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ABSTRACT In this work, an evolving definition of the fractal-fractional operator with exponential kernel
was employed to examine Casson fluid flow with the electro-osmotic phenomenon. Electrically conducted
Casson fluid flow with the effect of the electro-osmotic phenomenon has been assumed in a vertical
microchannel. With the help of relative constitutive equations, the local mathematical model is formulated in
terms of partially coupled partial differential equations along with appropriate physical initial and boundary
conditions. The dimensional governing equations have been non-dimensional by using relative similarity
variables to encounter the units and reduce the variables. The local mathematical model has been transformed
to a fractal-fractional model by using a fractal-fractional derivative operator with exponential kernel and then
analyze numerically with the discretization of finite difference (Crank-Nicolson) scheme. For an insight view
of the proposed phenomena, various plots are drawn in respect of inserted parameter. From the graphical
analysis, it has been observed that the electro-kinetic k parameter retards the fluid’s motion. It is also worth
noting that graphs for the fractal-fractional, fractional, and classical order parameters have been drawn. Due
to the fractal order parameter, it was revealed that the fractal-fractional order model has a larger memory
effect than the fractional-order and classical models.

INDEX TERMS Fractal-fractional model, finite difference scheme, electro-osmotic phenomenon, exponen-
tial memory kernel, zeta potential.

I. INTRODUCTION

Many real-world challenges are explained using fractional
calculus (FC), which has a greater memory effect. FC is
an extension of integer order calculus, which proved insuf-
ficient to explain some memory effects in some engineer-
ing and real-world issues. Because of its numerous uses in
many disciplines of science, the FC is exhibiting a variety
of phenomena that we refer to as memory. For various phys-
ical problems, many researchers established distinct defini-
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tions of fractional derivatives. In recent years, great progress
has been made by employing fractional calculus [1]-[3],
such as wave propagation [4], image processing [5], mod-
eling of heart tissue [6], infectious disease [7]-[9], nanoflu-
ids [10]-[12], chemical kinetics [13] and electrical circuit
analysis [14]. Researchers provided several fractional deriva-
tive operators over time, such as Riemann-Liouville [15],
Caputo [16], and Caputo and Fabrizio [17], however many
of these models were not applicable globally due to their
local kernel. To address the difficulty raised in the pre-
vious models, Atangana and Baleanu [18] presented the
Mittag-Leffler function in 2016 to make the kernel of the
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fractional derivative operator non-local. Murtaza et al. [19]
examined the fractional electro-osmotic flow of Maxwell
fluid together with upshots of joule heating. The authors
analyzed the flow in a microchannel with the Mittage-Leffler
kernel of the Atangana-Baleanu derivative. In another study,
Murtaza et al. [20] found the exact solution of the non-linear
mathematical model of Jeffery fluid. For the exact solution of
the non-linear problem, the authors employed the fractional
model of the Atangan-Baleanu derivative operator. Atan-
gana [21] recently developed fractal-fractional derivatives in
FC. This novel concept is well suited to a variety of com-
plex physical phenomena. Fractal-fractional order derivative
contains two orders in their operator: the first is known as
the fractional-order, and the second is known as the fractal
dimension. This new fractal fractional derivative idea out-
performs both the classical and fractional derivatives. It is
because working with fractal-fractional derivatives allows us
to analyze both the fractional operator and the fractal dimen-
sion at the same time. Many scholars show their devotion and
their interest in the fractal fractional operator because of its
advanced and unique properties. Bearing in view the char-
acteristics of the fractal-fractional operator, Arfan et al. [22]
investigated the Covid-19 effects in Pakistan. Ali et al. [23]
discussed the qualitative examinations of the Covid-19 math-
ematical model with the case study of Wuhan. Many other
relative research works on the uses of the fractal-fractional
operator can be found in [24]-[27].

Because of the broad spectrum of possible applica-
tions in pharmacological, biological, and biochemical fields,
microscale transport dynamics is garnering significant inter-
est [28]-[31]. Because of their capacity to construct mil-
lions of microchannels, cheap operating cost, ease of sample
handling, and compactness, lab-on-chip (LOC) devices are
widely used in the biomedical industry [32]-[34]. Electro-
osmotic actuated flow is gaining popularity in the field of
microfluidics due to its inherent advantages such as minimal
moving components, low-pressure dips, and so on [34], [35].
The transport of electrolyte solutions with the formation of an
electric double layer (EDL) consisting of the Stern layer and
the diffuse or Guoy-Chapman layer next to charge substrates
under the influence of an externally applied electric field is
referred to as electro-osmotic flow [36], [37]. Over the years,
researchers have been interested in the transport dynamics
of electroosmotic flows with larger zeta potentials, i.e. (25—
100 mV). The viscoelastic effect is considerable at higher
zeta potentials and plays an important role in describing flow
fields [38], [39]. In the light of the above-stated significances,
Cao et al. [40] examined numerically the electro-osmotic
flow of second grade fluid via the fractional operator in a
rotating frame. Bafos et al. [41] did mass transport analysis
of concentration species via electro-osmotic phenomena in
a slit microchannel. Some other interesting and note-worthy
research work related to the electro-osmotic phenomena can
be seen in [42]-[44].

The Casson fluid model is a shear-thinning non-Newtonian
fluid model with yield stress. NonNewtonian fluids are
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commonly found in technical applications such as crude
oil extraction, paint manufacture, and the food sector.
Atlas et al. [45] recently studied the unsteady heat and mass
transport of a Casson fluid with heat and mass flux boundary
conditions. Shehzad et al. [46] investigated the influence of
internal heat production and radiation on the flow of a Casson
fluid in the presence of a magnetic field. Other recent studies
on Casson fluids may be found in [47]-[52].

From a comprehensive analysis of the literature,
no study has been reported related to the analysis of the
electro-osmotic flow of Casson fluid via a fractal-fractional
operator. Therefore, to fill this gap, an unsteady free con-
vection flow of Casson fluid in a vertical micro channel
together with the effect of the electroosmotic phenomenon
has been assumed. In the present study, the authors gener-
alized the classical model with the help of fractal-fractional
operator of Caputo-Fabrizio with exponential kernel for anal-
ysis of the fluid’s rheology. The numerical solution of the
proposed problem has been found via the finite difference
(Crank-Nicolson) approach. Graphical results are sketched
for inserted non-dimensional parameters and illustrated logi-
cally.

Il. FORMULATION OF THE PROBLEM
In the presence of electro-osmosis, an unsteady flow of Cas-
son fluid in a vertical microchannel of length / has been
assumed. The motion of the Casson fluid has been considered
along the x-axis. The asymmetric zeta potential & and &,
is preserved by the channel plates and the fluid motion is
exposed to the transverse magnetic field of magnitude By.
Initially, both the plates of the microchannel and fluid have
been considered stationary with surrounding temperature 7
and concentration Cs. For time (r > 0), the right plate
(y = 1) begins to move along its axis at a constant velocity
UpH (7), and its temperature and concentration are raised to
Ty + (T, — Ty) At and C; + (C, — C;) At respectively. The
geometrical illustration of the problem is shown in Fig.1.

In the light of the following assumptions:
Unsteady Flow
Laminar Flow
Incompressible Flow
Electro-osmotic Effect
Natural Convection
Magnetic Field Effect
Time Dependent Temperature
Time Dependent Concentration
Vertical Channel
Ignoring Pressure Gradient

YYYYVYVYVVYVYY

the velocity, thermal, concentration, electric and magnetic
fields are given as:

—

V ={u,),0,0}

T ={T(,7),0,0)

€ =(C@&1),0,0) |, (1)
—

E ={E,.0,0}

B = {0, By, 0}

VOLUME 10, 2022



S. Murtaza et al.: Finite Difference Simulation of Fractal-Fractional Model of Electro-Osmotic Flow of Casson Fluid

IEEE Access

The governing equations for the velocity field in the presence
of electro-osmotic phenomena is stated as:

—

p‘;—‘; = div(ty) + pF , 2)
In Eq. (2), T/) and 7;; indicates the velocity and Cauchy
stress tensor respectively, while ,077) showing body forces and
addressed as:

— —
pF =JxB+pg + E pe. A3)

In Eq.(3) J x B represents the drag (Lorentz) forces, p
represent the effective density of the fluid, K represent grav-
itational acceleration, E represent the electric field and p,
represent the net charge density which governs by Poisson
equation”

Vi =2 @
&

where the net charge density for an electrolyte solution is
given by Boltzmann distribution as:

0o = 2ngez, sinh (ﬂ> , (5)
BTay
where z, shows the valence, ng gives the ion density, e is the
fundamental charge, kp represents the Boltzmann constant
and Ty, is the absolute temperature.
From Debye-Huckel linearization approximation, we have:

sinh ( ewy ) ~ Y 6)
kBTav kBTuv

using equation (6) in (4), we get:

>y 2n0ey

= . 7
ds-Z EkBTav ( )
The above equation can be written as:

d*y
—— =k, ®)

dg¢?

5 1
where k = ( eanTOav> ezy.

The solution of equation (8) subjected to boundary condi-
tions presented in Fig.1. is given as;

g_z _ €_kd % _ e—kd
_ 1 ky S R P
v==a [(2 sinh(kd)) et (1 2sinh(kd)> ¢ } - O

Now using eq (4), (8) and (9), the mathematical expression
for net charge density become [53]:

pe = — € k&
& —kl & —kl
T k¢ g ¢ —k¢
S 4 .
x |:(2sinh(kl))e +( t s )
(10)
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For considered Casson fluid model, the constitutive equations
are given as [54]:

<Me + p—{> 2eij, g > Tp

V2T,

T =
<Me + p—{> 2eij, g < Tp

«/271'}9

; (1)

Here

T = ejj, ¢ : (i, j) — Deformation rate components,

7 : Product based on the non-Newtonian fluid,

7t critical value for the product,

Itg: Plastic dynamic viscosity,

pe: Yield stress of the fluid.

Now the constitutive equations for thermal and concentra-
tion fields are:

aT N

C,— =-V-94, 12
Per o q (12)
G = —kVT, (13)

aC
& V.7, (14)

0T

—_
h = —DVC, (15)

In Egs. (12)-(15), the terms p, T, Cp, K, q, C, £, and D indi-
cate fluid’s density, fluid’s temperature, specific heat capac-
itance, thermal conductivity, heat flux, concentration, diffu-
sion flux, and mass diffusion coefficient respectively.

In view of Eq. (1) and incorporating Eq. (3), (10) and (11)
in Eq. (2), we arrived at the mathematical governing form of
momentum equation [54]:

du(,t) 1\ Pu@ o o
pT —/L<1+ )()—3;'2 oByu (¢, 1)

+0p8Br (T —Ts) + pghc (C — Cs) + Expe.
(16)

and thermal and concentration field in compact form is given
as under [10], [55]:

aT (¢, 92T (¢,
pCye ) = a?; 2 (17)
2
aC (¢, 1) =Da C({',‘L’). (18)
ot ac2

Subjected to the physical initial and boundary conditions:

u(,00=0, T, 0 =T,

u@©,7)y =0, T(@O,1)=Ts,

u(l,7y =UpH (r), T(,tv)=Ts+ (T, —Ty)Ar,
C (.0 =,

C(0,7) = Cs,

Cl,v) =G+ (Cy = CyAr, 19)

In the governing equations the terms u, By, Br, Bc and x
indicates dynamic viscosity, the magnitude of the magnetic
field, thermal expansion coefficient, concentration coeffi-
cient, and Casson fluid parameter respectively. In Eq.19

26683



IEEE Access

S. Murtaza et al.: Finite Difference Simulation of Fractal-Fractional Model of Electro-Osmotic Flow of Casson Fluid

7,¢,Ts, Ty, Cs, C,, and H (1) shows time, y-axis, surround-
ing temperature, plate’s temperature, constant concentra-
tion, concentration on the plate and Heaviside step function
respectively.

IIl. NON-DIMENSIONALIZATION OF THE
MATHEMATICAL MODEL

This section of the article shows how to convert a dimensional
model into a non-dimensional model. Primarily, the dimen-
sional governing equations have been non-dimensionalized
by removing units and reducing variables using relative non-
similarity variables. For this purpose, the following similarity
variables have been introduced.

. u . v . ¢ T T,
u = —, T = 5T, C = -, @ = >
Ug 2 l T, — T
Cc-C
d=—"", k =K, sng:é—z,
C, — Cy &1
l il
r=— 2 =L A=Y (0
k(Tw - Ts) D(Cw - Cs) l2

Incorporating these similarity variables into the Egs. (16)-
(18), and ignoring the notion () the governing equations will
take the form:

@) _ <1+1>M—M“@ g

at X ac2
+GrO (&, 1)+ Gmd (¢, 1)
2 (4165 4 Aze7) @1
90 (¢, 1 9%0 (¢,
¢o _196¢ t)7 22)
ot Pr 92
b (¢, 1 9%® (¢,
¢ _ 19060 03
ot Sc  9z?
And the associated dimensionless conditions are:
u(,0=0, T 0=0 C(¢,0=0,
u©,7)=0, T(@©,7)=0, C(0,7)=0, . (24
u(l,ry=H((), T( )=, Cdl1)=r,
In the dimensionless variables u;, = %, k,k and 3¢

represent Helmholtz-Smoluchowski velocity, Debye-Huckel
parameter, relative micro-channel ratio and the ratio of the
zeta potential of the walls while in the governing equa-

. B2I? _T,
tions, the term M = a: ,Gr W, Gm
s

glﬂC(UC—uW_CS), Sc = FandPr = “TC” shows the magnetic num-
ber, thermal Grashof number, mass Grashof number, Schmidt
number, and Prandtl number respectively. A| = % and
Ar = 1 — Ay are constant.

IV. DISCRETIZATION OF THE MATHEMATICAL MODEL

This section of the manuscript is focused on the discretization
of the proposed mathematical model. Before going to dis-
cretize the model, first, we will transform the local model to a
fractal-fractional model with an exponential kernel. Employ-
ing the fractal-fractional operator of Caputo-Fabrizio, Eqgs.
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x
* = +
+ +
End B 4
S—
|+ +
B + ull.r)=UH|T1)
—_—
u(0,r)=0 & - Flow Ditection * T(Lt)=T,+(1,-T,)Ar
o+ + J
TO,7r)=T. _, N l . C(L.1)=C,+(C,—C,)4r
clor)=c, —*
(0.r)=C, N +
R +
E,
—_— v 4
+ +
ST+ & &

FIGURE 1. Physical view of casson fluid flow with electro-osmotic
phenomena.
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FIGURE 2. Velocity comparison of fractal-fractional, fractional, fractal and
classical order.
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Gr=10
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0.5
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FIGURE 3. Influence of Gr on velocity profile while other parameters are
Gm=15,x =2,Pr=15,k =1.5,S5c = '|5,R§ =15andt=a=8=0.5.

(21)-(23) will take the shape:

1\ 0%u (g, 1)
<1+§> a2
—Mu(,7)+GrO (¢, 1)
4+ Gm® (¢, 7)

+ k2 (A]ékg + Aze_k{)

oy (¢, v) = prP!
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FIGURE 4. Influence of Gm on velocity profile while other parameters are
Gr=15,x=2,Pr=15,k=1.5,5 = 15,R; = 1.5andt =a = =0.5.
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FIGURE 5. Influence of Pr on velocity profile while other parameters are
Gr=15,G6r=15,x =2,k =1.5,S¢ =15,R; =1.5andt =a = = 0.5.

¢

FIGURE 6. Influence of Sc on velocity profile while other parameters are
Gr=15,Gm=15,x =2,k =1.5,Pr= 15, ,R; = 1.5andt =« = =0.5.

LIGLRY (25)
'ial—ow
1%, 1)
FF_a — BBy T
O&Ot®(§7 T) - :31’ Pr 3§_2
_ ®(§70) T—Ol’ (26)
'ial—ow
S 10%0@. D)
FF,_a — BB T 0
OK')‘[CD(gv T) - ﬂf Sc a§2
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FIGURE 7. Influence of x on velocity profile while other parameters are
Gr =15,Gm =15,Pr=15,k = 1.5,5c = 15, R; = 1.5 and
t=a=p4=0.5.
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FIGURE 8. Influence of x on fractal-fractional, fractional, fractal and
classical order velocity when Gr = 15, Gm = 15, Pr = 15,
k=1.5,5 = '|5,R§ =15andt=1.

1.5

u(¢é.1)
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0.0 0.2 0.4 06 0.8 1.0
4

FIGURE 9. Influence of k on velocity profile while other parameters are
Gr=15,Gm=15,x =2,Pr=15,5c=15,R; =1.5andt =a = § = 0.5.

9.0 i
rf—a

In the light of the aforementioned initial conditions, Egs.
(25)-(27) will take the form;

1\ 3%u(g, 1)
(H}) 32
—Mu(, ) s
+GrO (¢, 1) + Gmd (¢, T)

+k2 (Alekf + Aze’kg)

27)

oy, 1) = prP!

(28)
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FIGURE 10. Influence of Rf on velocity profile while other parameters are

Gr=15,Gm=15,x =2,k=15,Pr=15,,Sc=15andt =a = 8 = 0.5.
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Fractional (@=0.5, 5=1) ,;/’3?
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1.0
¢

FIGURE 11. Temperature comparison of fractal-fractional, fractional,
fractal and classical order.

I

FIGURE 12. Influence of Pr on temperature profile while other
parameters arec = =0.5and 7 = 1.

1 820 (¢,

o0 (¢, 1) = prP! {ﬁ%} : (29)
1 92 (¢,

fro2® (¢, 1) = P! {5%} . (30)
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1.0-Red:  Fractal-Fractional (a=£=0.5)
Pink: Fractional (a=0.5, g=1)
'Blue: Fractal (a=1, p=0.5)
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FIGURE 13. Influence of Pr on fractal-fractional, fractional, fractal and
classical order temperature distribution.
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FIGURE 14. Concentration comparison of fractal-fractional, fractional,
fractal and classical order.
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FIGURE 15. Influence of Sc on concentration profile while other
parametersanda = =0.5and t = 1.

Here “Fo2 P is the fractal-fractional operator of the exponen-
tial kernel [21], [24] is given as;

N d F
FF _a,B _
a T w(r)_r(l—a)d'[ﬂ\/w-(;)

a
o

—

><exp{—1 (r—:)}dc, 31)
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FIGURE 16. Influence of Sc on fractal-fractional, fractional, fractal and
classical order concentration distribution.

Eq. (31) follows the following property;
NO)=N1) =1

where @ (7) be differentiable in the open interval (a, b), @
is fractally differentiable on (a, b) with the order S.

Determine the exact solution to the fractal-fractional model
is extremely difficult for researchers. As a result, the solution
of the fractal-fractional model will be handled using the finite
difference (Crank-Nicolson) scheme in the current work.
The Crank-Nicolson scheme is used to discretize the fractal-
fractional order model.

The first order fractal-fractional order derivative can be
discretized using the Crank-Nicolson approach as;

Hotw (¢, 1)

ol o)
= ﬂfﬂ_l@ m)\ ]+] m ZD__]'fm
o Z (— +0 (r))
X 8 m, (32)
whereéjm_erf[ 5 (m— ])}—erfl g m—j+1)

The function’s second order derivative can be discretized
using the Crank-Nicolson approach, as shown below;

2w (¢, 1)

a2
_ (w{ill a’JH + wl+l)+(wlj+l sz + wJ )
- 2h2

+0 1), (33)

Keeping in view the above discretization defined in Eq. (32)-
(33), the fractal-fractional Caputo-Fabrizio governing equa-
tions will take the form:

- ‘
A
N (@) A ,
20 | 4 Xm: (wzﬁlm — w{m> Bim
A
Jj=1
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(2t = 2af* )

U 3

h2

= prP~! M(ué“ +u€) . (34
- % +Gr (@fﬁ“ + @ﬁ)
+Gm (@] + +))
1 (A1 +49 (9 (1= )
o' — el
N (@) A )
m ®]+l—m _ @—m 5] m
20 i i
)
j=1
j+1 +1 +1
s [ L) (o —20"" + 01
2 \PrJ | + (®§+1 - 20+ 9471)
(35)
o
N (@) A
m .+1—m _ q)]—m 8] m
20 i i
)
j=1
et L ( ) (@) —20" + o))
2 \5e) \ + (ol ~200+ 0 )
(36)

along with the boundary conditions given in Eq. (13). Assume
thaty; =ih,0 <i <M withMh=1landt =jr,0<j<Q.
here 4 and A indicates the space and time step length while M
and Q represents the number of grids points.

A. SKIN FRICTION
In dimensionless form the skin friction is given as:

1Y\ ou
(oD,
B. NUSSELT NUMBER
In dimensionless form the Nusselt Number is given as:
= 90 (38)
IS |4

C. SHERWOOD NUMBER
In dimensionless form the Sherwood Number is given as:

(%)
Sy =—D (39)
dg

V. GRAPHICAL ANALYSIS

This section of the article focused on the physical aspect
of the proposed fractal-fractional Caputo-Fabrizio model.
Fractal-fractional Casson fluid flow has been examined in
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TABLE 1. Variation in skin friction against different embedded
parameters.

Gr Gm Pr Sc ¥ k M « p S,

5 5 10 10 2 2 05 05 05 2.638
10 5 10 10 2 2 05 05 05 2562
5 10 10 10 2 2 05 05 05 2598
5 5 12 10 2 2 05 05 05 2.641
5 5 10 12 2 2 05 05 05 2.646
5 5 10 10 3 2 05 05 05 2642
5 5 10 10 2 3 05 05 05 2.637
5 5 10 10 2 2 08 05 05 2.681
5 5 10 10 2 2 05 08 05 2.673
5 5 10 10 2 2 05 05 08 2.679

TABLE 2. Variation in Nusselt number against different embedded
parameters.

Pr T o B Nu

10 1 0.5 0.5 1.537
12 1 0.5 0.5 1.533
10 2 0.5 0.5 1.599
10 1 0.8 0.5 1.532
10 1 0.5 0.8 1.535

TABLE 3. Variation in Sherwood number against different embedded
parameters.

Sc T o B S

10 1 0.5 0.5 3.293
12 1 0.5 0.5 3.291
10 2 0.5 0.5 3.312
10 1 0.8 0.5 3.282
10 1 0.5 0.8 2.289

the vertical microchannel of the length /. The phenomenon of
electro-osmotic and the effect of the magnetic field also has
been taken into the account. A numerical solution has been
obtained for the fractal-fractional governing equations via
discretization of the Crank-Nicolson scheme. For the insight
view of the phenomenon, graphs for the rooted parameters
have been drawn.

The comparison of the fractal-fractional, fractional, and
classical order models for velocity distribution is shown in
Fig.2. The graphic clearly shows that the fractal-fractional
model has a greater memory impact than the fractional-order
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and classical models. This property of the fractal-fractional
model is due to the fractal parameter, which is not present
in the fractional and classical models. The fractal-fractional
model is more convenient and realistic to real-world phe-
nomena because of the larger memory effect. It also gives
more than one fluid layer allowing experimentalists to com-
pare their work in one of the layers that are best adapted to
their work by modifying the fractal-fractional parameter. Fig-
ure 3 depicts the flow behavior against the thermal Grashof
number Gr. The velocity profile demonstrates an increase in
response to increasing Gr values. The fluid near the plate
warms up as the magnitude of Gr increases, causing bouncy
forces to arise in the fluid, making the fluid less dense and
decreasing the viscous forces, resulting in an accelerated fluid
motion. Figure 4 depicts the effects of mass Grashof number
Gm on fluid motion. The graphic clearly shows that raising
the magnitude of Gm causes the velocity field to increase.
The reasoning behind this increase is that when the value of
Gm rises, the concentration of particles in the fluid increases,
allowing the fluid motion to accelerate. Figure 5 depicts the
effect of the Prandtl. number Pr. It can be shown that when the
Prandtl number increases, fluid velocity falls. Because it is a
ratio of viscous forces to thermal forces. While raising the Pr
value, the viscous forces appear to be dominant over the ther-
mal forces, resulting in a drop in fluid velocity. While Fig.6
shows variation in velocity field in response to Schmidt num-
ber Sc. the Velocity profile shows retardation in its behavior
as the value of Sc increase. This is due to the diffusion rate
which decreases by increasing the value of Sc and as a result
fluid motion slows down. Figure 7 depicts the behavior of
the velocity field in the reaction of the material parameter
x. Figure 7 depicts a fall in fluid velocity as the value
x increases. This fluid behavior is physically correct since
increasing the magnitude of the material parameter increases
the viscous forces in the fluid, causing the fluid to slow down.
The same behavior of x can be seen for fractional-fractal,
fractional, fractal and classical order velocity distribution in
figure 8. The upshots of the electro-kinetic parameter k on
velocity variation are drawn in Fig.9. Fig. 9 shows an increase
in the velocity field of the fluid in response to greater values
k. the logic behind this variation is quite clear because the
greater magnitude of k makes thinner the electric double
layer (EDL) and as a result, electro osmotic flow of the fluid
accelerates. Fig.10 has been drawn to check variation in the
velocity field of electro-osmotic flow against asymmetric zeta
potential Rg. Zeta potential Rg is also related to the EDL of
the electro-osmotic flow of the Casson fluid. as the magnitude
of Rg increases, the EDL becomes thinner as a result the
drag forces in the fluid decrease which accelerates the fluid
motion.

Fig.11. reveals a comparative analysis of fractal, fractal-
fractional, fractional and classical order on the variation
of the thermal field. It is quite clear from the figure that
fractal-fractal has a greater memory effect as compared to the
fractal, fractional, and classical order. This greater memory
effect is due to the extra fractal dimension included in the
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TABLE 4. Variation in velocity profile against ¢ for different values of Casson parameter x when Gr = Gm =k = 0.

Results of Sheikh et al. [54]

Present Results

¢ u({,7) u({,7) u({,7) u({,7) u({,7) u({,7) u({,7) u({,7)
at at at =3 at =9 at at at ¥y =3 at =9
¥ =0.1 =09 7 =0.1 ¥=09

0 0 0 0 0 0 0 0 0
0.04 0.04 0.042 0.045 0.048 0.04 0.042 0.044 0.046
0.08 0.08 0.084 0.09 0.095 0.08 0.083 0.089 0.092
0.12 0.12 0.126 0.135 0.142 0.12 0.125 0.133 0.140
0.16 0.16 0.168 0.18 0.19 0.16 0.166 0.179 0.188
0.2 0.2 0.21 0.225 0.236 0.2 0.209 0.223 0.235
0.24 0.24 0.251 0.269 0.283 0.24 0.249 0.265 0.280
0.28 0.28 0.293 0.313 0.329 0.28 0.90 0.31 0.325
0.32 0.321 0.334 0.357 0.374 0.32 0.331 0.354 0.371
0.36 0.361 0.376 0.4 0.419 0.36 0.372 0.397 0.414
0.4 0.401 0.417 0.443 0.463 0.40 0.414 0.441 0.46
0.44 0.441 0.458 0.486 0.507 0.44 0.454 0.484 0.503
0.48 0.481 0.498 0.528 0.55 0.481 0.494 0.525 0.547
0.52 0.521 0.539 0.569 0.591 0.521 0.534 0.565 0.588
0.56 0.561 0.579 0.609 0.632 0.561 0.575 0.604 0.629
0.6 0.601 0.619 0.649 0.672 0.60 0.613 0.645 0.667
0.64 0.641 0.659 0.688 0.711 0.64 0.656 0.684 0.708
0.68 0.681 0.698 0.727 0.748 0.68 0.696 0.724 0.744
0.72 0.721 0.737 0.764 0.785 0.72 0.734 0.762 0.782
0.76 0.761 0.776 0.801 0.82 0.76 0.773 0.799 0.817
0.8 0.801 0.814 0.837 0.854 0.80 0.812 0.834 0.851
0.84 0.84 0.852 0.872 0.886 0.84 0.85 0.869 0.882
0.88 0.88 0.89 0.905 0.917 0.88 0.888 0.903 0.912
0.92 0.92 0.927 0.938 0.946 0.92 0.924 0.935 0.943
0.96 0.96 0.964 0.97 0.974 0.96 0.963 0.968 0.972

1 1 1 1 1 1 1 1

fractional derivative definition. The behavior is the same
as observed in Fig.2. The behavior of the thermal field in
response to the Prandtl number Pr is plotted in Fig.12. Decay
in the thermal field can be noticed from the figure for the
greater value of Pr. Prandtl number is inversely related to
the thermal forces of the fluid so as the Pr increase the ther-
mal forces decrease and consequently thermal field declines.
In addition to that, the influence of Pr for the fractional-
fractal, fractal, fractional and classical order temperature field
is also displayed in Fig.13. The same behavior as Fig.12
can be seen in Fig.13 for different fractal and fractional
orders.

Fig.14. displays a comparison of fractal, fractal-fractional,
fractional, and classical order on the variations of the con-
centration field. The same behavior for the memory effect is
observed as noticed in Fig.2 and Fig.11. Fig.15. illustrates
the impact of Schmidt number Sc on the concentration field.
From the graph, a decline in the concentration field can be
seen for larger values of Sc. It is quite obvious because the Sc
has inversely related to the mass diffusion rate. As the magni-
tude of Sc increases, the concentration field shows the decay
in its behavior. Additionally, the behavior of concentration
profile for different values of Sc indifferent cases i.e., fractal-
fractional, fractional, fractal and classical order can be seen

VOLUME 10, 2022

in Fig. 16 which shows the identical behavior as Fig.15 for
different fractional and fractal orders.

In order to validate the present study, the present anal-
ysis is compared with the exact solutions of Casson fluid
model published by Sheikh et al. [54] which can be seen
in Fig.17. Our model is the general case of the pub-
lished work of Sheikh ef al. [54] and the model presented
by Sheikh et al. [54]. can be recovered from the present
problem by considering Gr — 0, Gm — 0 and k —
0. It can be seen from the comparative figure that our
results are in excellent agreement with the exact solutions
of Sheikh et al. [54] which validates our results achieved via
numerical method. The comparison of present results and
results of Sheikh et al. [54] is also given in tabular form in
table 4. From the table values, it can be observed that the
present analysis is in good agreement with the published work
and the numerical results of the current study matches with
the published results which validates the correctness of the
present work.

In order to validate the present results and the implemented
numerical technique, the grid sensitivity analysis is also per-
formed which can be seen in Figs. 18-20. From these figures,
it can be noticed that the present numerical algorithm gives us
the correct results for any step-size h. As, the used numerical
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Present Results

0.8 Results obtained by Sheikh et al.

u(d.)

1.0
4
FIGURE 17. Comparison of the present results with the published results

of Sheikh ef al. [54] when Pr=15,Sc = 15,R; =1.5,t =« = = 0.5 and
Gr=Gm=k=0.

* h=0.2, $Grid Points

& h=04, 10 Grid Points.
1.0 h= 0.05, 20Grid Points

® h=0.02 50GridPoints

=== h=0.005, Dur Main Salutions

0.0
0.0 0.2 0.4 0.6 0.8 1.0

¢

FIGURE 18. Grid sensitivity analysis of velocity profile for different values
of step-size h.

algorithm i.e., Crank-Nicolson finite difference scheme is
unconditionally stable and it gives correct and true results for
any value of & which means that if we increase or decrease
the grid points, it doesn’t affect the results which can also be
seen from the figures. By varying the value of step-size h,
it doesn’t affect the behavior of the flow or thermal boundary
layer which validates the correctness of the present numer-
ical method which is sufficient for the authentication of the
present numerical algorithm.

In the present analysis, the variation in Skin friction, Nus-
selt number and Sherwood number is also calculated from the
solutions by using the expressions given in Eq. (31)-(33). The
variation in Skin friction in response to different embedded
parameters is given in numerical form in Table 1 while the
variation in Nusselt and Sherwood numbers are tabulated in
Tables 2 and 3 respectively.

VI. CONCLUDING REMARKS

Fractal-Fractional model of Casson fluid with the impact
of electro-osmotic phenomena has been analyzed numer-
ically with the approach of Crank-Nicolson scheme. The
analysis of the flow has been done in the microchannel of
length [. Primally, the local mathematical model has been
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FIGURE 19. Grid sensitivity analysis of temperature profile for different
values of step-size h.
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FIGURE 20. Grid sensitivity analysis of concentration profile for different
values of step-size h.

non-dimensional with the help of non-dimensional quanti-
ties and then transformed into a fractal-fractional model via
the operator of Caputo-Fabrizio derivative. The numerical
solution of the proposed fractal-fractional model has been
obtained via the finite difference approach (Crank-Nicolson).
Graphs have been plotted via computational software and
illustrated physically. The key observations from the analysis
are listed below:

« When compared to the fractional-order and the classical
model, the fractal-fractional order model has a signifi-
cant memory effect. This feature in the fractal-fractional
derivative is because of the fractal dimension which
is not held by any fractional and classical model. The
fractal-fractional model is handier and more realistic to
the real-world phenomena due to the higher memory
effect.

« It has been reported that velocity field increase with the
larger values of Gr, Gm, k and i while decreasing with
greater values of the parameters Pr, Sc, M and .

o The temperature field shows a decline in response to Pr.

« Concentration field enhances with the increasing mag-
nitude of Sc.
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