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ABSTRACT The purpose of fine-grained image classification is to distinguish subcategories belonging
to the same basic-level category, for example, two hundred subcategories belonging to birds. It has been
a challenging topic in the field of computer vision in recent years due to the small inter-class variance
among different subcategories (e.g., color and texture) and the large intra-class variance in the same
subcategory (e.g., pose and viewpoint). In this paper, we propose a Compound Model Scaling with Efficient
Attention (CMSEA) for fine-grained image classification, which carefully balances the various dimensions
of width, depth, and image resolution in model scaling. Furthermore, the proposed method utilizes an
additional computational low attention module to efficiently learn subtler features from discriminative
regions. In addition, regularization and data augmentation were employed to improve accuracy in the
training. Extensive experiments demonstrate that CMSEA achieves 90.63%, 94.51%, and 95.19% accu-
racy on CUB-200-2011, FGVC-Aircraft, and Stanford Cars datasets, respectively. In particular, CMSEA
on CUB-200-2011 obtains 2.3% higher accuracy with 18% fewer network parameters than the original
approach. Consequently, our method has better accuracy and parameter efficiency compared to most existing
methods.

INDEX TERMS Fine-grained image classification, EfficientNet, image recognition, channel attention,
convolutional neural networks.

I. INTRODUCTION
Fine-Grained Visual Categorization (FGVC) is one of the
most fascinating and prominent research topics in the field of
computer vision in recent years [1]. Fine-grained image clas-
sification, unlike coarse-grained image classification, tries to
recognize several hundred subcategories that all correspond
to the same basic level category, such as two hundred subcate-
gories for birds [2], one hundred subcategories for planes [3],
and 196 subcategories for cars [4]. As illustrated in Figure 1,
fine-grained image classification recognizes different sub-
categories under the same category. For example, yellow-
headed blackbirds and red-winged blackbirds belong to the
subcategory of blackbirds. As presented in Figure 2, the main
challenge of FGVC is due to the large intra-class variance
(red rectangular box) and small inter-class variance (black
rectangular box). These subcategories are usually similar in
overall appearance and are distinguished by subtle variations,
such as the color of heads, the texture of feathers, and the
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shape of toes in birds. Furthermore, these small changes may
be found in regions of the object or its parts. Most people
without professional knowledge can easily identify basic cat-
egories, such as birds, airplanes, and cars, but it is extremely
difficult to distinguish two hundred or more subcategories.

The key to FGVC is how to locate distinguishing regions
and learn fine-grained features from these regions. Strongly
supervised learning methods and weakly supervised learn-
ing methods are the two primary groups of recent FGVC
algorithms. Strongly supervised learning methods employ
some extra information (e.g., bounding box/part annotations)
in the image to locate discriminative regions [5]. Unfor-
tunately, it is not feasible due to high labor expenses and
the absence of precise bounding box/part annotations in the
real deployment. Weakly supervised learning methods uti-
lize only image-level labels in training and automatically
locate discriminative regions through various attention mech-
anisms [6]–[9]. Recent research on the fine-grained image
has mainly focused on the latter. While attention mecha-
nism approaches (e.g., MAMC [10]) can achieve excellent
results, they increase model complexity. Furthermore, most
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FIGURE 1. Some examples of attribute hierarchies on CUB-200-2011 [2] and FGVC-Aircraft [3]. Coarse-grained image classification recognizes different
categories (e.g., birds and aircraft), while fine-grained image classification identifies different subcategories under the same category. For example,
red-winged blackbirds and yellow-headed blackbirds belong to the subcategory of blackbirds.

FIGURE 2. Some examples on CUB-200-2011 [2]. Classifying them, even
for humans, is an extremely challenging task due to the large intra-class
variance (red rectangular box) and small inter-class variance (black
rectangular box).

networks in previous work commonly scale only one of
the three dimensions (i.e., depth, width, and image resolu-
tion) to learn subtle features. For instance, the depth can be
scaled up by using more layers (e.g., from ResNet-50 [11] to
ResNet-101 [10]), but it will increase the model complexity
By introducing numerous network parameters.

To deal with the above problems, we propose a Com-
pound Model Scaling with Efficient Attention (CMSEA)
for fine-grained image classification without extra artificial
labeling information (e.g., bounding box/part annotations).
First of all, CMSEA utilizes EfficientNetV2-S [12] as the
basic backbone, which carefully balances each dimension of
network width, depth, and image resolution in model scaling.
Then, regularization and data augmentation are employed to
improve accuracy in the training. Furthermore, we replace
all two fully-connected layers (FC) in the attention modules
with a fast 1D convolution, which involves only a handful
of network parameters while learning subtler features from
discriminative regions efficiently. Experimental results in
Table 1 demonstrate our method is effective. The following
is a list of contributions to our work:
• We propose a Compound Model Scaling with Efficient
Attention (CMSEA), which carefully balances the vari-
ous dimensions of width, depth, and image resolution in
model scaling.

TABLE 1. Experimental results. Note that our method achieves better
accuracy with fewer network parameters.

• We utilize an additional computational low attention
module to efficiently learn subtler features from discrim-
inative regions.

• Extensive experiments demonstrate our CMSEA
achieves state-of-the-art performance on three well-
known fine-grained image datasets.

The following is the rest of this paper: Section 2 briefly
describes related work on FGVC. Section 3 introduces our
CMSEA method, and experimental results and analysis are
given in Section 4. Section 5 is the conclusion of this paper.

II. RELATED WORK
Many researches have been conducted recently to improve
model performance. The accuracy of FGVC is influenced
by two major factors: discriminative region localization and
discriminative feature extraction. This section reviews the
related work in these two aspects.

A. DISCRIMINATIVE REGION LOCALIZATION
To localize discriminative regions, early part localization
approaches [5] recommended utilizing some extra informa-
tion (e.g., bounding box/part annotations). However, this
strategy was rendered unfeasible due to the high labor
expenses and the absence of precise part annotation in the
real deployment. In recent years, weakly supervised FGVC
methods [13]–[26] have attempted to localize distinguish-
able regions using only image-level labels. For example,
RA-CNN [14] is a recurrent attention network for learning
discriminative areas on various scales in an iterative manner.

Some recent researches have attempted to locate the dis-
tinguishing regions via designing some complex attention
modules. DCL [17] automatically detected the distinguished
regions through a region confusion mechanism. Following
that, DCL uses a jigsaw puzzle generator to learn multi-
grained areas gradually. A trilinear attention module was
suggested by TASN [20], which converts the convolutional
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feature mapping into an attention mapping. Consequently,
these approaches utilize more complex attention modules
to accurately locate critical discrimination regions, however,
they undoubtedly increase model complexity. In contrast,
we have attempted to utilize a lightweight attention module
to locate the discriminative regions.

B. DISCRIMINATIVE FEATURE EXTRACTION
How to discover discriminative features is a critical challenge
in image classification. Some recent techniques have con-
centrated on extracting discriminative characteristics from
prominent areas, which are frequently represented by atten-
tion maps. These techniques may be divided into two groups.
The first group [14]–[16] crop substantial portions of the
original image intentionally. They use attention techniques
to adaptively pick acceptable bounding boxes to accurately
pinpoint the differentiated regions, which is inspired by object
detection. The second group [20]–[22] uses local amplifi-
cation and sampling to emphasize the important locations.
S3N [21], for example, processes images using non-uniform
sampling based on 2D probability. Although these methods
can yield excellent results, they increase the model complex-
ity due to introducing numerous network parameters.

In addition, most networks in previous work commonly
scaled only one of the three dimensions of the network
to learn fine-grained features. As illustrated in Figure 4,
depth can be scaled up by using more layers (e.g. from
ResNet-50 [11] to ResNet-101 [10]). Another common
method is to scale up models by image resolution (e.g. from
224× 224 to 448× 448). They will undoubtedly introduce a
significant number of network parameters, even though they
can improve accuracy. Unlike them, our CMSEA carefully
balances the three dimensions in model scaling while effi-
ciently learning the subtle features.

III. PROPOSED METHOD
In this section, we carefully study EfficientNet architec-
ture and channel attention modules and then introduce our
CECAMBConv module and CMSEA architecture.

A. OVERVIEW
The key to FGVC is how to locate the distinguishing regions
and learn the subtle features from them. Figure 3 illustrates
the general workflow of our network to discriminative areas.
Specifically, we use the CECAMBConv attention module to
locate distinguishing regions, such as the head, torso, and tail
of the bird.We then learn the subtle features throughCMSEA,
which carefully balances the various dimensions of network
width, depth, and image resolution in model scaling.

B. COMPOUND MODEL SCALING
Scaling up Convolutional Neural Networks (CNNs) is com-
monly used to obtain higher accuracy. However, CNNs
in previous work were typically scaled in only one of
the three dimensions – depth [27], width [28], and image
resolution [29]. As illustrated in Figure 4, depth can be

FIGURE 3. The workflow of our network. We first select different parts of
the input image, such as the head, body, and tail of the bird, and then use
the attention module to focus attention on more subtle regions. This red
area indicates the region where activation is the center of attention.

TABLE 2. EfficientNet family. Each row describes a model with width
coefficient w , depth coefficient d , resolution, Params, and FLOPs.

scaled by using more layers (e.g., from ResNet-50 [11] to
ResNet-101 [10]). It normally introduces numerous network
parameters and thus increases the model complexity. Another
common approach is to scale up models by image resolution
(e.g., from 224 × 224 to 448 × 448). Although they can
improve accuracy by scaling arbitrary dimensions of depth,
width, and image resolution, the model performance is usu-
ally sub-optimal. Therefore, we utilize EfficientNet [30] to
carefully balance each dimension of network width, depth,
and image resolution in model scaling.

EfficientNet is a family of CNNs that achieve better accu-
racy and parameter efficiency than previous CNNs. The base-
line EfficientNet-B0 was designed using neural architecture
search and the best values are d = 1.2,w = 1.1, and
r = 1.15, under the constraint of d �w2 � r2 ≈ 2. Table 2 was
obtained by fixing d,w, and r as constants and then using
a compound coefficient λ to uniformly scale network w, d ,
and r :

depth = dλ, (1)

width = wλ, (2)

resolution = rλ, (3)

where d,w, and r are constants that could be obtained by
neural architecture search. Additionally, λ is a user-defined
coefficient that determines the number of additional resources
available for model scaling.
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FIGURE 4. Model scaling. (a) is a baseline network example; (b)-(d) are normal scaling examples that enhance the network image resolution, depth,
or width in only one dimension. (e) is a three-dimensional composite scaling approach.

As shown in Table 2, the image resolution of
EfficientNet-B5 (456×456) is closest to the image resolution
of most previous work (448 × 448). For a fair comparison,
we have adjusted the image resolution of EfficientNet-B5 to
448 × 448. As a result, it balances each dimension of the
network in model scaling.

C. FUSED-MBConv MODULE
The core structure of EfficientNet is the Mobile inverse Bot-
tleneck Convolution module (MBConv), which is similar to
the inverse residual block in MobileNet [31]. The MBConv
in Figure 5 consists of an expansion convolution (conv1×1),
a depthwise convolution (conv3 × 3), an SE block [32], and
a regular two-dimensional convolution (Conv2D). However,
the training speed of EfficientNet is very slow due to the very
large image sizes. The Fused-MBConv in Figure 5 replaces
the depthwise convolution and expansion convolution in
MBConv with a single regular two-dimensional convolution.
It jointly optimizes training speed and parameter efficiency.

D. EFFICIENT ATTENTION MODULE
As illustrated in Figure 5, we present a Circular Efficient
Channel Attention block (CECAMBConv), which is an addi-
tional computational low attention module to efficiently learn
the subtle features from discriminative regions. Specifically,
it employs a fast 1D convolution with kernel size (k) to
replace two FC layers. The following is a detailed analysis.

We first briefly review the commonly used channel atten-
tion modules [33]. Then, the dimensionality reduction effect
of the attention module is analyzed. Finally, we give the
module without dimensionality reduction. Let the output of
the convolution block be

X ∈ RW×H×C , (4)

where W ,H , andC are the width, height, and channel dimen-
sion, respectively. Consequently, the weights of channels in
the SE block [32] can be computed as

w = σ (f{W1,W2}(g(X ))), (5)

σ (Z ) =
1

1+ e−Z
, (6)

g(X ) =
1

W × H

W∑
i=1

H∑
j=1

uc(i, j), (7)

where σ (Z ) is a sigmoid function and g(X ) is channel-wise
global average pooling (GAP). Let Y = g(x),

f{W1,W2}(Y ) = W2δ(W1Y ), (8)

δ(Z ) = max(0,Z ), (9)

where W1 = C × (Cr ), W2 = (Cr ) × C , and δ(Z ) indicates
the ReLU function. The reduction ratio r is a hyperparameter
that allows us to change the capacity and calculate the cost.
We can observe that f{W1,W2} involves all network parameters
of attention. Although Eq. (8) simplifies the complexity of
the channel attention module, it also eliminates the direct
relationship between its weights and channels. Eq. (8), in par-
ticular, first projects the channel characteristics into low-
dimensional space and then maps them back, resulting in an
indirect correlation between the channels and their weights.

In this paper, we explored a method to ensure both effec-
tiveness and efficiency. Specifically, given the aggregated
feature Y ∈ RC without dimensionality reduction, channel
attention can be learned by

w = σ (WY ), (10)

whereW is a C × C parameter matrix. In particular,

WSED =

w
1,1

· · · 0
...

. . .
...

0 · · · wC,C

 , (11)

learns the weight of each channel independently. Note that
WSED is a diagonal matrix, involving 1 × C parameters.
Meanwhile,

WSEF =

w
1,1

· · · w1,C

...
. . .

...

wC,1 · · · wC,C

 , (12)
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FIGURE 5. Structure of MBConv, Fused-MBConv, and CECAMBConv. Fused-MBConv replaces the depthwise convolution
(conv3× 3) and expansion convolution (conv1× 1) in MBConv with a single regular two-dimensional convolution (conv3× 3).
Our CECAMBConv replaces the two FC layers with a fast one-dimensional convolution with the kernel size (k), which avoids
dimensionality reduction and effectively learns the discriminative features. Conv2D, GAP, k , and r denote two-dimensional
convolution, global average pooling, kernel size, and reduction ratio, respectively.

TABLE 3. Comparison of the channel attention modules - C1D denotes
1D convolution, constant k denotes kernel size of C1D, r denotes
reduction ratio and C denotes channel dimension.

employs one single FC layer with dimensionality reduction
in the SE block. Note that WSEF is a full matrix, involving
C × C parameters.
As discussed above, we use a band matrix Wk to learn

channel attention, andWk has
w1,1

· · · w1,k 0 0 · · · · · · 0
0 w2,2

· · · w2,k+1 0 · · · · · · 0
...

...
...

...
. . .

...
...

...

0 · · · 0 0 · · · wC,C−k+1 · · · wC,C

 .
(13)

Note thatWk involves k×C parameters. Obviously, let k = 1,
Wk takes the form WSED, and let k = C , Wk takes the form
WSEF . Thus w takes the form

w = σ (WY ) = σ (WkY ). (14)

As for w and Wk , the weight of Yi is calculated
by only considering the interaction between Yi and its
k neighbors, i.e.,

wi = σ (
k∑
j=1

wjiY
j
i ),Y

j
i ∈ �

k
i , (15)

where �k
i denotes the set of k adjacent channels of Yi.

wi = σ (
k∑
j=1

wjY ji ),Y
j
i ∈ �

k
i . (16)

is a more efficient way to make all channels share the same
learning parameters. The way can be readily implemented by
a fast 1D convolution with a kernel size k , i.e.,

w = σ (C1Dk(Y )), (17)

where C1D denotes 1D convolution, and k denotes a kernel
size ofC1D. The 1D convolution uses circular padding rather
than zero padding. The module is called by CECAMBConv
with k parameters, which guarantees both effectiveness and
efficiency.

E. CMSEA ARCHITECTURE
Figure 6 and Table 4 illustrate the overview of our CMSEA
architecture. The structure of CMSEA consists of ten
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FIGURE 6. Our CMSEA architecture. Li(×num) denotes num layers, and H ×W × C denotes tensor shape (Height × Width × Channel).

TABLE 4. CMSEA architecture – Fused-MBConv and CECAMBConv blocks
are described in Figure 5.

Fused-MBConv, thirty CECAMBConv, two regular convolu-
tional layers, and an FC layer. The main difference of our
CMSEA is that the original MBConv module was replaced
by the new CECAMBConv modules. As presented in Table 3
and Figure 6, the network parameters of 1D convolution
and two FC layers are k and 2 × C2/γ , respectively. Obvi-
ously, 1D convolution has fewer network parameters than
two FC layers. Our CMSEA in channel attention employs a
fast 1D convolution to replace two FC layers. Our CMSEA
has thirty CECAMBConv modules, and then sixty FC lay-
ers are reduced. Therefore, our CMSEA has fewer network
parameters.

IV. EXPERIMENTS
In this section, we will evaluate our CMSEA on three popular
fine-grained image datasets. We first introduce the exper-
imental setup including datasets, evaluation metrics, and
details of implementation. Comparison with state-of-the-art
methods followed by ablation studies. We finally give the
analysis and visualization results.

A. DATASETS
As shown in Table 5, we conducted experiments on
three well-known fine-grained image classification datasets,

TABLE 5. Detailed statistics of the three used datasets.

CUB-200-2011 [2], FGVC-Aircraft [3], and Stanford
Cars [4]. CUB-200-2011 (CUB) is one of the most widely
used datasets in fine-grained classification, with 200 dif-
ferent subcategories containing 5,994 training images and
5,794 test images. FGVC-Aircraft (AIR) is an aircraft dataset
containing 100 subcategories consisting of 10,000 images
equally divided into training, test, and validation. Stanford
Cars (CAR) includes 16,185 vehicle images, including 8,144
for training and 8,041 for testing, with 24-84 training images
and 24-83 testing images in each subcategory. Figure 7 shows
a partial example of the three fine-grained image datasets.

B. EVALUATION METRICS
The evaluation metrics include accuracy, network parameters
(Params), and floating point operations (FLOPs). Accuracy
in Eq. (18) is used to evaluate the classification performance
of our CMSEA method. FLOPs and Params are measures of
model time and spatial complexity, respectively.

Accuracy =
Rc
Ra
, (18)

where Ra is the total number of test images and Rc is the total
number of images correctly classified in the test phase.

C. DETAILS OF IMPLEMENTATION
All models in this paper are trained on a single NVIDIA
GeForce RTX 2080 SUPER GPU. For a fair comparison,
we followed most of our previous works using an image
resolution of 448 × 448. We train on a standard training set
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FIGURE 7. Several examples of three datasets with one example per species.

TABLE 6. Training hyper-parameters setup.

and evaluate on a test set as in previous work. In our exper-
iments, we utilize EfficientNetV2-S [12] as the basic back-
bone. Firstly, we pre-train EfficientNetV2-S on 13M training
images with 21,841 classes of ImageNet21k dataset [34], and
then follow DeiT [35] and EfficientNetV2 [12] to fine-tune it
on our datasets.

As illustrated in Table 6, our training setup used the
EfficientNetV2: RMSProp optimizer with an attenuation of
0.9 and a momentum of 0.9; a batch standard momentum of
0.99; and a weight attenuation of 10−5. With a total batch
size of 16, each model was trained for 200 epochs. The
learning rates for CUB, AIR, and CAR were first warmed
up 3 × 10−4, 3 × 10−3, and 1 × 10−3, respectively. Then,
every 2.4 epochs, they declined by 0.97. We employed an
exponential moving average (EMA) with a decay rate of
0.9999, as well as RandAugment [36], Random erase [37],
Dropout [38]. Finally, the average of three runs determines
the accuracy of transfer learning.

D. COMPARISONS WITH STATE-OF-THE-ART METHODS
To compare with other methods, we conducted extensive
experiments on three fine-grained image datasets. For a
fair comparison, we directly refer to the accuracy of their
proposed method without any changes. Tables 7-9 describe

TABLE 7. Comparison results of our method (CMSEA) on the
CUB-200-2011 dataset.

the fine-grained image classification results for the CUB,
AIR, and CAR datasets, respectively. The ‘‘Backbone’’ col-
umn indicates which CNNs were utilized as the backbone.
Method, year, backbone, and accuracy are the columns in
each table. In addition, all results are obtained without
extra artificial labeling information (e.g., bounding box/part
annotations).

As illustrated in Table 7, depth can be scaled by using more
layers, such as VGG and ResNet. Specifically, MA-CNN
(VGG-19) [15] is 0.67% higher than OPAM (VGG-16) [39].
The accuracy ofMGE-CNN (ResNet-101) [16] outperformed
HBPASM (ResNet-34) [43] and SMA-Net (ResNet-50) [49]
by 2.60% and 1.69%, respectively. They generally increase
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FIGURE 8. Results of our attention module for different k numbers on three datasets. Note that our attention module achieves the best
accuracy at k = 7.

TABLE 8. Comparison results of our method (CMSEA) on the
FGVC-Aircraft dataset.

TABLE 9. Comparison results of our method (CMSEA) on the Stanford
Cars dataset.

to scale only one of the three dimensions of the network
in model scaling. Although they improve the accuracy, they
commonly introduce a large number of network parame-
ters and thus increase the model complexity. However, our

TABLE 10. Results of our CECAMBConv module for different kernel
size (k) numbers on three datasets.

TABLE 11. Impact of different attention modules on accuracy and FLOPs.

FIGURE 9. Parameter efficiency. Note that the network parameters of our
method are reduced by 18% compared to the original method.

method carefully balances the three dimensions of the net-
work. Therefore, our CMSEA surpasses VGG-19 [15] and
ResNet-101 [16] by 4.13% and 1.23%, respectively. The
results demonstrate that our approach has state-of-the-art
accuracy on three fine-grained image datasets.

Consequently, our CMSEA achieves 90.63%, 94.51%,
and 95.19% accuracy on CUB, AIR, and CAR datasets,
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TABLE 12. Ablation study on training methods. The X indicates that we use the corresponding method. EMA denotes exponential moving average.

FIGURE 10. Visualization results. We randomly select one image from each subcategory of the three fine-grained datasets to Grad-CAM [53]. The first
row is the attention map of the original method and the second row is the attention map of our CMSEA. The brighter an area is, the more
important it is.

respectively. Moreover, Table 1 indicates that our method
improves 2.3%, 2.5%, and 1.9% than the original method on
CUB, AIR, and CAR datasets, respectively. Meanwhile, the
network parameters of our approach are reduced by 18%.As a
result, our method outperforms the previousmost competitive
methods on three fine-grained image datasets.

E. ABLATION STUDY
1) EFFECT OF KERNEL SIZE (k) ON ATTENTION MODULE
As presented in Eq. (17), our CECAMBConv module
involves a parameter k , the kernel size of the 1D convolu-
tion. We evaluated its impact on our CECAMBConv module.
We utilized EfficientNetV2-S as the backbone and trained
it using our CECAMBConv module with k values ranging
from 3 to 9. Table 10 and Figure 8 show the results of

the study, and our CECAMBConv module achieves the best
results at k = 7.

2) EFFECT OF ATTENTION MODULE ON THE NETWORK
In this part, we discuss the impact of different attention mod-
ules on the network. As presented in Table 11, the accuracy of
the original approach improved by 0.29%, 0.24%, and 0.15%
over the no-attention approach on CUB, AIR, and CAR
datasets, respectively. Specifically, our method surpassed the
original method by 1.1%, 1.4%, and 1.3% on CUB, AIR, and
CAR datasets, respectively. Therefore, the attention mech-
anism can improve the model performance. As presented
in Figure 9, our method significantly surpasses the original
method in terms of network parameters. As a result, our
CECAMBConvmodule verifies that avoiding dimensionality
reduction has a positive effect on learning channel attention.
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3) EFFECTIVENESS OF REGULARIZATION AND
DATA AUGMENTATION
In this part, we discuss training strategies to learn CMSEA in
a data-efficient way. We build upon PyTorch and the timm
library. We analyze the impact of each choice. Table 12
indicates the hyperparameters we use by default for train-
ing in all experiments unless otherwise stated. Experiments
confirm that our CMSEA requires strong data augmentation,
such as RandAugment [36] and Random erase [37]. Almost
all of the data augmentation methods we evaluated proved to
be useful. Regularization like Dropout [38] improves perfor-
mance. Dropout is a network-level regularization that reduces
co-adaptation by randomly dropping channels. Meanwhile,
we evaluate some enhancements in the network Exponential
Moving Average (EMA) obtained after training.

F. VISUALIZATION RESULTS
To more intuitively show the sensitivity of our CMSEA
to subtler parts. We show the visualization results of our
CMSEA on fine-grained image datasets in Figure 10.
We randomly sample sixteen images from three fine-grained
datasets as observation objects. Through Grad-CAM [53]
visualization technology to show that the attention part of
different regions. The lighter a region is, the more important
it is. Consequently, our CMSEA can facilitate the model to
learn more detailed features of the object.

V. CONCLUSION
This paper presents a Compound Model Scaling with Effi-
cient Attention (CMSEA) for fine-grained image classifi-
cation. Specifically, our CMSEA carefully balances each
dimension of network width, depth, and image resolution
in model scaling. Moreover, our attention module replaces
the two fully connected layers with a fast one-dimensional
convolution with the kernel size (k), which avoids dimension-
ality reduction and effectively learns the discriminative fea-
tures. In addition, regularization and data augmentation were
employed to improve accuracy in the training. Experimen-
tal results demonstrate that our CMSEA achieves 90.63%,
94.51%, and 95.19% accuracy on CUB-200-2011, FGVC-
Aircraft, and Stanford Cars datasets, respectively. In partic-
ular, our CMSEA on CUB-200-2011 obtains 2.3% higher
accuracy with 18% fewer network parameters than the origi-
nal approach. Consequently, our method has better accuracy
and parameter efficiency compared to most existing methods.
We will investigate better attention mechanism modules to
improve the model performance in the future.
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