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ABSTRACT Forward-looking sonar is a commonly used underwater detection device at present, but the
detection accuracy is poor due to the complex underwater environment, small target highlight area and fuzzy
feature details. Therefore, this paper proposes a forward sonar image target detection model based on You
Only Look Once Version 5 (YOLOv5) network using transfer learning method. First, the YOLOv5 network
is pretrained with COCO data set. Then the pre-training model is fine-tuned according to the training set
of forward-looking sonar images. Before fine-tuning, the traditional k-means clustering is improved. The
intersection over union (IoU ) value is used as the distance function to cluster the labeling information of the
training set of the forward-looking sonar image. The results of clustering serve as the initial anchor frame of
the training network. This operation greatly improves the detection speed. Second, due to the characteristics
of weak echo intensity and small target area of forward-looking sonar image, an improved feature extraction
method of CoordConv was proposed to give corresponding coordinate information to high-level features
which improves the accuracy of network detection regression. Finally, the fine-tuned network is used to detect
the target in the forward-looking sonar image. The experimental results show that the improved model based
on YOLOv5 network is superior to the original YOLOv5 network and other popular deep neural networks
for target detection in the forward-looking sonar image, which has a reference significance for underwater
target detection. The CoordConv-YOLOv5 network based on transfer learning proposed in this paper shows
the best performance in both detection accuracy and detection speed. Detection accuracy mAP@0.5:0.95
can reach 56.95%, and detection speed can reach 9ms.

INDEX TERMS YOLOv5, forward-looking sonar, target detection, transfer learning, IoU k-means,
CoordConv.

I. INTRODUCTION
The detection of targets in sonar images is an emerging
topic in the field of target detection. In civil and military
fields, it is of great significance to submarine landform map-
ping, underwater search and rescue, salvage, oil exploration
and submarine suspicious target detection. In addition, sonar
image can directly reflect underwater scene information,
which pro-vides strong support for unmanned underwater
vehicle (UUV) automatic target recognition technology. But
the sonar image resolution is low, the reverberation is serious,
and the effective feature is fuzzy, resulting in poor detection
accuracy.

In the past decades, sonar images have been detected by
artificial feature extraction, mainly based on pixel [1], [2],
feature [3], [4] and echo [5], [6]. Most of this traditional
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method of underwater target detection based on pixel values
features, gray threshold, or prior information of correspond-
ing targets. However, the underwater environment is compli-
cated, and the echo is affected by self-noise, reverberation
noise and environmental noise, which leads to the low resolu-
tion, fuzzy edge details, and the serious speckle noise of the
sonar image. So, it is difficult to find the good characteristics
of pixels and gray level threshold. On the other hand, it is
too expensive to obtain some prior information artificially
for the underwater target is uncertain. Therefore, the current
traditional algorithm is not accurate in detecting underwater
targets.

To solve the above problems, deep learning detection
method can extract multi-layer abstract features, which solves
the trouble of manual feature extraction in traditional meth-
ods. In recent years, optical image target detection based
on deep convolutional neural network has performed well.
Inspired by this, researchers gradually apply convolutional
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neural network to sonar image target detection. Among them,
Fan et al. [7] proposed a feature extraction network con-
structed from residual blocks to replace Residual Network
(ResNet) [8] in Mask RCNN [9]. While ensuring the detec-
tion accuracy, the training parameters of the network are
greatly reduced, which lays a solid foundation for future
engineering. Wang et al. [10] combined the pretreatment
technology of bilinear interpolation with You Only Look
Once Version 3 (YOLOv3) network for target detection of
sonar images and got better results. Later, Sheng andHuo [11]
constructed a simulation model for sonar mine detection,
and combined simulation samples with real samples to use
YOLOv3 network to detect them, which solved the problem
of insufficient sonar image data. The experimental results
show the validity of the simulation data. And in the latest
research, Jin et al. [12] proposed the detection model of sig-
nificant region segmentation and pyramid pooling to reduce
the influence of background noise on target feature extraction.
The features extracted by pyramid pooling are integrated with
multi-scale features, which makes up for the fuzzy details
of sonar images. Finally, in most current studies, researchers
basically use YOLOv3 network or refer to its idea [31]. This
network first introduces feature pyramid fusion in single-
stage detection network, which can fuse multi-scale feature
information to enlarge the receptive field. However, there is
room for improvement in the deep convolutional network
at the front, which can extract richer feature information,
further deepen the feature pyramid, and integrate richermulti-
scale feature information. To this end, YOLOv5 improves
both deep convolutional network and feature pyramid that
improves detection speed and detection accuracy.

At present, YOLOv5 network shows excellent perfor-
mance in optical image target detection task, but its appli-
cation in acoustic image target detection is lacking [32], [34].
In addition, the lack of sonar image data makes it difficult to
apply in deep neural network. Therefore, this paper proposes
an improved YOLOv5 forward-looking sonar image target
detection model based on transfer learning [13]. Aiming at
the target detection task of forward-looking sonar image,
IoU was introduced as a distance [15] function to improve
the traditional k-means algorithm [15] in obtaining the prior
anchor frame, so as to improve the detection performance.
The training method of transfer learning is used to deal
with the problem of insufficient image data set of forward-
looking sonar. In addition, according to the target charac-
teristics of forward-looking sonar image, CoordConv [16]
is introduced to extract the features with coordinate infor-
mation, which effectively improves the detection accuracy
of small targets in the forward-looking sonar image. This
paper first introduces YOLOv5 and some networks with
good performance in the current target detection field. Then,
the improved YOLOv5 forward looking sonar image target
detection model based on transfer learning is introduced.
And through experimental test and performance comparison,
the improved YOLOv5 model has more efficient detection
performance in sonar image target detection model than

YOLOv5, YOLOv3, YOLOv4, Faster R-CNN, EfficientDet
and some self-built models. Finally, the experimental sum-
mary and prospect of the present work are given to lay a
foundation for underwater target detection in the future.

II. RELATED WORK
In this section, the current mainstream target detection net-
works are introduced, including the Faster R-CNN, Effi-
cientDet and YOLO models. Among them, the YOLOv5
network is introduced in detail, which lays a foundation for
the construction of the YOLOv5 network of forward-looking
sonar target detection in the third part.

A. FASTER R-CNN
Faster R-CNN [20] is a two-stage target detection network
proposed by Ross B. Girshick in 2016. It is a deep convolu-
tional neural network. Features were extracted by deep con-
volutional network (ResNet50 [8]), and the extracted features
were input into the Region Proposal Network [18] (RPN) to
screen candidate regions. Softmax [19] was used to determine
whether the candidate regions were targets, and the can-
didate regions were corrected by bounding box regression.
Finally, the proposed regional location information and the
last feature layer are input into return on investment (ROI)
pooling [20] to form a feature layer of uniform scale, and then
enter the fully connected layer for category prediction and
location regression. Faster R-CNN uses convolutional net-
work to generate suggestion frames by itself, and shares the
convolutional network with target detection network, which
reduces the number of suggestion frames from about 2000 to
300, and the quality of suggestion frames is also substantially
improved.

B. EFFICIENDET
EfficientDet is a single-stage target detection model proposed
by Tan et al. [21]. It is also a convolutional neural network.
The single-stage target detection network does not need to
extract candidate regions, only to extract features through
deep convolutional network and then fuse the features of
different scales in the neck to enrich feature information.
Finally, the features of different scales are input into the
detection module for detection. In this network, an efficient
weighted bidirectional feature pyramid network (BiFPN [21])
was proposed, which introduced learnable weights to learn
the importance of different scale features extracted from
the backbone network of EfficientDets. BiFPN repeatedly
applies top-down and bottom-up sampling methods to fuse
multi-scale features. Finally, the fused features are input into
the class prediction network and the box prediction network
for detection. It is worth mentioning that the performance of
the network will increase with the depth of the network based
on the stacking of BiFPN.

C. YOLOv5
Compared with two-stage detection networks such as
Faster R-CNN [22] and Faster R-CNN [17], YOLO [23]
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FIGURE 1. YOLOv5 network model.

(You only look once), as a kind of convolutional neural
network of single-stage mode, does not need to generate
candidate regions, conducts coordinate regression directly
through the grid that greatly improve the speed of target
detection. YOLOv1 model [23] combines with context infor-
mation to predict targets based on the global information,
which reduces the detection false alarm rate. It can provide
good help for sonar images with serious reverberation noise.
However, the grid resolution of YOLOv1 is not high, which
leads to low prediction accuracy. What is more, each grid of
the network can only predict one target, which results in the
bad prediction performance of the network for small cluster
targets.

From the perspective of target detection task of sonar
image, the two improvement schemes of YOLOv2 [24] are
helpful for us. Firstly, k-means clustering algorithm is used to
obtain the prior anchor box to predict each grid. By predicting
the offset between the anchor frame and the real frame, the
learning task is simplified, and the recall rate of the target
is effectively improved. Secondly, a feature layer is added
to improve the resolution of the feature layer, which can
increase the accuracy of small target detection. YOLOv2
uses Darknet19 [25] on the backbone network to reduce the
amount of computation, but it limits the range of the receptive
field and results in the limited information presented by the
feature layer for it does not do feature fusion, which harms
the detection performance to some extent finally.

Therefore, YOLOv3 [26] enhances the characteristics of
the acceptance domain effectively through introduce the
idea of spatial pyramid pooling (SPP) [26] into the back-
bone and improve Darknet19 into Darknet53. In addition,

Feature Pyramid Networks (FPN) [27] module is referenced
in the neck, which integrates low-level physical features into
high-level semantic features that further improve the accuracy
of recognition and location. This has achieved tremendous
improvements for sonar image target detection.

However, the neck based on FPN module is immature.
Path Aggregation Network (PANet) [28] module is used
in YOLOv4 [29]. In addition, Darknet53 is improved into
CSPDarknet53 in feature extraction network. For sonar
image, feature layer fusion based on the same scale is more
conducive to the target context information acquisition.

It is worth mentioning that the addition of a neck module in
the test may improve the accuracy of the test, and the damage
performance. According to current studies, the BiFPN mod-
ule [21] proposed by Tan has excellent performance in VOC
data set test. However, both BiFPN and PANet, introduced
into YOLOv3 in this paper, have com-promised the final
detection performance. So, the complexity of the neck feature
fusion module needs to consider the degree of low-level
semantic features extracted from the backbone and the scale
of data volume.

According to the above analysis, the evolution of YOLO
network has a certain effect on the characteristics of sonar
images. At present, compared with YOLOv4, YOLOv5 has
added Focus layer in Backbone, as shown in FIG. 1. which
improves floating-point operation per second (FLOPS) with-
out affecting accuracy. In addition, introduced C3 modules
to both Backbone and PANet to promote feature fusion,
which has stronger performance compared with content secu-
rity policy (CSP) module in YOLOv4. Moreover, YOLOv5
network can adaptively change the depth and width of the
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network by changing parameters to adapt to its own data
volume scale. This improvement is undoubtedly beneficial
to sonar image target detection. It can extract more abundant
global information to reduce false alarm rate, improve detec-
tion efficiency through data segmentation, and adjust model
parameters according to the size of sonar image data set to
achieve self-adaptation.

As shown in Fig. 1, YOLOv5 network model is divided
into backbone and Head. The input is down sampled for five
times through backbone of the network, and then takes the
last three feature layers as the input of head. In backbone
network, data first passes a focus layer to cut the width and
thickness of data to half of the original, greatly speeding up
the forward transmission speed of the network. Then it passes
through four convolution layers plus a C3 layer. It proposed a
new residual component (C3 layer) which is improved since
CSP layer in YOLOv4 network. With the help of C3 layer,
the backbone network can extract more detailed features.
In addition, YOLOv5 replaced the activation function in the
CSP layer following the improved activation function method
inYOLOv4. Finally, it should be noted that a SPPmodulewas
added in the middle of the last Conv+C3 layer. This module
was proposed fromYOLOv3, which can expand the receptive
field of feature layer and play a great role in feature fusion of
Head module.

In the head part of YOLOv5, the main idea is the same
as that of YOLOv4, which is improved based on PANet.
It should be noted that YOLOv5 uses a different C3 layer
pattern in head than backbone. In Backbone, the feature
layer only carries out down sampling, so the C3 layer adopts
residual combination. However, in head, PANet network inte-
grates the feature layer of up-down sampling, so the residual
combination is no longer used in C3 layer.

Finally, use the corresponding anchor frame for target
detection in the feature layers of the three scales. Each grid of
each feature layer can get 3 ∗ (5+ numobj) detection results,
where is the total number of categories of input data. The
quantity 3 means that each grid is tested through 3 anchor
frames, and the quantity 5 represents the five information
of the target confidence predicted by each anchor frame, the
coordinates of the center point and the width and height of
the prediction frame.

The loss function of YOLOv5 consists of classification
loss, confidence loss, and regression loss of target prediction.
The total loss can be expressed as follows:

Ltotal = αlbox + βlobj + λlcls (1)

where lbox , lobj and lcls respectively represent target regres-
sion loss, target prediction confidence loss and category loss.
Restricted by the optimizer, corresponding gain should be
added to each type of loss in target detection to scale and
balance each type of loss [30]. In YOLOv5, the three gains
α, β, and λ were determined to be 0.05, 1 and 0.5 by many
trials.

Equation (2) is the calculation method of complete inter-
section over union (CIoU ). And the predicted losses are

obtained according to the CIoU of target real box and pre-
dicted box. Compared with IoU and generalized intersection
over union (GIoU ), CIoU not only contains all functions of
them, but also can better handle the two cases in which the
prediction box and the real box are completely separated or
fully included.

CIoU = IoU −
dis2

(
apre, atr

)
c2 + e

− αv (2)

where IoU represents the ratio of the intersection and union
of the real frame and the prediction frame, apre and atr
respectively represent the position of the center point of the
prediction frame and the real frame, c represents the diagonal
length of the minimum frame surrounding the real frame and
the prediction frame, and e is a bias item. CIoU added the
punishment of αv compared with DIoU , where

v =
4
π2 ∗

(
arctan

wtr
htr
− arctan

wpre
hpre

)2

,

wtr , htr , wpre and hpre are the width and height of the
real box and the predicted box respectively, and α =

v/ (v− IoU + 1+ e).
So far, the regression loss of target positioning can be

obtained as follows:

lbox = 1− CIoU (3)

The target prediction confidence is used to judge the proba-
bility of the existence of the target in the anchor frame, and the
category prediction output the target category in the anchor
frame. Directly the binary cross entropy calculation method
is used to calculate the loss of the two for both are only one
parameter. For confidence loss, there are:

lobj =
1
n

∑
nt

(
yp ∗ ln (yt)+

(
1− yp

)
∗ ln (1− yt)

)
(4)

where nt refers to the number of positive samples in a batch
of images at a certain scale, yp is a confidence obtained by
the predicted target, and yt is a confidence standard, which is
defined as:

yt = (1− gr)+ gr∗CIoU (5)

where is the scale coefficient of a CIoU with a range of
[0, 1]. It is important that the confidence level is closer to 1
when gr is too small, which will increase the difficulty of
training. Finally, the confidence loss can be obtained through
(4) and (5). For category loss, the calculation method is like
confidence loss, and there is no need for standard, because we
have real tags and target location information of each target.

Finally, by giving gain to each type of loss and summing it
up, the loss of the image can be obtained from the output of a
feature scale. The total loss of the image is obtained by adding
and averaging the losses of the three scales. Then, the losses
are multiplied by the batches to obtain the total loss value,
which is passed to the stochastic gradient descent (SGD)
optimizer to update the network weights.

18026 VOLUME 10, 2022



H. Zhang et al.: Target Detection of Forward-Looking Sonar Image Based on Improved YOLOv5

FIGURE 2. Training, detection, and evaluation process based on transfer
learning.

The results show that the performance of these networks is
better in the current optical target detection field. However,
they are often ignored in the application of acoustic image
target detection. Therefore, this paper uses these methods to
test the target detection of the forward-looking sonar image
and improves YOLOv5 accordingly.

III. PROPOSED METHOD
In this part, an improved YOLOv5 detection model based on
transfer learning is proposed for the image target detection
task of forward-looking sonar, which includes transfer learn-
ing training structure, IoU k-means clustering improved algo-
rithm, CoordConv-YOLOv5 network and forward-looking
sonar target detection model.

A. TRANSFER LEARNING TRAINING STRCTURE
It is difficult to obtain enough effective sonar image data
because of the difficulty and high cost of underwater experi-
ment. For deep convolutional neural networks, training fitting
needs the support of many training samples. Among them,
the number of YOLOv5 training samples on Pascal VOC
and COCO public data sets was 20 categories, a total of
16,551 training images, and 80 categories, a total of 118,287
training samples. However, the data set of forward-looking
sonar images available in this paper was only 3,240 training
samples, a total of 8 categories. Regardless of whether the
sample distribution of each category is uniform, it can be seen
from statistics that the average amount of training image data
of each category of available forward-looking sonar images
is much lower than that of the other two data sets. This
difficulty will greatly harm the convergence performance of
the network.

To solve the problem of insufficient training data, this
paper uses the method of transfer learning to train the
forward-looking sonar images. The weight trained by
YOLOv5 network is put on the optical image data set as the
pre-training weight of the target data set, and the target data
set can be fine-tuned on the weight of the model to achieve

better fitting effect. Among them, the fitting model of the
reference optical image is reliable as a pre-training model of
the acoustic image and the training will not fail because the
low-level features in the deep network are common to differ-
ent tasks. As shown in Fig. 2, the weights of YOLOv5 net-
work model trained under coco data set are used to fine-tune
the target’s forward-looking sonar image data set. Finally,
the training model is received for the forward-looking sonar
image target detection task. Later, the test set of the forward-
looking sonar image is detected by the training model of the
task and evaluate the detection result.

B. IOU K-MEANS
Started from YOLOv3 network, the anchor frame is intro-
duced based on the idea of Fast R-CNN. YOLOv3 and
YOLOv4 both refer to k-means clustering method in the
calculation of anchor frames. YOLOv5 transforms the man-
ual calculation anchor frame mode of YOLOv4 into auto-
matic calculation mode and combines k-means clustering
with genetic algorithm (GA). However, the overall method is
still the traditional k-means clustering mode, using Euclidian
distance function as the clustering basis.

FIGURE 3. The class distribution and clustering results of the
width-to-height ratio of the dataset object under different methods:
(a) Improved IoU k-means clustering method. (b) Traditional k-means for
YOLOv5.
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FIGURE 4. Introduce coordinate information to YOLOv5 backbone network.

FIGURE 5. CoordConv workflow.

There is a one thing to note that the width-to-height ratio
of training set annotation in this paper differs greatly from
that of COCO dataset. Therefore, the initial anchor frame of
the target data set needs to be redefined before the training
of transfer learning. Firstly, the k-means algorithm combined
with GA algorithm of YOLOv5 is considered.

However, using Euclidean distance function will cause
larger target boxes to have larger deviations than smaller ones.
What is more, the positioning accuracy of sonar image target
detection task is a great consideration, this paper proposes
to use IoU as the clustering function of k-means algorithm.
Calculating the anchor frame closest to the target size by
means of IoU distance function can further improve the
accuracy and speed of regression prediction.

The overall process of the IoU k-means algorithm pro-
posed in this paper is as follows:
Step1: All labeled coordinate information are counted in

the training set and the width length and height length is
normalized between 0 and 1.
Step2: Nine target widths and heights are randomly

selected as the initial frame widths and heights.
Step3: Calculate the center of each target frame, and posi-

tion nine initial anchor frames at the center to calculate the
IoU value between the target frame and the nine anchor
frames.
Step4: Record the IoU calculation results between all

anchor frames and the current target frame, including the
number, width, and length of anchor frames which has the
maximum IoU value.
Step5: Calculate the median value of the width and height

of all target frames corresponding to the number as the new
width and height of the anchor frame.

Step6: Go to step3 and recalculate the IoU value until the
target enclosure id in the last round is the same as that in the
current round.
Step7: The update ends. The obtained anchor frame scale

is converted to the corresponding scale size in the input image
size.

The IoU k-means clustering algorithm proposed in this
paper can effectively improve the accuracy of average IoU
compared with the traditional k-means clustering algorithm.
As shown in Fig. 3, the different colors represent the distri-
bution of width and height of the training set labels. Here, the
division of the overall category presents the clustering situa-
tion obtained by using IoU k-means, and the five-pointed star
represents the width and height distribution of nine anchor
frames obtained by different clustering methods. By evalu-
ating the average IoU accuracy of the two algorithms, the
introduction of IoU as a distance function does better than the
traditional k-means used in YOLOv5 on the target clustering
of the forward-looking sonar data set, and the average IoU
accuracy is improved by 5.5%.

C. COORDCONV-YOLOv5
Since the imaging mechanism of forward-looking sonar is
different from that of optical equipment, the echo intensity
received by the receiver is greatly weakened by the com-
plex underwater environment. the target presented in sonar
image has the characteristics of low contrast and blurred edge.
In addition, the most important is that under the influence of
long-distance detection, beam Angle resolution and acoustic
scattering, the target echo area in sonar image is small, which
further aggravates the damage of regression positioning in the
detection process.
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FIGURE 6. Training and test flow chart of re-initializing anchor frame.

In view of the above problems, this section proposes to
use CoordConv to improve the feature extraction module
of YOLOv5 network. It not only extracted the multi-scale
high level features, but also introduced the corresponding
coordinate information for different scale features. The addi-
tion of coordinate information can improve the accuracy of
positioning regression of detection module.

As shown in Fig. 4 CoordConv is adopted in this paper
to replace the original convolution form of YOLOv5 back-
bone network, and the details of CoordConv are explained
in Fig. 5. Before extracting parameterized features each
time by convolution, each pixel of the input tensor is given
corresponding coordinate information. There is x and y coor-
dinate information. Since the tensors vary in size during
feature extraction each time, x and y are further scaled to
between [-1,1]. The generated two two-dimensional coordi-
nate matrices are assigned to the corresponding tensor chan-
nel layers. Through conv layer operation, the corresponding
high-level features with pixel-level coordinate information
are further obtained, which provides more abundant feature
information for locating regression in Head layer. Impor-
tantly, the extracted high-level features have corresponding
coordinate information, which is of great help to improve
the detection and positioning accuracy of small targets in the
forward-looking sonar image.

D. FORWARD-LOOKING SONAR IMAGE TARGET
DETECTION MODEL
In this section, an improved model based on YOLOv5 is
proposed for the target detection task of forward-looking
sonar image.

As shown in Fig. 6, firstly, the improved IoU k-means
algorithm is used for clustering the forward-looking sonar
training set annotations to obtain the anchor frame informa-
tion required for training. Secondly, the feature coordinate
information is added in the feature extraction module, and
the convolution with coordinates is carried out to improve
the regression accuracy. Then, we fine-tune the pre-training
model, and receive the target model with the best training per-
formance. And the testing set is used to test the training
model. Finally, the performance of the detection results is

evaluated and the evaluation indexes such as mAP of the
detection results are obtained.

IV. EXPERIMENTS
This section conducts target detection on forward-looking
sonar images based on YOLOv5 model.

The data set used is URPC2021, and the website address
is https://code.ihub.org.cn/projects/14186, in which there
are 4000 forward-looking sonar images, which are respec-
tively composed of eight types of targets: human body, ball,
round cage, square cage, tire, bucket, cube and cylinder.
The data was obtained by tritech’s forward-looking sonar,
which detected eight types of targets in the real ocean.
Sonar image data is often acquired together with water depth
detection and bottom detection data, which enables us to
observe the shallow structure of the seabed. This data set
was launched by Pengcheng Laboratory, which is currently
the largest and most extensive acoustic image data set in the
industry.

The experiment in this paper is conducted on Pytorch
deep learning platform under the environment of Intel(R)
Core (TM) I7-10710U CPU and Quadro P5000 GPU. During
the experiment, different models are trained and tested based
on transfer learning method, and then compared and analyzed
the performance of the algorithm. For the data set division of
each algorithm, uniformly used a seed to randomly select and
divide the data set into training set, validation set, and test set
in a ratio of (9:1):1 to ensure the authority of the comparison
of algorithm results.

A. EVALUATION INDEX OF DETECTION PERFOMANCE
In this paper, the average accuracy (AP) is used to evaluate
the performance of each network in forward-looking sonar
image target detection. AP is controlled by the following two
parameters: P (Precision) and R (Recall). First, calculate the
IoU value between the model detection result and the label.
When the IoU ratio is greater than or equal to the set threshold
and the category judgment is correct, judge the prediction
target to be True Positive (TP). Then, all the predicted targets
of this class are sorted by the confidence score, and count the
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FIGURE 7. Four types of loss curves for each data set: (a) Training set;
(b) Validation set.

TP values obtained into P-R curve, which is defined as:

P =
TP

TP+ FP

R =
TP

TP+ FN
(6)

where FP (false positive) represents the number of targets
whose predicted categories are inconsistent with the real
ones, which may be detection errors or false alarms. FN (false
negative) is the number of real targets that are not detected,
which is the representation of alarm leakage. According to the
above, P-R curve of each type of target under a certain IoU
index can be obtained. The AP value of the corresponding
class is the area between P-R curve, P axis and R axis. With
the improvement of IoU index, the localization regression
standard of target detection becomes stricter. In this exper-
iment, standard IoU standards of 0.5 and 0.75 were taken
respectively to compare the accuracy. In addition, calculate
the average value of ten IoU thresholds from 0.5 to 0.95
to measure the average accuracy of each model. And the
time required for each image detection by the model is used
for comparison and measurement for the efficiency of sonar
image detection by the model.

FIGURE 8. Precision and recall curves of validation sets.

FIGURE 9. mAP test curve of validation set.

B. RESULTS
Fig. 7 shows the loss reduction curves of the training set
and verification set of sonar images based on the improved
YOLOv5s model based on transfer learning. It can be seen
from the loss curve that the network gradually tends to be
stable after the 100th turn. According to the network output,
the output dimension of the three anchor frames on each
grid of each layer is 13 dimensions, including eight cate-
gories, four position information and one confidence loss.
Category loss and confidence loss are calculated by cross
entropy, which contain fewer parameters. So, the loss can be
reduced compared to the regression predicted loss calculated
using CIoU .
Fig. 8 shows the statistical change process of accuracy

rate and recall rate of verification set in the training pro-
cess. By observing the stability curve and loss curve of
accuracy rate and recall rate of verification set, the final
stability of network training can be judged. As shown in
Fig. 9, mAP for the verification set was obtained by test-
ing after each training round, and two performance indexes
mAP@0.5 and mAP@0.5:0.95 were recorded respectively.
When the network is stable, mAP@0.5 and mAP@0.5:0.95
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FIGURE 10. Test accuracy and recall curves.

FIGURE 11. Confusion matrix of test results.

can reach 98.64% and 57.94% respectively. Finally, we can
obtain the training model corresponding to the optimal index
mAP@0.5:0.95 of the validation set.

In the process of testing the test set, to reduce a certain
false alarm rate, the confidence threshold of detection was
set as 0.6, and finally the test results were visualized under
the IoU index of 0.5. Fig. 10 shows the change curves of
accuracy rate and recall rate of detection results of eight
types of targets under the forward-looking sonar. According
to statistics, the overall detection result mAP@0.5 is 98%.
In addition, as shown in Fig. 11, the detection results of each
type of target are visualized in the form of confusion matrix.

For each type of target, the detection accuracy is relatively
high, and the target miss rate is relatively low. However, net-
work misjudged part of the background as the target because
of the influence of background noise in the sonar image. So,
the noise reduction part of the sonar image needs to be further
solved in the subsequent research.

Secondly, the loss curve shows that the improved
CoordConv-YOLOv5 model can achieve better performance

FIGURE 12. Comparison of loss change curves of different data sets of
YOLOv5 and improved network: (a) Training set; (b) Validation set.

than the baseline YOLOv5 model in Fig. 12. By observ-
ing the comparison curve of training loss, the improved
CoordConv-YOLOv5 can achieve a lower loss stability
than YOLOv5. In addition, the loss stability achieved by
CoordConv-YOLOv5 was nearly 0.007 lower than the base-
line model in terms of validation set losses. This result further
verifies that the improved algorithm has better convergence
effect. Therefore, compared with the baseline model, the
target regression positioning results of forward-looking sonar
images with high indicators can achieve better performance.

In addition, Fig. 13 verifies the above results from
the accuracy change curves under different indexes of
the verification set. In the figure, the performance of the
improved CoordConv-YOLOv5 andYOLOv5 is evaluated by
mAP@0.75 and mAP@0.5:0.95 respectively. In mAP@0.75
index, the improved model is 9.26% higher than the original
model on average after the verification set reaches stability.
In mAP@0.5:0.95 index, it was 6.04% higher on average.

Through the visualization of the above two training results,
it can be seen that compared with the original model, the
improved model has improved the detection accuracy of the
forward-looking sonar image to a certain extent.

Finally, each typical target detection model is trained and
tested, and the performance of each model is compared and
analyzed. As shown in Table 1.
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FIGURE 13. Comparison of different performance indexes between YOLOv5 and improved network on verification set: (a) mAP@0.75;
(b) mAP@0.5:0.95.

TABLE 1. Detection results of eight types of targets in forward-looking sonar images by different models.

Through the comparison of the training and testing per-
formance of each model, our method is found to exhibit
the best performance in the target detection process of the
forward-looking sonar image, and the detection accuracy
mAP@0.5:0.95 reaches 56.95%.

Firstly, compared with the model trained by the pre-
training model of YOLOv5s only, the model trained by the
anchor frame obtained by the improved IoU k-means algo-
rithm improves the detection speed by one-third. However,
the detection accuracy is not improved because the network
framework is not improved.

Secondly, the improved target detection network of
YOLOv5 forward looking sonar image proposed in this
paper introduces coordinate information into the backbone
network and gives corresponding coordinate information
to the extracted deep parameterized features, which effec-
tively improves the detection regression positioning accuracy.
At the same time, this paper improved the traditional k-means
algorithm. Compared with the original anchor frame, the
anchor frame obtained by clustering algorithm with IoU as
the distance function has a similar size to the target, which
helps the detection module to achieve faster regression posi-
tioning and effectively improves the detection speed. In addi-
tion, by fine-tuning the pre-training model, the problem of

insufficient data is well solved, and the effect of fitting is
improved.

Compared with the test results of the original YOLOv5
network, it can be concluded that the CoordConv-YOLOv5
forward-looking sonar image target detection network based
on transfer learning proposed in this paper maintains the
performance of mAP@0.5 under low indicators. Compared
with the original YOLOv5, mAP@0.75 has been improved
by 5.82%, mAP@0.5:0.95 has been improved by 2.74%, and
detection speed has been improved by 30.7%.

In addition, the YOLOv3 network is improved in the exper-
iment. By modifying the Neck part of the YOLOv3 network,
the FPN module is improved with PANet module, which
makes the feature fusion more sufficient, and the detection
accuracy is improved to some extent. However, compared
with YOLOv5 network, although the overall idea is the same,
the detection accuracy of YOLOv3 network is not as good
as that of YOLOv5 because the backbone features are not
sufficiently extracted.

EfficientDet is also an outstanding network in the current
target detection field. In the experiment, efficientdet-d0 and
efficientdet-d4 networks were trained and tested respectively.
The difference between d0 and d4 network sizes lies in the
use of 3-layer and 12-layer BiFPN feature fusion layers at
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the neck. The detection results show that Efficientdet-d4 does
better than Efficientdet-d0 performance, but there is a big
difference compared with YOLOv5 detection performance.

Furthermore, the single-stage detection network model is
obviously superior to the two-stage network model in the
forward-looking sonar image target detection task. Through
experimental tests, the detection accuracy of mAP@0.5:0.95
of YOLOv5 is 36.74% higher than that of Faster R-CNN,
and the detection speed is 27 times faster than that of
Faster R-CNN. This is because in the detection process,
YOLOv5 directly performs regression calculation of tar-
get location, without extracting candidate regions. However,
Faster R-CNN and other two-stage detection networks need
to extract candidate regions and then predict these candidate
regions. Therefore, the detection efficiency is obviously infe-
rior to that of single-stage detection network.

Finally, the performance of several YOLO networks with
different depths and widths is compared. Although YOLOv5s
network has the smallest scale, it still performs better than
deeper and wider networks. The main reason is that the deep
network does not highlight its superior performance due to
the limited amount of sonar data.

The above experimental data show that the CoordConv-
YOLOv5 network proposed in this paper has better perfor-
mance in the target detection task of the forward-looking
sonar image, which provides certain help for the subsequent
research on the target detection of forward-looking sonar
image based on deep learning.

V. CONCLUSION
In this paper, a forward sonar image target detection model
based on transfer learning CoordConv-YOLOv5 is proposed
for the task of forward sonar image target detection.

First, IoU k-means algorithm is proposed to recalculate the
initial detection frame of YOLOv5 network for the difference
between optical image target and sonar image target. Second,
the detection model of Coordconv-YOLOv5 is established on
the basis of the target characteristics of the forward-looking
sonar image. Finally, the idea of transfer learning is used
to fine-tune the pre-training model and a detection model
suitable for the forward-looking sonar image target detection
is obtained.

In the experiment, the convolutional network models
YOLOv3, YOLOv3-PAN, YOLOv4, Faster R-CNN, Effi-
cientDet and YOLOv5 were used for training and testing.
According to the comparison of detection performance, the
CoordConv-YOLOv5 network based on transfer learning
proposed in this paper shows the best performance in both
detection accuracy and detection speed. Detection accuracy
mAP@0.5:0.95 can reach 56.95%, and detection speed can
reach 9ms.

However, according to the current research results, due
to the complex underwater environment, the background
speckle noise of the forward-looking sonar image is serious.
Secondly, the echo intensity of the target is weak, and the
attitude of the target is unstable underwater. As a result,

there are some false alarms in the detection results of the
current algorithm. To solve this problem, the future research
will focus on the preprocessing of the forward-looking sonar
image.
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