [1,M] triples, collected from all available data. The
number of elements in this set, M, is a sum of all successful
associations:

T
M=Y"M, )
t=1

where:

o T is the number of recorded time frames
o M, represents successful associations count in the time
frame ¢

A synthetic object is associated with a label and a real
object (an iy, triple) when:

lps — pill < € (5)
llps — prll <€ (6)

where:
e Ds, Dr, p1 are the positions of the synthetic object, real
object and label respectively
e € is set to a constant value
An example subset of associated data is presented in
Figure 9, with the synthetic objects marked orange, real

VOLUME 10, 2022



M. Jasinski et al.: Validation Framework for Generic Radar Sensor Models

IEEE Access

—=3

FIGURE 9. Example frame of associated data.

objects marked green, labels marked gray and host marked
black.

B. PROBABILITY DISTRIBUTION IDENTIFICATION

As it was mentioned above, the noise in a radar object
list is described as a univariate normal random variable
X ~ N(u, 6%). Therefore, the noise measure has to be rep-
resented by a real number. It is rather difficult, since the
noise should be intuitively described using the multivariate
normal distribution. This is due to the fact, that unknown and
independent errors are injected to object position, orientation,
dimensions, velocity and more.

However, using a label (OBB) as a reference, it is possible
to calculate the Intersection Over Union (IoU) metric for a
given radar track [20], associated to this label. IoU is a single-
number measure of how well two OBBs fit to each other.
It returns 1 in case of perfect overlapping and 0 when the
OBBs do not intersect. It can be assumed, that IoU is a joint
estimation of all errors injected to the parameters of a given
OBB (radar track). As a result, the normal random variable X
can be explicitly represented by the IoU measure, with quite
a good accuracy.

In order to identify the probability distribution of the noise
injected to a given radar object list (either real or synthetic),
the IoU metric has to be computed for all the associated items.
Then, based on the IoU results, the mean and variance of X
can be easily calculated.

C. EARTH MOVER DISTANCE
Taking the probability distributions of X, and Xy, rep-
resenting the IoU measures from real and synthetic data
respectively, it is possible to measure how close these two
distributions are to each other. To do this, the first Wasserstein
distance can be incorporated. It is known as the so-called
Earth-Mover-Distance, due to the fact that it describes how
much work is required to transfer a given distribution u into
another distribution v.

Let i and v denote probability measures on N that are
regular and finite. The first Wasserstein distance W (u, v) is
defined as follows [21]:

W(u,v)= inf
wel(u,v) JRXN

llx = ylld7(x,y) (N
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where I'(u, v) is a set of all joint probability measures on
N x N whose marginals are p and v.

The Wasserstein metric is extremely powerful and it
has been already incorporated in various research works,
e.g. in training of Generative Adversarial Networks [22] and
in clustering of automotive test scenes [23]. Here, the first
Wasserstein distance is explicitly used to fine-tune the param-
eters of the GRSM.

D. FINE-TUNING

The goal of the fine-tuning is to optimize the noise parameters
of the sensor model with respect to the Wasserstein distance,
so that the synthetic distribution gets as close as possible to
the real distribution. As it has been mentioned before, the
noise in the GRSM is explicitly controlled by the noise figure
parameter F,,[dB]. It is a gain that is injected to both measured
signal x; and current threshold th;, during the process of
calculating the parameters of a synthetic detection [16]. Note
that when F, is set to 0, the noise is still injected and statistical
test is performed. However, there is no additional gain added
to both quantities. When F;, > 0, sensor model is expected
to add a lot of noise to each SC parameter. Also, the final set
of synthetic detections (point cloud) should be sparse. In the
opposite case (F;, < 0), the set of detections gets close to the
one returned by the deterministic geometrical model.

In other words, the goal of the fine-tuning is to find an F),
value so that the distribution of the set of synthetic detections
is of a high-fidelity. It means that the synthetic radar object list
should contain similar amount of noise compared to real radar
object list. It is worth adding, that the quality of a radar object
list is explicitly related to the sparsity of radar detections.
In case there are no thresholding and noise applied to the
synthetic detections, the radar object list would be almost
perfectly aligned with the corresponding labels. On the other
hand, when the set of synthetic detections gets very sparse,
the radar tracker would have huge problems with accurate
estimation of tracks.

To fine-tune the GRSM parameters 500 frames of data have
been used. Then, the full pipeline of the validation framework
has been executed, separately for each F,, € [—10, 10].
In other words, in each iteration all sensor models have been
configured given the current F), value. In every iteration of the
framework pipeline, real objects, synthetic objects and labels
have been associated. Then, for each association two IoUs
have been computed: real object w.r.t. label and synthetic
object w.r.t. label. Finally, using these two sets of IoUs,
collected separately for real and synthetic objects, the Wasser-
stein metric has been calculated. Its value is the evaluation
score for the given noise setting.

E. EVALUATION RESULTS

The Wasserstein metric calculated for all F,, values using
the dataset mentioned above is presented in Figure 10.
As expected, a local minimum can be found on the graph.
The optimal noise figure value, that has the lowest value of
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FIGURE 10. Sensor model fine-tuning using wasserstein metric.

TABLE 1. Lateral error - minimum, maximum and mean deviations from
real data distribution.

Fy min max mean
-8dB | 0.00005 | 1.42653 | 0.47663
-1dB | 0.00222 | 2.20116 | 0.60624
8dB | 0.00376 | 2.79022 | 1.25919

TABLE 2. Longitudinal error - minimum, maximum and mean deviations
from real data distribution.

Fy, min max mean
-8dB | 0.000005 | 1.055016 | 0.242126
-1dB | 0.000518 | 0.947814 | 0.300391
8dB | 0.001888 | 2.025263 | 0.400833
the Wasserstein distance, is F,, = —1 [dB]. Consequently,

to obtain results of the highest fidelity, the GRSM should be
configured with this F;, value.

To show how the GRSM noise figure settings affect
the quality of radar objects, lateral and longitudinal errors
(figures 11 and 12 respectively) have been plotted for a single
object located in the front of the host vehicle, for three differ-
ent F,, values: -8, -1 and 8 decibels. Additionally, to quantita-
tively show the differences, minimum, maximum and mean
deviations from real data have been computed for those
decibels values - tables 1 and 2 for lateral and longitudinal
deviations respectively. As it can be noticed on the red plot
(F,, = 8 [dB]), when the level of noise injected to synthetic
radar detections generated by the GRSM is high, the errors
on both lateral and longitudinal axes are significant. On the
other hand, in case synthetic detections are ideal, the error
encapsulated in the radar object (blue plot, F,, = —8 [dB])
does not correspond to real data (black plot). Finally, the dis-
tribution of errors encapsulated in the radar object generated
for the noise settings equal to the optimal value (green plot,
F, = —1 [dB]) is close to real data.

In other words, the obtained results prove that the stochas-
tic properties of the radar object list are affected by the quality
of the radar detections. As a result, the fidelity of a GRSM,
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FIGURE 11. Lateral error over time for a single radar object (recorded for
a few different noise parameters) to its associated label.
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FIGURE 12. Longitudinal error over time for a single radar object
(recorded for a few different noise parameters) to its associated label.

being used in the virtual validation process of an ADAS, can
be explicitly increased by fine-tuning its noise level. This
shows the usefulness of the proposed evaluation method-
ology. It is still necessary to perform point-cloud-based
evaluation in sensor model validation process. However,
object-based assessment can be treated as an unequivocal
source of feedback of a GRSM fidelity. Namely, when the dis-
tribution of synthetic detections is set appropriately (via the
noise figure parameter), the corresponding synthetic object
list accurately emulates real tracks. Such proof of the relia-
bility of the synthetic data is needed before incorporating a
sensor model into the virtual validation process.

Vi. CONCLUSION

In this paper a robust and straightforward end-to-end method-
ology for validating generic radar sensor models has been
presented. The goal of the method is to assess the perfor-
mance of a given sensor model on an object-list level, due to
the fact that objects are crucial in decision-making processes
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in Advanced Driver Assistance Systems. To show how the
full pipeline of the framework can be executed, an exemplary
radar sensor model has been integrated. Thanks to the pre-
sented framework and incorporation of a well-defined metric
a successful sensor model fine-tuning has been performed.
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