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ABSTRACT This work discusses the simulation and experimental demonstration of a genetic algorithm
hybrid fuzzy-fuzzy controller (GA-HFFC) system to achieve speed control of a variable-speed induction
motor (IM) drive based on a space vector pulse width modulation (SVPWM) technique by means of an eZd-
spF28335 digital signal processing (DSP) experiment board. Two features of field-oriented control (FOC)
were used to design the GA-HFFC, namely, the current and frequency. To overcome the limitations of the
FOC technique, the principles of the GA-HFFC were introduced through the acceleration-deceleration stages
to regulate the speed of the rotor with the help of a fuzzy frequency controller, while a fuzzy stator current
amplitude controller was involved during the steady-state stage. The results revealed that the proposed control
approach could deliver a practical control solution in the presence of diverse operating conditions.

INDEX TERMS Digital signal processing, genetic algorithm, hybrid fuzzy-fuzzy control, induction motor,

reliable auxiliary circuits.

I. INTRODUCTION

In industrial applications, induction motors are well known
for their reliability, minimal maintenance and low cost.
At present, induction motors have extensive applications
ranging from speed motion control systems to high-level
control, including punching presses, compressors, elevators,
centrifugal pumps and so forth [1], [2]. A high-performance
modern electrical drive should exhibit the following fea-
tures: small steady-state error, robustness to variations in the
system parameters, direct and fail-safe control algorithms,
a fast transient response, small overshoot, a wide operating
range, minimal maintenance, and low-cost applications [3].
Several reports have been published on indirect and direct
field-oriented controllers (IFOCs and DFOCs, respectively).
For example, Herber et al. [4] introduced a fuzzy logic design
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approach that could meet the speed tracking requirements
even when detuning occurs. In the effort to achieve a robust
field-oriented control against load disturbance, [5] proposed
a robust control with a neural-network load torque estima-
tor and identification. In [6], Shi et al proposed a novel
hybrid fuzzy-PI for IFOC based on FOC features. Other
alternative techniques for high-performance electrical drives
are the direct torque control (DTC) as mentioned in [7],
and the sensor-less speed control as discussed in [8]. The
DTC and sensor-less speed controllers are much simpler than
the FOC due to the absence of coordinate transformation,
no requirement for a pulse width modulator and a position
encoder. However, the DTC and the sensor-less speed control
techniques have the similar challenging issues as the FOC;
they need to rely on flux and torque estimator, which make
the control strategy difficult.

To change the gains of a PI controller, many research
methodologies have been used, such as fuzzy logic
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controllers (FLCs), particle swarm optimization (PSO), and
genetic algorithms [9]-[11]. The benefit schedule, also
known as artificial intelligence, is utilized to provide a better
solution under certain operating situations [12]-[16].

Modern high-performance electrical drives are character-
ized by small steady-state errors, resilience to system param-
eter fluctuations, direct and fail-safe control algorithms, quick
transient response, small overshoots, wide operating ranges,
low maintenance, and low-cost applications [17]. Due to
their low cost and durable design, induction motors are the
backbone of the industry. However, induction motor con-
trol is complicated by the existence of severe nonlinear-
ity [18]. Expert systems (ESs), fuzzy logic (FL), artificial
neural networks (ANNSs), and genetic algorithms (GAs) are
examples of existing artificial intelligence (AI) algorithms.
Artificial neural networks (ANNSs) are one of the most exten-
sively used Al approaches for controlling the speed of induc-
tion motors, although such controllers take a long time to
train [19]. In their paper, Lftisi and Rahman [20] proposed
fuzzy logic controllers (FLCs) and finite element controller
maps (FECMs) as artificial intelligence alternatives; how-
ever, these methods require some tweaking. An example
of a method known as hybrid fuzzy controller consisted
of Pl-type Fuzzy controller and conventional PI controller
for improving the controllers’ performances can be found
in [21]-[23]. In other cases, for example [24], [25], hybrid
fuzzy-PID controller method has been used in which the
proposed method was simulated for 3-Phase induction motor
system. In their paper, [26] reported an implementation of the
adaptive fuzzy control and conventional PI controller on a
PV grid connected inverters. In addition, several successful
work on neural networks and fuzzy logic have been reported
in [27]-[29]. Another example of an artificial intelligence
alternative is the report of designing of a fuzzy sliding mode
controller by genetic algorithms for induction machine speed
control, [30].

Global optimization strategies have attracted the interest of
various researchers in the field of controller parameter opti-
mization. Genetic algorithms (GAs) have been used to regu-
late the speed of induction motors [31]-[37] and have been
successful in obtaining optimal or near-optimal solutions for
optimization problems [38]. In a control engineering applica-
tion, a GA’s typical goal is to identify the optimal values for
a given set of free parameters that describe either a process
model or a control law [39]. GAs have been effectively imple-
mented in the industrial electronics areas of parameter and
system identification, control robotics, and classifier systems.
Because the population is valuable for preserving diversity,
GAs are more robust and resilient than other local search
algorithms [40]. GAs are also less expensive and easier to
implement than other methods and seek only a single goal to
evaluate; hence, GAs have been successful in obtaining the
best solutions to optimization problems. Genetic algorithms
may be used to optimize hybrid fuzzy controllers in either
simulation or hardware experiments. Genetic algorithms may
be used to optimize hybrid fuzzy controllers in either through
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simulation or hardware experiments. In [9], the authors did an
optimal fuzzy gain scheduling of PI controller to the speed
control of induction motor. The parameters of PI controller
are scheduled by FLC where firstly the parameters of the
FLC are optimized by genetic algorithm. The performance
result is reported to be better as compared to FLC when
optimized by human operator. In a related paper, [41] reported
an optimization design of fuzzy controller parameters based
on GA. The GA techniques are recognized as being useful
in solving fuzzy-related optimization problems. For exam-
ple, there are quite a number of research carried out that
utilize GA to optimize fuzzy controller in applications such
as in deep-sea mining, wellhead back pressure, urban traffic
flow, energy flow management, solar photovoltaic, shape
optimization and earth pressure balance have been reported
in [42]-[48]. Examples of the work to find solution for DC
and AC motor drives FLC system optimized using genetic
algorithm have been reported in [49]-[52].

When compared to FLCs optimized by a human opera-
tor, the GA-optimized performance is superior. In contrast,
an artificial bee colony algorithm was proposed in [53], [54]
to address the long convergence time in the speed control
of DC and AC drives. As another alternative, the ant colony
optimization (ACO) algorithm, which is used to regulate the
speed of a switching reluctance motor, was described for the
first time in [55]; however, the primary disadvantage of this
method is that it requires a sophisticated theoretical analysis.
One research project [56] evaluated the firefly algorithm
(FFA), which was employed to control the speed of a DC
series motor powered by a solar system. Swarming tactics in
fish schooling have also been used for the speed management
of a DC permanent magnet motor and an induction motor in
particle swarm optimization (PSO) [57]-[63]. Nonetheless,
because of partial optimism, PSO does not have much precise
control over its speed and direction [64]. As a result, the
bacterial foraging (BF) scheme, a relatively new evolutionary
computational methodology, was proposed in [65]-[69], but
this method works on the basis of random search directions,
which adds to the time it takes to find the global solution. The
imperialist competitive algorithm (ICA) and the bat search
algorithm (BSA) were both explored in [70]-[75]. Although
the ICA can be used to find the optimal controller settings,
it also has the abovementioned drawbacks in optimization
approaches.

Although the FOC method has been widely applied to
achieve high performance in variable-speed induction motor
drives, it also has some disadvantages. The first drawback
when applying the FOC method is its sensitivity to variations
in parameters. Consequently, errors accumulate during the
assessment of definite integrals; for example, in the event of
an extended control time, the transient responses are affected
and the steady-state performance degrades due to drift in the
parameter values and an excessive accumulation of errors.
Other drawbacks involve the requirement of continuous con-
trol with an initial state and the involvement of complicated
calculations [8].
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This study investigates the resilience of induction motor
control drive systems that use GA-HFFC three-phase
squirrel-cage induction motor (SCIM) drives to overcome the
shortcomings of vector control. To do so, this investigation
evaluates the drive system’s performance in terms of speed
tracking and external load rejection and its performance as
a function of variations in the parameters. The motivation
for this project stems from the possibility of expanding and
scaling up research on AC motor drives using the techniques
described in the following sections.

The objective of this research is to demonstrate a prac-
tical implementation of the proposed GA-HFFC system to
control an induction motor (IM) based on the space vector
pulse width modulation (SVPWM) technique in digital signal
processing (DSP). To fulfill this objective, an incremental
encoder was joined to the motor shaft, and Hall effect current
sensors were used to identify the direct currents to the motor
with the designed auxiliary circuits. The main purpose was
to apply a powerful control action to the load disturbance
and employ abrupt fluctuations in the reference speed and to
compare the results with those of an HFFC, a hybrid fuzzy-PI
controller (HFPIC) and an IFOC [2]. The dynamic responses
of the speed and reference phase ’a’ stator current were inves-
tigated with several reference speeds and load disturbances.
The results of this study substantiate some of the predominant
behaviors in most of the scenarios. This paper introduces a
new method in light of the aforementioned disadvantages of
the vector control method. The GA-HFFC system is shown to
overcome those disadvantages and is effectively applied and
compared with classic controllers. The results of simulations
and experiments verify the proposed method when compared
to the traditional methods.

The remainder of this research paper outlines the sim-
ulation and experimental demonstration of the proposed
GA-HFFC system and is organized as follows: In Section II,
the mathematical model of the IM hybrid fuzzy-fuzzy con-
troller is defined, including a fuzzy frequency controller and
a fuzzy current amplitude controller. Section III describes
the implementation of a GA optimization method for hybrid
fuzzy-fuzzy rules. The hardware setup is described in
Section IV. Sections V, VI and VII describe and discuss the
simulation and comparative study based on different speeds,
experimental results and performance indices for simula-
tion studies, respectively. Finally, a comparison between the
simulation and real-time implementation results is described
in Section VIII.

Il. HYBRID FUZZY-FUZZY CONTROL OF AN IM
The relationship between the input and output in an IM can
be written as

wy = IM (i, w, T1) (1

In this research study, two features of FOC are consid-
ered. First, FOC is not able to directly control the fre-
quency because the supply frequency varies throughout the
acceleration-deceleration period; however, the slip frequency
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remains the same. Second, the magnitude of the supply cur-
rent remains stable when a torque command is present [5].
Table 1 explains this relationship implemented in the HFFC.
The first feature can be confirmed by the relationship of (2)
among the supply frequency w, the slip frequency wy; and the
rotor angular speed wy,:

P
w= <wsl + Ewm> (@)
where the slip frequency is
3r,.T*

From (3), it can be observed that if T* is kept constant
throughout an acceleration stage, then wy; is also constant,
and as wy, fluctuates throughout the acceleration-deceleration
stage, w also differs. Thus, (2) satisfies the first feature. On the
other hand, the second feature can be confirmed from (4),

as given below:
, 2 .
o= (3 +5) @

where
hXa
igs = (L_er) = constant (@)
and
. 3L, T* ©)
14 = —_—
@ PLy 2%

The second feature is satisfied by the fact that (4) remains
constant if the torque command 7* is kept constant.

A. FUZZY FREQUENCY CONTROLLER

A fuzzy frequency controller is described in this section
with the help of the frequency aspect of the field orientation
principle. During the acceleration-deceleration stages, the
torque command shows a high value; however, a small value
is depicted in the steady-state stage. The rotor speed and
reference speed represent these values. The normal range of
speed for an IM is from -1350 rpm to 1350 rpm, for which the
range of the speed error is from -2700 rpm to 2700 rpm. The
proposed fuzzy frequency controller solves this issue when
the supply frequency rises too fast and the torque produces
oscillations and is designed using the FOC equations.

TABLE 1. HFFC relationship.

Supply Current Rotor Control

frequency | amplitude | speed objective
Acceleration | Change Constant Change Speed change
Steady-state | Constant Change Constant | Reduce oscillation
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The relationships given below show the steady-state slip
frequency:

@)

Trated

wy,, when,Aw, =0
wmrated

3r,
)\e*2 Tacceleration, When,Awy, # 0

W] =
3r,
6*2

where Aw, = o), — w, and the relationship among
the slip frequency, rotor speed and reference rotor speed
can be written as wy = f(w},, Aw,). This relationship
demonstrates that Aw, and w}, can be employed as the
inputs of the fuzzy frequency controller. The nine sets that
are formed by classifying the fuzzy sets are “Z:zero”,
“PB:positive big”, ““NB:negative big”, “‘ PS:positive small”,
“NS:negative small”, ““PBB:positive big big” , ““PM:positive
medium’, ‘“NM:negative medium” and “NBB:negative big
big”. In this study, the centroid method is implemented to
execute the defuzzification operation. The membership func-
tions of the input and output for the fuzzy frequency controller
are presented in Fig. 1 (a), (b) and (c). Furthermore, the con-
trol rule matrix is depicted in Table 2. Using (7), the samples
of the slip frequency of the two stages can be calculated,
and the results are given in Table 3. On the other hand, the
IM parameters are given in Table 4.

TABLE 2. Rule matrix for the fuzzy amplitude/slip controller.

Speed Reference speed
Error NB NM NS Z PS PM PB
NB NBB | NBB | NBB | NBB | NBB | NBB | NBB
Z NB NM NS Z PS PM PB
PB PBB | PBB | PBB | PBB | PBB | PBB | PBB

TABLE 3. Speed, current amplitude, slip frequency and fuzzy linguistic
values.

Stage o A O T Fom
Deceleration — —1.566 —61.997 | NBB
Steady — state | —1350 | —0.7735 | —43.557 | NB

— —900 —0.55633 | —29.038 | NM

— —450 —0.3618 | —14.519 | NS

— 0 0 0 Z

— 450 0.3618 14.519 PS

— 900 0.5533 29.038 PM

— 1350 0.7735 43.557 PB
Acceleration — 1.566 61.997 PBB

B. FUZZY CURRENT AMPLITUDE CONTROLLER

The stator current magnitude was regulated during the
acceleration-deceleration stages, as the system was driven
by the maximum permissible values of the inverter. Never-
theless, the speed of a rotor is controlled by regulating the
magnitude of the stator current during the final steady-state
period, although the supply frequency is kept constant. The
values of the current amplitude are represented as follows:

. 1.5, ig |[>1.5A when,Aw 0
- { s | A ®)

lig |, |is]<1.5A when,Aw,, =0
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FIGURE 1. Membership functions of the (a) reference speed, (b) speed
error, (c) slip frequency, and (d) current amplitude.
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3 Ly PLy )\Zt Wmrated "

®

where Aw,, = w}, — wy, and the current amplitude can be
written as iy = f(w}, Awy), which shows that Aw,, and
w;, can be used as the inputs to the fuzzy current amplitude
controller. For the HFFC, the samples of the current ampli-
tude can be calculated from (9), and the results are shown
in Table 3. For the “175 w” Lab-Volt IM, “T,cceleration =
1.3 Nm”, “A = 0.9 wb”, “Tygea = 1.23796 Nm”,
“Omrated = 1350 rpm”, and “pu = 0.000917 Nm/rpm’.
The membership functions of the input and output are illus-
trated in Fig. 1 (a), (b) and (d) by applying rules similar to
those given in Table 2. Fig. 2 displays the structure of the
proposed GA-HFFC.
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FIGURE 2. Structure of the proposed GA-HFFC.

TABLE 4. Characteristics of the Lab-Volt IM model 8221 — 0X.

Name Symbol | Value
Resistance of stator T 45 Q/ph
Resistance of rotor T 38 Q/ph
Self-inductance of stator Lg 2.34912 H/ph
Self-inductance of rotor L, 2.34912 H/ph
Magnetizing inductance Ly 2.228 H/ph
Rotor inertia J 0.001 kgm?
Damping constant Bor f 0.00021 kgm?
Number of pairs of poles | P 2

lll. GA OPTIMIZATION OF HYBRID FUZZY-FUZZY RULES
The performance of the proposed hybrid fuzzy-fuzzy con-
troller (HFFC) in a variable-speed induction motor (IM)
driving system is discussed in this section. To determine the
fuzzy controller’s rule base, a basic genetic algorithm (GA)
is applied to address the issue of optimizing an objective
function, such as the integral of absolute error (IAE) cri-
terion. A simulation reveals that for IM speed control, the
HFFC with GA optimization is a superior technique to both
an HFFC without GA and a conventional hybrid fuzzy-PI
controller (HFPIC).

Many scientists have reported a variety of clever strate-
gies to fine-tune fuzzy systems [76]-[81]. To showcase
this point of view, a neural network was coupled with an
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evolutionary optimization algorithm while advancing the
membership rules or functions that change into a pattern
while developing a fuzzy logic system. The advantages of
the GA strategy include a lower cost: the GA requires only a
specified goal for which the survey is being conducted and a
straightforward execution technique. Fig. 3 depicts a generic
GA configuration for a fuzzy control system that includes an
inference engine, a defuzzifier, and a fuzzifier.

The usage of a GA is critical in this study to improve
the fuzzy inference system’s rules. The essential objective
is to monitor the execution of a fuzzy controller based on
heuristics and to establish a controller using an optimization
technique. As a consequence, the best mix of fuzzy input
and output variables should improve the inference rules of
a fuzzy controller designed for a specific purpose of fuzzy
logic control [82], [83].

GAs are computing techniques that use administrators to
understand the heuristic pursuit process within a search space
with the expectation that a perfect solution to the optimization
problem can be found. The standard integral of absolute error
(IAE), which is specified in (10), is the proposed objective
function in this optimization problem [84]:

T
IAE = (/ e(t)dt) (10)
0
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Fuzzy Rules

Ao,
Controller

Induction

A

Fuzzifier

Inference Engine

> gain
coefficients

Defuzzifier Motor

Fuzzy Logic System

FIGURE 3. Fuzzy control system’s basic GA configuration.

Equation 10 specifies an objective function that is reduced
during the optimization process and reflects a reasonable
response to set point changes. The objective function was
considered in addition to other highly important foci, such as
the steady-state error, settling time, overshoot, rot percentage,
and time increase [85]. In this investigation, only the rule
base was achieved in all circumstances using an optimization
technique.

The GA is linked to the end goal of achieving the finest
rules encircling a certain fuzzy controller. The antecedents
were gathered in a group as part of a MATLAB algorithm
that adapted to linguistic input variables [82], [83]. The
GA made use of this algorithm when it obtained the con-
tentions, that is, the results of the controller among the
appraisals. The assessment was carried out for every single
member in the population across all predetermined genera-
tions. Similarly, the binary code was actualized to make it
effortless to implement. The following are the attributes:

[NBB NB NM NS Z PS PM PB PBB] an

The yield language variables were then coded in the fol-
lowing order:

[0001 0010 0011 0100 0101 0110 0111 1000 1001]
(12)

Table 2 shows a possible chromosome, which might be
systematized as follows:

[0001 0010 1001 0001 0100 1001 0001 0101 1001
1000 1001]  (13)

The hereditary technique was initiated with each individ-
ual having the 21 outcomes of a fuzzy controller with the
establishment of an arbitrarily generated population of indi-
viduals. Because 21 consequences may be employed inside
the MATLAB function to construct the rules, it is critical
to systematically generate the population as a binary chain.
This procedure was applied to generate numbers ranging
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from 1to 9:
[NBB=1, NB=2, NM =3, NS=4, Z=35,
PS=6, PM =7, PB=8, PBB=9] (14

These complete values were then used to identify the
antecedents’ linguistic principles, as shown below:

INB=1, NM =2, NS=3, Z=4, PS=35,
PM =6, PB=T7] (15

For the purpose of framing the rule base of a fuzzy con-
troller, it is important to perceive the estimations of the
precedents, the fuzzy operators present within the rule base
weights, and the fuzzy rules; in this case, antecedents 1
and 2 and the other qualities placed inside a matrix in the
MATLAB function can be viewed in the matrix, as shown
below [82], [83]:

AntiAntr,ConiRyR. --- Ant7Ant;Con7R,,R.
; : (16)
AntiAnt3ConsR R, - - - Antr1Anty1 Conz1 Ry, R,

where Ant,, denotes antecedent n, Con, denotes the subse-
quent n, R,, denotes a rule weight, and R, denotes a rule
connection. Finally, a similar MATLAB function was used
to store the ranges of the input and output variables and the
information from the membership function. This function’s
output is known as the MATLAB fuzzy inference system
(FIS), which was identified with the help of a structure that
combines the framework’s fuzzy inference data and was used
as a fuzzy controller in the SIMULINK library’s feedback
plan. A flowchart of the proposed technique is depicted
in Fig. 4.

The following values for the GA parameters were kept:

IAE is a performance indicator.

Crossover probability: 0.8

30 people were in the initial population.

Probability of mutation: 0.09

30 generations is the maximum number of generations that
may be created.
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MATLAB Fuction [« .
FIS Structure > System Simulink

First Generation

Initial data: Decode e Selection
. Encode
e Population size o . Calculate fitness of e Crossover
. > Generate initial population B~ . . . .

e Maximum range individuals (evaluation e Mutation

.. (chromosome 1,2, ....,n) .
e Minimum range 1,2,....,n) Next generation
e Number of generation

FIGURE 4. Flowchart of the proposed approach.

A 3-phase IM
equipped with
encoder

FIGURE 5. Complete experimental system.

The execution file from the feedback method was exam-
ined and provided back to the genetic algorithm to establish
consistency in the hereditary method.

Finally, the rule base was established as follows:

1222113
1224888
9979798

A7)

IV. HARDWARE SETUP

Figs. 5 and 6 present the experimental setup of the drive
system and a detailed view of the circuit connection. Firstly,
the GAs is evaluated offline to improve the fuzzy infer-
ence system’s rules based on the objective function defined
for the speed control, and secondly, to use the improved
rules and parameters during the experiments for evaluation
of the performances. The control system and drive board
comprise a DMC1500 digital motor control (delivered by
Spectrum Digital, Inc.), an interface for the encoder input

18386

Values of 21 consequents

Encoder circuit
board for speed
measurements

DAQ
cards .

Signals output
ports -

i Switching

power

j supply
DSP and PWM
inverter board

FIGURE 6. Close-up view of the circuit connection.

board, an eZdspF28335 development board (delivered by
Spectrum Digital, Inc.), a signal output board, and auxiliary
circuits (including a board of Hall effect current sensors)
(Fig. 7 (a,b,c)). Moreover, a switching power supply for the
auxiliary circuits (HF55W-Q-C), a data acquisition (DAQ)
card with supported software and a data acquisition PC were
used. The host PC supported the debugging process of the
program and was connected to the DSP board via a USB
connection. Code Composer Studio (CCS) version 4.5 was
implemented to translate the controllers in C/C++ or assem-
bly language code for the DSP controller. With the help of
the SVPWM technique for the six power switching devices in
the inverter, the DSP controller generated six PWM signals.
Three input currents of the induction motor, namely, i, i, and
i., were measured using a current sensor (LEM, HY 10-P).
An E3-500-500-1E-H-T-B encoder (delivered by US Digital,
Inc.) was used to monitor the rotor speed. Subsequently, the
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(b)

FIGURE 7. Auxiliary circuits (from left to right): (a) current sensor,
(b) encoder interface and (c) output signals.

data were directed to the DSP board via analog-to-digital
converters. For the purpose of this experiment, a 3-phase IM
(240/415 V, 50 Hz, 175 W, and 1350 rpm, delivered by Lab-
Volt, Inc.) was used as the IM. The reference stator phase
’a’ current was limited to 1.5 A. The encoder type was an
incremental optical encoder with 500 pulses per revolution.
The load was provided using a dynamometer (delivered by
Lab-Volt, Inc.). The maximum voltage that could be achieved
by the DMC1500 was 380V, so the DC voltage was restricted
to that limit. It is important to note that the use of a higher
DC voltage results in a higher rate of change in the torque.
The voltage source inverter switching frequency was kept
constant at f's = 20 kHz.
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V. SIMULATION AND COMPARATIVE STUDY BASED ON
DIFFERENT SPEEDS

The fuzzy frequency controller and fuzzy current amplitude
controller were combined to form an HFFC. This controller
provides a supply frequency similar to that of a field-oriented
controller and is robust to noise and load disturbances,
which are the advantages of this controller. A model of
the HFFC for an induction motor was produced by using
MATLAB/SIMULINK software.

The HFFC was produced by combining the fuzzy fre-
quency controller and the fuzzy current amplitude controller.
Throughout the final steady-state stage, the fuzzy frequency
controller outputs the frequency related to the speed com-
mand. During the acceleration-deceleration stages, the fuzzy
current amplitude controller outputs the maximum permitted
current. The model of the HFFC for the induction motor was
built using MATLAB/SIMULINK, as presented in Fig. 8.

To study the performance of the induction motor drive
with the proposed GA-HFFC, the HFFC model is connected
to the 3-phase induction motor model and a 3/2 trans-
formation block with the SVPWM technique. Then, both
models are connected to simulate the GA-HFFC, as shown
in Fig. 8.

A specific test case was investigated to examine the
response from standstill to the rated step speed command,
followed by the application of the rated torque and subsequent
step reduction of the reference speed to approximately half
the rated speed. All the speed controllers were initially tuned
to yield essentially an identical speed response to the applica-
tion of the rated step speed command (900 rpm) under no load
conditions. It is believed that such an approach allows a fair
comparison to be made. The first part of the comparison was
to run the motor from standstill to its rated speed (900 rpm)
and then to 500 rpm, an approximately 50% reduction from
the rated speed. The transient behavior of the system was
compared in terms of the overshoot, rise time in terms of
the speed tracking performance, and load torque. Then, at the
rated speed, the robustness of the drive was tested by employ-
ing external load disturbances at a half-rated load of 1 Nm
and a rated load of 2 Nm. The load was applied by adding a
constant step command to the input load of the motor model.
The behaviors of the IFOC, HFFC, HFPIC, and GA-HFFC
were compared in terms of the settling time and undershoot
of the speed. The behaviors with load disturbances are shown
in Fig 9.

Regarding the simulation results, Fig. 9 shows the resulting
speed responses of the [IFOC, HFFC, HFPIC, and GA-HFFC
under no load conditions. The speed responses of the
GA-HFFC and HFFC yield approximately equal rise times.
From this figure, good tracking responses were obtained
for all four controllers under both transient and steady-state
conditions.

The second series of tests was performed by reducing the
reference speed from the rated speed of 900 rpm to approx-
imately one-half of the rated speed (500 rpm). The simula-
tion results shown in Fig. 9 demonstrate that the responses
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to 500 rpm.

obtained from the controllers were nearly similar in terms of
the undershoot and settling time.

VI. EXPERIMENTAL RESULTS

In the first experiment, the motor was run from standstill.
A reference speed was implemented, i.e., 500 rpm. The
responses at the reference speed with no load and 1 Nm load
are depicted in Fig. 10 (a and b), indicating that good tracking
performance was achieved for the GA-HFFC, as the rotor
speed tracked the reference speed with a smaller overshoot
and shorter settling time than the HFFC, HFPIC and IFOC.
Under no load conditions (Fig. 10 (a)), the acceleration was
enormously fast.

The same experimental procedure was repeated with an
induction motor coupled to a dynamometer with a load
of 1 Nm. The responses of the four controllers are depicted in
Fig. 10 (b). A fast rise time was achieved with the GA-HFFC
compared with the other controllers. The IFOC exhibited
a small overshoot for the step command, and the con-
troller required an excessively long time to reach the speed
command as the speed decreased. Although the GA-HFFC
displayed a fast rise time, it demonstrated a sluggish perfor-
mance to achieve a steady state as the speed was reduced.
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FIGURE 10. Speed responses in the experiment at 500 rpm for the HFPIC,
IFOC, HFFC and GA-HFFC with (a) no load and (b) a load of 1 Nm.

A second experiment was conducted to observe the perfor-
mance of the controllers after the speed was reduced from the
initial 900 rpm to 500 rpm with no load (Fig. 11 (a)). An over-
shoot occurred when the speed decreased. Nonetheless, com-
pared to the HFFC, HFPIC and IFOC, the GA-HFFC system
was able to rapidly catch up with the speed demand.

The same experimental procedure was repeated; however,
in this test, the motor was coupled to a dynamometer. The
current produced a load of 1 Nm on the motor. This load
was applied during the motor at standstill. The experimental
results are depicted in Fig. 11 (b). Although the GA-HFFC
achieved a shorter settling time than the HFFC, HFPIC and
IFOC, it is obvious that the performances of the GA-HFFC,
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FIGURE 11. Speed responses in the experiment with a step reduction
from 900 rpm to 500 rpm for the HFPIC, IFOC, HFFC and GA-HFFC with
(a) no load and (b) a load of 1 Nm.

HFFC and HFPIC were influenced by some oscillation of the
speed response.

Finally, a third experiment was implemented to examine
the load rejection behavior when the load was applied to the
motor during steady-state operation and to test the robustness
of the controller. During steady-state operation, the perfor-
mance of the speed responses at 500 rpm and 900 rpm after
the application of a 1 Nm load to the motor is presented in
Fig. 12 (a and b). A slight oscillation was observed after the
application of the load, and with the GA-HFFC, the motor
was able to recover the speed rapidly as compared to the
HFFC, HFPIC and IFOC.

VIi. PERFORMANCE INDICES FOR THE SIMULATION

The performance indices for characterizing the transient
response are shown in Fig. 13. The performance indices for
the transient response are defined as follows [148]:

a) Rise time, #,. The time required for the waveform to go
from 0.1 of the final value to 0.9 of the final value.

b) Peak time, #,. The time required to reach the first,
or maximum, peak.

¢) Percent overshoot, %OS. The amount that the waveform
overshoots the steady state or final value at the peak time,
expressed as a percentage of the steady-state value.

d) Settling time, #;. The time required for the transient
damped oscillations to reach and become stable within either
+2% or £5% of the steady-state value [149]. In this work, the
settling time was considered to be reached when the response
was within +5% of the steady-state value.

The essential function of a feedback control system is to
reduce the error e(t) between any variable and its demanded
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value to zero as quickly as possible. Therefore, any criterion
used to measure the quality of the system response must take
into account the variation in the error (e) over the whole range
of time. The smaller the value of the integral criterion is,
the better the performance of the control loop. The integral
error is generally accepted as a good measure of a system’s
performance. The following are some commonly used criteria
based on the integral error for a step set point or disturbance
response.

A. INTEGRAL OF ABSOLUTE ERROR (IAE)

The IAE integrates the absolute error over time. It does not
add a weight to any error in the system response. Simply inte-
grating the absolute error may be quite conveniently handled
computationally. The integral criterion is given in 10 [13].
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B. INTEGRAL OF SQUARED ERROR (ISE)

The ISE integrates the square of the error over time and
penalizes large errors more than smaller errors (since the
square of a large error is much larger than the square of a
small error). The ISE is the simplest performance index and
is based on the following integral:

T
ISE = ( f ez(t)dt) (18)
0

C. INTEGRAL OF TIME-MULTIPLIED ABSOLUTE

ERROR (ITAE)

The ITAE is an improvement over the IAE. This index
reduces the contributions of large initial errors to the value of
the integral. The ITAE integrates the absolute error multiplied
by time over time.

T
ITAE = (/ t]e() | dt) 19)
0

D. INTEGRAL OF TIME-MULTIPLIED SQUARED

ERROR (ITSE)

This index has the advantage that large initial errors (e.g.,
after step inputs) do not greatly contribute to the ITSE value

computed as
T
ITSE = ( f r&(r)dz) (20)
0

The MATLAB/SIMULINK model used to calculate the per-
formance indices is shown in Fig. 14. For the simulation in
MATLAB/SIMULINK, the speed error is integrated based
on equations (10), (11), (12) and (13). With regard to Fig. 9,
a comparison of the viability of executing the GA-HFFC,
HFFC, IFOC and HFPIC based on these performance indices
is illustrated in Table 5.

It is worth noting that the HFFC enhanced with a GA
achieved a better rise time under variable-speed control. Sim-
ilarly, the responses of the HFFC, HFPIC and IFOC exhibited
moderately extended rise times under variable-speed control.
The response of the GA-HFFC system also did not display an
overshoot, demonstrating the improved performance with the
GA. The performance indices reflect that the performance of
the GA-HFFC was better than that of the HFFC and HFPIC,
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TABLE 5. Comparison of the performance indices of the framework.

No. | Performance Index | HFPIC HFFC IFOC GA-HFFC
1 Overshoot (%) 0.000 0.000 0.000 0.000

2 Rise time (s) 0.4363 0.2803 0.3107 0.2648

3 Settling time (s) 0.27 0.25 0.2 0.18

4 Final SS value 120.0989 120.08483 120.0681 120.08391
5 TIAE 289.3 194 193.23 186

6 ISE 3.409e+004 | 2.311e+004 | 2.23e+004 | 2.287e+004
7 ITAE 2544 1656 1657 1625

8 ITSE 2.691e+005 | 1.765e+005 | 1.81e+005 | 1.799e+005

as the GA-HFFC system demonstrated the smallest indices
with an IAE of 186, ISE of 2.287E4, ITAE of 1625 and
ITSE of 1.779ES. The HFPIC, a variable-speed controller,
exhibited an IAE of 289.3, ISE of 3.409E4, ITAE of 2544 and
ITSE of 2.691ES.

The important discoveries of this study are as follows:

o The performance of an HFFC can be enhanced by opti-
mizing the I/O scales and membership functions.

o The minimum rise time was achieved by the GA-HFFC
without an overshoot and returned to the steady-state
level when variable-speed control was considered.

+ The GA-HFFC was able to effectively coordinate the
IFOC of the variable-speed drive.

VIIl. COMPARISON BETWEEN THE SIMULATION AND
REAL-TIME IMPLEMENTATION RESULTS

This subsection presents a comparison between the simu-
lation and real-time implementation results. The pattern of
real-time implementation results was almost the same as
the simulation results. The resulting step responses of the
HFPIC, IFOC, HFFC and GA-HFFC from the simulation and
real-time implementation are shown in Fig. 15 and Fig. 16.
A comparison of the settling times among the HFPIC, IFOC,
HFFC and GA-HFFC is summarized in Table 6. The values
of the settling time (i.e., the time elapsed to reach and remain
within an error band (£5%) of the speed command) from the
simulation and real-time implementation are summarized as
percentages with reference to the simulation results. In other
words, the settling time provides information about how
quickly the speed response reaches the set point and remains
stable. The settling time value should be regarded only as an
approximation.

As shown in Table 6, the maximum difference in the set-
tling time at 0-900 rpm for the £5% tolerance band is 44%,
while for the reduction from 900 to 500 rpm, it is 42%. The
performance of the GA-HFFC slightly differs between the
simulation and experiments. With reference to the simula-
tion diagrams in Fig. 15, Fig. 16 and Table 6, the HFFC
and GA-HFFC are modeled almost the same as the real-
time implementation. Some noises from the current sensors
and encoder in the experimental setup might produce the
differences. In addition, as shown in Table 6, the percentage
differences in the settling time for the four controllers (IFOC,
HFPIC, HFFC, and GA-HFFC) at 900-500 rpm are slightly
higher than those in the speed at 0-900 rpm; these differences
might be due to the fuzziness, ranges of the membership
functions and the selected rule base, and more spread among
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TABLE 6. Comparison between the simulation and real-time
implementation results.

Data Reference step Settling time (sec) Figure
speed (rpm) IFOC | HFPIC | HFFC [ GA-HFFC | No
Simulation 0-900 0.27 0.25 0.2 0.18 15
Implementation | 0-900 0.39 0.3 0.24 0.2 15
Simulation 900-500 0.35 0.3 0.29 0.27 16

Implementation | 900-500 0.5 0.4 0.37 0.34 16

the controllers may mean that all of these factors affect the
settling time of the controller when using fuzzy principles.
In Table 6, the difference in the settling time among the four
controllers (GA-HFFC, HFFC, IFOC, and HFPIC) reveals
that the proposed GA-HFFC can achieve a very efficient
speed response with a smaller difference between the sim-
ulation and real-time implementation.

IX. CONCLUSION

This research work represents the development of a
GA-HFFC that can be effectively integrated with the
SVPWM technique to control a 3-phase IM. The findings
show that a drive equipped with the GA-HFFC can be easily
operated with high performance by using different speed
commands and load disturbances compared with an HFFC,
HFPIC and IFOC. The model established in this study could
be utilized to further enhance advanced control techniques,
which could also be a good source for future research studies
to enhance the IM variable-speed drive performance. To val-
idate the simulation results, a hardware implementation was
carried out to support an experimental study. The hardware
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implementation relied on an efficient digital signal processor
from Texas Instruments supported by specially built auxiliary
circuits. The test rig was developed for experimentation and
to evaluate the proposed control method with general and
modular building blocks while taking practical situations into
account. Several tests were conducted to perform the analysis
and to evaluate and improve the control strategies of the
FOC on a single 3-phase IM. The critical parts of the rig
components were equipped with reliable auxiliary circuits
that support PWM drivers, and the software and hardware
were satisfactorily integrated.

In this paper, by adopting an intelligent control viewpoint,
a control algorithm referred to as an GA-HFFC is proposed.
The purpose of this GA-HFFC is to overcome the drawbacks
of vector control and improve the variable-speed control per-
formance of three-phase induction motors to reduce the over-
shoot, settling time, IAE, ISE, ITAE, and ITSE and eliminate
the steady-state error. The GA-HFFC also has good tracking
performance and good external load rejection behavior in
the presence of diverse operating conditions. The proposed
algorithm can be an alternative controller to supplement the
conventional methods used for variable-speed drive control
using a field-oriented controller.

The contribution of this paper shall pave ways for promis-
ing future research directions from the fact that where in
by integrating the GA-HFFC with the SVPWM technique
has demonstrated to be an effective means of controlling a
3-phase IM system. The GA-HFFC has produced satisfac-
tory results with regards to its current features and can be
expanded to develop the torque traces and a speed control
method that is resilient to system parameter fluctuations, and
then validate against the state-of-the-art meta-heuristic or
other artificial intelligence control methods to assess viability
of the controller.
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