IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 24, 2022, accepted February 5, 2022, date of publication February 9, 2022, date of current version February 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3150356

Decentralized Attestation and Distribution of
Information Using Blockchains and

Multi-Protocol Storage

FELIX HARER" AND HANS-GEORG FILL

Digitalization and Information Systems Group, Department of Informatics, University of Fribourg, 1700 Fribourg, Switzerland

Corresponding author: Felix Harer (felix.haerer @unifr.ch)

This work was supported by the Swiss National Science Foundation Project Domain-Specific Conceptual Modeling for Distributed Ledger

Technologies under Grant 196889.

ABSTRACT The distribution of information through web protocols is today based on the client-server model.
Recently, decentralized protocols with greater availability appear as well as blockchain-based attestation
methods, allowing for proving the existence of information. In combination, these methods promise a
secure, decentralized and long-term storage. However, there exist two major problems: (1) the scalability of
blockchains limits their storage capacity and (2) various (de)centralized web protocols are in use and could
alleviate this problem, but they do not support blockchain-based attestations. In this paper, we extend an
approach for blockchain-based attestation with compatibility for multi-protocol storage. Instead of specific
protocols or blockchains, the extended approach aims to contribute novel concepts to the discussion on
blockchain scalability. It augments the capabilities of existing protocols for applications such as certification
or timestamping of digital artifacts. With the use of decentralized protocols such as IPFS, further availability
and inherent resilience properties are gained, allowing for applications such as open research repositories
and digital registries. We discuss the architecture of the extended approach, a possible implementation in a
smart contract on the Ethereum blockchain with IPFS and Git, and evaluate the time and cost of attestations.

INDEX TERMS Blockchain, distributed information systems, decentralized identifiers, distributed file

systems, internet protocols.

I. INTRODUCTION
Two central success factors of the traditional world-wide-web
were the possibility of identifying any information resource
through a reference by which they can be retrieved, i.e. the
Internationalized Resource Identifiers (IR]), together with the
provision of a network protocol in the form of HTTP that
offered performance and functionalities not available until
then [1]. Whereas integrity and privacy of transmitted data
have later been enabled through the cryptographic proto-
cols secure-socket-layer (SSL) and transport-layer-security
(TLS) [2] for individual transmissions between clients and
servers, limitations remain for decentralized storage and
availability beyond the client-server model.

These limitations concern, on the one hand, the integrity
of the storage of data over time and, on the other, their

The associate editor coordinating the review of this manuscript and
approving it for publication was Shajulin Benedict.

availability. As of today, data integrity of references is not
verified and preserved, allowing for changes against the
intention of the original source. As an example, consider
a hyperlink from a website to a scientific dataset used for
machine learning. If the referenced dataset changes, e.g. due
to an update, the IRI may stay the same. Thus, any agent
retrieving the dataset could not infer the integrity of the
dataset just from the reference but would have to employ
additional measures, e.g. as done today via checksums or
digital signatures of the underlying content [3]. The original
intention of the creator of the link may thus be violated
without actually knowing about the violation.

Secondly, the availability of data cannot be guaranteed
in traditional web architectures. Rather, one needs to trust
the operators of the servers to continuously guarantee the
availability of resources. In case data becomes unavailable,
e.g. servers ceasing operation, the established web protocols
do not support mechanisms to make data available again,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 10, 2022

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 18035

https://orcid.org/0000-0002-2768-2342
https://orcid.org/0000-0001-5076-5341

IEEE Access

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

even if it were present somewhere else in the network. With
resources already available over protocols such as HTTP,
it remains challenging to provide the properties of integrity
and availability in a decentralized setting. This limits the
long-term preservation of information and the traceability
of information resources. Consider here as an example the
need to access particular datasets for conducting research or
for enabling machines to automatically find and use data on
request.

Furthermore, the exact time of the issuance of information
can today not be verified for arbitrary web resources. This is,
however, necessary for scenarios where the time of issuance is
of primary importance, e.g. for resolving disputes on intellec-
tual property such as patents and trademarks without having
to rely on a trusted third party such as a patent office [4].

In domains where these limitations are of particular con-
cern, specific technical solutions have emerged already. Espe-
cially in scientific research, the need for the long-term storage
of information in a way that it is openly accessible and pre-
served in its original form has been broadly recognized in the
form of the FAIR principles [5]. For example, data availability
is provided through content distribution networks for web-
sites by increasing the number and distribution of servers or
by reverting to peer-to-peer approaches [6]. Software reposi-
tories are today designed as decentralized versioning systems
such as Git [7] for an integrity-secured storage. In addi-
tion, centralized platforms exist, e.g. for scientific research
repositories for making metadata available via Digital Object
Identifiers (DOI) [8] and novel forms of publications focusing
on the provision of data or software [9].

While specialized solutions might be well suited for these
particular areas, the storage of data independent of a partic-
ular platform or resource location might still be desirable.
Potential benefits include: less reliance on single points of
failure; the ability to verify data integrity when using hyper-
links; fewer broken links; increased availability independent
of central servers; and in the face of distributed-denial-of-
service attacks, counteracting the gate-keeper function inher-
ent in centralized platforms by publicly providing a resilient
network of integrity-secured and available information.

A promising area addressing the limitations of avail-
ability and integrity are decentralized architectures using
blockchains. Blockchains provide a single point of truth for
data storage, such that integrity and immutability may be
publicly verified. Attestations methods based on blockchains
allow for the issuance of claims on the existence of informa-
tion and their verification by a third party at a later point in
time [10]. However, for eliminating single points of failure
through decentralized storage, today’s blockchains are not
well suited. Blockchain transactions were originally designed
to record the transfer of monetary amounts [11] and have been
extended to carry data for smart contract calls with data types
for binary data on the order of bytes to kilobytes [12], [13].

Due to the design of blockchains, consensus is typically
reached on all data stored, which imposes difficulty for
scalability solutions [14]. In addition, decentralized storage

18036

protocols became available for storing larger amounts of data.
For example, the Inter-Planetary-File-System (IPFS) [15]
provides availability and resilience by replicating data across
nodes of a network. Recently, decentralized storage protocols
were integrated in this approach for storing data on the web in
adecentralized way [16]. Furthermore, IPFS can be combined
with reward mechanisms. Such a system rewards participants
for proofs of storing files using a market-based price that is
derived from data size and storage duration [17].

In this paper, we thus examine the extension of an
integrity-providing attestation approach while ensuring avail-
ability through multi-protocol data storage. The attestations
are conducted by reverting to a blockchain, which stores
the integrity metadata. For the storage of content, traditional
hypertext protocols and IRIs may be used as well as novel
protocols such as IPFS. As we will show, the main reason
for this architecture is to decouple data from the mechanisms
and metadata for verifying integrity and for guaranteeing the
availability of information.

The remainder of this paper is structured as fol-
lows. Section II introduces foundations on providing data
integrity, decentralized storage protocols, and blockchains.
Section III describes the architecture and implementation
of the approach. Section IV is an evaluation of using the
approach based on performance metrics and measurements of
limiting factors. Section V discusses results and potential use
cases. Section VI discusses further research and concludes
the paper.

Il. FOUNDATIONS AND RELATED WORK

For laying the foundations for our approach, we will dis-
cuss methods for ensuring data integrity and subsequently
for data distribution in web environments. Lastly, we will
regard existing approaches for using blockchains to support
the verification of data integrity and storage.

A. DATA INTEGRITY

Methods for providing integrity for data in transit or at rest
are commonly employed in today’s internet architecture [18].
At the level of information, an unchanged representation of
data is required by all participants, requiring adding meta-
data for describing the content and its integrity [19]. This
is assured through the concept of summarizing data with a
function h(d) = v;. When applied to data d of possibly
unknown format and length, v; is a digest that is computed
and stored at time ¢, such that it might be compared to a
re-computation of the function value v, at a later point in
time ¢ + 1 such that v, = v;4 indicates integrity. Depending
on the function, there are not necessarily strong guarantees
for integrity.

Further, summarization functions can be distinguished by
two types: checksums and hash functions. Checksums such as
cyclic-redundancy-check (CRC) are long-standing standards
on the internet for efficiently detecting unintended transmis-
sion errors [20], e.g. the internet checksum of the transmis-
sion control protocol (TCP) [19]. Hash functions extend the

VOLUME 10, 2022

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

IEEE Access

summarization with the goal of minimizing collisions, i.e.
producing the same v for two different inputs d, d’ [21].
Values must be distributed uniformly in the solution space,
e.g. as used for hash tables or sorting algorithms.

Providing strong integrity guarantees requires further prop-
erties offered by cryptographic hash functions such as
SHA-2, SHA-3, or Keccak-256 [22]-[24]. Integrity is thereby
achieved through three fundamental properties. It should not
be feasible to (1) find d given v (pre-image resistance),
(2) find for any given input d another input d’ resulting in the
same v (second pre-image resistance), and (3) finding any two
inputs d and d’ resulting in the same v (collision resistance).

Given these properties, hash functions are used to verify
the integrity of data for detecting technical errors, as well
as in untrusted environments where data is at rest or trans-
ferred over an insecure channel. In practice, the relevance of
cryptographic hash functions is evident on a technical level,
e.g. for securing commits in version control systems [25],
the verifiable replication of data in blockchains [13], and on
the level of information where research repositories such as
Zenodo [26] use SHA-2 values together with further metadata
for realizing the FAIR principles of findability, accessibility,
interoperability, and reusability [5].

B. DATA DISTRIBUTION

Data distribution on the web can be realized using centralized
and decentralized protocols. In the following we regard in
particular the properties of integrity and availability of these
protocols.

1) CENTRALIZED PROTOCOLS

Traditional web architectures are built on the TCP/IP stack,
using application-level protocols such as the file transfer pro-
tocol (FTP) or the hypertext transfer protocol (HTTP), includ-
ing its recent successors HTTP/2 [27] and HTTP/3 [28].

The protocol suite is based on the client-server model
where a client sends an HTTP request to a server-side
resource location, identified through a URI' [29] or an
IRI [30]. An according HTTP response is then sent to the
client. This principle model remains unchanged also with
the recent innovations in HTTP/3 and QUIC which optimize
performance and load balancing, e.g. through the dynamic
selection of server locations with minimal latency [31].

For combining these protocols with mechanisms for secur-
ing integrity, few solutions exist and rely on the additional
transmission of integrity metadata. One example is the con-
cept of Trusty URIs [32], a proposal to include verifiable hash
values in links. In this approach, a link to a resource addition-
ally contains integrity metadata in the form of a checksum
value, which is verified by the client. This approach illustrates
the need for storing resources separately from their integrity
metadata. However, the integrity guarantees so far do not
extend beyond the correctness of the transmission since data
and integrity metadata are transmitted through the same

1 https://www.w3.org/TR/uri-clarification/#classical

VOLUME 10, 2022

channels. This limits the use of checksums and hash functions
in untrusted environments with unknown participants.

In summary, we can state that within the class of cen-
tralized protocols, there exist single points of failure, intro-
duced by addressing resources through individual identifiers.
Furthermore, availability is limited due to individual servers.
Integrity guarantees are not permanent and cover only indi-
vidual transmissions between clients and servers.

2) DECENTRALIZED PROTOCOLS

Decentralized protocols are either based on client-server- or
peer-to-peer-architectures [19], [33]. Thereby, a distributed
protocol execution enables the storage of data at the nodes of
a distributed system. We will illustrate the main properties of
these architectures in the following by reverting to concrete
examples.

A well-known example of a client-server-based architec-
ture is the distributed version control system (DVCS) Git.
In the case of Git, the state of a data repository on the
client-side is captured via operations such as commit [7].
Versions and sequences of versions derived in branches deter-
mine the state which is transferred with the push operation to
any number of remote locations addressed by a URL through
HTTP or other protocols. The inverse operations fetch and
merge retrieve and join data in a local repository. Even though
Git is client-server based the system state is synchronized
throughout the distributed system.

The Git architecture requires data synchronization between
individual peers or between a centralized server and multiple
peers. Metadata is provided in the form of version identifiers,
branches, tags, and hash values. Hash values are used for
the identification of information, attribution to authors, and
notably, the verification of integrity. Data exchanges of a
client are limited to the distinct endpoints of the used repos-
itory. Furthermore, commit and push are explicit operations
performed by the client for regularly capturing the state of
data and software repositories. The retrieval of individual
and previously unknown resources is not directly supported.
Rather, it is necessary to fetch or clone individual repositories
known by a URL beforehand.

While it is possible with Git to add multiple remote repos-
itory branches, availability is not inherent in the architectural
design. Each participant maintains a list of known repos-
itories individually, merges the local state of a repository
separately, and resolves conflicts between multiple remote
states and the local state. Instead of algorithmic consensus,
consensus is an emergent phenomenon established manu-
ally when needed. As the architecture is targeted at soft-
ware development, it requires individual data synchronization
between peers or, more commonly, between a centralized
server and multiple peers.

Protocols on the basis of peer-to-peer networks eliminate
the differentiation between client and server roles. Peer-to-
peer protocols such as BitTorrent [34], [35], Swarm [36],
or the Inter-Planetary-File-System (IPFS) address data in a
content-based fashion, independent of the location in the

18037

IEEE Access

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

network [15]. For retrieving files from the network, a unique
ID based on hash values is sent to connected nodes in the
network from where it is distributed through gossiping [37].
Any node in the possession of individual parts of a file can
answer the request and serve them to the requesting node,
which subsequently creates another replication.

The BitTorrent approach is centered around the individ-
ual retrieval of specific sets of files or directories known
as torrents [35]. In the fashion of a torrent, the retrieval
occurs in parallel from any number of nodes. This leads to
higher utilization of bandwidth and higher availability when
compared to client-server approaches such as HTTP or Git.
For the retrieval, the corresponding hash-based identifier is
required and needs to be obtained individually and explicitly.
Therefore, the retrieval is non-interactive and does not sup-
port references or links from one torrent to another.

IPFS possesses, similarly to BitTorrent, a peer-to-peer
architecture allowing for the retrieval of specific sets of files
or directories [15], [16]. In addition, it provides mechanisms
of a file system within this architecture, including references
and the fine-grained retrieval of blocks of files. In IPFS,
files or directories are stored as objects, addressed with a
content identifier (CID). A CID is computed based on the
content of objects and can act as a link. It is created in a
standardized format or codec that describes the content-based
identification method, such as the hash function, the hash
value of the objects, and the data format [38].

An IPFS object may be retrieved from a network par-
ticipant and stored locally as a node of a directed acyclic
graph (DAG). The DAG links files using their CID in
an integrity-secured fashion using a Merkle tree hashing
method. Non-hierarchical structures may be formed through
links for realizing hypermedia structures. This can be accom-
plished, for example, by loading an HTML file that subse-
quently loads further site contents through CID references.

IPFS objects are cached temporarily upon access, such
that they become available to other nodes. In addition, they
are cached offline for local use. For achieving availability,
objects need to be distributed to a sufficient number of
nodes where they can be ’pinned’ for permanent storage.
This content-based addressing and linking through content
identifiers of objects in a DAG lead to higher resiliency, avail-
ability, and integrity. IPFS enables interactive browsing on
distributed objects under the condition that they are available
from at least one node in the network.

Such an architecture allows, for example, to realize decen-
tralized research repositories, where publications are stored
by individual researchers, institutions, and others without a
dedicated central infrastructure [39].

In summary, the class of current decentralized proto-
cols offers, on the one hand, client-server protocols, which
enable data synchronization between individually participat-
ing nodes such as in Git. In this case, data exchanges are initi-
ated separately and through individual requests and responses
between pairs of nodes. Such protocols provide integrity and
limit the consistent distribution of information across the

18038

whole network. Availability depends on the initiation and
maintenance of data exchanges.

On the other hand, decentralized protocols based on the
peer-to-peer paradigm distribute the control over storing and
retrieving files across the network. These types of protocols
provide integrity and higher degrees of availability since the
exchange of data does not depend on the manual coordination
of nodes. Single points of failure are still possible in this
architecture as availability is controlled by individual nodes.
This means that availability rests on the explicit choice of
persistent storage over transient storage, e.g. through caching
settings and pinning in IPFS.

C. BLOCKCHAIN-BASED PROTOCOLS

Blockchains are data structures used in combination with
consensus protocols for the distributed storage of immutable
data transactions due to their verifiable inter-linkage in blocks
and the verifiable protocol execution [40]. Any participant in
such a distributed network is able to verify the data integrity
of the chain. Individual transactions are signed using private
keys, sent with corresponding public keys for identifying the
sender, and addressed with the public key of one or more
receivers.

Smart contracts extend this concept to the execution of
programs stored within a block and executed together with the
consensus logic of the underlying protocol [41]. This system
design permits the operation of permissionless blockchains,
which are openly accessible and governed by algorithmic
consensus. A ledger is created that acts as a single point of
truth. This is in contrast to storage protocols such as IPFS,
which maintain any number of arbitrarily different files or
directories. Therefore, the operation of such systems does not
depend on the control of individual nodes. However, they are
limited in scalability primarily by storage capacity, through-
put, cost, and latency [14]. Blockchains are well-suited for
tracking the storage of data in transactions that do not depend
on trusted third parties or intermediaries, where the storage
of data might be located within or outside of the blockchain.
For financial transactions and comparatively small amounts
of data in smart contracts, the permissionless systems Bit-
coin and Ethereum today store data on the blockchain
itself [13], [41].

Within this paper we focus on the Ethereum blockchain for
its smart contract capabilities. From a client perspective, the
creation of an Ethereum smart contract involves its develop-
ment in a high-level programming language, the compilation
to byte code, and the transmission through a transaction to the
blockchain [40]. The Ethereum protocol autonomously cre-
ates a contract account with a specific address where function
calls might be sent in subsequent transactions. In contrast to
a so-called externally-owned account of a participant, there
exist no public and private keys for a contract account, lim-
iting its ability of sending transactions to the programmed
functions. The main characteristic of contract accounts is,
therefore, the autonomous execution of smart contract pro-
grams. The state of individual executions is persisted in

VOLUME 10, 2022

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

IEEE Access

each block following a function call, such that participating
nodes can locally execute all smart contract calls in order
to verify their correct operation. Therefore, smart contracts
permit the storage of system-external data and can be used
for implementing so-called attestations where evidence of the
existence of documents or data is recorded [42].

Attestations based on smart contracts persist the hash
value of data such that (1) the prior existence of the data,
(2) the address of the account owner of the transaction,
and (3) an approximate timestamp can be verified at a later
point in time by anyone with access to the openly available
blockchain data [10]. Blockchain-based attestations might be
used to publicly prove the existence of information, doc-
uments, or intellectual property. While the storage of data
is limited to relatively small sizes not permitting general
file storage distribution, data stored on blockchain-external
systems might be the subject of an attestation.

The combination of blockchain protocols with facilities
for storing larger amounts of data has only been treated
recently. In the work by Liang ez al. the concept of ProvChain
is described, which permits the auditing of all data access
in a cloud storage application by storing provenance and
operation data on a blockchain [43]. Li et al. proposed
the concept of IntegrityChain as a decentralized storage
framework that permits to prove data possession using a
blockchain [44]. For this purpose, they set up their own
blockchain platform and described it formally. Bian et al.
revert to permissioned blockchains based on Hyperledger
Fabric for realizing a decentralized patent application sys-
tem [4]. As the data involving patent applications can become
very large, they revert to IPFS as external data storage.
Recently, approaches have been proposed for storing seman-
tic data using blockchains. Apart from the attestation of
ontologies by using blockchains, which involves only little
storage space [45], the ColChain approach has been proposed
to store smaller fragments of RDF data on a blockchain-like
decentralized architecture [46]. The latter approach employs
a user-based consensus protocol that is not automated. In the
approach of Knowledge Blockchains, also a specific consen-
sus protocol has been proposed that can, however, be auto-
mated. This approach has so far been described for storing
enterprise models and ontologies on-chain but has limitations
in terms of storage scalability [47], [48].

D. DISCUSSION OF CURRENT LIMITATIONS

In their current state, the concept of attestations is limited
to the recording of evidence, independent of the transfer
or storage of the underlying data. The attestation has to be
performed manually and explicitly at the sender or operator
of the storage facility. When retrieving the data, the attestation
requires manual validation of the evidence, performed for
every data transfer or storage retrieval. Through this proce-
dure, the three properties of existence, owner, and time are
verified in order to ensure that the original source provides
data or that it is retrieved in the way originally intended.

VOLUME 10, 2022

Therefore, the limitations of attesting stored or transferred
data with current methods are:

1) The incompatibility with existing data storage and
transfer protocols such as HTTP, Git, and IPFS limits
distribution and availability.

2) The manual and explicit creation of attestations per
transfer or storage invocation at the source and, con-
versely, the manual and explicit validation at every
receiver.

3) The source-based validation, which is bound to the
originator as the only source and not to other parties
possibly also in the possession of the data.

In summary, state-of-the-art web protocols as well as cur-
rent attestation approaches based on blockchains are only
partially providing data integrity, distribution, and avail-
ability. While blockchains by themselves would support
these properties in combination, their scalability is insuffi-
cient for data storage. Currently, neither web protocols nor
blockchains support an integration where integrity is secured
by blockchain-based attestations with the distribution and
availability of current (de)centralized web protocols.

IIl. ATTESTED MULTI-PROTOCOL LINKS

In light of the limitations for providing data integrity, distri-
bution and availability with existing protocols such as HTTP,
Git, and IPFS, we propose a concept that combines mul-
tiple existing protocols with blockchain-based attestations.
Based on a previously introduced attestation concept [10],
the following architecture offers an integrated approach by
a. performing blockchain-based attestations for securing data
integrity, b. by introducing a format for creating and vali-
dating links automatically, and c. by allowing for validation
and re-distribution with multiple protocols independent of the
source in order to allow for a higher degree of distribution and
availability independent of the source.

The attestation concept builds on existing ideas for a more
decentralized, trustworthy, and available web. In this area,
the “web of trust” [49] has been discussed as well as afore-
mentioned protocols for decentralized storage [50] and ideas
of a permanent web [15]. The aim of providing technical
properties through an attestation approach therefore aims at
establishing decentralized, trustworthy, and available systems
for distributing information.

In the following sections, the core concept with its aims
and the underlying technology are introduced first, followed
by the architecture and its implementation.

A. MULTI-PROTOCOL STORAGE AND ATTESTATION
CONCEPT

Attestations in general aim at establishing trust by presenting
evidence for the existence of information to another party or
any number of untrusted third parties [42] and through using
blockchains in the case of blockchain-based attestation [51].
Specifically, within the suggested architecture, attestation is
understood as (a.) the creation of a claim about the existence

18039

IEEE Access

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

of information, bound to an identity, and (b.) the validation of
the claim by any other identity at a later point in time.

The distribution of information pursues decentralization
and availability. Due to the use of blockchains, the sys-
tem architecture is a distributed system [19], in particular,
a decentralized system applying non-centralized control over
storing information in a replicated manner for availability.

Technically, an architecture realizing blockchain-based
attestation and distribution should address the outlined limita-
tions (Section II-D) of existing web protocols and attestations
for providing data integrity, distribution, and availability in
the form of the following requirements:

o Providing data integrity with existing web protocols.
Using existing web protocols, the integrity-secured
transfer or storage of data must be possible. Due to the
widespread use of protocols such as HTTP and Git and
the vast amount of information already stored on the
web, the preservation of integrity must be supported
by existing protocols without requiring the adoption of
new protocols. In particular, information must remain
unchanged in relation to its original publication.

o Validation through a trusted global state instead of
source-based validation. Instead of performing valida-
tions of attestations per transfer or storage invocation
based on the source, the validation must be performed
against a trusted global state, i.e. a state representation
that is transparently and openly visible for all parties
involved. Without consultation of the source, a claim on
the existence of information, the approximate) publica-
tion time, and a source identifier must be verifiable.

o Creating and validating attestations automatically at the
level of links. The unchanged re-distribution of data must
be possible after publication for availability. For this rea-
son, the validation of an attestation must be independent
of the original location of the data and occur automati-
cally. Given existing web protocols, the only identifiers
independent of the actual data are links. It must be
possible to establish the validity of an attestation when
given one or more links.

With an attestation and distribution based on links, the
architecture requires an additional layer above web protocols
for attestation through links.

B. MULTI-PROTOCOL STORAGE AND ATTESTATION
ARCHITECTURE

Based on the stated high-level requirements, a possible sys-
tem architecture can be derived from the following architec-
ture requirements:

o Multi-protocol support with content-based identifiers.
The requirement of providing integrity with existing
web protocols can be satisfied by creating identifiers
based on data content, regardless of the protocols
and address of the data. Content-based identifiers are
abstract from addressing and require assignment to pro-
tocols and addresses compatible with today’s web, e.g.

18040

in a standardized form through URI [29]. For example,
HTTP and Git might be used in a content-addressable
fashion in addition to protocols supporting this concept
natively, such as IPFS [15].

o Blockchain-based attestation for providing a trusted
global state. One possibility is the use of blockchains
for representing a state that is transparently and openly
visible for all parties involved. Validating attestations
against this state ensures independence from the source.
Technically, the recording of claims can be performed
with an attestation smart contract [51]. The state of the
contract transparently holds for each claim at least one
record containing its content-based identifier, URIs with
further storage metadata, the blockchain identity of the
issuer, and a timestamp.

o URI scheme and link format of the structure of a link
pointing to a claim. For attestations and validation
at the link level, a format allowing for the standard-
ized processing of links is required. The link format
structure must include a content-based identifier and
might optionally include a semantic identifier. Semantic
identifiers are necessary for persistent links to content
changing over time. Client-side validation can occur
automatically when following a link [32] by retrieving
the data and validating the attestation through crypto-
graphic hash functions and Merkle trees [11], [52].

Figure 1 gives an overview of the main components of the
architecture. The following sections describe (1) the general
system structure and the process of storage and attestation.
Subsequently, the details on the process are presented, includ-
ing (2) the distribution of files, (3) the issuance and recording
of claims, (4) the creation and resolution of links, and (5) the
retrieval and validation of claims. An attestation is present
on the blockchain upon completion of (2) and (3). Links
might optionally be present in the system after (4). The final
validation of an attestation is the consequence of (5) and
produces a valid or invalid attestation result.

1) SYSTEM STRUCTURE

For achieving modularity, the system has been designed in
the form of several components for carrying out attestations.
First, a Claim Issuer (C]) initiates the distribution of files and
the issuance of claims. Then, a Claim Validator (CV) retrieves
files and validates corresponding attestations. No trusted rela-
tionship between CI and CV is assumed. Furthermore, CI,
CV, or any untrusted third party are assumed to engage in the
creation of links.

The following assumptions are made for the components
of the architecture: Corresponding to the architecture require-
ment of supporting multiple protocols, (1) a storage network
is assumed where an arbitrary number of nodes provide
services through web protocols, encompassing state-of-the-
art centralized and decentralized protocols (Section II-B).
Nodes are assumed to be distributed, independent from
each other, and reachable over private or public wide area

VOLUME 10, 2022

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

IEEE Access

Blockchain Network

Attestation Contract

Claim Registry:

M - (RID - Claim)
Link Registry:
Ref - (M, M Pred, Link Issuer)
recordClaim

Amplius
Client

Attestation Node
Claim, Merkle Root M
Metadata_CI, Metadata F, M

validateClaim

Storage Network i

IPFS Node HTTP Server

URI: Sch
URI: Scheme, cheme,
. Authority, Path
Authority, Path

Git Server
URI: Scheme,

Authority, Path

retrieveFiles

Amplius
Client

Attestation Node
Claim Record, Merkle Root M,
M, RID, Claim, My

M

e . %
T 1 D
F={ II'; l!lr I!I}

Transfer Client

distributeFiles

A A
?
Fv={,; }

Transfer Client

Storage Data

File_Set F, Metadata F

Identity Client

Identity Data <«
Metadata CI

Claim Issuer (Cl)

— Storage Data
File Set Fy, Metadata_ Fy
Identity Client '
===== Identity Data

Insecure Channel

Metadata CV

Claim Validator (CV)

FIGURE 1. Decentralized attestation and storage application architecture.

networks. Related to the attestation, (2) a blockchain platform
supporting smart contracts is assumed where an attestation
smart contract can be deployed, e.g. on Ethereum. Due to
the properties of blockchains, the autonomous execution of
the smart contract is outside the control of CI, CV, and
third parties. The functions of the smart contract will be
discussed in detail in the following sections. (3) The URI
scheme and link format and a client-side implementation
required for automated validation are finally assumed. For
validation purposes, a prototype implementation of the client
realized the attested multi-protocol link immutability system
(amplius).? It supports the functions outlined in the following
sections. The coordination of an attestation is managed in a
decentralized fashion by the client in combination with the
smart contract.

2) DISTRIBUTION OF FILES IN THE STORAGE NETWORK
Initially, a file set F is locally available at the claim issuer
CI. F contains any number of files for distribution through
the storage network of a set of individual nodes N. For dis-
tribution and attestation on a per-file basis, F might contain
only one element.

Each client-initiated transfer operation involving files
F, C F and node n € N is represented by the function

distribute : F\,, n — (Scheme, Authority, Path)

2A preliminary version is available at https://github.com/fhaer/amplius

VOLUME 10, 2022

which yields a tuple representing a single URI. The set of
all URI tuples is denoted as URI_Set. No restrictions are
imposed besides URI-based addressing. However, protocols
might impose additional restrictions such as addressing F
under a single repository URI, e.g. when using Git. There
is no requirement for content-based storage on the protocol
level.

3) ISSUANCE AND RECORDING OF CLAIMS

An attestation consists of a claim issued by claim issuer CI
and the validation performed by claim validator CV. Thereby,
a claim documents (1) the existence of F, (2) the possession
of f by CI, and (3) the time of recording the claim Timestamp.

a: HASH-BASED COMPUTATION OF CONTENT-BASED
IDENTIFIERS
The requirement of identifying files by their content is real-
ized through a cryptographic hash function such as SHA3?
applied in a Merkle tree hashing algorithm. In this way, the
Merkle Root M computed through MerkleTree(F) = M acts
as a content-based identifier of F such that it can be calculated
without additional information.

In particular, the algorithm initially partitions F in pairs of
files {f1,f>} € F in order to calculate the hash function H
of the concatenation H (fi||f2) = v1. In the same fashion, the

3See https://doi.org/10.6028/NIST.FIPS.202

18041

IEEE Access

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

resulting values are repeatedly partitioned into pairs {vi, v2},
concatenated and hashed with H(v{||v2) = vy until there
exists one resulting hash value denoted as Merkle root M.
Before each partitioning step, the case of an odd number of
files or values is handled by adding an additional element
vo = 0. Furthermore, this hashing method assumes defining
atotal order over F' through an index set that can be implicitly
generated by sorting files by their content-based identifiers.

b: GENERATION OF KEY PAIR AND ACCOUNT ADDRESS
Interactions with the blockchain require for CI the com-
putation of a blockchain account address. Due to the
nature of permissionless blockchains, the generation of an
externally-owned account identified by Addressc; of the
claim issuer is carried out locally without network inter-
action. The address is derived from a randomly generated
public-private key pair. Similar to externally owned accounts,
the private key is persistent data stored locally by CI.

¢: METADATA AND ENCODING

Corresponding metadata such as author identities or file
attributes might be present. The separate processing of meta-
data for the possibility of building repositories entails the
creation of separate identity metadata and storage metadata of
the file set in two tuples Metadatacy and Metadatar respec-
tively.

Identity metadata is comprised of public data suitable for
the pseudonymous identification of CI. Therefore, the tuple
Metadatac; = (Addresscy, DID¢y) contains the address as
an identifier in interactions with the smart contract in addi-
tion to DID¢y as a decentralized identifier [53]. A DID is a
standardized identifier in a specific format suitable for the
global identification of network participants. DID are used
predominantly in decentralized networks and allow partic-
ipants to retain and self-manage real-world and pseudony-
mous identities. The projected use of these identities spans
across multiple attestations in addition to other networks,
websites, or services.

Storage metadata of a file set F includes the MIME
types MIME [54], a timestamp and the URIs of the stor-
age network represented by the elements of Metadatar =
(MIMEF, Timestampp, URI _Setr). Given this information,
a repository of file sets might be created for the general case.
Regarding the URI format, each URI is stored as a tuple
(Schemer, Authorityr, Pathr) € URI_Setr in order to distin-
guish the protocol and other parts of the URI. Conceptually,
the elements are one or more addresses belonging together
for the purposes of distribution, e.g. a set of image files.

The tuple is adapted for specific domains requiring addi-
tional data, e.g. for including Digital Object Identifiers
(DOI) [8] in scientific publications.

The elements of both sets will be stored in the smart con-
tract and therefore require the application of an appropriate
encoding supported by the blockchain network. In the case of
Ethereum, the Ethereum Virtual Machine (EVM) can execute
the smart contract with Metadatac; and Metadatar encoded

18042

in arrays of 32 bytes. Here, a character encoding might be
applied, followed by splitting the result into sequences of
32 bytes.

d: RECORDING OF CLAIMS

The recording of claims is conducted by a smart con-
tract identified through a constant and well-known address
on the blockchain. With the local creation of a Merkle
root M, Metadatar and Metadatacy, CI invokes the
smart contract function recordClaim. The function stores
Timestampr of the current block in Metadatar, assigns for
(Metadatar , Metadatacy) a record identifier RID and assigns
RID to the Merkle Root M. As a result, an individual claim
record Claim = (Metadatar,Metadatacy) is stored and
retrieved by a smart contract function globally in the form:

claim_record : M — (RID — Claim).

Additional availability of F can be provided by issuing
additional claim records for M involving another URI_Set’.
In the spirit of decentralization, the subsequent recording of
claim records for M is not limited to CI due to the ability
to validate the integrity of F' against M. The smart contract
is able retrieve the corresponding claim records given M
therefore, M is the basis of links.

From the point-of-view of CI, the issuance and record-
ing is concluded after RID is retrieved by a locally avail-
able and fully validating blockchain node that returns RID
from a block having at least n successors. Depending on
the blockchain, the security parameter n > 0 prevents
double-spending attacks [55].

4) CREATION AND RESOLUTION OF LINKS
Links are references to claims and therefore provide access
to the corresponding files in the storage network.

a: RECORDING OF LINKS IN THE SMART CONTRACT

In the fashion of domain names of the world wide web, links
point to content changing over time using semantic references
such as names or also globally unique IDs in the form of
UUID.# For this reason, a link is a reference Ref to Merkle
root M that can be updated over time by the issuer of the link.
In the smart contract, a link is created and stored through

Link : Ref — (M, Mpeq, Addressy)

with link issuer address Address;; and M4 as the prede-
cessor of M such that a chain of claims is created over time,
preserving access to prior versions.

b: RESOLUTION OF LINKS

Any Ref registered with the smart contract yields all records
of a claim corresponding to M. In order to retrieve the specific
claims issued by an Addressyy, a filter selecting claims where
Addresscr = Addressyy is applied. In this way, the claim that
is the original source of a link is established.

4See https://tools.ietf.org/html/rfc4122

VOLUME 10, 2022

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

IEEE Access

¢: URI SCHEME AND FORMAT
Interoperability with existing protocols and networks such as
the world wide web requires the definition of a URI scheme
and format for claims and links. For clients retrieving files
and validating attestations automatically, three methods are
assumed. A client might be in possession of (1) a Merkle root
M from the issuance of a claim. (2) It might possess a link
Ref created in the format of a global identifier, specifically
in UUID format. (3) It might possess a link created with a
semantic identifier created as a globally unique Name. The
choice of the format is up to the link issuer.
(1) amplius://<Contract_Address>/M/<M>
(2) amplius://<Contract_Address>/U/<UUID>
(3) amplius://<Contract_Address>/N/<Name>
The client-side implementation with the smart contract
deployed at Contract_Address is invoked by the scheme
using the given format.

5) RETRIEVAL AND VALIDATION OF CLAIMS

The final part of the attestation concerns the retrieval of
claims. Based on the content retrieved through a claim from
the storage network, the validity of the attestation result is
determined.

a: RETRIEVAL

Claim records are globally available through the attestation
smart contract. Given the Merkle Root M of a file set, the
corresponding claim records are obtained according to the
mapping discussed in Section 3d). Based on the stored record
IDs, Metadatar and identity metadata Metadatacy provide
the basis for the content-based validation. From the storage
network, a file set F), is retrieved through the URI_Setr of
any Metadatar. The validation can be conducted with at
least one Metadatar by a client if availability is given, i.e.
Yu € URL_Setp Available(u).

There could be, for example, a file set of two image files
with MIME type PNG, timestamp 2021-01-31 at 14:42:43
retrievable through HTTP at https://example.ch/il.png and
https://example.ch/i2.png. In this case, the storage metadata
is defined (see Section 3c) by

Metadatap
= (MIMEF, Timestampr, URI _Setr)
= (’image/png’,’2021-01-31T14:42:43",
{ ("https’,
("https’,

"/il.png’),
"/12.png’)})

"example.ch’,

"example.ch’,

Note that elements of the URI _SetF are tuples distinguish-
ing the protocol from other URI parts (see Section 3c). In an
implementation such as the amplius prototype, compression
should be applied for preventing the redundant storage of the
URI parts.

b: VALIDATION OF CLAIMS
For validating a claim given M, the hash-based computation
of this Merkle root is first computed using F,. Based on this

VOLUME 10, 2022

result, the validation with the attestation is conducted by the
smart contract and the client of CV.

With F,, the Merkle root is computed on the basis of
a hashing algorithm. Thereby, the elements of F, are indi-
vidually applied to a hashing function, i.e. H(f,) = v is
computed for each file f, € F,. The resulting values are leaf
nodes of the Merkle tree. With it, the algorithm outlined in
Section 3a) is applied by repeatedly hashing concatenated
pairs of hash values until a single value Merkle root M, is
reached. The algorithm accounts for the case |F,| = 1 by
constructing the hash value based on H(f,) = M, with-
out the explicit construction of a tree. This case arises if
a single file is distributed where the file set contains one
element.

The result of the validation depends on the F, retrieved
through the storage network. In case M = M, integrity of F,
is assumed, leading to a valid attestation result. Else, the attes-
tation result is invalid. The validity of the attestation implies
the presence of the original file set F),, = F, establishing the
prior existence of F.

Suppose, for example, a claim is recorded for a set of image
files under Merkle root M = c9e8al...]77f 15, a SHA-256
hash value with a length of 256 bit, here abbreviated and
in hexadecimal notation. The claim record is stored and
retrieved by a smart contract function taking M as a parameter
(see Section 3d). For validation with a given M, the record
ID RID and Claim are obtained through this function. First,
the file set F, is retrieved from the network using the stor-
age metadata Metadatar of the tuple Claim (according to
the previous subsection). Secondly, the validation is carried
out. Suppose files il.png and i2.png have been retrieved as
elements of the file set F,. In this case, M, is computed
from the Merkle tree with the two files as leaf nodes,
here consisting of M, = H(H('il.png")||H(i2.png’)) with
SHA-256 as hash function H. For example, with abbreviated
hash values, the computations required are H('il.png) =
la4cT[...]f1499 and H('i2.png") = adbdal...]7c056, and
finally M, = H(la4cT[...]f1499adbdal...]17c056) =
c9e8al...]77f15. The computation is recursive in the case
of more files (see beginning of current Section). Formally,
the attestation result is valid here since M, = M could be
established.

In case the attestation result is valid, further information
can be obtained from the claim record metadata. In partic-
ular, the timestamp of the claim record is obtained from
Metadatar and the pseudonymous identity of the claim
issuer CI from Metadatacy. Given the identity metadata,
the blockchain address and DID can be retrieved to link
the identity across multiple attestations or other DID occur-
rences if the issuer chooses to manage it, e.g. in other attes-
tations or in user accounts on websites (see Section 3c).
The client, therefore, obtains the file set F = F,, the
attestation of the prior existence of the file set, the issuer
of the claim with address and identity information, and the
timestamp showing the date and time of the recording of the
claim.

18043

IEEE Access

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

C. PROTOTYPE IMPLEMENTATION
For demonstrating the feasibility of the concept and for eval-
uation, the system has been implemented as a prototype.

Figure 2 shows the software architecture of the application
from the client point of view. On the application layer, a client
has been implemented in Python 3.8, with modules for the
Identity Component, Attestation Component and, Transfer
Component. The client uses the Web3 API for interfacing
with the Ethereum blockchain on the network and consensus
layer. There, an attestation smart contract written in Solidity
is deployed and used with externally owned accounts. Files
are stored on HTTP, Git, and IPFS servers rented for this
purpose. The UML sequence diagram in Figure 3 summarizes
the distribution, issuance and link creation with the prototype.
Figure 4 summarizes the retrieval and claim validation. The
individual components of the prototype are discussed in the
following paragraphs.

The transfer component takes as input files or other data
objects that are used for distribution with the protocols HTTP,
Git, and IPFS. Conversely, files can be retrieved through
these protocols with the implementation. The client is shown,
including these functions, in Figure 5 with a command line
interface.

For the attestation of files after distribution, the attesta-
tion component carries out Merkle tree computations with
the SHA-256 hash function based on the files and encodes
the result with the URI _Set obtained from the transfer. The
encoding includes compression and data format changes for
the issuance and validation of claims through the attestation
smart contract. Up until this point, computations occur locally
within the client software.

As part of the network and consensus layer of the proto-
type, the attestation smart contract has been written in the
Solidity programming language for the Ethereum blockchain.
Source Code Listing 1 shows the main data structures for
recording claims according to Section III. In conjunction
with the client, the interaction is discussed in the following
paragraphs.

For interfacing with the blockchain, the identity compo-
nent generates externally owned accounts for Ethereum. Any
user interfacing with the software initiates the generation of
an account with the client. As shown in the UML sequence
diagram in Figure 3, the implementation uses the Web3 API
in order to generate accounts locally through a random gen-
eration of a private key, the derivation of a corresponding
public key, and the derivation of a blockchain address. As a
result, the public-private key pair is used for sending attes-
tation transactions to the smart contract. Thereby, the claim
issuer CI signs each transaction with the private key. Once
a transaction is confirmed, the address is the publicly visible
identity of CI, registered for the claim issuer with the smart
contract. Analogously, a transaction is signed and sent when
a link is newly created and stored with the smart contract.
For resolving a link, read-only smart contract functions are
called, which do not modify the blockchain and do not require
signatures or the creation of transactions. This is also the

18044

Source Code Listing 1: Smart contract implementation
of claim and link assignments and tuples in mappings and
structs of the Solidity language

1 contract Amplius {
2 mapping (bytes32 => Claim) public claimRegistry;
3 mapping (bytes32 => Link) public linkRegistry;
4 mapping (uint8 => bytes32) public mimeRegistry;
5 mapping (uint8 => bytes32) public
schemeRegistry;

6 mapping (uint16 => bytes32) public authRegistry;
7 uint8 public nMimeTypeRegistry = 0;
8 uint8 public nUriSchemeRegistry = 0;
9 uint16 public nUriAuthorityRegistry = 0;

10 struct Claim {

11 mapping (uint8 => IssuerMetadata)

issuerMetadata;
12 mapping (uint8 => StorageMetadata)
storageMetadata;

13 uint8 nClaimRecords;

14 }

15 struct Link {

16 bytes32 merkleRoot;

17 address linkIssuer;

18 bytes32 predMerkleRoot;

19 }

20 ...

case for the validation of claims such that permissionless link
resolutions and validations are possible. Since the blockchain
is only read, the execution of these functions is instant in
contrast to transactions requiring the inclusion in a block.

Regarding the attestation component and its interaction
with the Ethereum blockchain, the component uses the Web3
API for calling the smart contract. As shown in the UML
sequence diagram in Figure 3, the recording of a claim takes
place by sending the Merkle root M and the URI_Set for
retrieving a record ID (RID).

Storage metadata is divided in separate entries within
mappings and structs, shown in Source Code Listing 2.
The listings show only the beginning of 278 lines of the
contract, consisting of 5 mappings, 5 structs and 18 func-
tions implementing the specification functionally com-
plete. Design choices to this end as well as limitations
are discussed in the following. The contract is deployed
and can be publicly called through the Ethereum address
0x5627da24A01B5799AbC84300ACBf2A778933bEed.’

Upon issuing an attestation, the creation of links pointing
to it becomes possible. This function is also realized through
the attestation component, as shown in the UML sequence
diagram in Figure 3. The link will be created by the user
specifying a link ID in UUID format, as arandomly generated
globally unique ID using UUID version 4, or in the form
of a semantic name, required to be globally unique. The
assignment of semantic names might be used similarly to

5Cf. https://etherscan.io/address/<address>

VOLUME 10, 2022

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

IEEE Access

Files / Objects

A

Amplius Client Data
v
L Identity Component Attestation Component Transfer Component
Application ; v ;
Laver Issuance /> Data >|Merkle Tree Distribution
v Key Management Keys| T| Validation [€4HEncodingle< Hashing Retrieval
Wet/;f API .) 1/Veb3 API T URls T
,,,,,,,,,,,,,,,,, im | Issuer and Storage Storage
Address Claim Metadata Protocols
Blockchain Storage Network
Network and v e.g. 7 v v
Consensus Layer Externally Attestation HTTP Git IPES
Owned Account Smart Contract Servers Servers Nodes

FIGURE 2. Attestation and distribution architecture for each client connecting to the blockchain and storage network.

Source Code Listing 2: Smart contract implementation
of the specified metadata tuples in structs using the Solid-
ity language

20 ...

21 struct StorageMetadata {

22 uint16 timestamp;

23 uint8 mimeTypelD;

24 mapping (uint8 => URI) uri_set;
25

26 struct URI {

27 uint8 schemelD;

28 uint16 authorityID;

29 bytes32 path;

30 uint8 fileSetExtensionMarker;
31 }

32 struct IssuerMetadata {

33 address accountAddress;

34 bytes32 did;

35 }

36 ...

domain name system records. According to the specification,
the addition of new attestations under the same UUID or
name is possible with the preservation of prior attestations
retrievable through Merkle root M.

For the interaction with the Ethereum blockchain through
the identity and attestation components, the Web3 API con-
nects to an Ethereum node. Due to the attestation approach
with the possibility of validating attestations at the client-
side, no assumptions can be made by the client with regard
to the trustworthiness of remote blockchain nodes. For deriv-
ing meaningful attestation results, running an Ethereum
node locally in a fully-validation configuration is therefore
required.

An integration of the client software with web browser
applications is realized through the registration of the URI
scheme outlined in Section III-B4 with the local operating
system. Following such a link in a browser initiates the

VOLUME 10, 2022

retrieval of files from the storage network, the validation of
the claim, and the display of the file content in the case of
validity. The process is visible in the UML sequence diagram,
shown in Figure 4.

As aresult, the prototype implements the functions defined
by the specification. In practical terms, several implementa-
tion choices were made for demonstrating functionality with
high efficiency, however, with limitations present regarding
security. In particular, the functions defined by the speci-
fication, such as record claim, are split into several func-
tions and possess additional functions for compression and
format conversions. This concerns conversions of hash val-
ues between different representations of SHA-256 stored
in bytes32 arrays, and the compression of URIs such that
redundant parts of consecutive elements of a URI set are not
stored redundantly. Sets and tuples are stored according to
the specification, however, using mappings for optimizing
retrieval times and gas costs in Ethereum. The security of
the smart contract and client are not fully tested since the
aim of this prototype is primarily an evaluation of feasibility.
Limitations regarding efficiency, such as transactions costs,
will be discussed separately as part of the evaluation in the
next section.

IV. EVALUATION

For evaluating the attestation approach, we revert in the fol-
lowing to a use case in the domain of education. The goal of
this evaluation is to assess the performance of the approach
in terms of time and transaction costs for carrying out attes-
tation and link operations. For this purpose, we conducted
measurements using the Ethereum mainnet and the prototype
implementation.

A. EVALUATION USE CASE

Today, the certification for the completion of higher-
education courses, study programs or industry certifications
is relevant not only offline but predominantly on the web.
Commonly, qualifications and skills are referenced on career
websites such as LinkedIn or for individual job applications
on job portals and in individual e-mails. In these cases, the

18045

IEEE Access

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

X

cl |Transfer C. I | Storage Network I |Attestation C.

read file set _1
!
!

transfer file set

|

| URI set
i

|

assign URI set

compute Merkle trge of file set

>

Merkle root M

<

i
blockchain acqount generation
]

I Identity C. l lAttestation S. C. l lAttestation S.C.

account address

set public-private account keys !

|
! record claim with metadata from M, URI set

claim RID
<

S O [N N U

claim RID
<

>

create link with M, Link ID

Ref (Reference)

i
i
!
!
!
!
!
I
i
!
!
!
assign link ID with UUID or unique name
T
i
i
!
!
!
Ref |
T

0
'
'
'
'
1
|
|
'
'
1
|
|
1
'
|
'
'
|
'
L
|
|
L
'
1
L
1
1
|
'
'
'
|
|
d
'
1
r
1
1
h
|
'
|
L

[
|
|
1
1
|
|
'
'
'
1
1
|
|
|
'
I
h
1
L
|
|
L
|
|
1
1
|
|
|
'
'
'
1
|
|
r
|
|
1
1
1
|
|
!
i
U

Cl

X

|Transfer C. | | Storage Network | |Attestation C.

1 0
| |
' '
I 1
1 1
I '
| '
| |
| |
| |
| '
1 1
1 '
1 '
| |
| |
| '
' '
I 1
1 1
I '
| '
| |
| |
| |
| '
1 1
1 '
1 '

|
| |
| '

'
I 1
1 1
I '
| '
I |
| '
| |
| |
T d
1 '
| |
T 1
| |
| '
' '
L L

Identity C. | | Attestation S. C. | ‘ Attestation S.C.

FIGURE 3. UML sequence diagram showing the distribution of files, the issuance of a claim and the creation of a link with the
amplius prototype implementation. The following abbreviations are used. CI: Claim Issuer, C.: Component,
S.C.: Smart Contract, M: Merkle Root, RID: Record ID (of a claim), Ref: Reference (of a link).

distribution and validation of certifications must be estab-
lished in two scenarios. Either certification documents are
transferred point-to-point in the form of files, e.g. through
e-mail, or made available through one-to-many distribution
such as on web portals where certification files are stored and
validated. In both scenarios, existing methods possess limits
in that the validations are source-based (c.f. Section II-D).
In these scenarios, the certification files and a mechanism
establishing validity have to be available. For example, the
digital signatures and pubic keys of the senders of e-mails
with attached certifications must be validated in the point-
to-point case, e.g. with public key infrastructures using key
servers, even when certifications are forwarded to a third
party. A typical one-to-many distribution will require the
server and web-service to continuously serve or validate cer-
tifications. No guarantees exist for the validation to be always
available and not change validation algorithms. For example,
a company issuing industry certifications to professionals
faces the challenge of providing the server for an indefinite
amount of time; professionals face the challenge of having to
rely on the server without transparency. For higher-education
institutions and students, these challenges exist as well for
issuing digital degrees and other areas, for example, in the
case of student transfers between universities. Students taking
part in transfer programs in the EU today cannot rely on
digital transcripts due to the lack of attestations, among other
factors.® The resulting requirements encompass transparency

6https://europa.eu/youreurope/citizens/education/university/recognition/
index_en.htm

18046

and availability, and, in scenarios where an attestation is
validated by multiple distributed parties, distribution and
interoperability.

Blockchain-based attestation potentially can provide ben-
efits in these scenarios since attestations of certification
files can be validated through a smart contract, acting as
an impartial third party. Projected benefits are higher trans-
parency when recording and validating attestations, docu-
menting the existence of certifications from specific issuer
identities at the recorded timestamps, and preserving the
attestation over the long term. Coupling file distribution
with blockchain-based attestation aims at providing an access
mechanism to the attestation file sets over time, such that
a trusted method of access exists to certification files.
This is achieved by providing certification files through
integrity-secured URIs specified by the creators of attesta-
tions and for them leaving open the possibility of updating
URIs over time.

In this scenario, the evaluation assumes the attestation
and distribution of digitally issued university degrees in
XML format. Two datasets of fictitious university degrees
for 500 fictitious students have been generated, including
data on students, courses, grades, and institutions. For these
entities, ID and name attributes are described in the format
of a domain-specific modeling language encoded in indi-
vidual XML files. Accounting for the different scenarios of
point-to-point transfers and one-to-many distributions, the
two datasets contain fictitiously generated information on
degrees in different file sets.

VOLUME 10, 2022

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

IEEE Access

C%
.

request website

present website

select link to amplius URI

call registered app.
— >

resolve URI

resolve link

Attestation S.C. | |Transfer C. | lStorage Network
T

M, M_pred, issuer address

get claim records for M

claim record IDs (RIDs)

MIME, timestamp, URI set

retrieve URI set

>

F_v

|
i
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
|
|
|
i
|
i
i
'
'
'
>
'
'

retrieve file set F_v
————>

F_v
R

validate claim with F_v, M

attestation result

get issuer metadata for M, RID

account address, DID

timestamp, issuer address, DID

vV
)
i
i
i
]
i
i
T
i
i
!
!
!
!
!
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
!
!
i
i
i
i
i
!
|
h
i
i
i
i
i
i
i
)

o%

T
I
!
!
!
!
!
i
i
i
i
i
i
i
i
i
i
]
|
I
|
|
i
)
|
!
s

get storage metadata for M, RID _!
|
!
i
!
i
i
i
i
i
i
i
i
T
i
i
T
I
I
i
i
]
|
!
)
|
!
!
|

Attestation S.C. | |Transfer C. | lStorage Network

FIGURE 4. UML sequence diagram showing the retrieval of files from a link and validation of a claim with the amplius
prototype implementation. The following abbreviations are used. CV: Claim Validator, OS: Operating System, app.: application,
C.: Component, S.C.: Smart Contract, M: Merkle Root, pred.: predecessor, F_v: file set of validation, DID: decentralized identifier.

o (F1) The file set consists of 1 XML file representing
the course certifications of students enrolled in 14 uni-
versities in Switzerland and is distributed and shared
in a one-to-many fashion among universities, e.g. for
student transfer programs. All data has been generated
fictitiously.”

o (F2) The file set consists of 500 XML files representing
the course certifications of students, where each XML
file contains data for one student and is distributed in
a point-to-point fashion among universities or students.
All data has been generated fictitiously.?

Both file sets contain the same information and show the
possibility of attesting files individually or in aggregate. The
case of F2 might be compared with a typical issuance of
certifications, e.g. issued by e-mail from universities to stu-
dents. The file sets were used as input for the client software
carrying out distributions and attestations.

B. SETUP
The setup for all measurements consisted of the following
components required for attestation and distribution:
« Client software: the python-based client from the imple-
mented software prototype amplius in version 0.2° (see
Section III-C) with python 3.8.

TThe dataset is available at https://github.com/fhaer/ampl-case-study-3.

8The dataset is available at https://github.com/fhaer/ampl-case-study-5.
9https:// github.com/thaer/amplius

VOLUME 10, 2022

o Blockchain node: the go ethereum (geth) blockchain

node in version 1.10.5'% in a fully-validating configu-
ration with tracing and indexing of all transactions, and
pruning of historical data. For the initial synchroniza-
tion, the node was running for approximately 12 weeks
on a machine with an AMD 3700X processor, 32 GB
of RAM, and a Samsung 980 Pro NVMe SSD behind
a 1 Gbit/s fiber internet connection. For the measure-
ments involving local processing (Section IV-C2), the
node was moved to a current laptop with an AMD
5700U processor, 16 GB of RAM, and a SK Hynix
BC711 NVMe SSD. All other measurements involving
blockchain data (Section IV-C1) were read and calcu-
lated from the blockchain data directly, independent
form the hardware.

Ethereum network: the mainnet of the public Ethereum
blockchain in its *Berlin’ version, the current version as
of July 2021.

Attestation smart contract: the Solidity smart contract
from the implemented software prototype amplius in
version 0.1!1 (see Section III-C).

Storage network: the distribution using IPFS, Git, and
HTTP was performed with arbitrary nodes of the IPFS
network, Git servers by Github.com, and an Nginx

10https://github.com/ethereum/go—ethereum/releases
1 https://github.com/fhaer/amplius

18047

IEEE Access

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

Amplius is a user interface for creating and verifying attested multi-protocol links (AMPL). The prototype supports the transfer clients IPFS

Git, and HTTP.
<command> is one of the following attestation, identity, or transfer commands.

Attestation Commands:
—-attest [file]x
issue—claim [uri]«
—=1ink=UUID <merkle-root> [p]
ink=<link-id> <merkle-root> [p]
—--resolve=<link-id>

create an identity if none is present, distribute all files, issue a content-based claim
issue a content-based claim for all files retrievable under the given URIs

create a link with a new UUID v4 as ID pointing to claim <merkle-root>, parent link ID <p>
create a link <link-id> pointing to the claim <merkle-root> with parent link ID <p>
resolve the claim Merkle root linked by <link-id>

—-retrieve <merkle-root> <record-id> retrieve data of the claim identified by <merkle-root>, <record-id>

—-validate-claim [file]*

validate a claim using the Merkle root of all files

—-validate-claim=<record-id> [file]* validate a claim under the specified record ID using the Merkle root of all files

—-validate-claim=<issuer> [file]*

Identity Commands:
—-eth-account-new
——eth-account-show

create an identity for attestations

Transfer Commands:

—-distribute [file]x
—-distribute=ipfs [file]x
—-distribute=<GIT_URL> [file]*
—-distribute=<HTTP_URL> [file]*

show the current identity for attestations

validate claims issued by account address <issuer> with all given files

distribute all files using all transfer clients with example repositories

add files to IPFS and pin at a remote node

commit and push all files with Git to <GIT_URL> starting with git or http and ending in .git
send all files with HTTP PUT requests to <HTTP_URL> starting with http

—-retrieve [URI]*

retrieve all files from ipfs, git, or HTTP <URI>

FIGURE 5. Amplius prototype client command line user interface showing the implemented functions for each component.

HTTP server located in Switzerland. For the mea-
surements involving local processing (Section IV-C2),
an additional virtual machine running an Nginx HTTP
server was used.

By design, the storage network involves various servers
and protocols. The evaluation, therefore, involves measure-
ments for providing access to the storage network through
blockchain-based attestation, excluding the transfer and
latency characteristics of servers of the storage network. For
measurements involving the local processing of data obtained
through requests (Section IV-C2), the requests were made
to the virtual machine running locally instead of the storage
network.

C. MEASUREMENTS

When recording claims and creating links, blockchain trans-
actions induce cost and time expenditures for the issuers.
For resolving links and validating claims, the retrieval of
blockchain data and the processing of files on part of the val-
idators require local processing time. This section describes
the measurements taken for evaluating (1) the cost and time
of blockchain transactions and (2) the overall local process-
ing and request performance in comparison to web-requests
using HTTP.

1) BLOCKCHAIN TRANSACTION COST AND TIME

The scalability problem of blockchains provokes the evalua-
tion of transaction cost and time [56]. These measurements
depend on the Ethereum blockchain, the attestation smart
contract, and the input data encoded through the client soft-
ware. The measurements were obtained from the resulting
blockchain transactions, stored under the contract’s address
on Ethereum. For this reason, the results are visible in the
Ethereum blockchain and can be seen, e.g. through a block
explorer under the address of the smart contract.'?

12E.g. https://etherscan.io/address/0x5627da24A01B5799AbC84300AC
Bf2A778933bEed

18048

The following smart contract functions were executed and
monitored:

o Registration functions: transactions calling the regis-
terUriScheme, registerUriAuthority, and registerMime-
Type functions were called prior to the recording of
claims. The functions register the existence of MIME
types, URI schemes, and authorities used with http, git,
and ipfs and assign them IDs for the recording of claims.

o Recording of claim: transactions calling the record-
Claim function recorded attestation claims for file sets
F1 and F2.

o Creation of link: transactions calling the link function
were called for the creation of links to the recorded
claims.

The smart contract was monitored for measuring trans-
action size and fees: the amount of data in the input field
of the transaction and the gas usage from the execution on
the Ethereum virtual machine. Measurements of confirmation
times were derived from the blockchain. For the deployment
of the smart contract, the gas usage and transaction cost of
the contract creation were taken into account as a one-time
expense.

2) PROCESSING AND REQUEST PERFORMANCE

While links and claims are registered on the blockchain, their
resolving and validation occur through local reading and pro-
cessing of the blockchain data. In comparison to the common
case of retrieving files through HTTP web-requests, the client
is required to perform additional computations locally. The
client will first resolve a link and obtain claim records using
blockchain data, retrieve the corresponding files through
HTTP, and validate the claim given the file set (c.f. Figure 4).
As preconditions, the publication of the files on the web and,
after an undefined period of time, the issuance of a claim
record and a link are carried out (c.f. Figure 3). The local
processing required for these operations occurs only once and
is independent of the client and the source of the files. In order
to account for these aspects of processing in comparison

VOLUME 10, 2022

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

IEEE Access

to web-requests, the time of the following operations was
measured with the prototype implementation:

o HTTP PUT Request: the transfer time from the start of
each request to its completion as a baseline for compar-
ison.

« Recording of claim and creation of link: the processing
time of all local computations without blockchain trans-
actions, including the computation of Merkle trees from
files and the link ID assignment of random UUIDs.

o Retrieval of link and claim: the processing time of
all local computations without blockchain transactions,
involving querying the blockchain data locally with the
attestation smart contract for the link and the claim
records.

o HTTP GET Request: the transfer time from the start of
each request to its completion as a baseline for compar-
ison.

« Validation of claim: the processing time of all local com-
putations without blockchain transactions, involving the
computation of Merkle trees from files.

These measurements were conducted for the file sets F1
with 1 file, F2 with 500 files, and 499 subsets of F2 with
different numbers of files ranging from 1 file to 499 files. All
measurements of requests serve only as a basis for compar-
ison. They were made to a locally running virtual machine
for excluding transfer and latency characteristics of remote
servers. The time measurements were taken with the Python
function time.perf_counter_ns(). 13

D. RESULTS

The following three subsections discuss (1) results for mea-
surements related to blockchain transactions, (2) their extrap-
olation over time, and (3) results of processing and request
performance measurements.

1) BLOCKCHAIN TRANSACTION COST AND TIME

Table 1 lists the results for each of the functions in the
scenarios of both file sets. The size and cost per transaction
do not differ between F1 and F2 and are discussed in the
following.

TABLE 1. Results for smart contract functions in both scenarios involving
file sets F1 and F2.

Size in Bytes ~ Units of Gas Cost in Ether

Registration functions 216 383520 1.3806720E-2
Recording of claim 708 217557 0.7832052E-2
Creation of link 100 69493 0.2501748E-2
Total 1024 670570 2.4140520E-2

For the registration functions, the size of transactions is
216 bytes. These transactions are required only once per
registered MIME type, URI scheme, and authority. In the
example, the registration amounts to 6 transactions, each with
a size of 36 bytes, for registering the MIME type text/xml,
the schemes IPFS, Git, and HTTP, and the URI authority for
github.com, and an IP address. Each transaction of 36 bytes

13 https://docs.python.org/3/library/time.html#time.perf_counter_ns

VOLUME 10, 2022

transfers 32 bytes of zero-padded data and a 4 byte function
call. Transaction cost with a current gas price of 36 Gwei
amounts to 36383520 = 0.013806720 Ether corresponding
to 32.90 USD at an Ether price of 2383.24 USD.

Recording a claim involves the client-side computation of
a Merkle tree for all files and the transfer of the Merkle root
with the URI set within 1 transaction. The URI set refer-
ences previously registered schemes and authorities through
identifiers. Both the Merkle root and the identifiers possess
a constant length for an arbitrary number of files stored as
part of the Merkle tree. For this reason, the size and cost lead
to the same result for F1 and F2. The per-transaction size
amounts to 708 bytes transferring 704 bytes of zero-padded
data and the 4 byte function call. Transaction cost with a
current gas price of 36 Gwei amounts to 36 * 217557 =
0.007832052 Ether corresponding to 18.67 USD at an Ether
price of 2383.24 USD.

Creating a link for an existing claim results in 1 transaction
containing a link ID as UUID or name, the Merkle root of
the claim, and the previous Merkle root. The per-transaction
size amounts to 100 bytes transferring 96 bytes belonging to
a 32 byte link ID and two Merkle root values of the same size.
Both Merkle root values are always transmitted even if no pre-
vious value exists. Transaction cost with a current gas price
of 36 Gwei amounts to 36 x 69493 = (0.002501748 Ether
corresponding to 5.96 USD at an Ether price of 2383.24 USD.

The transaction size being independent of the number
of files shows the advantage of using Merkle trees in this
scenario. In the theoretical case of conducting 500 individ-
ual attestations, the total size and gas usage can be extrap-
olated from the per-transaction values to a size of 500 *
708 = 354000 bytes and the gas usage of 500 % 217557 =
108778500 units of gas. The total cost is 3.916026 Ether
corresponding to 9332.83 USD with the assumed gas price
of 36 Gwei and an Ether price of 2383.24 USD.

With regard to time, the confirmation of any transaction
depends on it being included in a block by a miner on the
Ethereum network such that measurements of few individual
transactions are not meaningful. Furthermore, in times of
high network utilization, transactions compete for the inclu-
sion in the next block through gas prices. We revert to an
assessment of time through typical confirmation times of the
network. Confirmation times were monitored with the geth
Ethereum node and aggregated to daily mean values with a
relational database.

Table 2 shows the daily mean confirmation times in the
time frame of the evaluation of blockchain transactions. The
confirmation time depends on the number of consecutive
blocks or confirmations, set by the client as a security parame-
ter. When a transaction is made with the requirement of n con-
firmations, n consecutive blocks need to be observed before
the data of the transaction can be accessed. With increasing n,
the probability for double-spending attacks decreases in case
re-organizations of the chain occur [57]. 10 to 12 confirma-
tions might achieve a degree of security roughly similar to
Bitcoin, assuming 6 confirmations on Bitcoin as a baseline for

18049

IEEE Access

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

sufficient security [55], [57]. In practice, an acceptable num-
ber of confirmations might depend on the security require-
ments of the application.

Based on the 210 days of the time span, the daily mean
ranges from 12.9 s to 13.6 s when waiting for 1 block as
confirmation. Assuming 12 consecutive blocks are required
for confirmation, the daily mean ranges from 156.2 s to
165.1 s. These relatively stable values can be assumed for
transactions paying sufficient gas prices for being included
in the next block.

TABLE 2. Daily mean of block confirmation times, January 1 2021 - July
29 2021.

Consecutive blocks Min Max Mean
1 129 13.6s 13.2s
2 26.0s 275s 26.7 s
3 39.1s 413s 40.1's
4 52.1s 55.1s 534s
5 65.1s 68.8 s 66.8 s
6 78.1s 82.6s 80.1s
7 91.1s 96.3s 93.5s
8 1042s 110.1s 106.8s
9 117.2s 1239s 120.2s
10 130.2s 137.6s 1335s
11 1432s 151.4s 1469s
12 156.2s 165.1s 1603 s
13 169.3s 1789s 173.6s
14 1823s 192.7s 187.0s

2) COST EXTRAPOLATION OVER TIME

While confirmation times can be assumed to be relatively
stable, there exist multiple factors influencing the transaction
cost over time. Major factors are the transaction size, the gas
prices related to network utilization, and the Ether price. The
transaction size depends on the implementation and can be
considered invariant, with the exception of possible optimiza-
tions such as advanced compression algorithms.

For evaluating the possible effect of changes in gas prices
and the Ether price, the cost of transactions recording claims
and creating links has been extrapolated over time with histor-
ical data. In order to estimate transaction cost, gas prices were
obtained from blocks between January 1 2017 and July 29
2021 using the geth ethereum node, and aggregated to daily
mean values. Figure 6 shows the resulting cost based on these
values and the transaction gas usage determined before. The
Ether transaction cost for link creation and claim records is
shown on the y-axis in comparison to the gas price on the
secondary y-axes. Due to high network utilization in the last
quarter of 2020 and the first two quarters of 2021, relatively
high Ether transaction costs can be observed. When taking
the price of Ether into account,'* Figure 7 shows USD prices
reaching close to 300 USD for the recording of claims before
returning to tens of USD recently. Even though transaction
cost is substantially reduced at the most recent point in time,

H4price data according to https://etherscan.io/chart/etherprice

18050

it can be concluded that rising gas prices might again have a
strong influence on transaction cost.

3) PROCESSING AND REQUEST PERFORMANCE
Considering a scenario where clients are publishing and
retrieving files on the web, the time required by the prototype
has been measured, including the processing of attestations
and links as well as HTTP requests. For an overview of the
complete latency experienced by the user, the following dis-
cussion also includes estimations for blockchain transactions
based on the confirmation times presented before. The results
are subdivided into the time to publish files, the latency until
blockchain transactions allow for the retrieval of files, and the
time to retrieve files.

Starting with the publication of files, the header of Table 3
shows the required client-side operations in the order in which
they occurred. Firstly, HTTP PUT requests for transferring
individual files are carried out. Subsequently, local process-
ing creates the claim, including the calculation of hash func-
tions and the Merkle tree, as well as the link pointing to the
claim.

TABLE 3. Time the prototype required to publish file sets F1 (n=1 file)
and F2 (n=500 files) on the Web.

File Set HTTPPUT Create Claim Create Link
F1 2.4 ms 3.0 ms 1.9 ms
F2 467.0 ms 4.0 ms 1.9 ms

The results for the two file sets, F1 with 1 file and F2 with
500 files, show the overhead for local processing in compari-
son to the time required for requests. The local processing of
F1 causes a latency of 3.0 ms 4+ 1.9 ms = 4.9 ms, increasing
with F2 to 4.0 ms + 1.9 ms = 5.9 ms. In comparison to the
time required for HTTP requests, the overhead is relatively
small considering the size of the files, F1 with 556691 Bytes
and F2 with 1213501 Bytes. However, while creating links
is a constant-time operation, creating claims also depends
on the number of files. For exploring this relationship, the
measurements have also been performed with subsets of F2.
In Table 4, the publication operations over the number of files
from F2 subsets can be seen. The file size ranges between
2411 Bytes and 2434 Bytes with a mean of 2427.0 Bytes.

TABLE 4. Time the prototype required to publish n files in the subsets of
file set F2 on the web.

n HTTP PUT Create Claim Create Link
1 2.1 ms 3.4 ms 1.9 ms
10 11.2 ms 3.7 ms 1.7 ms
100 101.1 ms 3.9 ms 1.8 ms
200 212.7 ms 3.8 ms 1.9 ms
300 331.2 ms 3.8 ms 2.0 ms
400 467.3 ms 4.4 ms 2.0 ms

Before a file set becomes available for other clients to
retrieve, the confirmation of the blockchain transactions
induces latency. Separate transactions are made for the
claim and the link, resulting in two transactions issued in

VOLUME 10, 2022

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

IEEE Access

Mean Ether Cost of Recording Claims and Creating Links

Link creation [le-2 ETH] —— : -
F Claim record [le-2 ETH] —— N 100000
100 Gas price [Gwei] ——— -~ ----omme el R d
3 : : ' Ll i
: ?M 4 10000
Tz 10 | - R TR | o
5 daid :
[\ .
i’ : 1 1000 L;
= ! 3
8 o
Q 7]
2 01F 100§
O
0.01 10
0.001-.....I.....i.....i.....i.....i.....i.....i.....i.....l-1
01/17 07/17 01/18 07/18 01/19 07/19 01/20 07/20 01/21 07/21
Date [month/year]
FIGURE 6. Ether transaction cost.
Mean USD Cost for Recording Claims and Creating Links
L B o e B IR s e
r Link creation [USD] —— :
100 | Claim record [USD] ——— -i------- P A
a
n
]
.8
3
O
O ST PO DU FOUT PO FUUUTE PR PO PO
01/17 07/17 01/18 07/18 01/19 07/19 0120 07/20 01/21 07/21

Date [month/year]

FIGURE 7. USD transaction cost.

sequence without delay. Typical confirmation times over
the time span of the evaluation are estimated in Table 5,
based on data from Table 2 with the assumption of
12 confirmations.

The results are the total confirmation times of both trans-
actions for three cases. The first estimation assumes the two
transactions are included in the same block, a likely scenario
since both transactions are issued in sequence without delay.
The second and third estimations assume the inclusion of the
transactions within 2 blocks and 3 blocks, respectively. In the
worst-case scenario, the blockchain-induced latency between
the publication and the retrieval of a file set is 192.7 s.

VOLUME 10, 2022

For making blockchain transactions and accessing the
blockchain data, running a blockchain node in a fully-
validating configuration is assumed for clients publishing or
retrieving files (see Section IV-B).

The retrieval of files requires the client-side operations
noted in the header of Table 6 in the given order. With a
client in the possession of a link, local processing resolves
the link and retrieves the corresponding claim from the local
blockchain data. Individual HTTP GET requests for each
file follow. Finally, local processing for the validation is
carried out, including the calculation of hash functions and
the Merkle tree.

18051

IEEE Access

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

TABLE 5. Estimated latency until blockchain transaction confirmations
allow for the retrieval of files after publication.

Confirmation of two transactions Min Max Mean
Same block 156.2s 165.1s 160.3s
Within 2 blocks 1693s 1789s 173.6s

Within 3 blocks 1823s 192.7s 187.0s

TABLE 6. Time the prototype required to retrieve file sets F1 (n=1 file)
and F2 (n=500 files) on the web.

File Set Resolve Link Retrieve Claim HTTP GET Validate
F1 3.1 ms 11.9 ms 41.3 ms 3.2 ms
F2 2.1 ms 9.9 ms 513.8 ms 9.2 ms

For file set F1, the results show the overhead for local pro-
cessing operations is 3.1 ms + 11.9 ms + 3.2 ms = 18.2 ms.
For file set F2, an increase is observed in the validation time
of 9.2 ms, resulting in a total overhead for local processing
operations of 2.1 ms+9.9 ms+9.2 ms = 21.2 ms. Similar to
the results for publishing files, the overhead is relatively small
in comparison to the time required for HTTP requests. For
taking also the number of files into account, Table 7 shows
the results for the measurements performed with subsets of
F2 containing different numbers of files.

TABLE 7. Time the prototype required to retrieve n files in the subsets of
file set F2 on the web.

n Resolve Link Retrieve Claim HTTP GET Validate

2.0 ms 9.4 ms 1.3 ms 2.1 ms
10 2.0 ms 10.0 ms 10.8 ms 2.4 ms
100 2.2 ms 8.8 ms 109.7 ms 2.2 ms
200 2.0 ms 9.2 ms 216.3 ms 2.3 ms
300 2.0 ms 8.9 ms 353.8 ms 2.8 ms
400 2.1 ms 9.5 ms 461.8 ms 2.6 ms

Overall, the retrieval operations only carry out local
processing with read-access to the blockchain in addition
to HTTP-related operations. During or after the retrieval,
no blockchain transactions take place.

HTTP Operations for Publishing and Retrieving Files
700 I I I I B T [

600 - HTTP PUT

500 [HTTP GET

w A
S S
S S
T T

200 |-

w2

Time [ms]

0
0 50 100 150 200 250 300 350 400 450 500

n
FIGURE 8. HTTP operations for publishing and retrieving file sets of size n.

In summary, Figure 8 visualizes all measurements col-
lected for HTTP PUT and GET operations of the 1 to 500 files

18052

Local Processing Operations for Publishing Files

g o]
12 [Create Claim
| Create Link
— 10 -
E g
5 S
E 6
S T A
4L
2
0 I I I I I I I I I

0 50 100 150 200 250 300 350 400 450 500

n
FIGURE 9. Local operations for publishing file sets of size n.

Local Processing Operations for Retrieving Files
30 | | | | | T T T T

25 Retrieve Link o .
L Retrieve Claim e
20 | Validate e

e —
0 50 100 150 200 250 300 350 400 450 500

n
FIGURE 10. Local operations for retrieving file sets of size n.

in file set F2 and in its subsets. In comparison to the local
computation operations, shown in Figure 9 and Figure 10
for publishing and retrieving files, the prior observations of
a relatively low latency compared to HTTP operations can
be seen. For the operations in Figure 9, the mean value for
creating claims is 3.9 ms and the mean value for creating links
is 1.9 ms. For the operations in Figure 10, the mean values for
retrieving links, retrieving claims, and validations are 2.1 ms,
8.9 ms, and 2.6 ms, respectively.

V. DISCUSSION

The processing required for the publication and retrieval of
files adds little overhead to the HTTP operations in the web-
based scenario. However, before files become available for
other clients to retrieve, the confirmation of blockchain trans-
actions induces a latency of several minutes in the worst case.
The approach is therefore limited to scenarios where such
a latency is acceptable, such as typical web-based scenarios
where newly published files are downloaded by other clients
later on.

The additional cost of performing attestations when dis-
tributing files is on the order of tens of dollars at the most
recent point in time and reached up to hundreds of dollars in
the second quarter of 2021. Use cases are limited mostly by
transaction cost, dependent on the network utilization visible

VOLUME 10, 2022

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

IEEE Access

in gas prices, the price of Ether, and on the invariant transac-
tion size. The application of blockchain-based attestation and
distribution are therefore limited to scenarios where such an
expenditure can be reasonably assumed. This might be the
case for issuing degrees in special cases, e.g. the comple-
tion of study programs and issuance of high-value industry
certifications. There might be other areas where the cost of
individual attestations would not play a major role, such as
the attestation of patents or the establishment of prior art in
copyright law.

In the end, the high price of attestations is a symptom of
rising prices for space in blocks on public blockchains. This
effect can lead to blockchain technology being reserved only
for high-value transaction scenarios, e.g. financial transac-
tions for settlements using cryptocurrency or the attestation of
legal documents. On the other hand, the continuous adoption
in the direction of multiple blockchains and side-chains such
as Polkadot,? Polygon,”’ and potential improvements in
Ethereum 2.0'7 might lessen the network utilization in exist-
ing networks and might provide sufficient capacity overall.
If transaction cost does not decline and remains at today’s
levels, the current cost of attestations on the order of tens of
USD would be sufficient for the applicability of the approach
in mid- to high-value certification scenarios.

VI. CONCLUSION AND OUTLOOK

In this paper, we described a novel approach for the decen-
tralized attestation and distribution of information using
blockchains. In contrast to previous approaches, it reverts to
a multi-protocol concept, which permits to augment existing
storage protocols such as Git or IPFS with blockchain-based
attestations for verifying the authenticity and timestamps of
the stored information. Through a first prototypical imple-
mentation the technical feasibility of the approach could be
positively evaluated. Further, measurements of the perfor-
mance of the approach showed a constant size of transactions
for recording links and a moderate cost and completion time
when reverting to the public Ethereum blockchain.

Future research will include in particular the exten-
sion of the approach towards other blockchain platforms.
With the currently witnessed steep technological progress
of blockchain platforms, it will be of interest to further
study how higher transaction speeds and lower transaction
costs will affect a more widespread adoption of the pro-
posed approach. Similarly, the approach could be joined with
blockchain-based mechanisms for processing the stored data,
e.g. for reasoning over the content of data in a decentralized
fashion to verify content-related properties.

REFERENCES

[1] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret,
“The world-wide web,” Commun. ACM, vol. 37, no. 8, pp. 76-82, 1994,
doi: 10.1145/179606.179671.

15 https://polkadot.network/
16https://polygon.technology/
17https://ethereum.org/en/eth2/

VOLUME 10, 2022

[2]
[3]

[4

[5]

[6]

[7

—

[8]

9

—

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]
[20]
(21]

(22]

(23]

[24]

[25]

[26]

(27]

R. Khare and S. Lawrence, Upgrading to TLS Within, docuament RFC 2817,
2000, doi: 10.17487/RFC2817.

C. Hosmer, “Proving the integrity of digital evidence with time,” Int.
J. Digit. Evidence, vol. 1, no. 1, pp. 1-7, 2002.

S. Bian, G. Shen, Z. Huang, Y. Yang, J. Li, and X. Zhang, “PABC:
A patent application system based on blockchain,” IEEE Access, vol. 9,
pp. 4199-4210, 2021, doi: 10.1109/ACCESS.2020.3048004.

M. Wilkinson, M. Dumontier, and I. J. Aalbersberg, “The FAIR guiding
principles for scientific data management and stewardship,” Sci. Data,
vol. 3, no. 1, Dec. 2016, Art. no. 160018, doi: 10.1038/sdata.2016.18.

R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell,
“A survey of peer-to-peer storage techniques for distributed file systems,”
in Proc. Int. Conf. Inf. Technol., Coding Comput. (ITCC), vol. 2, Apr. 2005,
pp- 205-213, doi: 10.1109/ITCC.2005.42.

L. Torvalds, J. Hamano, and J. Pearce. (2020). Git User Man-
ual. Accessed: Nov. 26, 2021. [Online]. Available: https://github.
com/git/git/blob/master/Documentation/user-manual.txt

N. Paskin, “Digital object identifiers for scientific data,” Data Sci.
J., vol. 4, pp. 12-20, 2005, doi: 10.2481/dsj.4.12.

I. Peters, P. Kraker, E. Lex, C. Gumpenberger, and J. I. Gorraiz, “Zenodo in
the spotlight of traditional and new metrics,” Frontiers Res. Metrics Anal.,
vol. 2, p. 13, Dec. 2017, doi: 10.3389/frma.2017.00013.

F. Harer and H.-G. Fill, “Decentralized attestation of conceptual models
using the ethereum blockchain,” in Proc. IEEE 21st Conf. Bus. Informat.
(CBI), Jul. 2019, pp. 104-113, doi: 10.1109/CBI.2019.00019.

S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem. Accessed: Nov. 26, 2021. [Online]. Available: https://bitcoin.
org/bitcoin.pdf

V. Buterin, G. Wood, and J. Wilcke. (2014). A Next-Generation Smart Con-
tract and Decentralized Application Platform. Accessed: Nov. 26, 2021.
[Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper
Ethereum Foundation. (2021). Ethereum Whitepaper. Accessed:
Nov. 26, 2021. [Online]. Available: https://ethereum.org/en/whitepaper/
A. Hafid, A. S. Hafid, and M. Samih, “Scaling blockchains: A com-
prehensive survey,” IEEE Access, vol. 8, pp. 125244-125262, 2020, doi:
10.1109/ACCESS.2020.3007251.

J. Benet and D. Dias. (2020). IPFS Architecture Overview. Accessed:
Dec. 17, 2021. [Online]. Available: https://github.com/ipfs/specs/
blob/master/ARCHITECTURE.md

H. Huang, J. Lin, B. Zheng, Z. Zheng, and J. Bian, “When
blockchain meets distributed file systems: An overview, challenges,
and open issues,” [EEE Access, vol. 8, pp.50574-50586, 2020, doi:
10.1109/ACCESS.2020.2979881.

Y. Psaras and D. Dias, “The interplanetary file system and the file-
coin network,” in Proc. 50th Annu. IFIP Int. Conf. Dependable
Syst. Netw.-Supplemental, Jun. 2020, pp.80-89, doi: 10.1109/DSN-
$50200.2020.00043.

R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Trans. Internet Technol., vol. 2, no. 2, pp. 115-150,
May 2002, doi: 10.1145/514183.514185.

J. F. Kurose and K. W. Ross, Computing Networking: A Top-Down
Approach, 6th ed. Boston, MA, USA: Pearson, 2013.

J. S. Sobolewski, “Cyclic redundancy check,” in Encyclopedia Computing
Science. Hoboken, NJ, USA: Wiley, 2003, pp. 476-479.

L. Chi and X. Zhu, ““Hashing techniques: A survey and taxonomy,” ACM
Comput. Surv., vol. 50, no. 1, pp. 1-36, Jan. 2018, doi: 10.1145/3047307.
Q. H. Dang, Secure Hash Standard. Gaithersburg, MD, USA:
National Institute of Standards and Technology, 2015. [Online].
Available: https://www.nist.gov/publications/secure-hash-standard,
doi: 10.6028/NIST.FIPS.180-4.

M. J. Dworkin, SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. Gaithersburg, MD, USA: National Institute
of Standards and Technology, 2015. [Online]. Available: https://csrc.nist.
gov/publications/detail/fips/202/final, doi: 10.6028/NIST.FIPS.202.

G. Wood. (2014). Ethereum: A Secure Decentralised Generalised Transac-
tion Ledger. Accessed: Feb. 8, 2019.[Online]. Available: https://gavwood.
com/paper.pdf

R. G. Shirey, K. M. Hopkinson, K. E. Stewart, D. D. Hodson, and
B. J. Borghetti, “Analysis of implementations to secure git for use as an
encrypted distributed version control system,” in Proc. 48th Hawaii Int.
Conf. Syst. Sci., Jan. 2015, pp. 5310-5319, doi: 10.1109/HICSS.2015.625.
(2020). Zenodo General Policies v1.0. Accessed: Nov. 26, 2021. [Online].
Auvailable: https://about.zenodo.org/policies/

M. Belshe, R. Peon, and M. Thomson, Hypertext Transfer Protocol Ver-
sion, document RFC 7540, 2015, doi: 10.17487/RFC7540.

18053

http://dx.doi.org/10.1145/179606.179671
http://dx.doi.org/10.17487/RFC2817
http://dx.doi.org/10.1109/ACCESS.2020.3048004
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1109/ITCC.2005.42
http://dx.doi.org/10.2481/dsj.4.12
http://dx.doi.org/10.3389/frma.2017.00013
http://dx.doi.org/10.1109/CBI.2019.00019
http://dx.doi.org/10.1109/ACCESS.2020.3007251
http://dx.doi.org/10.1109/ACCESS.2020.2979881
http://dx.doi.org/10.1109/DSN-S50200.2020.00043
http://dx.doi.org/10.1109/DSN-S50200.2020.00043
http://dx.doi.org/10.1145/514183.514185
http://dx.doi.org/10.1145/3047307
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.1109/HICSS.2015.625
http://dx.doi.org/10.17487/RFC7540

IEEE Access

F. Hérer, H.-G. Fill: Decentralized Attestation and Distribution of Information Using Blockchains

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

M. Bishop, “Hypertext transfer protocol version 3 (HTTP/3),” Internet
Engineering Task Force (IETF), Fremont, CA, USA, Tech. Rep. draft-ietf-
quic-http-34, 2021. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-ietf-quic-http-34

W3C. (2001). URIs, URLs and URNs: Clarifications and
Recommendations 1.0. Accessed: Feb. 28, 2019. [Online]. Available:
https://www.w3.org/TR/uri-clarification/

M. Diirst and M. Suignard, Internationalized Resource Identifiers IRIs,
document RFC 3987, 2005, doi: 10.17487/RFC3987.

P. Biswal and O. Gnawali, “Does QUIC make the web faster?”
in Proc. IEEE GLOBECOM, Dec. 2016, pp. 1-6, doi: 10.1109/GLO-
COM.2016.7841749.

T. Kuhn and M. Dumontier, “Trusty URIs: Verifiable, immutable, and
permanent digital artifacts for linked data,” in Proc. Semantic Trends
Challenges, V. Presutti, C. d’Amato, F. Gandon, M. d’ Aquin, S. Staab, and
A. Tordai, Eds., 2014, pp. 395410, doi: 10.1007/978-3-319-07443-6_27.
A. R. Naik and B. N. Keshavamurthy, “Next level peer-to-peer overlay
networks under high churns: A survey,” Peer-Peer Netw. Appl., vol. 13,
no. 3, pp. 905-931, May 2020.

B. Cohen, “Incentives build robustness in bittorrent,” in Proc. Workshop
Econ. Peer-Peer Syst., vol. 6, 2003, pp. 68-72.

C. Zhang, P. Dhungel, D. Wu, and K. W. Ross, “Unraveling the Bit-
Torrent ecosystem,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 7,
pp. 1164-1177, Jul. 2011, doi: 10.1109/TPDS.2010.123.

V. Trén. (2021). The Book of SWARM. Accessed: Jul. 2, 2021. [Online].
Available: https://www.ethswarm.org/The-Book-of-Swarm.pdf

A.-M. Kermarrec and M. van Steen, “Gossiping in distributed systems,”
ACM SIGOPS Oper. Syst. Rev., vol. 41, no. 5, pp. 2-7, Oct. 2007, doi:
10.1145/1317379.1317381.

IPFS Project. (2021). Content Addressing|IPFS Docs. Accessed:
Dec. 17, 2021. [Online]. Available: https://docs.ipfs.io/concepts/content-
addressing/#identifier-formats

A. Tenorio-Fornés, V. Jacynycz, D. Llop-Vila, A. Sanchez-Ruiz, and
S. Hassan, “Towards a decentralized process for scientific publication and
peer review using blockchain and IPFS,” in Proc. Annu. Hawaii Int. Conf.
Syst. Sci., 2019, p. 10, doi: 10.24251/HICSS.2019.560.

A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart
Contracts and Dapps. Newton, MA, USA: O’Reilly Media, 2018.

A. M. Antonopoulos, Mastering Bitcoin: Programming the Open
Blockchain. Newton, MA, USA: O’Reilly Media, 2017.

G. Coker, J. Guttman, P. Loscocco, J. Sheehy, and B. Sniffen, “Attes-
tation: Evidence and Trust,” in Information Communications Security
(Lecture Notes in Computer Science), L. Chen, M. D. Ryan, and G. Wang,
Eds. Berlin, Germany: Springer, 2008, pp. 1-18, doi: 10.1007/978-3-540-
88625-9_1.

X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“ProvChain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,” in Proc. 17th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2017,
pp. 468-477, doi: 10.1109/CCGRID.2017.8.

Y. Li, Y. Yu, R. Chen, X. Du, and M. Guizani, ‘“IntegrityChain:
Provable data possession for decentralized storage,” IEEE J. Sel.
Areas Commun., vol. 38, no. 6, pp.1205-1217, Jun. 2020, doi:
10.1109/JSAC.2020.2986664.

S. Curty, H. Fill, R. S. Gongalves, and M. A. Musen, ‘A webprotégé plugin
for attesting to the provenance of ontologies on the ethereum blockchain,”
in Proc. 20th Int. Semantic Web Conf., O. Seneviratne, C. Pesquita,
J. Sequeda, and L. Etcheverry, Eds., Oct. 2980, pp. 1-5.

C. Aebeloe, G. Montoya, and K. Hose, “ColChain: Collaborative linked
data networks,” in Proc. Web Conf., New York, NY, USA, Apr. 2021,
pp. 1385-1396, doi: 10.1145/3442381.3450037.

H.-G. Fill and F. Haerer, “Knowledge blockchains: Applying blockchain
technologies to enterprise modeling,” in Proc. 51st Hawaii Int.
Conf. Syst. Sci., Waikoloa, HI, USA, 2018, pp.4045-4054, doi:
10.24251/HICSS.2018.509.

H.-G. Fill, “Applying the concept of knowledge blockchains to ontolo-
gies,” in Proc. Spring Symp. Mach. Learn. Knowl. Eng., Palo Alto, CA,
USA, 2019, pp. 1-5.

G. Caronni, ‘“Walking the web of trust,” in Proc. IEEE 9th Int. Workshops
Enabling Technol., Infrastruct. Collaborative Enterprises (WET ICE),
Jun. 2000, pp. 153-158, doi: 10.1109/ENABL.2000.883720.

18054

(50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

N. Arndt, P. Naumann, N. Radtke, M. Martin, and E. Marx, “Decentral-
ized collaborative knowledge management using git,” J. Web Semantics,
vol. 54, pp. 29-47, Jan. 2019, doi: 10.1016/j.websem.2018.08.002.

F. Hirer, “Decentralized business process modeling and instance tracking
secured by a blockchain,” in Proc. 26th Eur. Conf. Inf. Syst., Portsmouth,
UK, 2018, pp. 1-5.

R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Proc. Conf. Theory Appl. Cryptograph. Techn. Adv. Cryptol.
London, U.K.: Springer, 1988, pp. 369-378, doi: 10.1007/3-540-48184-
2_32.

Y. Liu, Q. Lu, H.-Y. Paik, and X. Xu, “Design patterns for blockchain-
based self-sovereign identity,” in Proc. Eur. Conf. Pattern Lang. Programs,
Jul. 2020, pp. 1-14, doi: 10.1145/3424771.3424802.

N. S. Borenstein and N. Freed, Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodie, document RFC
2045, 1996, doi: 10.17487/RFC2045.

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf,
and S.Capkun, “On the security and performance of proof of
work blockchains,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur. (CCS), New York, NY, USA, Oct. 2016, pp.3-16, doi:
10.1145/2976749.2978341.

S. Kim, Y. Kwon, and S. Cho, “A survey of scalability solutions on
blockchain,” in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC),
Oct. 2018, pp. 1204-1207, doi: 10.1109/ICTC.2018.8539529.

V. Buterin. (2015). On Slow and Fast Block Times. Accessed: Jan. 18, 2022.
[Online]. Available: https://blog.ethereum.org/2015/09/14/on-slow-and-
fast-block-times/

FELIX HARER was born in Erlangen, Germany,
in 1987. He received the B.Sc., M.Sc., and
Ph.D. degrees in information systems from
the University of Bamberg, Germany, in 2012,
2014, 2019, respectively. From 2009 to 2012,
he worked at Siemens Healthcare, Forchheim,
Germany, as a Software and Testing Engineer.
From 2014 to 2018, he was a Research Assistant
at the System Development and Database Appli-
cation (SEDA) Group, University of Bamberg.

In 2018, he was a Research Assistant at the Digitalization and Information
Systems (DIGITS) Group, University of Fribourg, Switzerland. Since 2020,
he has been a Senior Research Assistant and lectures at the University
of Fribourg. He has authored and coauthored several peer-reviewed pub-
lications, book chapters, and open-source software. His research interests
include blockchains, decentralized and distributed systems, software engi-
neering, and systems and software modeling.

HANS-GEORG FILL was born in Vienna, Austria,
in 1978. He received the Diploma degree in inter-
national business administration and the Ph.D. and
Habilitation degrees in business informatics from
the University of Vienna, Austria, in 2002, 2006,
and 2013, respectively. Since 2018, he has been
a Full Professor with the Department of Infor-
matics, University of Fribourg, Switzerland. He is
the coauthor of several books, more than 70 peer-
reviewed publications, and multiple open-source

software systems. His research interests include enterprise modeling,
blockchains, and augmented and virtual reality applications. He was a
recipient of an Erwin-Schrodinger Scholarship for a research project at
Stanford University, in 2010. He is a Co-Editor of the Department Enterprise
Modeling and Enterprise Engineering of the journal Business and Informa-
tion Systems Engineering and a Supporting Editor-in-Chief of the journal
Enterprise Modelling and Information Systems Architectures—International
Journal of Conceptual Modeling.

VOLUME 10, 2022

http://dx.doi.org/10.17487/RFC3987
http://dx.doi.org/10.1109/GLOCOM.2016.7841749
http://dx.doi.org/10.1109/GLOCOM.2016.7841749
http://dx.doi.org/10.1007/978-3-319-07443-6_27
http://dx.doi.org/10.1109/TPDS.2010.123
http://dx.doi.org/10.1145/1317379.1317381
http://dx.doi.org/10.24251/HICSS.2019.560
http://dx.doi.org/10.1007/978-3-540-88625-9_1
http://dx.doi.org/10.1007/978-3-540-88625-9_1
http://dx.doi.org/10.1109/CCGRID.2017.8
http://dx.doi.org/10.1109/JSAC.2020.2986664
http://dx.doi.org/10.1145/3442381.3450037
http://dx.doi.org/10.24251/HICSS.2018.509
http://dx.doi.org/10.1109/ENABL.2000.883720
http://dx.doi.org/10.1016/j.websem.2018.08.002
http://dx.doi.org/10.1007/3-540-48184-2_32
http://dx.doi.org/10.1007/3-540-48184-2_32
http://dx.doi.org/10.1145/3424771.3424802
http://dx.doi.org/10.17487/RFC2045
http://dx.doi.org/10.1145/2976749.2978341
http://dx.doi.org/10.1109/ICTC.2018.8539529

