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ABSTRACT The energy management in new distribution paradigms are amongst one of core research
dimension, particularly in smart grids. This paper proposes a hierarchical energy management system for
inter-connected multi-smart buildings with an inclusion of local Power Market. As home appliances have
huge contribution in load of buildings, the appliances are scheduled in order to minimize operational cost
while taking into account the user comfort and other system constraints. The objectives of this paper aim
to minimize operational cost, CO2 emissions, grid dependency while maximize user comfort and revenue.
The proposed technique enables a prosumer with two options, either they can sell excess energy to the
utility or can bid and sell in market with high price compare to utility. Besides increase in revenue, the
consumer is enabled to buy electricity from utility or from local market with low prices compare to utility grid
aiming at reducing operational cost. The proposed framework is evaluated across three algorithms namely,
JAYA, teacher learning based optimization (TLBO) and Rao1, respectively. As per comparative analysis,
the JAYA algorithm outperforms the others in achieving the aimed objectives in-terms of favorable achieved
numerical values. Different cases are created in order to test the effectiveness of proposed system. The overall
simulation results validate the proposed approach with highest operational cost reduction of 151.48%, peak
load reduction 76.76%, grid dependency reduction 95.61%, and minimum emission of CO2 is 3.70 Kg/Day
as compare to base case.

INDEX TERMS Bidirectional power flow, energy management, electric vehicle, inter-connected buildings,
market clearing price, smart multi-buildings.

I. INTRODUCTION
The Residential buildings are one of the largest consumers
of electricity, which uses about 37.4% of total electricity
produce in the United States (US) in 2017 and 80% of
the electricity in the United Arab Emirates [1], [2]. It is
pointed out in [3] that an enormous amount of electricity is
wasted in buildings due to the absence of automatic control
and management systems. There are several reasons that
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approving it for publication was Alexander Micallef.

the owner of building does not install energy management
systems (EMS), such as lack of awareness, cost of system
and no incentive, etc.

The EMS using a hybrid teaching learning genetics opti-
mization (TLGO) that aims to increase the system’s energy
efficiency, incorporate renewable energy resources (RERs),
while minimizing the energy costs and user discomfort
levels [4]. In [5], a demand side management (DMS) system
namely real time scheduling system is used for residential
user has been introduced to minimize the operating cost
with optimal scheduling of devices and increase the RERs
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usage, particularly considering the uncertainties in RER
generation. A general architecture of EMS is proposed
in [6] to achieve an optimal scheduling of appliances and
ESS in response to the dynamic pricing that minimizes the
operational cost and peak average ratio. A general EMS
architecture in [7] is presented in smart grid environment,
and utilizes a scheduling method based on grey wolf
optimization (GWO) and particle swarm optimization (PSO),
for residential users with restricted and multi-restricted
scheduling.

Besides consideration of EMS on various modern distribu-
tion mechanisms under smart grid, smart buildings are among
the prominent new research dimensions. The examination
of power exchange effects in interconnected multi-building
have carried out with two cases, first with and other is
without power exchange capability. It is found that buildings
with power exchange capability has low operating cost
using mixed integer programing (MIP) and general algebraic
modeling system (GAMS) based framework [8]. A multi-
building framework is proposed for coordinated operation
of building devices in order to minimize the peak demand
and user discomfort during the event of demand response
(DR) [9]. An EMS is proposed for interconnected multi
energy hubs aimed to minimize the operating costs, carbon
emissions and increase in system independency from the
utility grid [10]. A framework based on decision rule approxi-
mation is employed for controlling the operation of buildings
and energy hubs, is formulated as a stochastic multistage
optimization problem that aims to reduce cooperatively total
load of the system [11]. An optimization model is proposed
in [12] that allows to manage daily energy consumption
of both single and multiuser cases, with the inclusion of
distributed energy resources (DERs) and batteries. A building
energy management system is proposed in [13] manages the
aggregation of different users in residential and commercial
buildings with a common electric distribution system with
a single connection to the grid. Energy exchange method
between buildings in an off-grid mode using mixed integer
linear programming is proposed in [14]. The proposed mixed
integer nonlinear programming (MINLP) model in [15]
manages the load and generation in order to minimize the
operational cost of energy purchased from the utility grid in
buildings.

The smart buildings have also considered as a candidate
to combat environment issues such as CO2 emissions with
optimal scheduling of RERs. According to a study, the overall
world power generation plants produces nearly 10 billion tons
of CO2 emission annually, which increase the greenhouse
effect and global warming [16]. A mixed integer linear
programming (MILP) optimization model is proposed to
minimize the operational cost and CO2 emissions consid-
ering user preference in buildings including DERs [17].
A proposed EMS uses wireless communication technologies
to smooth the peak power demand and reduces the CO2
emissions [18]. A proposed optimization model schedules
the smart building power consumption with renewable &

TABLE 1. Summary of literature review.

non-renewable resources in order to minimize electricity bill
and CO2 emissions [19].
In recent times, electric vehicles (EV) are vital and

prominent component of life as well as a decision variable for
load-generation balance in the electrical grids. An intelligent
hybrid EMS based on real coded genetic algorithm (RCGA)
is proposed for smart homes with bidirectional power flow
between homes and utility grid. Moreover, the various EV
standard charging techniques are compared in [20]. The
authors in [21] presents an stochastic dynamic programming
based optimization scheme to minimize the charging cost
of EV. An optimized framework for combined operation
of EVs and RES taking into account the uncertainties of
arrival and departure times of EVs, is proposed in [22].
A Grid-Home based EMS framework is proposed for
the management of EV charging and discharging with
effectively utilizing the photo voltaic (PV) system, in order
to minimize consumer operational cost and PV generation
curtailment [23]. A MILP based EMS is proposed to
optimally schedule the home appliances and EV charg-
ing / discharging in order to minimize peak Average
ratio (PAR), cost minimization and maximization of user
comfort [24].

In the reviewed literature, a commendable works has
carries across various perspectives of EMS, buildings with
RERs with a selected set of objectives. However, none
of them have considered a competitive power market
environment with multiple smart building concepts under
smart distribution mechanism that covers simultaneously a
wide variety of aimed objectives. The bridging of limitations
in the previous work is the very novelty of this work.
This paper incorporates a local competitive power market
in an inter-connected multi-building environment so that
the prosumers participate and sell their surplus energy to
neighbor buildings at market clearing price (MCP) or to
utility at utility export price (UEP). The main contributions
of this paper are as follows:
• A hierarchical EMS for multi-smart buildings
• Minimizing the operational cost and user discomfort.
• Maximize user Revenue.
• Minimize peak demand, grid dependency and CO2
emissions.

• Incorporate a local competitive power market among
multi-smart buildings
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FIGURE 1. System architecture of the multi-smart building system.

II. SYSTEM ARCHITECHTURE AND MODEL
A. SYSTEM ARCHITECTURE
The general architecture of proposed test system consists
of three buildings shown in Fig. 1, where each building
comprises of two homes. Each home has appliances shown
in Table 2. The components considered in test system
includes RERs (PV arrays and wind turbine), energy storage
system (ESS), building energy management system (BEMS),
home energy management system (HEMS) and independent
service operator (ISO). At low electric price period, user will
purchase power from the utility and ESS will store it. Later,
the devices will be powered by ESS during high electric price.
The ESS is also able to store surplus RE generation during
peakRERhours. Users can sell the surplus electricity produce
via RER or ESS to the grid and the neighboring buildings.

B. MODELING OF EV
Several factors affect the modeling of an EV such as driving
distance, driving style, selection of route, traffic, SOC at
plugging-out time etc. We have only consider the effect of
driving distance [21] and uses the data available in [25], [26].

SOCEVpi

=


SOCEVmin if

(
SOCEVpo −

d
ηEVEV cap

)
SOCEVpo −

d
ηEVCEV

Otherwise

(1)

If given SOCEVpo and d , then SOCEVpi can be computed
using Eqn. (1). Note that SOCEVpi is lower-bounded to
prevent battery depletion. Eqn. (2) governs EV charging
process:

SOCEV .i = SOCEV .i−1 +
PEV .i
CEV

× T × 100 (2)

where,

SOCEV .i, Resultant SOC of EV (%),
PEV .i Charging power (kW)
SOCEVpi, SOC during plugged-in EV
SOCEVpo SOC during plugged-out EV
SOCEVmin EV minimum SOC (%)
d , Distance traveled (km),
ηEV EV net drive efficiency (km/kWh)
CEV Battery capacity of EV (kWh)

C. MODELING OF BESS
The Eqn. (3) controlled the BESS charging and discharging.

WBi = WBi−1 +

[
TηB.ch −

T
ηB.dch

]
µi (3)

where,WBi is BESS energy at i-th interval and µi =
[
PB.i,ch
PB.i,dch

]
denotes the a vector having charging and discharging powers,
ηB.ch and ηB.dch are the efficiencies of BESS charging and
discharging respectively, and T denotes simulation step.
PB.i,ch is the positive value of battery charging power PBi and
PB.i,dch is negative value of PBi. At a time only one value will
be occurred in µi.

D. USER DISCOMFORT
Discomfort caused by appliances is calculated using
equation (4) [27]:

θ (tba ) = ρ(t
tb
a − t

b
a )
k

(4)

where,

tba Request time of appliance
t tba Actual start time appliance
k=3 Operation Characteristic
ρ =0.001 Discomfort Coefficient
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TABLE 2. Appliances information.

TABLE 3. Tariff information.

E. ELECTRICITY IMPORT AND EXPORT TARIFF
‘‘Peak-valley tariff’’ is utilized for both buying (import) and
selling (export) of the electricity in this work [28], [29].
This has three different tariff rates (peak, plain, and valley)
for different hours of a day as mentioned in Table 3. For
simulation purpose, the mentioned building bid prices have
used. The Comparison of the bid price to sell (Bs) to neighbor
buildings and selling (Ts) tariffs to utility is also illustrated
in Table 2, which shows that both the tariffs are of different
values. The seller is incentivized by making the values Ts less
than Bs so that they will participate in local power market.

III. OPTIMIZATION MODEL
The goal of the proposed optimization model is to reduce the
total operational costs over a finite horizon while satisfying
the constraints like operational constraints of the devices,
comfort constraint in the test system. The 24 hours of the
day have divided into 120 time slots. Each hour comprises
of 5 time slots, i.e. each slot is of 12-minutes [7]. The
problem formulation has optimized using three optimization
algorithms, namely JAYA, RAO and teacher learning base
optimization (TLBO).

A. JAYA
It is a powerful population based optimization algorithm,
as shown in Fig. 2, based on concept that solution should
moves towards best value and avoid the worst ones [30].

FIGURE 2. The flow chart for JAYA optimization.

Let f(x) be the objective function to be maximized or
minimized. Parameters required are number of iterations i,
number of variables m (i.e. j = 1, 2,.,., m) and n (k = 1,2,.,.,
n) be the number of population. Let the best solution of f(x)
is f(x)best and worst f(x)worst in the entire population. If kj,k,i is
the value of jth variable for the k th population during ith then
the value will be modified by equation (5).

k ′j,k,i = kj,k,i + r1,j,i
(
xj,best,i −

∣∣kj,k,i∣∣)
−r2,j,i(xj,worst,i −

∣∣kj,k,i∣∣) (5)

k ′j,k,i is the updated valve of kj,k,i.r1,j,i and r2,j,i are the two
random variables in range of [0,1]. k ′j,k,i will be accepted if
its value is better. All accepted values will be input for the
next iteration.

B. TLBO ALGORITHM
It is a nature-based optimization algorithm, as shown in
Fig. 3, which imitate the learning method of students from
teacher in a class. Teacher is considered as the most learned
one who delivered his knowledge to learners. The outcome of
learner is affected by the quality of teacher. Learners get good
grades or numbers if their teacher is good. This optimization
process is mainly split into two parts one is ‘‘Teacher phase’’
and the other is ‘‘Learner phase’’ [31].
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FIGURE 3. The flow chart of TLBO optimization.

1) TEACHER PHASE
Depending on good teacher the mean knowledge of class
increases fromMA toMB.Let Ti be the teacher and Mi be the
mean at iteration i. Teacher Ti try to move the knowledge of
learner mean Mi to its own level and the new mean will be
Mnew as shown in Eqn. (6).

Difference_mean = ri(Mnew − TfMi) (6)

Tf is the teacher factor, its value will be either 1 or 2. Such as
Eqn. (7) modifies the existing solution.

Xnew,i = Xold,i + Difference_mean (7)

x ′j,k,i = xj,k,i + r1,j,i
(
xj,best,i − xj,worst,i

)
(8)

2) LEARNER PHASE
In this phase learner try to increase his own knowledge by
interacting with the any other random learner. Learners are
selected randomly and a learner will learn new things from
other learner if he has more knowledge compare to him.
Learner modification is expressed as:

For i = 1 : Pn
Select two random learners Xi and Xj, where i 6= j.

FIGURE 4. The flow chart of RAO optimization.

If f (Xi) > f
(
Xj
)

Xnew,i = Xold,i + ri(Xi − Xj)

Else

Xnew,i = Xold,i + ri(Xj − Xi)

End
End
Accept Xnew,i if it gives the better value.

C. RAO ALGORITHM
It is a metaphor-less algorithm as shown in Fig. 4, which is
developed is similar to the concept of JAYA algorithm. The
modification of new value of kj,k,i is given in Eqn. (8) as
follows [32]:

D. OBJECTIVE FUNCTION
In our objective function we have to reduce the total
operational cost of homes, BESS and also the discomfort of
the occupant for 24-hours, as expressed in Eqn. (9).

Min
[∑n

i=1
(CUi + CBi + DBi

]
(9)

CUi =

{
T .Tb.i.PU .i if (PU .i ≥ 0)

T .Ts.i.PU .i if (PU .i < 0)
(10)

CBi =

{
T .CBom.i.PB.i if (PB.i ≥ 0)

−T .CBom.i.PB.i if (PB.i < 0)
(11)
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TABLE 4. EV system parameters.

where,

CUi, Building operating cost,
CBi, Operating cost BESS,
DBi User discomfort.
PU .i Utility electrical power at interval i (kW).
CBom.i BESS operation and maintenance cost ($/kW)
PDi, Electrical demand,
PBi BESS charging or discharging (kW)
PWi, Wind power (kW)
PPVi PV power (kW)
Pbuili Power purchase from building (kW)
PEVi EV charging (kW)

E. POWER BALANCE CONSTRAINTS
When BESS is charging (PBi is negative), the electrical power
balance should be:

PDi + PEVi − PWi − PPVi − PUi − Pbuili −
PBi
ηch

(12)

During BESS discharging interval (PBi is positive), the
electrical power balance should be:

PDi + PEVi − PWi − PPVi − PUi − Pbuili − ηchPBi (13)

F. EV CONSTRAINTS
To prevent EV battery from damage, SOC and charging of EV
limits must be taken into account, EV parameters are shown
in Table 4.

PEVi < PEVchmax (14)

SOCEVmin ≤ SOCEVi ≤ SOCEVmax (15)

where: PEVchmax denotes the of EV charging power upper
limit (kW) SOCEVmax is the maximum SOC of the EV
battery.

TABLE 5. Bess system parameters.

FIGURE 5. Wind and PV power curve.

G. BATTERY CONSTRAINTS
BESS minimum and maximum energy constraints must be
taken into account. BESS parameters are shown in Table 5.

WBmin ≤WBi ≤WBmax (16)

Depending on charging or discharging of BESS, the rate of
charge and discharge of energy in the BESS depends on limits
of charge and discharge rate in succeeding hours. Equation
(17) is for charging interval:

WBi −WBi−1 < PBchmax × T (17)

Equation (18) is for discharging interval:

WBi−1 −WBi < PBdchmax × T (18)

H. RENEWABLE ENERGY GENERATION
The RER (wind (2 kW) and PV (1.3 kW)) outputs mainly
depends on the conditions of weather. A typical power output
curve of wind and PV shown in Fig. 5 [33].

I. MARKET CLEARING PROCESS
There are two types of market clearing processes one
is ‘‘Uniform MCP’’ and other is ‘‘Pay-as-Bid MCP’’.
In Uniform MCP all the bidder (seller or buyer) will received
same MCP even if they bid greater or less than MCP while in
pay-as-bid MCP a system is to be design in which bidder will
received just what they bid. UniformMCP is very commonly
used in electricity market and we also use this in this paper.
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FIGURE 6. Flow chart of proposed system.

Each prosumer bids at some offer price in order to sell
its surplus electricity, each consumer bids to purchase its
required electricity at a certain bid price. When the MCP is
determined, all bid prices to sell which are lower than or equal
to the MCP and all bids prices to purchase which are greater
than or equal to the MCP are accepted. Other than these, all
bids would be rejected [34].

J. DETERMINATION OF MARKET CLEARING PRICE
Sale bids are usually aggregated in ascending order while
purchased bids are in descending order. The point where
these two curves intersect is known as MCP. It is the lowest
price which can provide enough electricity to satisfy accepted
purchased bids. Bidders include all the buildings which are
willing to sell their surplus energy and Utility. On the basis
of biding mechanism there are two types of markets single-
sided and double-sided biddingmechanism. Bidding inwhich
only supplier bid is known as single-sided bidding while if
bidding is done by both sides (supplier and buyer) this type
of bidding is called double-sided bidding mechanism.We use
single-sided biddingmechanism in this paper. The bidders are
allowed to bid either in the blocks or as a linear form [35].

Figure 6 is mainly divided into four parts: BEMS, HEMS,
ISO and Market clearing process. The BEMS uses forecast
model to forecasted the energy production from PV and
wind [36], [37] and send the forecasted RER profiles to
HEMS. HEMS uses optimization model which has different
optimization algorithms which uses the forecasted values
of RER and generate an optimized schedule for all devices
considering the objective function. net power (Pnet) profile
is generated after subtracting the scheduled total load of
building from RER profile for each n number of buildings.
Pnet values less than zero means building have excess energy
and it bids the amount of energy with some bid price to
ISO, for simulation purpose bid prices are shown in Table 2.
Similarly Pnet values greater than zero means building need
energy. Next ISO gather the bid information (sell/purchase).
The market clearing process uses bid information and
determined market clearing price at which the buildings buy
and sold energy to each other. Utility is also a participant
in local market. If there is remaining energy after selling
to buildings, the building will sell it to Utility at utility
export price at that interval otherwise it will be curtailed.
ISO is responsible for all the transactions between buildings
and utility.
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FIGURE 7. Case 1: Energy management scenarios.

IV. SIMULATION RESULTS
Multiple simulation scenarios were presented in this section
to demonstrate the importance of the proposed model. All the
cases are summarized in Table 6.

In all cases energy can be purchased from and sold to
neighbor buildings or utility grid. In all cases there is no RER
in building 3 it means building 3 needs energy from neighbor
buildings or from utility grid at every interval, it shows the
effectiveness of local power market. Case 1 and case 2 are
develop to compare building having RER with BESS and
without BESS. Similarly case 3 and 4 include EV in those
buildings which performs good in case 1 and 2 i.e. buildings
having BESS.

A. BASE CASE
In this case total Scheduled load of buildings is supplied by
utility only. The total operating cost of all three buildings in
this case is -13.24$ per day, and it will be used as a reference
for other cases. Negative sign indicates buildings have to
pay while positive refers to the earned money after exporting
power.

B. CASE 1
In this case PV is installed as illustrated in Table 6. The
surplus power available in buildings can be store in BESS
in and discharged when load is greater than generation.
The charging and discharging of BESS and energy routing
dependency on efficiency is already explained in [38]. The
total daily best operational expenses of the buildings are -
5.9334$ (B1=-0.9345$, B2=-0.9788$, B3=-4.0201$) in this
case, which is 55% less than base case. It is clearly seen
that B1 with BESS has less operational cost than B2. BESS

is charged in intervals 42-53 when RER is more than load
and discharged in 97-104 when load is more than RER in
building 1. In intervals 37-40, 45-46, 50-55, and 58-96 energy
is purchased from buildings at MCP. Similarly In interval 51-
95 remaining energy is sold to utility shown in Fig. 7. The
MCP of case 2 is lower in most of intervals compare to case 1
because in those intervals surplus energy is available to bid
in local market so those buildings which need energy during
those intervals buy energy from neighbor buildings at lower
prices compare to utility note that case 2 has wind RER. The
MCP comparison of cases 1-2 have illustrated in Fig. 8.

C. CASE 2
In this case, wind is installed as illustrated in Table 6 and
illustrated in Fig. 9, the total daily best operational expenses
of the buildings are 6.8141$ (B1 = 4.8857$, B2 = 4.7389$,
B3 =−2.8105$) in this case, positive value indicates the
profit (revenue – expense). BESS is charged in intervals 2-6,
42-45 and 47-52 when RER is more than load and discharged
in 38-42, 45-47 and 92-94 when load is more than RER in
building 1. In intervals 8-38 and 49-119 energy is purchased
from buildings atMCP and energy is sold to utility in intervals
1-38 and 51-120 at export price at that interval.

D. CASE 3
An EV is added with wind in this case, we have charge and
schedule the EV such that the overall cost minimizes. There
are multiple factors on which algorithm shifts the charging
of EV. Those factors are prioritized according to the cost of
power. The first one, EV gets charged in those hours where
generation of RER is surplus means after fulfilling the critical
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TABLE 6. Illustration of test cases.

FIGURE 8. MCP comparison of case 1 and case 2.

load. The second is to shift the charging where there is low
tariff (plain or valley tariff).

In interval 85-110 EV get charged and in intervals 2-6,
35-38 BESS get charged from surplus RER BESS discharge
in interval 33-35and 38-44 as illustrated in Fig. 10. The total
daily best operational expenses of the buildings are 5.9433$
(B1 = 4.1005$, B2 = 4.7823$, B3 =−2.9395$) in this
case. The MCP comparison of cases 3-4 have illustrated in
Fig. 11 it is clearly seen that MCP of case 3 is lower than
case 4 because of wind RER.

E. CASE 4
In this case PV is installed along with EV as illustrated in
Table 6.in interval 85-96 EV start charging after that it stop
charging because of unavailability of PV and high tariff price.
The algorithm shift charging to low tariff price interval 2-17

and BESS charge in interval 42-53 and discharge in intervals
40-47 and 97-105.

The total daily best operational expenses of the build-
ings are −7.1650$ (B1 =−2.1702$, B2 = 0.0922$,
B3 =−4.0742$) in this case, as demonstrated in Fig. 12.

V. RESULTS AND DISCUSSIONS
A. COST REDUCTION
From case 1 to case 2 the cost reduction increases due to
RERs combination and in case 3 and 4 it decreases because
of the inclusion of EV and combination of PV and wind in
buildings. In case 2 and 3 buildings generate profit if we
see the combinations the common energy resource is wind
energy, as demonstrated in Fig. 13. In cases 2-3, JAYA out
performs other algorithms with highest achieved value i.e.
151.48% and 144.90% of cost reduction from base case,
respectively. In case 4, Rao tends to be a better means to
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FIGURE 9. Case 2: Energy management scenarios.

FIGURE 10. Case 3: Energy management scenarios.

achieve cost reduction of 45.87%. Lastly, TLBO is better in
comparison with achieved cost reduction of 55.18% in case 1.
By increasing the capacity of BESS operational cost reduces
while capacities of wind and PV reduces operational cost
and also increases revenue by selling excess energy. In case
of wind more operational cost is reduces and more revenue
generation compare to BESS and PV because of availability
of generation in most intervals.

B. DISCOMFORT REDUCTION
From case 1 to 2 discomfort reduction increases and from
case 3 onward it decreases because of inclusion of EV and

combination of RERs, as demonstrated in Fig. 14. The highest
reduction value is found in case 2. By increasing the capacity
of BESS, wind and PV discomfort reduces but in case of wind
more discomfort is reduces compare to BESS and PV because
of availability of generation in most intervals.

C. PEAK REDUCTION
In Fig. 15, from case 1 to 3 Peak reduction increases, after
that it reduces because of RERs combinations. Maximum
reduction is in case 2 and 3 because of wind energy
combination. case 3 is the most notable one with highest
achieved peak reduction. The Rao algorithm is comparatively
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FIGURE 11. MCP comparison of case 3 and case 4.

FIGURE 12. Case 4: Energy management scenarios.

better in cases 2 and 4, Jaya outperforms in cases 1 and 3.
By increasing the capacities of BESS and wind, peak
reduction increases while in case of PV it depends on load
curve

D. GRID DEPENDENCY REDUCTION
In Fig. 16 energy from grid decreases from case 1 to 3,
then increases in case 4 because of unavailability of PV
in most time slots. From the grid dependency reduction
perspective, Jaya out performs other algorithms in cases 1 and

3 with achieved values of 29.73% and 95.61%, in comparison
with base case values. Likewise, Rao show better results in
cases 2 and 4, with achieved values of 95.19% and 20.80%,
respectively. By increasing the capacities of BESS, PV and
wind, the grid dependency reduction increases.

E. ENERGY FROM BUILDING
In Fig. 17, energy purchased by buildings from other
buildings increases in case 2 and 3 because of wind energy
resource availability. The highest energy purchasing from
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FIGURE 13. Comparative analysis of cost reduction with various
algorithms.

FIGURE 14. Comparative analysis of discomfort reduction.

FIGURE 15. Comparative analysis of peak reduction across all cases.

buildings rather than grid across all cases and computational
techniques aims towards case 6, with achieved values of
35.39% and 35.48%, from reference of base case.

FIGURE 16. Comparative analysis of grid dependency reduction.

FIGURE 17. Comparative analysis of energy purchase across all cases.

FIGURE 18. Comparative analysis of CO2 reduction across all cases.

F. CO2 EMISSIONS
Greenhouse gases have many effects on environment and
health. They trap heat in them which cause climate to
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change, and they also contribute in air pollution and smog
which causes respiratory disease. Some other effects are
Extreme weather, food supply disruptions, and forest fires.
One of the primary greenhouse gas is CO2, responsible
for about three-quarters of emissions [39], [40]. In Fig. 18
it is clearly seen that with the inclusion of RER and
enabling bi-directional flow among buildings CO2 emissions
decreases. In cases 1 and 3 JAYA outperforms the compared
algorithms with highest achieved CO2 reduction kg/day
i.e. 59.10 and 3.70. RAO outperform other methods in
case 2 and 4 with the achieved value of 4.00 and 66.60,
respectively.

VI. CONCLUSION
This work proposed a model of an inter-connected multi-
smart buildings with the inclusion of local market in order
to incentivize the consumer and utility grid. This work uses
three optimization algorithms for optimum solution and its
validation. The findings of six different simulation cases
shows that by inter-connecting and inclusion of local power
market the overall operating cost of system decreases and
revenue increases by a prominent amount and this amount
depends on the number and combination of energy resources.
By adopting the proposed system the operational cost and
user discomfort reduces while the export of energy to other
buildings increases hence increase in revenue. On utility side
peak demand reduces while grid independency increases.
It can also be seen that those cases which have wind energy
have less operational cost and user discomfort while increase
in revenue, peak reduction, grid dependency reduction, and
CO2 reduction compared to cases with PV. This is because of
availability of energy in most of the intervals compare to PV.
By increasing the capacities of wind and PV, more reduction
in operational cost and user discomfort while more increase
in above mentioned features. Among all three-optimization
algorithm, from reference of base case, JAYA outperformed
in terms of highest cost reduction of 151.48% in case 2.
The highest discomfort reduction is achieved with case 3.
The highest peak load reduction is achieved with JAYA at
76.76%. The highest grid dependency reduction is achieved
with JAYA at 95.61%. The highest energy purchase from
buildings is achieved in case 3 across all techniques and
cases, respectively. Finally, highest CO2 reductions have
achieved in case 3 with JAYA, at 3.70 in achieved numerical
values than others algorithms. The proposed system is highly
flexible and yet robustness remains same when the number of
buildings, homes and RER changes at a small cost of further
computation.
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