
Received January 22, 2022, accepted February 4, 2022, date of publication February 9, 2022, date of current version February 17, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3150342

System Failure Detection Using Deep Learning
Models Integrating Timestamps
With Nonuniform Intervals
YIXIN HUANGFU 1, (Member, IEEE), SAEID HABIBI1, (Member, IEEE),
AND ALAN WASSYNG 2, (Member, IEEE)
1Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
2Department of Computing and Software, McMaster University, Hamilton, ON L8S 4K1, Canada

Corresponding author: Yixin Huangfu (huangfuy@mcmaster.ca)

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), and in part by the
Ontario Research Fund: Research Excellence (ORF-RE) Program.

ABSTRACT System logs play an important role in software development and system maintenance. Many
system software programs continuously generate system logs during software runtimes for failure detection
and diagnosis purposes. Currently, the analysis of system log data is mainly a manual process that highly
depends on human knowledge and experience. This time-consuming task has become a problem because
of the ever-increasing volume of log data. Existing studies have investigated machine learning and deep
learning techniques to automate the failure detection task. This paper takes the deep learning approach and
proposes two detection structures based on recurrent and convolutional neural networks. More importantly,
this paper takes a step further by closely examining the timestamps of log data which existing studies have
generally ignored. This study found that time information can be a distinguishing factor between regular and
abnormal log sequences. Inspired by this observation, a novel method is proposed to integrate log timestamps
in deep learning models using interpolation techniques. The evaluation results show that the log timestamps
can significantly improve the performance of failure detection. Cross-comparison of the different models
demonstrates that the proposed network structure can successfully utilize the timestamp information. The
code is available on GitHub: https://github.com/hfyxin/Ts-models-log-data-analysis.git.

INDEX TERMS Data engineering, data mining, feature extraction, neural networks, pattern recognition,
software maintenance.

I. INTRODUCTION
System logs are machine data constantly generated by large-
scale software, such as online servers and operating systems.
The events and variables recorded by the logs are the foot-
prints of the software runtime. Depending on the system, the
log messages generated in just a second range from a few to
thousands of lines. This massive amount of data contains rich
information for troubleshooting during software development
or system maintenance. In software development, they can
help developers identify software errors in the source code.
In a web service application, log data can pinpoint failures
that occur in the system.

Log data are traditionally analyzed by experienced soft-
ware engineers, as it can be challenging to comprehend

The associate editor coordinating the review of this manuscript and
approving it for publication was Turgay Celik.

log messages without domain knowledge. This approach is
reaching its limit with the development of large-scale and
complex software [1]. With the growing complexity of soft-
ware systems, the manual process requires more specialized
personnel and maintenance costs. The massive volume of
log data also makes analysis more time-consuming, reduc-
ing the recoverability and availability of the service, which
can be crucial to a system that must be available all the
time.

Recent research has focused on automating failure detec-
tion and recognition tasks using self-learning algorithms to
analyze log data [2], [3]. This data-driven approach utilizes
machine learning models to learn the feature patterns from
anomaly logs. By fitting a large amount of training data, the
model is able to process new log data and detect if a fault
or failure condition occurs. The detection process is much
more efficient than manual inspection and can save software

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 17629

https://orcid.org/0000-0002-8635-7152
https://orcid.org/0000-0003-4614-3421


Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

engineers precious time for system maintenance and defect
triage.

The related works, as described in Section II, primarily
emphasize statistical machine learning models [4]. They gen-
erally utilize a feature engineering approach to preprocess
log data. Although performing reasonably well, these mod-
els are generally incapable of including time and sequential
information of log messages, so there is room for improve-
ment. On the other hand, some studies have investigated
neural networks or deep learning approaches for failure detec-
tion [5], [6]. These models have an inherent advantage in
handling sequential data and are capable of processing times-
tamp information. However, most of them opt to ignore log
timestamps in the analysis.

Timestamps are an important piece of information avail-
able in all types of log data [7]. Most systems produce log
data at an irregular rate, meaning that the log messages have
nonuniform time intervals. The time elapsed between one log
message and the previous varies, reflecting the unique tem-
poral behavior of the software events. Timestamps contain
temporal patterns that can contribute to anomaly detection,
but none of the existing research has investigated their
benefits.

In this paper, a novel deep learning approach for system
failure detection is proposed using timestamps in log data.
The proposed method integrates the nonuniform timestamps
within the deep learning structure using interpolation tech-
niques. This study is based on statistical observations from
log sequences, which show the significance of log timestamps
in improving fault detection.

The rest of this paper is structured as follows. Section II
gives an overview of the existing research in the field.
Section III reviews the HDFS dataset and presents the sig-
nificance of timestamps. Section IV details the proposed
deep neural network structure and the resample layer to
integrate timestamps. Section V describes the experimental
setup, and Section VI presents the findings from comparison
tests. Section VII concludes this study.

II. RELATED WORK
Recent research has investigated automated system log anal-
ysis for detecting and classifying system failures. As logs
evolved from simple printf commands to dedicated moni-
toring libraries, many analytic methods were developed to
analyze the data. The rudimentary technique uses a key-
words search for abnormal log lines, which has shown to
be less effective in some applications [7], [8]. Rule-based
automated detection [9] is an alternative, but it can be chal-
lenging for software developers to determine and maintain a
comprehensive set of rules. Recent research mainly focuses
on learning-based methods that automatically extract distin-
guishing information from data instead of largely relying on
human expert input [1]. Automating log analysis consists of
three stages: parsing, feature extraction, and classification
explained as follows.

Parsing is a necessary first step to convert raw text log
messages to usable structured fields. The need for parsing
varies depending on the type of logs. Some logs follow a
rigorous format and can readily be parsed with minimal
effort [2], [3]. For these, a regular expression can success-
fully extract valuable features. Other logs tend to be harder
to interpret, as some critical diagnostic fields are buried
in syntactically complicated statements. These logs include
HDFS, Microsoft online service system [11], and most oper-
ating system logs. For these, parsing has become a com-
plex data mining problem [12], [13], and its correctness
can affect the performance of the detection. Some utilize
source code to generate tree-based syntax [14], while more
research exploits the log data to extract log message tem-
plates [15], [16]. These syntactic templates or log signatures
represent logging events, and variables within them are also
extracted.

After parsing, log data are in sequential order and can
have various lengths. Feature extraction is the process of
structuring the parsed sequential log data into usable fea-
tures for detection algorithms. This process can be done
with hand-crafted rules based on domain knowledge. Such
features include log message counts [17] and state ratio [14]
for Hadoop, performance fingerprints for a datacenter [18],
term-frequency inverse document frequency (TF-IDF) fea-
ture [19], [20], and many other statistical features [21]–[23].
These features are used in conjunction with machine learning
models for detection or classification. Learning models can
be formulated in a supervised manner, such as the logis-
tic regression [18], decision tree [2], and support vector
machines [3], [11], [21], as well as in an unsupervised man-
ner, such as principal component analysis [14], invariant
mining [17], and K-means clustering [24].

Another approach to the classification task is to utilize
sequence information and apply workflow-based detec-
tion. Log messages that are related to specific identifiers
are grouped to produce event sequences. These sequences
represent system execution paths, which can be normal or
abnormal. They can be stored as templates in a database [25],
used to construct a finite state machine [26], or to generalize
sequence patterns with clustering techniques [11]. New log
sequences are compared against the processed ones to deter-
mine if a failure occurs.

Neural network models are new contenders in the log
analysis field. The origin of neural networks dates back to
the 1940s, but recent breakthroughs in computational capa-
bility have unleashed some of their potential [1]. The term
deep learning refers to the recent form of neural network
structures emphasizing the ability to train deeper networks.
The most representative ones are Convolutional Neural Net-
work (CNN) and Recurrent Neural Network (RNN). CNN
is most popular in image recognition [27], [28], while RNN
is preferred in natural language processing [29], [30]. The
potential of deep learning models is not only limited to
IT applications; they can also apply to many engineering

17630 VOLUME 10, 2022



Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

disciplines such as mechanical system fault detection and
state estimation [31], [32].

The structure of deep learning models in log analysis
applications can be versatile. For example, RNN can pro-
cess sequential inputs directly without the feature extraction
process. In particular, by utilizing a many-to-one structure,
an RNN network can infer the next possible log token based
on previous ones [33]. Studies in [5], [6] used this approach
to perform anomaly detection in real-time and include log
timestamps in a separate RNN model. Another approach
is to train a classification model to directly output a fail-
ure detection result based on log sequence input [34]. This
approach allows the use of various network architectures in
addition to RNN, such as sequential CNN [35], but these
studies generally disregarded timestamps. Other variations
of deep learning models were also investigated, such as the
Autoencoder in [36].

III. LOG DATA PREPROCESSING AND OBSERVATION
This study uses the Hadoop Distributed File System
(HDFS) log benchmark dataset originally introduced
in [14]. The HDFS dataset is selected for its availabil-
ity and popularity among related research. This section
overviews the dataset and presents statistical patterns of log
sequences.

The HDFS is a data storage and management system that
runs on a cluster of computers. The log dataset is fully labeled
and openly available from [16]. The original form of this
dataset is a single 1.47 GB text file with 11.2million log lines,
recording 38.7 hours of HDFS system runtime. The log lines
are essentially unstructured text. A breakdown of a sample
log message is shown in Figure 1. Each log line contains
formatted fields such as date and time, as well as a statement
sentence that describes an action. The statement field in each
log message contains valuable identifiers such as block IDs
and type of operations (event type). Extracting this informa-
tion and sorting them into categories is a challenging topic
called log parsing. A few researchers have studied this topic
and achieved good parsing accuracy [25], [26], [37]–[40].
In particular, the Drain algorithm [15] uses a tree structure to
parse the event types in an unsupervised manner. This paper
chooses the Drain algorithm to perform the parsing process
for its accuracy and efficiency demonstrated in an evaluation
study [16].

After parsing, each log line is represented as a tuple of
timestamp, block ID, and event type, as shown at the bottom
of Figure 1. The event type is commonly referred to as a
token. In this example, the token ‘‘d38aa58d’’ represents the
event described in the original log statement, and this event
occurs at the data block indicated by the block ID. The
failures in the HDFS system are primarily associated with
data blocks, so logs related to the same block were grouped
and treated as a whole. The grouped logs take the form of a
token sequence as illustrated in Figure 2. Note that Figure 2
describes only one sequence. It has a label of either regular – 0
or abnormal – 1, corresponding to a block’s health condition.

The sequences and their labels form the samples for training
a classification model.

After sequencing, the original 11.2-million-line log file is
converted into a dataset containing 575,061 labeled samples
like the one shown in Figure 2. These sequences consist
of 48 unique tokens, representing 48 different log events. The
dataset is highly skewed, with only 16,838 abnormal samples,
less than 2.93% of the total dataset.

Examining the token sequence only, most of all 575,061
samples have sequence lengths between 10 and 40 tokens
with an average of 19. The length histogram of all sequence
samples is shown at the top of Figure 3. Some outliers with
lengths up to 298 are not displayed in the graph. There are
no evident distribution patterns that can be seen from this
graph.

If considering timestamps, the duration of log sequences
varies from 0.5 to 54,000 seconds, where a majority of
them lie within 120 seconds. The histogram of sequence
durations at the bottom of Figure 3 now shows a clear
bimodal pattern. Most of the samples follow a Gaussian
distribution with a mean of 40 seconds. A smaller amount
of short-lived sequences cluster around the very left of the
graph.

Figure 4 further examines the distribution difference
between regular and abnormal samples. The duration his-
togram of regular samples at the top graph clearly shows two
Gaussian patterns with means at 3 seconds and 40 seconds.
In contrast, the abnormal samples on the bottom graph are
generally shorter and fall within the 0 to 10 seconds range.
Longer abnormal samples with a duration of more than 10
seconds do exist, but they are relatively few and barely dis-
tinguishable on this graph.

FIGURE 1. An example of parsing HDFS logs.

The distribution difference between sample lengths and
sample durations shows a correlation between time informa-
tion and the temporal dynamics of log sequences. The differ-
ent patterns between regular and abnormal samples further
demonstrate that time information can potentially be utilized
to detect a failure. The following section discusses methods
to utilize time information.

VOLUME 10, 2022 17631



Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

FIGURE 2. An example of a tokenized log sequence.

FIGURE 3. Histogram of sample length (top) and sample duration
(bottom).

FIGURE 4. Histogram of sample durations by labels (top: regular samples,
bottom: abnormal samples).

IV. METHODOLOGY
This study proposes an automated failure detection system
as illustrated in Figure 5. As a learning system, the training
process is shown on the top and the detection process is on

FIGURE 5. Overview of the failure detection model.

the bottom. The original log messages go through a parsing
process to obtain token sequences as described in Section III.
The labeled token sequences are used to train a deep learning
classification model in the training process. In the detec-
tion process, the trained model takes the token sequences
as input and produces detection results. The classification
model contains four main components: the embedding layer,
the novel resample layer, the sequential backbone layer, and
the full-connection layer. The novel resample layer enables
timestamp integration into the model. It can be bypassed,
and the model functions as a regular sequence classifi-
cation model. This section presents these components in
detail.

Subsection A starts with the detection model frame-
work without timestamp integration (referred to as the base
models). Subsection B describes a novel network structure
to integrate timestamps by interpolation. Subsection C elab-
orates interpolation methods and selects feasible ones for
implementation.

A. THE BASE MODELS
Two promising candidates for the deep learning model are
RNN and CNN. The sequential nature of log data makes the
RNN models [41] particularly suitable for this application.
In an RNN, the outputs or hidden layer values of a network
are fed back and merged with inputs for the next iteration.
In this way, an RNN preserves the temporal information of a
sequence from the first element to the last. In particular, the
Long Short-Term Memory (LSTM) model [42], a variation
of RNN, is used in this study as it is proven to be one of the
best performing RNNs [1]. The uniqueness of LSTM is on
the microscopic level: it formulates a series of gate functions
within the hidden unit to throttle long-term dependencies. The
high-level network constructions of a general RNN and an
LSTM model are the same.

Another way to process sequential inputs is to use CNN.
Since first introduced in 1998 [43], CNN quickly became the
most popular algorithm for image classification tasks. The
CNN utilizes a number of convolution kernels that scan a 2D
image to search for distinguishable patterns. This study uses a
variation of CNNwhere the kernels move along one direction
(1D-CNN) to search for sequence patterns.

17632 VOLUME 10, 2022



Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

Figure 6 illustrates the base model structures using RNN
and CNN as the backbone, respectively. The blue blocks
represent network layers, and the green blocks represent
input and intermediate data. The RNN base model is shown
at the top. It takes token sequences previously shown in
Figure 3 as input. The tokens first go through an embed-
ding process to obtain the vectorized representation. This
process converts individual log tokens into numerical vec-
tors, an inspiration from language modeling research [29].
These embedding vectors capture the correlations among
tokens in a high-dimensional space. The embedding pro-
cess is effectively a fully connected network that maps a
log token in one-hot vector form to an N × 1 embed-
ding vector. The parameters of the embedding process are
obtained using the word2vec method [44] in an unsupervised
manner using all available data except the data used for
testing.

The embedding vectors in the form of an N × M matrix,
where M is the length of the sequence, are then fed into
the RNN/LSTM backbone. Here the RNN uses a many-to-
one structure and outputs a 1D vector y. The top of Fig-
ure 6 illustrates a two-layer RNN structure. A full-connection
neural network then processes the vector y to get the final
output. The output layer has a softmax function to obtain a
probability distribution among the two labels, i.e. 0 – regular,
1 – abnormal.

In the CNN base model illustrated at the bottom of Fig-
ure 6, the embedding process is the same as the RNN base
model and produces an N ×M matrix. Kernels of the CNN’s
first convolutional layer have a width of N and scan the
input vectors along the timesteps. Multiple convolutions can
be stacked together to increase non-linearity and enable the
detection of more complex feature patterns. The output is
flattened to a 1D vector and passed through a full-connection
network, similar to the one in the RNN model but having
different configurations.

B. TIMESTAMP INTEGRATION
The embedding vectors explained in the previous section
represent sequential orders of log data, but do not include time
information. Since the log data have nonuniform intervals,
ignoring timestamps will likely result in a representation
with altered temporal characteristics. Also, because of the
significance of time duration – as explained in Section III – it
is important to include timestamps into the detection model.
This section proposes the timestamped model (Ts model), a
deep learning structure that integrates timestamps. Ts models
use interpolation to resample the log sequences to create
evenly spaced data points, an insight from digital signal
processing.

It is evident that interpolation methods only apply to
sequences in numerical values. Since the log token sequences
are categorical, the resample cannot directly apply to these
sequences at the model’s input. Fortunately for deep learn-
ing models, the embedding process represents log tokens as
numerical data points in a vector. The embedding sequence

FIGURE 6. The structure of base models (top: the RNN base model,
bottom: the CNN base model).

can be viewed as a special signal consisting of these data
points along the time dimension. Resampling these vector
sequences and creating new datapoints by interpolation is
therefore feasible and reasonable. In other words, resampling
token sequences is irrational, but resampling can be applied to
the embedding sequences that contain meaningful numerical
values.

The new model structure incorporating the resample layer
is shown in Figure 7. The Ts model’s inputs are log token
sequences with length M as well as the timestamps. The
token sequence is first converted into embedding vectors,
the same as the base model. Then, a resample layer applies
interpolation to every row of the embedding matrix, giving
an N × K output, that is the interpolated vectors. The value
of K is determined by the configuration of the resample pro-
cess, such as the sampling resolution and maximum duration.
An RNN or CNN network then processes the interpolated
vectors, similar to the settings in the base models. The output
side of the Ts model has the same fully connected network as
the base models as shown in Figure 6.

C. INTERPOLATION METHODS
This subsection takes one row of the embedding vector as
an example to explain the difference and to choose among
various interpolation methods. Interpolation refers to the
up-sampling process of creating intermediate data points
from a given time signal. For a one-dimensional input time
series (t, x):

t [M ] = [t0, t1, . . . , tM−1]

x [M ] = [x0, x1, . . . , xM−1]

VOLUME 10, 2022 17633



Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

FIGURE 7. The Ts model structure with timestamp integration.

where t is the timestamp sequence, x is the data sequence, and
M is the length of both sequences. An interpolation solves for
a new series (t ′, x ′):

t ′ [K ] =
[
t ′0, t
′

1, . . . , t
′

K−1
]

x ′ [K ] =
[
x ′0, x

′

1, . . . , x
′

K−1
]

where K is the length of the interpolated sequence.
The original sequence tuple (t, x) has nonuniform intervals

in this application. The output tuple
(
t ′, x ′

)
preferably has

equal interval Ts, a.k.a., the sampling rate. The interpolation is
achieved by solving a function P(t) that goes through all input
data points (ti, xi). There are several interpolationmethods for
numeric sequences [45]:

1. Zero-Order Hold (ZOH), or piecewise-constant inter-
polation, is the simplest and fastest way to even out the
timestamps. It takes the closest sequence data point as
the output. The interpolation result is a discrete function
expressed as follows:

P(t) = xi, if ti < t < ti+1 (1)

2. Linear interpolation is a local interpolation method that
calculates new sample points using two adjacent data
points. It produces a continuous function, although its
first-order derivative is still discrete:

P (t) =
xi+1 − xi
ti+1 − ti

t +
xiti+1 − xi+1ti
ti+1 − ti

, if ti< t< ti+1

(2)

3. For improved smoothness, cubic spline interpolation is
another local interpolation option that fits a series of
third-order polynomials (splines) si(t) using adjacent
data points, while ensuring the whole function has con-
tinuous second-order derivatives at all input data points:

P(t) = si(t), if ti < t < ti+1 (3)

where the polynomial si (t) = ai + bit + cit2 + dit3

satisfies:

si (ti−1) = xi−1
si (ti) = xi
s′i (ti) = s′i+1 (ti)

s′′i (ti) = s′′i+1(ti) (4)

4. Lagrange interpolation achieves continuity for all
orders of derivatives by fitting a polynomial function
with an order ofM − 1. One way to obtain the polyno-
mial function is as follows:

P(t) =
∑M−1

i=0
xiLi (t) (5)

where Li(t) are the Lagrange basis polynomials:

Li (t) =
∏M−1

j=0,j6=i

t − ti
ti − tj

(6)

After obtaining the interpolated function P(t), the resam-
pled sequence x ′[K ] is calculated by:

x ′i = P
(
t ′i
)
, i = 0, 1, . . . ,K − 1 (7)

The set of graphs in Figure 8 shows the implementa-
tion of interpolating a short embedding sequence from the
HDFS dataset. Figures 7(a) through (d) correspond to the
results of using ZOH, linear, cubic spline, and Lagrange
methods, respectively. The ZOH interpolation in Figure 8(a)
produces a discrete function that contains mainly stair-
case patterns. Linear interpolation in Figure 8(b) gives a
continuous function, showing improved smoothness over
the ZOH method. Visually this reveals more varied fea-
tures than Figure 8(a). The cubic spline interpolation in
Figure 8(c) appears very smooth, and the values of splines
are within a reasonable range. The Lagrange interpolation
in Figure 8(d) shows similar smoothness as Figure 8(c) but
does not seem to bring more distinct features. The Lagrange
method creates unexpectedly large values (note the range
of y-axis), which is reasonable mathematically but may be
impractical.

Among the three methods, the ZOH and linear interpo-
lation are selected for the resample layer of the Ts models.
The reasons for not choosing the other two methods are as
follows. The Lagrange method’s unexpectedly large values
are unfavorable as they may cause unstable neural network
training. The curves produced by the cubic spline interpola-
tion look promising, but the computation cost is a practical
problem. It requires solving an M × M tridiagonal linear
system, which is significantly more complex than the linear
method, even with efficient algorithms [46]. The computa-
tional requirement could be an issue for the linear method,
as concluded in Section VII, so the cubic spline method is not
chosen.

Last but not least, the resample layer is implemented in
the batch form such that each embedded matrix containing
N sequences can be processed in one go. Coding in matrix
form also enables parallel computation of the deep learning
platform (TensorFlow) and speeds up the model execution.

V. IMPLEMENTATION DETAILS
The failure detection system and all deep learning models
are implemented in Python using TensorFlow packages on
Windows 10. Training the log embeddings is done sepa-
rately using gensim, a languagemodeling package for Python.

17634 VOLUME 10, 2022



Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

FIGURE 8. The comparison of different interpolation methods using the
same data sequence.

The hardware platform includes one Nvidia graphics card and
32GB memory.

A. EXPERIMENT SETUP
The system examined in this study is the HDFS introduced
in Section III. HDFS runs on a central node (a server) that
manages a cluster of data nodes (commodity computers). The
data nodes’ hardware is prone to failure, and detecting them
in a timely manner ensures service availability. System logs
that record the communication between nodes are often the
key to diagnosing a node failure.

The automated failure detection system proposed in this
study aims to provide the basis for an online service that
would be capable of continuously monitoring the system

log data. Failure detection can be achieved by using log
messages generated within a time window, treated as a
sequential sample. The detection system in Figure 1 takes
this sequence sample as input and produces a detection
result. In real-world settings, the proposed detection models
can run within the HDFS server. Alternatively, dedicated
computing hardware can process the data in parallel to the
server.

In this study, the purpose is to evaluate different model
structures and the effectiveness of timestamps. Therefore,
the same pre-recorded log data is used for every test to
ensure a fair comparison. Section III provides an overview
of the dataset and its preprocessing. To simulate the online
approach, a time window of maximum duration Tmax is
used as the input log sequence samples. Since the his-
tograms in Section III reveal that the typical duration of a log
sequence is less than 120 seconds, the default Tmax is set to
this value. Section VI evaluates and discusses the effects of
varying Tmax .

The selected samples are shuffled and divided into training,
validation, and testing sets, with a ratio of 16:4:5. The regular/
abnormal class ratio is the same across the three subsets.
As mentioned in Section III, the HDFS dataset is highly
skewed. If training using the original class ratio where regular
samples are significantlymore than abnormal ones, themodel
will bias towards more regular classification. In order to
achieve optimal results for both classes, the training dataset
needs to be balanced. This study applies the oversampling
technique to abnormal samples to ensure that the model sees
an equal amount of positive and negative samples during
training. The validation and testing sets keep the original class
ratio.

B. MODEL CONFIGURATIONS AND HYPER-PARAMETERS
Six models are configured using the structures presented in
Figures 6 and 7. The following abbreviations refer to these
six models:

1. RNN: The base model using LSTM layers.
2. CNN: The base model using CNN layers.
3. Ts-RNN-ZOH: The timestamp model using ZOH inter-

polation and LSTM layers.
4. Ts-CNN-ZOH: The timestamp model using ZOH inter-

polation and CNN layers.
5. Ts-RNN-Lin: The timestamp model using linear inter-

polation and LSTM layers.
6. Ts-CNN-Lin: The timestamp model using linear inter-

polation and CNN layers.
Table 1 shows the model configurations. Ts models using

different interpolation methods are combined since their
structures are exactly the same at a high level. Each table
from top to bottom lists the layers for a forward pass of the
network. The original RNN and CNN models both have one
input sequence x with a length of 250. The Ts models have
one additional input – timestamp sequence ts – and have
one additional resample layer than their base models. The

VOLUME 10, 2022 17635



Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

output is a value representing the probability of failure. The
total weights at the bottom show the number of trainable/total
parameters in each model. Ts models have the same amount
of weights as the original model since the additional resample
layer does not add new weights.

Each row in the table represents a layer in the net-
work structure, corresponding to a block in Figures 6 and 8.
All models start with an embedding layer that con-
verts the log sequences in token forms into numerical
vectors. The Ts models include an additional resample
layer between the embedding layer and the RNN/CNN
layers.

The RNN models utilize one LSTM layer coupled with
two full-connection layers to perform the classification.
In comparison, the CNN models use one convolutional
layer, a max-pooling layer, and three full-connection lay-
ers. The configurations of these layers are the result of
hyperparameter tuning, an iterative process of finding opti-
mal model settings. The hyperparameter tuning process uses
the validation set to compare the performance of different
configurations.

Note that the network is not particularly ‘‘deep,’’ indicating
that the patterns within this log dataset are relatively simple.
Stacking multiple CNN layers or LSTM layers is feasible;
however, the tuning process found that the models tend to
overfit and produce no significant improvements with more
layers.

VI. EVALUATION
Evaluation tests are designed to address the following ques-
tions: 1) whether the timestamp integration improves over the
base models and how much is the improvement, 2) how the
time duration of log sequences affects the models’ perfor-
mance and, 3) how repeatable the results are in terms ofmodel
training.

This section is structured as follows. Subsection A evalu-
ates all proposed models using log samples with a duration of
120s or less. Then Subsection B includes longer samples. The
tests in Subsection C demonstrate the models’ repeatability
in terms of training. Subsection D discusses the results and
compares them with existing studies.

A. RESULTS WITH DEFAULT SAMPLE DURATION
In this test, all six models are trained and evaluated against the
same test dataset with a duration threshold Tmax = 120. For
each sample, the models produce an output score between 0
and 1, representing the probability of a failure. The default
threshold of 0.5 is used to determine whether the detection is
normal – 0 or abnormal – 1.

Table 2 shows the performance of the six models at the
default threshold in terms of accuracy, precision, recall,
F1 score, and Matthews Correlation Coefficient (MCC).
In particular, MCC is included for a reliable evaluation
due to the data being highly skewed. MCC has a range of
[−1, 1] and all other metrics have [0, 1]. For all metrics,
the higher value indicates better performance. Note that the

TABLE 1. The model configurations.

values in Table 2 are not definitive since the model’s final
weights are subject to variance due to random factors dur-
ing the training process, such as initialization and dropout.
The test results displayed in this table are the ones most
reproducible.

According to the table, all models can achieve high accu-
racy close to 100%. The F1 score shows a slightly better
distinction: the RNN, CNN, and Ts-CNN are the best per-
forming among all models. The timestamps integration did
not show a significant effect in this test. It may be due to
the fact that overall performance is already at a very high
level. The difference among models is insignificant to draw
meaningful conclusions.

B. RESULTS WITH LONGER SEQUENCES
This test chooses a list of Tmax values ranging from
120 seconds to 1920 seconds in order to examine how the

17636 VOLUME 10, 2022



Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

TABLE 2. Model performance evaluated on the test set.

TABLE 3. F1 scores with different Tmax .

duration of sequence samples affects model performance.
Tables 3 and 4 shows the F1 score and MCC, which are
the more balanced metrics. All six models see a decrease
in performance as the sample duration increases, mean-
ing that longer sequences are more difficult to analyze.
In the meantime, two Ts-CNN models – Ts-CNN-ZOH and
Ts-CNN-Lin – have the least decrement, producing the high-
est F1 score and MCC among the six for longer sequence
durations. In each row, the Ts models perform differently
from their base models – increase for most cases – meaning
that the timestamp integration is at work. The contribution is
positive and distinct in the case of CNN and Ts-CNNmodels,
while less clear for the RNN and Ts-RNN models. Both F1
score and MCC reveal the same observation.

Depending on the choice of base models, ZOH and lin-
ear interpolation have different effects on the performance.
Ts-RNN-ZOH gives an overall better performance than the
Ts-RNN-Lin. On the other hand, Ts-CNN with linear inter-
polation is a better choice than the ZOH interpolation, specif-
ically because of the test at 120s. Overall, the Ts-CNN-Lin is
the best performing model across all tests.

C. REPRODUCIBILITY
Three of the best-performingmodel configurations in Table 3,
the CNN, Ts-CNN-ZOH, and Ts-CNN-Lin, are re-trained
and evaluated ten times using the same dataset. The purpose
is to examine the performance variation during the training.
Each time the model is re-initialized with random weights.
Figure 9 shows their F1 scores in box plots. The base CNN
and Ts-CNN-Lin are placed side by side on the top graph; the
Ts-CNN-ZOH and Ts-CNN-Lin are on the bottom. In these
graphs, the boxes represent the interquartile range, including
the data points whose values are between 75th and 25th
percentiles. The whiskers show the upper and lower 25th

TABLE 4. MCC with different Tmax .

FIGURE 9. Model performance of repeated tests (top: CNN vs.
Ts-CNN-Lin, bottom: Ts-CNN-ZOH vs. Ts-CNN-Lin).

percentiles, except for outliers indicated by individual dots.
The median performance is highlighted with a black cross
and connected with dashed lines.

From Figure 9, the top graph clearly demonstrates the
improvement brought by timestamp integration. Ts-CNN-Lin
shows higher median, better best-case and worst-case perfor-
mances than the base CNNmodel under all duration settings.
Note that the variation caused by training initialization is
also suppressed with the Ts models. In the bottom graph, the
linear interpolation has an overall advantage over the ZOH
interpolation, though the difference is marginal other than for
the 120s case. It can be concluded that the timestamps contain
valuable information that contributes to failure detection.
This contribution can be successfully captured by Ts-CNN
models, especially with linear interpolation.

VOLUME 10, 2022 17637



Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

TABLE 5. Several existing models’ performance.

D. COMPARISON WITH SELECT NUMBER
OF PUBLISHED METHODS
There are a few previous publications on system failure
detection using the HDFS dataset [4], [6], [35]. The perfor-
mances of four of the most recent machine learning methods
are compared in Table 5. The numbers are directly refer-
enced from the papers, so they have different decimal points.
The first two methods use feature extraction with machine
learning [4] and a fixed window size of 1 hour. The third
model [35] uses a different CNN strategy with more con-
volutional layers than the CNN introduced in Section IV.A.
The last model, DeepLog [6], is a real-time detector based
on LSTM.

From this table, an F1 score of 0.98 would be a reasonable
baseline to choose with 0.985 being the highest amongst
the four. The Ts-CNN-ZOH and Ts-CNN-Lin models pre-
sented in this paper are able to achieve the highest-level
performance. In particular, the CNN in [35] achieved its high
performance through refining its network architecture, while
Ts-CNN models did so only by including the timestamp
information. Moreover, at a sample duration of 120s, the Ts-
CNN-Lin models can exceed an F1 score of 0.995, whereas
existing studies did not investigate the effect of log durations.
Also note that the Ts-CNN results included repeatability
tests and emphasized the median performance, whereas the
above studies did not report on test settings. In conclusion,
the Ts-CNN models presented in this paper can achieve and
improve upon their performance.

The comparison between the Ts models and the regular
models in this section shows that the inclusion of timestamps
can significantly improve the performance of an existing
model. In particular, Ts-CNN-Lin, the model using linear
interpolation, demonstrates a higher level of F1 scores and
a lower level of variation in repeated tests. None of the
existing studies have systematically investigated the benefits
of timestamp integration. The DeepLog study attempted to
include the timestamps [6]. Their approach was to handle
timestamps in an independent process separated from the
log token model. The paper did not quantify the timestamp
contribution to the failure detection performance.

VII. CONCLUSION
This study investigated the effect of timestamps in log data
and their contribution to the system failure detection task. Log

data generally have nonuniform time intervals, but few exist-
ing studies have included them in automated analysis. For the
first time, statistical observations reveal that the time infor-
mation affects the log sequences’ distribution characteristics.
In particular, regular and abnormal samples demonstrate a
clear distribution difference.

To further investigate the effect of timestamps, the paper
first proposes and implements a deep-learning-based failure
detection framework, including both CNN and LSTM vari-
ations. Then, the novel Ts models consider the nonuniform
time intervals by applying interpolation at the embedding
level. Various interpolation methods are discussed, and two
of them, the ZOH and linear methods, are selected for imple-
mentation and evaluation.

The evaluation results prove that the timestamps pro-
vide several benefits. First, Ts models show a general
improvement over the base models in terms of accuracy
and F1 scores. Second, Ts models demonstrate smaller per-
formance variance in terms of training repeated tests. Last,
deep learning models generally show reduced performance
when processing longer log samples, and such tendencies
can be curbed by integrating timestamps. In particular,
the proposed Ts-CNN-Lin model showed the best perfor-
mance among all models tested for all metrics, achiev-
ing top-level performance among several machine learning
and deep learning studies. These results confirm that the
timestamps contain useful information that helps to improve
failure detection, and the proposed Ts models can suc-
cessfully capture such information. This finding has the
potential to reduce service downtime and improve system
maintainability.

There are limitations to the proposed methods. The first
limitation is the computational requirements. The model has
a fixed input size once it is created, meaning that it may
not process an arbitrarily long log sequence in one pass.
If analysis requires longer log durations, the model needs to
size up and be retrained, and computation time and memory
usage will increase. The hardware is likely to become a
bottleneck. Cubic spline interpolation was not implemented
due to this computational capability concern. Another lim-
itation is that deep learning approaches generally require
dedicated hardware with parallel computing capability, e.g.,
a GPU with parallel computing capability. Otherwise, the
model may not run efficiently and will take more time to
process.

ACKNOWLEDGMENT
Yixin Huangfu would like to thank Michael Kelly for proof-
reading this article.

REFERENCES

[1] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, ‘‘A survey on auto-
mated log analysis for reliability engineering,’’ 2020, arXiv:2009.07237.

[2] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer, ‘‘Failure
diagnosis using decision trees,’’ in Proc. Int. Conf. Autonomic Comput.,
New York, NY, USA, 2004, pp. 36–43.

17638 VOLUME 10, 2022



Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

[3] F. T. Liu, K.M. Ting, and Z.-H. Zhou, ‘‘Isolation forest,’’ in Proc. 8th IEEE
Int. Conf. Data Mining, Dec. 2008, pp. 413–422.

[4] S. He, J. Zhu, P. He, and M. R. Lyu, ‘‘Experience report: System log
analysis for anomaly detection,’’ in Proc. IEEE 27th Int. Symp. Softw. Rel.
Eng. (ISSRE), Oct. 2016, pp. 207–218.

[5] A. Das, F. Mueller, C. Siegel, and A. Vishnu, ‘‘Desh: Deep learning
for system health prediction of lead times to failure in HPC,’’ in Proc.
27th Int. Symp. High-Perform. Parallel Distrib. Comput., Jun. 2018,
pp. 40–51.

[6] M. Du, F. Li, G. Zheng, and V. Srikumar, ‘‘DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., New York, NY, USA, 2017,
pp. 1285–1298.

[7] A. Oliner and J. Stearley, ‘‘What supercomputers say: A study of five
system logs,’’ in Proc. 37th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. (DSN), Jun. 2007, pp. 575–584.

[8] W. Jiang, C. Hu, S. Pasupathy, A. Kanevsky, Z. Li, and Y. Zhou, ‘‘Under-
standing customer problem troubleshooting from storage system logs,’’ in
Proc. 7th Conf. File Storage Technol., New York, NY, USA, Feb. 2009,
pp. 43–56.

[9] J. E. Prewett, ‘‘Analyzing cluster log files using logsurfer,’’ presented at
the 4th Annu. Conf. Linux Clusters, 2003.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, vol. 1.
Cambridge, MA, USA: MIT Press, 2016.

[11] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, ‘‘Log clustering based
problem identification for online service systems,’’ in Proc. 38th Int. Conf.
Softw. Eng. Companion, May 2016, pp. 102–111.

[12] G. Dong and J. Pei, Sequence DataMining. NewYork, NY, USA: Springer,
2007.

[13] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2012.

[14] W. Xu, L. Huang, A. Fox, D. Patterson, andM. I. Jordan, ‘‘Detecting large-
scale system problems by mining console logs,’’ in Proc. ACM SIGOPS
22nd Symp. Operating Syst. Princ. (SOSP), New York, NY, USA, 2009,
pp. 117–132.

[15] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, ‘‘Drain: An online log parsing
approach with fixed depth tree,’’ in Proc. IEEE Int. Conf. Web Services
(ICWS), Jun. 2017, pp. 33–40.

[16] J. Zhu, S. He, J. Liu, P. He, and Q. Xie, ‘‘Tools and benchmarks for
automated log parsing,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng.,
Softw. Eng. Pract. (ICSE-SEIP), May 2019, pp. 121–130.

[17] J.-G. Lou, Q. Fu, S. Yang, Y.Xu, and J. Li, ‘‘Mining invariants from console
logs for system problem detection,’’ in Proc. USENIX Annu. Tech. Conf.,
2010, pp. 1–14.

[18] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
‘‘Fingerprinting the datacenter: Automated classification of performance
crises,’’ in Proc. 5th Eur. Conf. Comput. Syst., 2010, pp. 111–124.

[19] K. S. Jones, ‘‘A statistical interpretation of term specificity and its applica-
tion in retrieval,’’ J. Document., vol. 28, no. 1, pp. 11–21, Jan. 1972, doi:
10.1108/eb026526.

[20] K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis, and H. Zhang,
‘‘Automated IT system failure prediction: A deep learning approach,’’ in
Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2016, pp. 1291–1300.

[21] Y. Zhang and A. Sivasubramaniam, ‘‘Failure prediction in IBM Blue-
Gene/L event logs,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process.,
Omaha, NE, USA, Apr. 2008, pp. 583–588.

[22] I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy, and
T. E. Anderson, ‘‘Mining temporal invariants from partially ordered logs,’’
in Proc. Manag. Large-Scale Syst. Via Anal. Syst. Logs Appl. Mach. Learn.
Techn. (SLAML), New York, NY, USA, 2011.

[23] K. Nagaraj, C. Killian, and J. Neville, ‘‘Structured comparative anal-
ysis of systems logs to diagnose performance problems,’’ presented
as the 9th USENIX Symp. Netw. Syst. Design Implement., 2012,
pp. 353–366.

[24] M. C. Dani, H. Doreau, and S. Alt, ‘‘K-means application for anomaly
detection and log classification in HPC,’’ in Advances in Artificial Intel-
ligence: From Theory to Practice. Cham, Switzerland: Springer, 2017,
pp. 201–210.

[25] Z.M. Jiang, A. E. Hassan, P. Flora, andG.Hamann, ‘‘Abstracting execution
logs to execution events for enterprise applications (Short Paper),’’ in Proc.
8th Int. Conf. Quality Softw., Aug. 2008, pp. 181–186.

[26] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, ‘‘Execution anomaly detection in
distributed systems through unstructured log analysis,’’ in Proc. 9th IEEE
Int. Conf. Data Mining, Dec. 2009, pp. 149–158.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet clas-
sification with deep convolutional neural networks,’’ in Proc. Adv.
Neural Inf. Process. Syst., F. Pereira, C. J. C. Burges, L. Bottou,
K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran Associates, 2012,
pp. 1097–1105.

[28] O. Russakovsky, J. Deng, H. Su, and J. Krause, ‘‘ImageNet large scale
visual recognition challenge,’’ Int. J. Comput. Vis., vol. 115, no. 3,
pp. 211–252, Dec. 2015.

[29] M. Sundermeyer, R. Schlüter, and H. Ney, ‘‘LSTM neural networks for
language modeling,’’ in Proc. 13th Annu. Conf. Int. Speech Commun.
Assoc., 2012, pp. 194–197.

[30] A. Graves, N. Jaitly, and A.-R. Mohamed, ‘‘Hybrid speech recognition
with deep bidirectional LSTM,’’ in Proc. IEEE Workshop Autom. Speech
Recognit. Understand., Dec. 2013, pp. 273–278.

[31] R. Ahmed, M. El Sayed, S. A. Gadsden, J. Tjong, and S. Habibi, ‘‘Auto-
motive internal-combustion-engine fault detection and classification using
artificial neural network techniques,’’ IEEE Trans. Veh. Technol., vol. 64,
no. 1, pp. 21–33, Jan. 2015.

[32] E. Chemali, P. J. Kollmeyer, M. Preindl, R. Ahmed, and
A. Emadi, ‘‘Long short-term memory networks for accurate state-
of-charge estimation of Li-ion batteries,’’ IEEE Trans. Ind. Electron.,
vol. 65, no. 8, pp. 6730–6739, Aug. 2018.

[33] Y. Zuo, Y. Wu, G. Min, C. Huang, and K. Pei, ‘‘An intelligent anomaly
detection scheme for micro-services architectures with temporal and spa-
tial data analysis,’’ IEEE Trans. Cognit. Commun. Netw., vol. 6, no. 2,
pp. 548–561, Jun. 2020.

[34] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,
F. Shen, and D. Zhang, ‘‘Robust log-based anomaly detection on unstable
log data,’’ in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., Aug. 2019, pp. 807–817.

[35] S. Lu, X. Wei, Y. Li, and L. Wang, ‘‘Detecting anomaly in big data
system logs using convolutional neural network,’’ in Proc. IEEE 16th
Int. Conf. Dependable, Autonomic Secure Comput., 16th Int. Conf. Per-
vasive Intell. Comput., 4th Int. Conf. Big Data Intell. Comput. Cyber
Sci. Technol. Congr. (DASC/PiCom/DataCom/CyberSciTech), Aug. 2018,
pp. 151–158.

[36] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
‘‘Anomaly detection using autoencoders in high performance comput-
ing systems,’’ in Proc. AAAI Conf. Artif. Intell., vol. 33, Jul. 2019,
pp. 9428–9433.

[37] L. Tang, T. Li, and C.-S. Perng, ‘‘LogSig: Generating system events from
raw textual logs,’’ in Proc. 20th ACM Int. Conf. Inf. Knowl. Manage.,
New York, NY, USA, 2011, pp. 785–794.

[38] M. Du and F. Li, ‘‘Spell: Streaming parsing of system event logs,’’
in Proc. IEEE 16th Int. Conf. Data Mining (ICDM), Dec. 2016,
pp. 859–864.

[39] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and
A. Mueen, ‘‘LogMine: Fast pattern recognition for log analytics,’’
in Proc. 25th ACM Int. Conf. Inf. Knowl. Manage., 2016,
pp. 1573–1582.

[40] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, ‘‘An evaluation study
on log parsing and its use in log mining,’’ in Proc. 46th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2016,
pp. 654–661.

[41] S. S. Haykin, Neural Networks and Learning Machines, vol. 3.
Upper Saddle River, NJ, USA: Pearson, 2009.

[42] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[43] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[44] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781.

[45] P. Prandoni andM. Vetterli, Signal Processing for Communications, 1st ed.
Lausanne, Switzerland: EPFL Press, 2008.

[46] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, 2nd ed.
Berlin, Germany: Springer-Verlag, 2007.

VOLUME 10, 2022 17639

http://dx.doi.org/10.1108/eb026526


Y. Huangfu et al.: System Failure Detection Using Deep Learning Models Integrating Timestamps With Nonuniform Intervals

YIXIN HUANGFU (Member, IEEE) received
the B.Sc. degree in automotive service engineer-
ing from the Wuhan University of Technology,
Wuhan, China, in 2011, and the M.Sc. degree in
mechanical engineering from the Beijing Insti-
tute of Technology, Beijing, China, in 2014.
He is currently pursuing the Ph.D. degree in
mechanical engineering with McMaster Univer-
sity, Hamilton, ON, Canada, under the supervision
of Dr. Saeid Habibi.

From 2014 to 2017, he was a Vehicle Control Engineer with Ford Motor
Research and Engineering Company Ltd., Nanjing, China. One of his papers,
‘‘A Novel Method for Approximating Object Location Error in Bounding
Box Detection Algorithms Using a Monocular Camera,’’ is published on
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, in 2021. His research inter-
ests include environment perception systems on autonomous vehicles, image
recognition and classification with neural networks, sequential data analysis,
and data-driven fault diagnosis systems.

SAEID HABIBI (Member, IEEE) is a Profes-
sor and the former Chair of the Department of
Mechanical Engineering, McMaster University,
and holds the Senior Industrial Research Chair
position at Hybrid Technologies sponsored by
NSERC and Ford, Canada. His research interests
include intelligent control, state and parameter
estimation, fault diagnosis and prediction, vari-
able structure systems (VSS), actuation systems,
mechatronics, and fluid power. Application areas

include automotive, aerospace, water distribution, and robotics. He devel-
oped the smooth variable structure filter (SVSF) theory, which is a predictor-
corrector model-based state estimation strategy that guarantees stability and
allows extraction of a higher degree of information from measured signals
through secondary indicators of performance. These characteristics make
SVSF exceptionally suitable for advanced control as well as vehicle tracking,
prognostics, and health monitoring in automotive systems.

ALAN WASSYNG (Member, IEEE) is a Professor
with the Department of Computing and Software,
McMaster University, Canada. He is the former
Director of the McMaster Centre for Software
Certification and one of its founders. He has
been involved in development and certification of
safety-critical software intensive systems for the
past 30 years.

17640 VOLUME 10, 2022


