
Received December 4, 2021, accepted February 4, 2022, date of publication February 9, 2022, date of current version February 17, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3149955

Multi-Objective Task Scheduling Optimization for
Load Balancing in Cloud Computing Environment
Using Hybrid Artificial Bee Colony Algorithm
With Reinforcement Learning
BOONHATAI KRUEKAEW AND WARANGKHANA KIMPAN , (Member, IEEE)
Department of Computer Science, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Corresponding author: Warangkhana Kimpan (warangkhana.ki@kmitl.ac.th)

This work was supported by the School of Science, King Mongkut’s Institute Technology Ladkrabang.

ABSTRACT Workload balancing in cloud computing is still challenging problem, especially in Infras-
tructure as a Service (IaaS) in the cloud model. A problem that should not occur during cloud access is
a host or server being overloaded or underloaded, which may affect the processing time or may result in a
system crash. Therefore, to prevent these problems, an appropriate schedule of access should be considered
so that the system can distribute tasks across all available resources, which is called load balancing. The
load balancing technique should ensure that all Virtual Machines (VMs) are used appropriately. In this
paper, an independent task scheduling approach in cloud computing is proposed using a Multi-objective
task scheduling optimization based on the Artificial Bee Colony Algorithm (ABC) with a Q-learning
algorithm,which is a reinforcement learning technique that helps the ABC algorithm work faster, called the
MOABCQ method. The proposed method aims to optimize scheduling and resource utilization, maximize
VM throughput, and create load balancing between VMs based on makespan, cost, and resource utilization,
which are limitations of concurrent considerations. Performance analysis of the proposed method was
compared using CloudSim with the existing load balancing and scheduling algorithms: Max-Min, FCFS,
HABC_LJF, Q-learning, MOPSO, and MOCS algorithms in three datasets: Random, Google Cloud Jobs
(GoCJ), and Synthetic workload. The experimental results indicated that the algorithms used MOABCQ
approach outperformed the other algorithms in terms of reducing makespan, reducing cost, reducing degree
of imbalance, increasing throughput and average resource utilization.

INDEX TERMS Cloud computing, hybrid artificial bee colony algorithm, multi-objective task, Q-learning,
task scheduling.

I. INTRODUCTION
Recently, cloud computing has played an important role in
many organizations. Cloud computing started out to provide
of users requirements for accessing resource computing or
to enable users to purchase cloud services as required within
the concept of on-demand resource sharing through highly
internet-based applications. Cloud computing can also pro-
cess many different services depending on the service and
working platforms that are needed by the users [1]. Cloud
computing is a combination of distributed and parallel com-
puting with the sharing of resources such as software and
hardware that will be utilized as ‘‘pay-as-you-go’’ [2]. To use

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard P. Parr.

it, users do not need to purchase any platform or software;
they only have an internet connection to access and pay for
their usage.

Infrastructure as a Service (IaaS) is one of the technology
models behind the management of servers, data centers, and
Virtual Machines (VMs). IaaS is a cloud service that provides
a cloud computer or server for processing and storing data in
the cloud. Users can run any operating system or application
on a rental server free of maintenance and operating costs of
hardware. Since the cloud infrastructure is run on VMs, IaaS
has another advantage, including providing the access of the
user to the servers in nearby locations. This service depends
on the needs of the user, called Quality of Service (QoS)
and Service Level Agreements (SLAs). The payment for the
services depends on the agreement between the user and

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 17803

https://orcid.org/0000-0003-0041-1187
https://orcid.org/0000-0002-0325-9312

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

FIGURE 1. Cloud resource management framework.

the Cloud Service Providers (CSPs) [3]. Moreover, Cloud
computing enables CSPs to provide data centers with high-
performance computing resources to support users accessing
cloud services.

A VM consumes the resources of the host machine: RAM,
hard disk, or CPU. The resources on the VM are required by
the requested resource for operation. As a result, the cloud
network has an unequal resource distribution, and some VMs
may not access the resources they require because many
VMs have preemptive and non-preemptive connections to
resources [4].

When a task is sent off to be processed in the cloud,
the VM should be able to operate quickly to reduce wait-
ing time. However, tasks should be distributed among all
VMs in parallel to balance the system and ensure efficient
use of available resources. For this reason, task scheduling
to be assigned and distributed across existing resources is
necessary. When multiple tasks are assigned to one VM or
multiple VMs, the assigned tasks will run concurrently to
complete the assignments. Therefore, the assignment must
be ensured that not all tasks are loaded on only a single
VM, which will cause other VMs to become inaccessible
or imbalanced in the system. To avoid this, other conditions
must be considered in scheduling, such as makespan, cost,
and resource utilization. Several researchers have proposed
ideas to manage load balancing in both heterogeneous [5] and
homogeneous environments [6]. The main goal of allocating
tasksof a system in a load balance state is to optimize the
distribution of tasks across existing resources and to reduce
the system processing time.

The cloud resource management framework is shown in
Fig. 1.When a user submits a request into the system, the task
is passed to the cloud broker, which is the main objective that
researchers should focus on providing effective algorithms.
The proposed method should efficiently submit tasks to the
appropriate VMby the user depending on the required param-
eters, such as the deadline or other requirements. It must
ensure that the user submitted the requests that are fulfilled
in accordance with the requirements specified in the SLA
document. Users make their requests over the internet, and
the requests are stored in VMs. Then, the CSPs deliver
QoS-based queries to ensure that the requests of the user
can be processed as intended. This process depends on the
performance of the scheduling policy (Data Broker). In this
step, the workload balance must be adjusted between the
machine and the server. Cloud computing depends highly
on Virtual Machine Monitor (VMM) or hypervisors. Hyper-
visors help operate multiple VMs in the same hardware
layer [7]. VMware is one of the most famous software
services efficiently used for managing server resources in
organizations. Even though virtualization plays an important
role in cloud technology, problems still often arise, such
as improper scheduling or handing over tasks to VMs that
cannot meet the requests. To solve this problem, scheduling
and load balancing between nodes in cloud computing should
be implemented to optimize resource utilization. Scheduling
and load balancing between nodes also resulted in a reduction
in processing time and an imbalance in the system.

Task allocation to match the right resource, such as
time, cost, and success rate, must be considered in cloud
computing. Many studies have discussed scheduling or
optimizing resources in the cloud by single or bi-objective
optimization of QoS parameters [8]–[10], and several arti-
cles have discussed multi-objective optimization [11]. Exam-
ples of algorithms that were used to increase the efficiency
of on-demand tasks such as Particle Swarm Optimization
(PSO) [12], [13], Genetic Algorithm (GA) [14], niched Pareto
genetic algorithm (NPGA) [15], and strength Pareto evolu-
tionary algorithm (SPEA) [16].

The Artificial Bee Colony (ABC) algorithm is a meta-
heuristic method used to solve problems and find solutions
for an optimization answer that is close to the appropriate
value developed by Karaboga [17], [18]. The ABC algorithm
mimics the foraging behavior of bee colonies, which require
adaptation to habitat and food environments. Several studies
have demonstrated the effectiveness of the ABC algorithm in
solving problems such as traveling salesman problem [19],
and job shop scheduling problems [20]. The ABC algorithm
works in a strategy similar to Reinforcement Learning (RL)
with environment-based learning, which derives from obser-
vation to predict or decide a good solution. Agents learn how
to behave in an environment by taking action and then observ-
ing the results for themselves. In this research, we use the
Q-learning algorithm to help the systemmake predictions and
decisions about choosing the appropriate schedule. There-
fore, we propose a multi-objective optimization-scheduling

17804 VOLUME 10, 2022

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

FIGURE 2. Q-learning algorithm process.

model using the ABC algorithm and Q-learning (MOABCQ)
method for solving the scheduling problem in a cloud com-
puting environment. The paper focuses on developing a
multi-objective scheduling approach to optimize job schedul-
ing with the goal of minimizing makespan, cost, and simulta-
neous use of resources, also considering the load balance of
the system.

The main contributions of the proposed method can be
described as follows:
• Formulate mathematical models for calculating

resource utilization, makespan and cost for scheduling
problems in cloud computing.

• Propose a multi-objective optimization scheduling
model. This model consists of 3 objective functions
defined as 1) execution time, 2) cost, and 3) utilization
of resources. These are constraints in the proper task
scheduling and the load balancing of the system.

• Propose a new approachthat is multi-objective opti-
mization for the task scheduling problem using
the Artificial Bee Colony algorithm (ABC) adapted
with the implementation of the Q-learning algorithm,
namely, MOABCQ, to optimize the multi-objective
scheduling problem in cloud computing and to reduce
the makespan, cost, and simultaneous use of resources.
This new proposed method is combined with the First
Come First Serve (FCFS) heuristic task scheduling
called ‘‘MOABCQ_FCFS’’ and Largest Job First (LJF)
heuristic task scheduling called ‘‘MOABCQ_LJF’’.

• Performance evaluation of our proposed method exam-
ined through CloudSim simulation. In this paper,
we improved the classical Q-learning algorithm for
load balancing in the cloud environment by combining
it with ABC. This idea can improve the convergence
rate, gain efficiency in load balancing, determine indi-
vidual VM loads, and balance them through the fitness
function.

• The proposed method was compared with other
optimization algorithms, such as: First Come First
Serve (FCFS) algorithm, Max-Min algorithm, Heuris-
tic Task Scheduling with ABC with Largest Job
First algorithm (HABC_LJF), Q-learning algorithm,

multi-objective Particle SwarmOptimization (MOPSO)
algorithm, andmulti-objective Cuckoo Search (MOCS)
algorithm. The three datasets used in this study are
Random, Google Cloud Jobs (GoCJ), and Synthetic
workload to observe in terms of makespan, cost, Aver-
age Resource Utilization Ratio (ARUR), throughput,
and Degree of Imbalance (DI).

The rest of this article is structured as follows: Section II
discusses the literature review. In Section III, the problem
definition and formulation of the objective function will be
described. The hybrid ABC algorithm for load balancing is
presented in Section IV. In Section V, experimental evalua-
tion and discussion will be explained, and finally, Section VI
presents conclusions and future work.

II. LITERATURE REVIEW
Optimizing task scheduling and load balancing in cloud com-
puting environments is known as an NP-hard problem [21].
Many studies have proposed optimization algorithms in cloud
environment in various aspects, such as resource allocation,
scheduling and load balancing procedures to reduce uptime,
and system power consumption. In terms of efficient use of
existing resources or fast processing, we need to consider an
idea in scheduling multiple objectives or cloud environments.

Therefore, many ideas have been proposed using heuris-
tic algorithms [22]–[29], meta-heuristic algorithm [30]–[37],
hybrid meta-heuristic algorithm [14], [38], or even machine
learning methods [39]–[41] to solve task scheduling and load
balancing problems in the cloud computing environment. The
related works are described as follows:

Many studies have used a heuristic algorithm to solve
problems in a cloud computing environment. For example,
AMax-Min based task scheduling algorithmwas proposed by
Mao et al. [22] to balance the load in the cloud and to predict
the execution time of tasks. Then, the tasks were submitted
to the VM based on their proposed Max-Min algorithm.
The VM utilized more resources and decreased response
time. Patel et al. [24] proposed an Enhanced Load balanced
Min-Min (ELBMM) algorithm for static task scheduling.
Jobs were assigned to VMs based on execution time, and the
tasks were rescheduled to distribute to resources that idle.

Zhang et al. [25] studied the application of heuristic
algorithms in cloud scheduling problems. They proposed a
method for scheduling tasks to minimize the task comple-
tion time and execution cost (MCTE) in a smart grid-cloud
system. Then, they performed mathematical modeling for the
grid-cloud task scheduling problem.

Hussain et al. [26] proposed a resource-aware load-
balancing algorithm (RALBA), which is a dynamic schedul-
ing technique that maps independent and non-preemptive
tasks to VMs. The process consisted of 2 parts. The
first part was selecting the maximum size for the VM
with the highest computational share. The second part was
mapping the remaining tasks to the fastest working VM
to perform. The results showed that RALBA was able to
reduce makespan. However, there were some problems with

VOLUME 10, 2022 17805

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

load imbalance and reducing resource utilization. The load
balancing approach was proposed to be modified using soft
computing-based stochastic hill climbing based on load bal-
ancing by Mondal et al. [27].
A dynamic multi-workflow scheduling algorithm named

the competent dynamic multi-workflow scheduling
(CDMWS) algorithm was proposed by Adhikari and
Koley [28]. This method aimed to improve CPU utilization,
reduce makespan, and improve the makespan-deadline meet-
ing ratio. This method was classified into 2 parts. The first
part served to estimate the processing time for each task based
on deadline and task dependencies. The second part was
responsible for allocating VMs to reduce power consumption
and increase resource utilization. The experiments showed
that CDMWS outperformed the EnrichedWorkflow Schedul-
ing Algorithm (EWSA) and Round Robin (RR) algorithm.

Efficient resource allocation with a focus on solving
energy efficiency problems using the multi-objective opti-
mization (MOO) method was discussed by Shrimali and
Patel [29]. A VM allocation approach has also been proposed
usingMOO. According to the experimental results, MOO led
to energy savings due to the efficient allocation of resources
without affecting the performance of the data center.

Many studies have used a meta-heuristic algorithm and a
hybrid meta-heuristic algorithm to solve problems in a cloud
computing environment. For example, Tawfeek et al. [35] dis-
cussed the adoption of the Ant Colony Optimization (ACO)
algorithm for reducing the execution time of tasks in a cloud
computing environment. The authors demonstrated that using
ACO was efficient. ACO worked better than other methods,
such as the RR algorithm and FCFS algorithm. To reduce the
makespan and optimize resource access in cloud computing,
an improved PSO algorithm has been developed. The method
used updating the weights of particles with the evolution of
the number of iterations and to inject some randomweights in
the final stages of the PSO. The objective was to avoid local
optimum solutions being generated in the final stages of PSO
was proposed by Luo et al. [12].
Chen et al. [36] proposed the dynamic objective genetic

algorithm (DOGA) by focusing on optimizing the execution
time according to the deadline constraint to help reduce
the cost of work and to work within the specified time.
Amini et al. [37] proposed the resources allocation process
for virtual machines in cloud computing using dragon-
fly optimization algorithm. The experimental showed that
using dragonfly optimization algorithm helped improve task
scheduling, load balancing, and resource allocations bet-
ter than ACO algorithm and Hybrid Algorithm Based on
Particle Swarm Optimization and Ant Colony Optimization
Algorithm (ACO-PSO).

Li and Han [42] proposed a hybrid discrete ABC algo-
rithm for flexible task scheduling problems in a cloud sys-
tem. The objective of this approach was to minimize the
maximum completion time, total workloads of all devices,
and maximum device workload. In terms of reducing the
completion time and balancing load in the cloud computing

environment, the Heuristic Task Scheduling with Artificial
Bee Colony (HABC) Algorithm was proposed to schedule
and manage cloud resources by Kruekaew and Kimpan [43].
The experimental results showed that HABCwith the Largest
Job First heuristic algorithm (HABC_LJF) was the most
efficient in scheduling and managing cloud resources.

Gan et al. [44] proposed job scheduling using a genetic
simulated annealing algorithm. The primary purpose was
to optimize the execution time of data center tasks.
Basu et al. [14] introduced a hybrid meta-heuristic algorithm
called GAACO, which was a combination of the GA algo-
rithm and ACO algorithm to solve the task scheduling of
IoT applications in a multiprocessor cloud environment.
The method guaranteed appropriate convergence when tested
with sizes of task graphs and number of different proces-
sors in terms of makespan and efficiency. They found that
the GAACO algorithm performed better than the GA algo-
rithm and ACO algorithm in a heterogeneous multiprocessor
environment.

For a multi-objective task scheduling problem in a cloud
environment that is solved using a meta-heuristic algorithm
and a hybrid meta-heuristic algorithm, Alsadie [45] proposed
ameta-heuristic framework for dynamic virtual machine allo-
cation with optimized task scheduling in a cloud computing
environment (MDVMA). MDVMA was a multi-objective
scheduling method using a non-dominated sorting genetic
algorithm to help reduce cost, makespan, and energy usage.
In the experiments, theHeterogeneous Computing Schedul-
ing Problems (HCSP) dataset was used with the CloudSim
Simulator. The results showed that MDVMA was able to
optimize task scheduling better than the ABC algorithm,
Whale Optimization Algorithm (WOA), and PSO algorithm
in terms of reducing the cost, makespan, and energy usage of
the cloud data center.

Guo [34] proposed cloud computing multi-objective task
scheduling optimization based on a fuzzy self-defense
algorithm, which had good performance in terms of the
shortest completion time, deadline violation rate, and
utilization of virtual machine resources when compared
with A Multi-Objective Optimization Scheduling Method
Based on the Ant Colony Algorithm in Cloud Computing
(PBACO) [33] and Task Scheduling Algorithm Based on
RL. Zuo et al. [33] proposed a multi-objective optimization
scheduling method in terms of efficiency and budget costs.
This approach used an ant colony algorithm (PBACO) to
help determine the optimal solution. The experiment was
compared with the classical heuristic algorithm, Min-Min
algorithm, and FCFS scheduling. PBACO was found to be
superior to the other comparison methods.

He et al. [46] proposed Adaptive Multi-objective Task
Scheduling (AMTS) to try to improve resource utilization,
cost, energy consumption, and task completion time. AMTS
used a PSO-based approach for multi-objective scheduling
that considered process time and transmission time.

The proposed method applied the adaptive acceleration
coefficient for particle diversity. After improving the PSO

17806 VOLUME 10, 2022

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

TABLE 1. Simulation environment.

algorithm, AMTS was able to find the best solution for the
cloud-based scheduling problem.

Jena [47] proposed an ABC-based approach for energy
efficiency, processing time, cost, and computing resource
utilization in the cloud computing environment. Tasks were
allocated to the data center using a multi-objective ABC
algorithm. An ant-based genetic algorithm was used to solve
multi-objective scheduling problems to reduce latency and
completion time while maximizing throughput in the cloud
environment by Kumar and Venkatesan [48]. The multi-
objective WOA was proposed by Reddy and Kumar [49] to
develop scheduling in cloud computing. The authors tried to
create a fitness-based schedule based on three conditions:
quality of service, energy, and resource utilization. After
considering the given parameters, the processing time and
cost of the virtual machines were found to be reduced.

Madni et al. [50] proposed an innovative Multi-objective
Cuckoo Search Optimization (MOCSO) algorithm for the
resource scheduling problem in IaaS cloud computing envi-
ronment. Themajor goal of the resource scheduling challenge
was to reduce cloud user costs and enhance the performance
by reducing makespan time. The simulation results showed
that MOSCO algorithm outperformed Multi-objective ACO
(MOACO), Multi-Objective GA (MOGA), Multi-Objective
Min-Max (MOMM), and Multi-objective PSO (MOPSO)
algorithm.

Pang et al. [51] developed an EDA-GA hybrid schedul-
ing algorithm to solve the multi-objective task scheduling
problem based on EDA (estimation of distribution algorithm)
and GA (genetic algorithm). The constraints of scheduling
problem in thismodel were scheduling performance and time.

The advantages of this algorithm were the fast convergence
speed and strong search ability. The algorithm was compared
with EDA and GA using the CloudSim simulation experi-
ment platform. According to the testing results, the EDA-GA
hybrid algorithm effectively reduced job completion time and
improved load balancing ability.

Neelima and Reddy [52] proposed a load balancing task
scheduling algorithm in cloud using Adaptive Dragonfly
algorithm (ADA) which was a combination of dragonfly
algorithm (DA) and firefly algorithm (FA). The development
of a multi-objective function was based on three parameters:
completion time, processing costs, and load. The perfor-
mance of this method was measured in terms of execution
cost and time. When compared to DA and FA, the experi-
mental results showed that the proposed approach achieved
better load balancing results.

There is also research combining osmotic behavior with
bio-inspired algorithms, for example, Gamal et al. [53]
presented Osmotic hybrid artificial bee and ant colony
(OH_BAC) algorithm which derives from the osmosis the-
ory in the chemistry science. This algorithm was used to
form osmotic computing and find load balancing for VM
placement. OH_BAC used an osmosis approach to create a
low-energy cloud computing environment. In this algorithm,
ACO and ABC collaborated to find the optimum VM for
migrating to the best physical machine (PM). To reduce
power consumption, OH_BAC activated the most appropriate
osmotic host among all PMs in the system. The algorithm
was compared with ACO, ABC, H_BAC, and host overload-
ing detection algorithms. The experimental results showed
that when compared to other algorithms in fixed and vari-
able loads, OH_BAC improved energy consumption, service
level agreement violation (SLAV), number of virtual machine
migration, and number of host shutdowns.

Machine learning algorithms have been used to solve chal-
lenging problems in cloud computing environments [54]. For
example, Farahnakian et al. [39] proposed the Reinforcement
Learning-based Dynamic Consolidation method (RL-DC) to
reduce energy consumption and optimize resource usage in
cloud data centers.

Caviglione et al. [55] introduced a deep reinforcement
learning-based approach for the placement of VMs in
cloud data centers. DRL was used to select the best loca-
tion possible for each VM. Jena et al. [56] proposed a
hybrid meta-heuristic algorithm called QMPSO for balancing
loads between VMs in cloud computing using hybridization
of modified particle swarm optimization (MPSO) and an
improved Q-learning algorithm. QMPSO helped to improve
the makespan, throughput, and power consumption during
load balancing and effectively reduced the waiting time of
tasks.

A framework for cloud resource allocation with the goal
of deploying resources in green cloud was proposed by
Thein et al. [57]. The proposed framework was based on a
reinforcement learning mechanism and fuzzy logic. Its effi-
ciency was measured by CPU utilization at the data center,

VOLUME 10, 2022 17807

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

which measuring Power Usage Effectiveness (PUE) and Data
Center infrastructure Efficiency (DCiE). Simulation results
using CloudSim showed that this framework can achieve
effective performance for high data center energy efficiency
and prevent SLA violation. The goal of the task scheduling
and resource allocation model by hybrid ant colony opti-
mization and deep reinforcement learning is to reduce the
completion time and improve the utilization of idle resources
with the use of a binary in-order traversal tree using weighted
values. For task scheduling, a DRL algorithmwas used to find
idle resources and ACO to find the most suitable VM for each
task by Rugwiro et al. [41].
As mentioned previously, developing effective algorithms

for task scheduling and selecting the right resources in
cloud computing environments was found to be very impor-
tant. Many studies put much effort into organizing tasks
or allocating proper resources for each task considering
single objective, bi-objective and multi-objective scheduling.
Therefore, this paper proposed the multi-objective optimiza-
tion of the task scheduling problem, while previous studies
focused mainly on the objectives of makespan or processing
time and cost because both of these objectives meet the
needs of the users. However, to work in cloud computing,
it is necessary to consider various conditions or objectives.
In addition, load balancing in the cloud must be considered.
A hybrid meta-heuristic algorithm has been introduced to
help optimize performance in the cloud. Nevertheless, some
algorithms are weak in local search, while some algorithms
have a weakness in global search optimization. According to
related studies, the ABC algorithm can be helpful in solv-
ing the multi-objective task scheduling problem because it
is capable of explorative behavior. In contrast, exploitative
behavior, which is a part of the onlooker bee, was weak.
In this case, reinforcement learning can help solve this prob-
lem because Q-learning can improve the solution quality.
Therefore, we propose a method that can solve the multi-
objective task scheduling problem using the ABC algorithm
and Q-learning (MOABCQ). MOABCQ helps determine the
order of tasks for suitable available resources environments to
find the most appropriate task scheduling solution. Moreover,
MOABCQ also provides a load balancing system.

III. PROBLEM DEFINITION AND FORMULATION OF
OBJECTIVE FUNCTION
Many users operate their works on the cloud environment,
which makes the scheduling process play an important role
in resource utilization, response time, latency, and load
balancing. Task scheduling problems can be described as
follows.

Input:

• Let V = {v1, v2, v3, . . . , vm} where V is a collection of
VMs, and m is the total number of VMs in the cloud
network. Each VM has its own resources (e.g., CPU,
RAM, and bandwidth) and the cost of usage and the
computing power are defined differently; vi presents
the ith VM.

• Let T = {t1, t2, t3, . . . , tn}where T is the set of assigned
tasks, and n is the number of independent tasks per-
formed on the VMs (m). tj represents the jth task. Each
task submission contains the number of instructions,
memory required, CPU required, etc.

Output:

• Optimize scheduling,map n tasks andmVMs (resources)
tominimizemakespan, cost, and resource utilization and
to increase load balancing in resource utilization.

In general, multi-objective optimization problem consists
of several fitness functions (Objective function) as: F (x) =
[f1 (x) , f2 (x) , . . . , fobj (x)] where obj is number of objec-
tives, and fi (x) represents ith objective function. This problem
does not have a single solution and a set of non-dominated
solutions can be found, known as a pareto optimal solutions.

We propose the task scheduling algorithm in cloud
computing using conditions of multi-objective scheduling
approaches to increase the efficiency of schedule optimiza-
tion and resource utilization, to maximize VM throughput,
and create load balancing between VMs. The most com-
mon evaluation factors are cost, energy consumption, task
completion time, task waiting time, flow time, failure rate,
profit, carbon emission, makespan, and reliability [58]. The
proposed method determines the suitability conditions using
cost, resource utilization, and makespan as factors that help
in proper scheduling. Scheduling and load balancing in a
cloud computing environment requires a fitness function
design to provide optimal solutions and also considers the
multi-objective used to find the answer. We used weighted
sum approach [59], [60] for solving the multi-objective
optimization problem. This approach is used to convert a
multi-objective optimization problem to a single objective
with weights which represents preferences among objectives
by the decision maker.We have considered three objectives in
the article as follows:

1) The first objective is defined in the condition of
makespan or task execution time, which is the time that the
system completes its last task. Themakespan is a useful factor
for multi-objective scheduling approaches that can reduce the
execution time and allow tasks to be completed prematurely.
Each VM has a different execution time for completing the
task determined by the makespan. If a maximum of the
execution time value is high and the makespan value is also
high, the system is considered poorly distributed tasks to the
VMs. However, if the maximum execution time value is low,
the makespan value is also low. Thus, the system can evenly
distribute tasks among the resources in the system.

Considering where each task tj
(
tj ∈ T

)
is assigned to the

VM, vi (vi ∈ V) is represented by tji, so the VM task is
represented by vi = {txi, tyi, . . . , tzi}.
The total execution time (ET) of task processing on vi can

be obtained by (1).

ET (vi) =
∑

tji∈vi
ExtTime

(
tji
)
=

∑
tji∈vi length(tj)

CPU (vi)
(1)

17808 VOLUME 10, 2022

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

whereExtTime
(
tji
)
is the execution time of tj processing in vi.

This value can be calculated by (2).

ExtTime
(
tji
)
=
length(tj)
CPU (vi)

(2)

where length(tj) is the length of the jth task, the length of the
task is defined in terms of the number of instructions (million
instructions), andCPU (vi) is the CPU rate used to process the
jth VM in the cloud. Makespan is the maximum value of the
execution time of all VMs and can be calculated by (3).

Makespan = Max(ExtTime(vi)), 1 ≤ i ≤ m (3)

MinMakespan is a lower bound of makespan, which is the
minimum time required by the system to complete all tasks.
MinMakespan is calculated by (4).

MinMakespan = Min(ExtTime(vi)), 1 ≤ i ≤ m (4)

Fitness function in terms of makespan (F1) can be calcu-
lated by (5).

F1 =
MinMakespan
Makespan

(5)

2) The second objective is defined in terms of cost which
is the cost of requesting to be processed by the task and
can be calculated from CPU cost, memory usage cost, and
bandwidth usage cost. Estimated cost when tj is processed at
vi can be calculated by (6).

Cost
(
tji
)
= (c1 ∗ ExtTime(tji))+ (c2 ∗ ExtTime(tji))

+(c3 ∗ ExtTime(tji)) (6)

where c1, c2, c3 are CPU usage cost per unit, memory usage
cost per unit, and bandwidth usage cost per unit in vi,
respectively.

The total cost (TCost) is calculated as the sum of all tasks
processing on all VMs, which can be calculated from (7).

TCost =
∑n

j=1

∑m

i=1
Cost(tji) (7)

MinTCost is the lowest cost when the set of assigned tasks
T is processed in the VM where the VM process task tj
gives the lowest cost, called the MinTCost(t j) value, which
means that MinTCost is only for task tj and can be calculated
from (8).

MinTCost =
∑

tj∈T
MinCost

(
tj
)

=

∑
tji∈T

min1≤i≤m(Cost
(
tji
)
) (8)

The fitness function in terms of cost (F2) can be calculated
by (9)

F2 =
MinTCost
TCost

(9)

3) The third objective is defined in terms of the utilization
of resources (CPU and memory) sent to a different number of
processing units than in the cloud network. If the requested

task is sent to vi, we can calculate the memory load of vi
by (10).

LM i = AM i +
RM j

TM i
(10)

where AM i is the amount of memory usage before executing
task tj at the ith VM
RM j is the memory containing the request of the jth task
TM i is the total memory available at the ith VM
The next parameter is the CPU. If the requested task is sent

to vi, we can calculate the CPU load of vi (LC i) using (11).

LC i = AC i +
RC j

TC i
(11)

where AC i is the amount of CPU usage before executing task
tj at the ith VM
RC j is the CPU that requests the jth task
TC i is the total CPU available at the ith VM.
VM utilization evaluation (VU i) [61] can be calculated

by (12).

F3 = VU i =
ω1

1− LM i
∗

ω2

1− LC i
(12)

where ω1 and ω2 are the weights for the CPU and memory,
respectively. ω1+ω2 = 1 in this paper, given ω1, ω2 are both
equal to 0.5 because CPU and memory are equally important.

Total load on k host (LH), where k is the total number of
hosts in the system, can be calculated from (13).

LH k =
∑mk

i=0
VU ki (13)

The average load on all physical machines in cloud (AL)
can be calculated by (14).

AL =

∑p
k=0 LH k

p
(14)

where p is the number of hosts in the cloud network.
The difference in load among each host and the average

load on the cloud network is calculated from |LH k − AL|.
The fitness function is defined in terms of the utilization of
resources, which can be calculated by (15).

F3 =
∑p

k=0
|LH k − AL| (15)

Fitness function is created by calculating the weighted
average of each individual fitness function. The proposed
fitness function (F) is shown in (16).

F = (γ1 ∗ F1)+ (γ2 ∗ F2)+ (γ3 ∗ F3) (16)

where γ1, γ2, γ3, and γ ε [0, 1] are the balance coefficients
between makespan, total cost, and resource utilization. Max-
imizing the utility function (F) results in a better solution.

VOLUME 10, 2022 17809

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

IV. HYBRID ABC ALGORITHM FOR LOAD BALANCING
A. Q-LEARNING ALGORITHM
Q-learning [62] is one of the Reinforcement Learning (RL)
algorithms. RL is one of the machine learning methods that
allows agents to learn in their environment and action by
changing their state to receive rewards or penalties based
on the feedback obtained from the environment. The main
purpose of RL is to learn the agent through trial and error
between the agent and the environment. The agent is able to
receive the environment situation through a state and choose
an action that affects the environment to obtain the best
reward and learn through past mistakes. TheMarkov decision
process (MDP) is a framework for the decision-making of
agents because of the uncertain environment, and the result is
sometimes stochastic. The agent chooses to perform the same
action for the same situation or state, but it may not always
obtain the same result. The Q-learning algorithm process is
shown in Fig. 2.

Given that the set of states S = {s1, s2, s3, . . . , sn} is
in the environment, each state has a set of actions. The
A = {a1, a2, a3, . . . , am} agent selects action atεA at time
t in state stεS to pass to the next state st+1εS through the
transition process and receives a reward rt+1 from the envi-
ronment. To process the tasks, it is necessary to select the
appropriate action to maximize the Q-value of each state,
which is the primary objective of finding the optimal policy
in cloud computing. The Q-value function depends on the
selection of action in the state. Given the agent in state st
and selecting action at , the Q-value function is expected to
move to the best state and gain to maximize the total expected
reward in the environment. The Q-value can be calculated
by (17)

Q (st , at) = (1− α)Q (st , at)

+α [rt + γmaxa+1Q(st+1, at+1)] (17)

where α is the learning rate, γ (0 < γ < 1) is the discount
factor and effect on the successive state by the previous
action, and rt is the penalties or rewards awarded for per-
forming actions in the state st. The Q-value derives from
creating a Q-table that stores all possible states, Q-values,
and appropriate actions. The Q-learning algorithm attempts
to establish the optimal state from their experience, and the
greedy algorithm is implemented in the Q-learning algorithm.
Q-value can be computed using (18).

Qt+1 (st , at)=Q (st , at)+α
[
rt + γmax át [Qt

(
δ(st , at), át

)
]

−Qt (st , at)] (18)

where α is the learning rate, calculated from α = 1/(1+ total
number of visits to state st), and δ is the transition function.
maxaQ (st+1, a) is an estimate of optimal future value.

A possible action in cloud computing involves load balanc-
ing, which allocates resources in VM and can be described in
Algorithm 1.

Algorithm 1 Q-Update(S)
1. Set values for learning rate α, discount factor γ ,

reward r
2. Initialize Q-values
3. For i = 1 to n # n is the number of states

4. For j = 1 to p # p is the number of actions in each state

5. Q
(
si, aj

)
= 0

6. End for
7. End for
8. Select an action ai from A = {a1, a2, a3, . . . , am}

and execute it and go to next state st+1
9. Calculate the learning rate
10. Calculate the reward
11. Update Qt+1 by (18)
12. Repeat this step for new state until it converges

B. MODIFIED ABC ALGORITHM
The ABC algorithm [19] is a meta-heuristic optimization
algorithm based on swarm intelligence. The swarm system
consists of agents that communicate with other agents and
their environment. In this algorithm, the goal of the agent is
to find the best food source, where the food source represents
a set of possible answers in the search space and each agent
is represented by a bee.

In ABC, agents are categorized according to the functions
of the bees and can be classified into 3 groups: employed
bees, onlooker bees, and scout bees. Initially, each employed
bee finds a random food source, whereas in each itera-
tion, employed bees find a new food source near a current
food source. After collecting the nectar, each employed bee
assesses the best food source. Then, the bee will move to a
new food source only if the bees have determined that new
food sources are better than the previous one. The employed
bees share information with the onlooker bees. The onlooker
bees decide to choose new food sources based on information
obtained from the employed bees. If any food source has
much food or high quality, it will have a high chance of being
chosen by onlooker bees. Then, each onlooker bee will find
a new food source around it. They select the food source and
move to a new food source. The number of iterations is also
predetermined, meaning that if no better food source is found,
the employed bees who own the selected food source become
scout bees and are responsible for exploring the new food
source in a new area of search space.

Each group of bees has different explorative and exploita-
tive behaviors [63]. The explorative behavior of a search
agent involves searching for a new food source in the search
space to avoid a local optimum. In contrast, exploitative
behavior involves searching for a better food source near
the current food source. In this paper, we use Q-learning to
improve our solution to provide more appropriate solutions
to problems. The ABC algorithm has both strong explorative
behavior andweak exploitative behavior; therefore, we aim to

17810 VOLUME 10, 2022

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

optimize exploitative behavior. The process can be described
as follows:

In the initialization phase, the ABC algorithm represents
the location of the food source with possible solutions to the
problem. Initially, the food source is randomly generated as
shown in (19). Then, employed bees are associated with food
sources. The initial value of the Q-table is 0.

x0i,j = xminj + rand (0, 1) ∗ (x
max
j − xminj) (19)

where xminj is the lower bound of the jth optimization param-
eter, and xmaxj is the upper bound of the jth optimization
parameter.

In addition to the initialization phase, the ABC algorithm
separates the algorithm into three sub-phases: employed
bee phase, onlooker bee phase, and scout bee phase. The
algorithm repeats all three phases until a certain maximum
number of values is reached.

In the employed bee phase, the employed bees [64] find
the location of the neighboring food source vti,j of the current
food source (x̄ ti) using (20).

vti,j = x ti,j + rand [−1, 1] ∗ (x
t
i,j − x

t
k,j) (20)

where vti,j is the j
th optimization parameter of v̄ti , and k is the

index of the food source.
If the new food source v̄ti returns a fitness value greater than

the current food source x ti , Fit
(
v̄ti
)
> Fit

(
x̄ ti
)
, employed

bees forget the current food source and remember the new
location. In this step, the Q-table (reward-penalty scheme)
value is updated using (18). If the new food source provides a
better fitness value, the employed beewill not only replace the
current food source with the new food source but also update
the Q-value by rewarding the selected new food source and
penalty with the current food source.

In contrast, if the new food source does not provide a better
fitness value, the new food source receives a penalty, and the
current food source receives a reward. The Q-table is updated
every time that an employed bee finds a suitable food source.
Therefore, if the number of employed bees is Emp, Q-table
will update Emp once.

In the onlooker bee phase, the onlooker bee selects the
employed bee’s food source from the Q-value in the Q-table.
In contrast, the onlooker bee searches for the new food source
using (21) and replacing the current food source with the new
food source, if the new food source has a higher fitness value,
then the Q-value will also be updated.

vti,j = x ti,k + ∅
t
i,j · r

t
j · (x

t
i,k − x

t
RFS,k) (21)

where vti,j is the optimization parameter of a neighboring
food source v̄ti , ∅ ∈ [−1, 1], and x tRFS,k is the optimization
parameter of the optimal food source caused by random
selection.

Using (21) to improve exploitation instead of updating
values in dimension, onlooker bees exploit current food and
update all dimensions with different weight values, and in this
step, Q-values (reward and penalty) are updated.

In the scout bee phase, if there are a number of unsuccessful
attempts to find a better neighbor, that food source will be
discarded, and the scout bee will randomly search for a new
food source.

The pseudo-code of the MOABCQ method is presented in
Algorithm 2.

Algorithm 2 MOABCQ Method
Initialization:
1. Initialize the population and calculate individual

fitness values
2. Set up the parameter: best solution, maximum

number of iterations, the population size
3. Find the best solution
4. while stopping criteria satisfied
Employed Bees Phase:
5. For each position do
6. Update position of employed bee by (20)
7. Estimate the new position
8. If fitness value of new position is better
9 Replace the current position with the

new position
10 End if
11. Calculate probability and update the Q-table

for select position in the onlooker bee phase
12. End for
Onlooker Bees Phase:
13. For each onlooker do
14. Select a position based on Q-value and

probability
15. Update position of onlooker bee by (21)
16. Estimate the new position
17. If fitness value of new position is better
18. Replace the current position with the new

position
19. End if
20. Update the Q-table using (18)
21. End for
22. Find the best solution (Q-table)
Scout Bees Phase:
23. For each position do
24. Abandon the solution that have not been

updated and generate new solutions randomly
25. update the Q-table using (18)
26. End for
27. End while

V. EXPERIMENTAL EVALUATION AND DISCUSSIONS
In this section, the parameter settings and experimental
results are described. To evaluate the effectiveness of the
proposed methodology (MOABCQ), we compared it with
well-known heuristic task scheduling algorithms, such as
Max–Min task scheduling algorithm [22], First Come First
Serve (FCFS) algorithm, and Largest Job First (LJF) algo-
rithm. Moreover, we compared MOABCQ method with the

VOLUME 10, 2022 17811

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

TABLE 2. Parameter settings of meta-heuristic algorithms.

popular meta-heuristic task scheduling algorithms such as
the PSO algorithm and CS algorithm, and with our previous
method called Heuristic Task Scheduling with Artificial Bee
Colony algorithm and largest job first (HABC_LJF) [43].

We considered evaluating the performance of the proposed
method, which consists of a simulation environment, a bench-
mark datasets, parameter settings for the proposed method
and the comparison algorithms, experimental results, and the
time complexity of MOABCQ method.

A. SIMULATION ENVIRONMENT
This section presents an experiment conducted to evaluate
the performance of the proposed method (MOABCQ) when
comparing task scheduling with other methods in a heteroge-
neous cloud computing environment. In this paper, a simula-
tion was designed and developed using the CloudSim 3.0.3
simulator [65]. CloudSim is the most widely used simulator
to implement clouds. CloudSim is a tool that can simulate
virtual resources, and CloudSim can also support modeling,
simulation, and experimentation of virtualized cloud-based
data. This experiment was simulated on a computer with an
Intel Core i7-8750H CPU (clock speed of 2.20 GHz) and
16 GBs of RAM.

In this experiment, a virtual environment was simulated
to demonstrate the efficiency of the proposed method in
terms of scheduling and load balancing in a cloud computing
environment. The simulation environment of this experiment
was defined as shown in Table 1.

B. BENCHMARK DATASETS
To evaluate the scheduling efficiency of the proposedmethod,
three different datasets were used: 1) Random dataset,

FIGURE 3. Comparison of the performance in terms of makespan on
various datasets.

2) Google Cloud Jobs (GoCJ) dataset [66], and 3) Synthetic
workload dataset [26], which are described as:

17812 VOLUME 10, 2022

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

TABLE 3. Comparison of the performance in terms of ARUR on various datasets.

1) RANDOM DATASET
We generated task sizes ranging from 1k – 70k Million
Instructions (MIs). The randomly generated dataset contains
a total of 1000 tasks. The dataset contains task size, number
of requested CPUs, and amount of RAM being requested.

2) GOCJ DATASET
GoCJ dataset is considered a Google-like realistic dataset
generated from the workload behaviors witnessed in Google
cluster traces using bootstrapped Monte Carlo, a well-known
simulation method. The task sizes in the GoCJ dataset range
from 15k – 900k MIs, and the datasets are classified as: small
size jobs (15k – 55kMIs), medium size jobs (59k – 99kMIs),
large size jobs (101k – 135k MIs), extra-large size jobs (150k
– 337.5k MIs), and huge size jobs (525k – 900k MIs).

3) SYNTHETIC WORKLOAD DATASET
Synthetic workload dataset iscreated by random-number gen-
erator mechanism using Monte Carlo simulation method.
It consists of different tasks sizes from 1 – 45KMIs which are
tiny size jobs (1-250 MIs), small size jobs (800–1200 MIs),
medium size jobs (1800–2500 MIs), large size jobs
(7k–10k MIs), and extra-large size jobs (30k–45k MIs).

C. PARAMETER SETTINGS FOR THE PROPOSED METHOD
AND THE COMPARISON ALGORITHMS
In this experiment, we defined population parameter and
other conditions from related articles which are: HABC algo-
rithm [43], PSO algorithm [67], and CS algorithm [56]. As it
is already recognized that parameter setting has effects on
the efficiency of algorithms and it depends on size or nature
of the problem. For this reason, tuning the parameters must
be done to ensure that we use the appropriate parameters
for the problem type and dataset. We did not claim, how-
ever, that the proposed method or its parameters outperform
alternative algorithms for all type of problems and datasets.
In the experiment, the parameters of the ABC algorithm
proposed by Kruekaew and Kimpan [43] are defined in Table
2. In addition, to compare the scheduling performance, the
proposed method was compared with the HABC algorithm,
MOPSO algorithm, and MOCS algorithm. The parameters
are defined as shown in Table 2 which based on the original
papers.

D. EXPERIMENTAL RESULTS
This section describes an experimental evaluation of a pro-
posed scheduling approach using the benchmark dataset

to compare experimental results in terms of makespan,
throughput, ARUR [26], cost, and DI. In this experiment,
we assessed the effectiveness of the proposed method
(MOABCQ). We combined the MOABCQ method with
the First Come First Serve (FCFS) heuristic task schedul-
ing called ‘‘MOABCQ_FCFS’’ and Largest Job First (LJF)
heuristic task scheduling called ‘‘MOABCQ_LJF’’ and
compared them with other well-known algorithms: FCFS
scheduling algorithm, Max–Min task scheduling algo-
rithm [22], Heuristic Task Scheduling with Artificial Bee
Colony algorithm and largest job first (HABC_LJF) [43],
Q-learning algorithm, multi-objective particle swarm opti-
mization (MOPSO) algorithm, and multi-objective cuckoo
search (MOCS) algorithm. Each dataset was run for
20 rounds, and the average of the results is proposed in the
following section.
The first section presents a comparison of the performance

of the proposed method in terms of makespan. This experi-
ment was assigned to 100 VMs, and 200, 400, 600, 800, and
1000 tasks were assigned to the system. In the experiment,
we used the 3 datasets mentioned earlier. The experimen-
tal results are shown in Fig. 3. According to the experi-
mental results in Fig. 3(a), when the random dataset was
tested, the MOABCQ method was found to reduce the
average makespan better than the Max-Min method, FCFS,
HABC_LJF, Q-learning, MOPSO, and MOCS. However,
when 400 datasets were tested, MOCS gave the lowest
average makespan compared to the other methods. MOCS
took 3.69%, 3.77%, 8.82%, 13.85%, 20.77% 23.41%, and
82.39% less time to complete than FCFS, MOABCQ_LJF,
MOABCQ_FCFS, Q-learning, HABC_LJF, MOPSO, and
Max-Min, respectively.

If we consider the insight of MOABCQ, after compar-
ing MOABCQ_FCFS and MOABCQ_LJF, MOABCQ_LJF
can be found to give a lower average makespan than
MOABCQ_FCFS in the case of 200, 800, and 1000 tasks.
However, in the case of 600 tasks, MOABCQ_FCFS had an
average makespan 0.51% less than MOABCQ_LJF.

Considering the experimental results in Fig. 3(b), in which
the GoCJ dataset was used, and Fig. 3(c), in which
the Synthetic workload dataset was used, MOABCQ_LJF
gave the lowest average makespan. When using the
GoCJ dataset, MOABCQ_LJF gave average makespan
approximately 117.80%, 92.15%, 46.17%, 42.25%, 34.94%,
30.62%, and 8.21% less than the makespan of Max-Min,
FCFS, Q-learning, MOPSO, HABC_LJF, MOCS, and

VOLUME 10, 2022 17813

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

MOABCQ_FCFS, respectively. When using the Synthetic
workload dataset, MOABCQ_LJF yielded average makespan
of approximately 150.75%, 98.61%, 25.53%, 22.87%,
15.35%, 10.76%, and 2.97% less than the makespan of
Max-Min, FCFS, MOPSO, Q-learning, HABC_LJF, MOCS,
and MOABCQ_FCFS, respectively. It can be indicated that
MOABCQ_LJF outperformed the other methods in running
both datasets with all test conditions except the percentage of
the average makespan reduction.

However, overall examinations showed that the proposed
method can provide the lowest makespan value because
MOABCQ_LJF can allocate the task to the appropriate
resource. According to all these results, we can conclude that
the proposed method has the potential to efficiently allocate
resources in the system.
The second section presents a comparison of the effi-

ciency of the method presented in terms of throughput,
which is the number of tasks executed per unit of time.
The 3 previously used datasets were used in this exper-
iment. The experimental results of testing the efficiency
with a random dataset are shown in Fig. 4(a), which indi-
cates that MOABCQ had better throughput than other algo-
rithms. However, when testing in 400 tasks, MOCS gave
greater values than the others at 3.56%, 3.63%, 8.10%,
12.16%, 17.20%, 18.97%, and 45.17% when compared
to FCFS, MOABCQ_LJF, MOABCQ_FCFS, Q-learning,
HABC_LJF, MOPSO, and Max-Min, respectively. Consid-
ering the MOABCQ itself in depth, MOABCQ_LJF has a
higher throughput than MOABCQ_FCFS in 200, 800, and
1000 tasks. In the case of 600 tasks, MOABCQ_FCFS pro-
vided 0.50% higher throughput than MOABCQ_LJF.

After using the GoCJ and Synthetic workload datasets
to test throughput, we found that MOABCQ had bet-
ter performance than the other algorithms. The results
are shown in Fig. 4(b) and 4(c). When MOABCQ_LJF
and MOABCQ_FCFS were considered, MOABCQ_LJF
provides throughput approximately 6.14% more than
MOABCQ_FCFS on average. We can conclude from the
overall throughput test experiments that MOABCQ_LJF has
the potential to allocate the tasks to appropriate resources
in the same direction as the testing result in the first
section.
The third section presents a comparison of the efficiency of

the proposed method in terms of Average Resource Utiliza-
tion Ratio (ARUR), which is another important condition for
task scheduling in the system. In this experiment, we used
1000 tasks, 100 machines of VMs, and 3 dataset tests. The
experimental results are shown in Table 3.

We found that MOABCQ gave higher ARUR values than
the other methods. To consider in depth all 3 datasets, the
algorithms used to perform in this experiment that gave the
similarity of ARUR results were found to be Q-learning,
HABC_LJF, MOPSO, MOCS, MOABCQ_FCFS, and
MOABCQ_LJF, unlike Max-Min and FCFS. When testing
with the random dataset, MOABCQ_LJF provided larger
ARUR values of 6.15%, 14.01%, 18.72%, 20.94%, and

FIGURE 4. Comparison of the performance in terms of throughput on
various datasets.

21.53% compared to MOABCQ_FCFS, MOCS, Q-learning,
HABC_LJF, and MOPSO, respectively.

17814 VOLUME 10, 2022

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

When using the GoCJ dataset, MOABCQ_LJF gave
greater ARUR values then the others at 6.31%, 11.34%,
12.63%, 13.61%, and 22.99% when compared to
MOABCQ_FCFS, MOCS, HABC_LJF, MOPSO, and
Q-learning. After experimenting with the Synthetic work-
load dataset, MOABCQ_LJF gave higher ARUR values
than the MOABCQ_FCFS, MOCS, Q-learning, HABC_LJF,
and MOPSO methods at 0.62%, 4.99%, 5.74%, 9.74%, and
9.86%, respectively.

The testing with all three datasets revealed that
MOABCQ_LJF provides the highest ARUR value com-
pared to the other methods. Thus, we can conclude that the
MOABCQ_LJF method can efficiently schedule tasks in the
system and can help equally distribute tasks across available
resources, which can help the system stay in balance mode.
The fourth section presents a comparison of the per-

formance of the proposed method in terms of the degree
of imbalance (DI) to assess the load balancing of the
system. The experiments were conducted with the same
datasets as in the previous experiment sections. These exper-
iments were tested on 100 VMs and 200, 400, 600, 800,
and 1000 tasks. The proposed method (MOABCQ) was
compared with Max-Min, FCFS, Q-learning, HABC_LJF,
MOPSO, and MOCS. The results are shown in Table 4.
When testing on a random dataset and GoCJ dataset, the DI
values of MOABCQ_LJF were the lowest, indicating that
MOABCQ_LJF can distribute tasks more equally to existing
resources in the system than the other methods. However,
when using the Synthetic workload dataset, we found that
in the case of setting tasks in the system equal to 200,
600, 800 and 1000 tasks, MOABCQ_LJF gave a lower DI
value than the other methods. Unless testing with 400 tasks,
MOABCQ_FCFS had the lowest DI value. When compared
to MOABCQ_LJF, MOABCQ_FCFS can distribute tasks
better than MOABCQ_LJF at 4.37%.

According to the testing with all three datasets, the
MOABCQ method was found to be able to equally distribute
the task to the available resources in the system, which
resulted in a low DI value. If we consider the proposed
method in depth, it reveals that MOABCQ_LJF performed
more efficiently than the other compared methods. However,
it depends on the dataset being tested.
The final section presents a comparison of the perfor-

mance of the proposed method from a cost perspective to
assess the costs or overheads when accessing cloud com-
puting by executing 3 datasets. The experimental results are
shown in Fig. 5. Considering Fig. 5(a), using the random
dataset, MOABCQ was found to be able to reduce cost more
than the MOCS, MOPSO, Q-learning, HABC_LJF, FCFS,
and Max-Min. When MOABCQ_FCFS was compared with
MOABCQ_LJF, it indicated that MOABCQ_LJF has lower
cost than MOABCQ_FCFS by approximately 3.38%. How-
ever, with 1000 tasks, the MOABCQ_LJF algorithm costs
4.88% more than the MOABCQ_FCFS algorithm.

When testing with the GoCJ dataset, the results in Fig. 5(b)
show that MOABCQ was able to reduce costs more than

FIGURE 5. Comparison of the performance in terms of cost on various
dataset.

the other methods in the same way as when using the
random dataset. When comparing MOABCQ_FCFS with
MOABCQ_LJF and testing on 200, 400, and 800 tasks,

VOLUME 10, 2022 17815

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

TABLE 4. Comparison of the performance in terms of DI on various datasets.

we found that the MOABCQ_LJF algorithm has a lower
cost than the MOABCQ_FCFS algorithm at approx-
imately 20.79%. In addition, when testing with 600
and 1000 tasks, MOABCQ_FCFS was found to have a
higher cost than the MOABCQ_LJF method by 0.48% on
average.

When testing with the Synthetic workload dataset, the
results in Fig. 5(c) show that the MOABCQ method has a
lower cost than the other comparison methods in the same
way as when testing with the previous two datasets. After
comparing MOABCQ_FCFS and MOABCQ_LJF, in the
case of setting tasks in the system equal to 200, 600, 800,
and 1000 tasks, the MOABCQ_LJF algorithm was found
to have lower cost than MOABCQ_FCFS, except for 400
tasks, MOABCQ_FCFS has lower cost than MOABCQ_LJF
method at 1.90%.

According to the testing with all three datasets, the pro-
posed method of MOABCQ was able to reduce costs more
than the other comparison methods. However, when com-
paring MOABCQ_LJF and MOABCQ_FCFS, we found
that MOABCQ_LJF can be more appropriately used for
task scheduling with existing resources in the system than
MOABCQ_FCFS. Considering the difference in the per-
centage between the two methods, MOABCQ_LJF has a
smaller percentage. However, it depends on the dataset to be
tested.

E. THE TIME COMPLEXITY OF MOABCQ METHOD
The time complexity of MOABCQ method can be calculated
as: in ABC, an initial population of n is given and the bee is
classified into Employed bees and Onlooker bee. Therefore,
the number of iterations to find suitable VMs in the cloud
is n and the number of updated data in the Q-table is n as
well. As a result, the time complexity of MOABCQ is O(n).
If ABC repeats this step k times, the time complexity is equal
to k × O(n). Since k is a constant, the total time complexity
of MOABCQ is equal to O(n).

VI. CONCLUSION
In this article, we propose the multi-objective optimization
scheduling method in heterogeneous cloud computing using
the MOABCQmethod. This method considered the selection
of suitable VMs based on calculating the fitness of each
VM. Heuristic approaches which are FCFS and LJF were
also included. The experiments were conducted with various
datasets to observe the performance of the proposed algo-
rithms. The proposed method helps load balancing tasks with
existing resources in the system and also improves makespan
reduction, DI reduction, cost reduction, and throughput and
ARUR increases when compared to the Max-Min, FCFS,
Q-learning, HABC_LJF, MOPSO, and MOCS algorithms.
The experimental results indicated that the proposed method
outperformed the others. However, we cannot guarantee that
the MOABCQ_LJF algorithm is optimal. Nevertheless, the
performance of the system cannot be optimized in every test
dataset.

Task scheduling in a multi-cloud, fog cloud, or edge cloud
environment can be challenging and interesting work in the
future. We propose a scheduling arrangement method in dif-
ferent environments. Other machine learning algorithms may
also be applied further. In addition, the proposed method can
also be tested in a real-world environment to observe the
performance of the MOABCQ method.

REFERENCES

[1] T. S. George and V. P. S. Kumar, ‘‘Multicloud computing for on-demand
resource provisioning using clustering,’’ in Proc. 3rd Int. Conf. Sustain.
Energy Intell. Syst. (SEISCON), 2012, pp. 435–440.

[2] S. Yang, L. Pan, Q. Wang, S. Liu, and S. Zhang, ‘‘Subscription or pay-as-
you-go: Optimally purchasing IaaS instances in public clouds,’’ in Proc.
IEEE Int. Conf. Web Services (ICWS), Jul. 2018, pp. 219–226.

[3] D. Ardagna, G. Casale,M. Ciavotta, J. F. Pérez, andW.Wang, ‘‘Quality-of-
service in cloud computing: Modeling techniques and their applications,’’
J. Internet Services Appl., vol. 5, pp. 1–17, Dec. 2014.

[4] K. Psychas and J. Ghaderi, ‘‘On non-preemptive VM scheduling in the
cloud,’’ Proc. ACM Meas. Anal. Comput. Syst., vol. 1, no. 2, pp. 1–29,
Dec. 2017, doi: 10.1145/3154493.

17816 VOLUME 10, 2022

http://dx.doi.org/10.1145/3154493

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

[5] S. Crago, K. Dunn, P. Eads, L. Hochstein, D. Kang, M. Kang, D. Modium,
K. Singh, J. Suh, and J. Walters, ‘‘Heterogeneous cloud computing,’’
in Proc. IEEE Int. Conf. Clust. Comput., Austin, TX, USA, Feb. 2011,
pp. 378–385, doi: 10.1109/CLUSTER.2011.49.

[6] J. W. M. Bush, B. A. Thurber, and F. Blanchette, ‘‘Particle clouds in homo-
geneous and stratified environments,’’ J. Fluid Mech., vol. 489, pp. 29–54,
Jul. 2003, doi: 10.1017/S0022112003005160.

[7] R. Messier, ‘‘Virtual servers and platform as a service,’’ in Proc. Col-
laboration Cloud Comput. Secur., Social Media, Unified Commun., 2014,
pp. 77–91, doi: 10.1016/B978-0-12-417040-7.00005-8.

[8] O. Alsaryrah, I. Mashal, and T.-Y. Chung, ‘‘Bi-objective optimiza-
tion for energy aware Internet of Things service composition,’’ IEEE
Access, vol. 6, pp. 26809–26819, 2018, doi: 10.1109/ACCESS.2018.
2836334.

[9] L. Liu, M. Zhang, R. Buyya, and Q. Fan, ‘‘Deadline-constrained coevo-
lutionary genetic algorithm for scientific workflow scheduling in cloud
computing,’’ Concurr. Comput. Pract. Exp., vol. 29, no. 5, p. e3942, 2017,
doi: 10.1002/cpe.3942.

[10] Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang, ‘‘A market-oriented hierar-
chical scheduling strategy in cloud workflow systems,’’ J. Supercomput.,
vol. 63, no. 1, pp. 256–293, 2013, doi: 10.1007/s11227-011-0578-4.

[11] D. Yagyasen, M. Darbari, P. K. Shukla, and V. K. Singh, ‘‘Diversity and
convergence issues in evolutionary multiobjective optimization: Applica-
tion to agriculture science,’’ IERI Proc., vol. 5, pp. 81–86, Oct. 2013, doi:
10.1016/j.ieri.2013.11.074.

[12] F. Luo, Y. Yuan, W. Ding, and H. Lu, ‘‘An improved particle swarm
optimization algorithm based on adaptive weight for task scheduling in
cloud computing,’’ in Proc. 2nd Int. Conf. Comput. S. App. Eng., 2018,
pp. 1–5, doi: 10.1145/3207677.3278089.

[13] I. Alharkan, M. Saleh, M. A. Ghaleb, H. Kaid, A. Farhan, and A. Almar-
fadi, ‘‘Tabu search and particle swarm optimization algorithms for two
identical parallel machines scheduling problem with a single server,’’
J. King Saud Univ.-Eng. Sci., vol. 32, no. 5, pp. 330–338, Jul. 2020, doi:
10.1016/j.jksues.2019.03.006.

[14] S. Basu, M. Karuppiah, K. Selvakumar, and K. Li, ‘‘An intelli-
gent/cognitive model of task scheduling for IoT applications in cloud com-
puting environment,’’ Future Gener. Comput. Syst., vol. 88, pp. 254–261,
Nov. 2018, doi: 10.1016/j.future.2018.05.056.

[15] J. Horn, N. Nafpliotis, and D. E. Goldberg, ‘‘A niched Pareto genetic
algorithm for multiobjective optimization,’’ in Proc. 1st IEEE Conf. Evol.
Comput. World Congr. Comput. Intell., vol. 1, Jun. 1994, pp. 82–87, doi:
10.1109/ICEC.1994.350037.

[16] J. Knowles and D. Corne, ‘‘Approximating the nondominated front using
the Pareto archived evolution strategy,’’ Evol. Comput., vol. 8, no. 2,
pp. 149–172, Jan. 2000, doi: 10.1162/106365600568167.

[17] D. Karaboga, ‘‘An idea based on honey bee swarm for numerical optimiza-
tion,’’ ERU, Kayseri, Turkey, Tech. Rep.-tr06, Oct. 2005.

[18] B. Akay and D. Karaboga, ‘‘A modified artificial bee colony algorithm
for real-parameter optimization,’’ Inf. Sci., vol. 192, no. 1, pp. 120–142,
Apr. 2012, doi: 10.1016/j.ins.2010.07.015.

[19] D. Karaboga and B. Gorkemli, ‘‘A combinatorial artificial bee colony
algorithm for traveling salesman problem,’’ in Proc. Int. Symp. Innov.
Intell. Syst. Appl., Jun. 2011, pp. 50–53.

[20] X. Li, D. Peng, B. Du, J. Guo,W. Xu, andK. Zhuang, ‘‘Hybrid artificial bee
colony algorithm with a rescheduling strategy for solving flexible job shop
scheduling problems,’’ Comput. Ind. Eng., vol. 113, pp. 10–26, Nov. 2017,
doi: 10.1016/j.cie.2017.09.005.

[21] J. D. Ullman, ‘‘NP-complete scheduling problems,’’ J. Comput. Syst. Sci.,
vol. 10, no. 3, pp. 384–393, 1975.

[22] Y. Mao, X. Chen, and X. Li, ‘‘Max-min task scheduling algorithm for load
balance in cloud computing,’’ in Proc. Int. Conf. Comput. Sci. Inf. Technol.,
2014, pp. 457–465.

[23] T. Islam and M. S. Hasan, ‘‘A performance comparison of load balancing
algorithms for cloud computing,’’ in Proc. Int. Conf. Frontiers Adv. Data
Sci. (FADS), Oct. 2017, pp. 130–135.

[24] G. Patel, R. Mehta, and U. Bhoi, ‘‘Enhanced load balanced min-min
algorithm for static meta task scheduling in cloud computing,’’ Proc.
Comput. Sci., vol. 57, pp. 545–553, Jan. 2015, doi: 10.1016/j.procs.2015.
07.385.

[25] H. Zhang, J. Shi, B. Deng, G. Jia, G. Han, and L. Shu, ‘‘MCTE: Minimizes
task completion time and execution cost to optimize scheduling perfor-
mance for smart grid cloud,’’ IEEE Access, vol. 7, pp. 134793–134803,
2019, doi: 10.1109/ACCESS.2019.2942067.

[26] A. Hussain, M. Aleem, A. Khan, M. A. Iqbal, and M. A. Islam,
‘‘RALBA: A computation-aware load balancing scheduler for cloud com-
puting,’’ Cluster Comput., vol. 21, no. 3, pp. 1667–1680, 2018, doi:
10.1007/s10586-018-2414-6.

[27] B. Mondal, K. Dasgupta, and P. Dutta, ‘‘Load balancing in cloud
computing using stochastic hill climbing—A soft computing
approach,’’ Proc. Technol., vol. 4, pp. 783–789, Jun. 2012, doi:
10.1016/j.protcy.2012.05.128.

[28] M. Adhikari and S. Koley, ‘‘Cloud computing: A multi-workflow schedul-
ing algorithm with dynamic reusability,’’ Arabian J. Sci. Eng., vol. 43,
no. 2, pp. 645–660, Feb. 2018, doi: 10.1007/s13369-017-2739-0.

[29] B. Shrimali and H. Patel, ‘‘Multi-objective optimization oriented policy
for performance and energy efficient resource allocation in cloud environ-
ment,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 32, no. 7, pp. 860–869,
Sep. 2020, doi: 10.1016/j.jksuci.2017.12.001.

[30] C.-W. Tsai and J. J. P. C. Rodrigues, ‘‘Metaheuristic scheduling for cloud:
A survey,’’ IEEE Syst. J., vol. 8, no. 1, pp. 279–291, Mar. 2014, doi:
10.1109/JSYST.2013.2256731.

[31] M. Kalra and S. Singh, ‘‘A review of metaheuristic scheduling techniques
in cloud computing,’’ Egyptian Informat. J., vol. 16, no. 3, pp. 275–295,
2015, doi: 10.1016/j.eij.2015.07.001.

[32] F. Ramezani, J. Lu, J. Taheri, and F. K. Hussain, ‘‘Evolutionary algorithm-
based multi-objective task scheduling optimization model in cloud envi-
ronments,’’ World Wide Web, vol. 18, no. 6, pp. 1737–1757, 2015, doi:
10.1007/s11280-015-0335-3.

[33] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, ‘‘A multi-objective
optimization scheduling method based on the ant colony algorithm in
cloud computing,’’ IEEE Access, vol. 3, pp. 2687–2699, 2015, doi:
10.1109/ACCESS.2015.2508940.

[34] X. Guo, ‘‘Multi-objective task scheduling optimization in cloud computing
based on fuzzy self-defense algorithm,’’ Alexandria Eng. J., vol. 60, no. 6,
pp. 5603–5609, Dec. 2021.

[35] M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A. Torkey, ‘‘Cloud task
scheduling based on ant colony optimization,’’ in Proc. 8th Int. Conf.
Comput. Eng. Syst. (ICCES), Nov. 2013, pp. 64–69.

[36] Z. Chen, K. Du, Z. Zhan, and J. Zhang, ‘‘Deadline constrained cloud
computing resources scheduling for cost optimization based on dynamic
objective genetic algorithm,’’ in Proc. CEC, 2015, pp. 708–714, doi:
10.1109/CEC.2015.7256960.

[37] Z. Amini, M. Maeen, and M. R. Jahangir, ‘‘Providing a load balancing
method based on dragonfly optimization algorithm for resource alloca-
tion in cloud computing,’’ Int. J. Netw. Distrib. Comput., vol. 6, no. 1,
pp. 35–42, 2018, doi: 10.2991/ijndc.2018.6.1.4.

[38] M. S. Sanaj and P. M. Joe Prathap, ‘‘An efficient approach to the map-
reduce framework and genetic algorithm based whale optimization algo-
rithm for task scheduling in cloud computing environment,’’Mater. Today,
Process., vol. 37, pp. 3199–3208, Oct. 2021.

[39] F. Farahnakian, P. Liljeberg, and J. Plosila, ‘‘Energy-efficient virtual
machines consolidation in cloud data centers using reinforcement learn-
ing,’’ in Proc. 22nd Euromicro Int. Conf. Parallel Distrib. Netw.-Based
Process., Turin, Italy, 2014, pp. 500–507.

[40] S. Ismaeel, R. Karim, and A. Miri, ‘‘Proactive dynamic virtual-machine
consolidation for energy conservation in cloud data centres,’’ J. Cloud
Comput., vol. 7, no. 1, pp. 1–28, Dec. 2018, doi: 10.1186/s13677-018-
0111-x.

[41] U. Rugwiro, C. Gu, and W. Ding, ‘‘Task scheduling and resource allo-
cation based on ant-colony optimization and deep reinforcement learn-
ing,’’ J. Internet Technol., vol. 20, no. 5, pp. 1463–1475, 2019, doi:
10.3966/160792642019092005013.

[42] J.-Q. Li and Y.-Q. Han, ‘‘A hybrid multi-objective artificial bee colony
algorithm for flexible task scheduling problems in cloud computing sys-
tem,’’ Cluster Comput., vol. 23, no. 4, pp. 2483–2499, Dec. 2020, doi:
10.1007/s10586-019-03022-z.

[43] B. Kruekaew and W. Kimpan, ‘‘Enhancing of artificial bee colony algo-
rithm for virtual machine scheduling and load balancing problem in cloud
computing,’’ Int. J. Comput. Intell. Syst., vol. 13, no. 1, pp. 496–510, 2020,
doi: 10.2991/ijcis.d.200410.002.

[44] G.-N. Gan, T.-L. Huang, and S. Gao, ‘‘Genetic simulated annealing algo-
rithm for task scheduling based on cloud computing environment,’’ inProc.
Int. Conf. Intell. Comput. Integr. Syst., Oct. 2010, pp. 60–63.

[45] D. Alsadie, ‘‘A metaheuristic framework for dynamic virtual machine allo-
cation with optimized task scheduling in cloud data centers,’’ IEEE Access,
vol. 9, pp. 74218–74233, 2021, doi: 10.1109/ACCESS.2021.3077901.

VOLUME 10, 2022 17817

http://dx.doi.org/10.1109/CLUSTER.2011.49
http://dx.doi.org/10.1017/S0022112003005160
http://dx.doi.org/10.1016/B978-0-12-417040-7.00005-8
http://dx.doi.org/10.1109/ACCESS.2018.2836334
http://dx.doi.org/10.1109/ACCESS.2018.2836334
http://dx.doi.org/10.1002/cpe.3942
http://dx.doi.org/10.1007/s11227-011-0578-4
http://dx.doi.org/10.1016/j.ieri.2013.11.074
http://dx.doi.org/10.1145/3207677.3278089
http://dx.doi.org/10.1016/j.jksues.2019.03.006
http://dx.doi.org/10.1016/j.future.2018.05.056
http://dx.doi.org/10.1109/ICEC.1994.350037
http://dx.doi.org/10.1162/106365600568167
http://dx.doi.org/10.1016/j.ins.2010.07.015
http://dx.doi.org/10.1016/j.cie.2017.09.005
http://dx.doi.org/10.1016/j.procs.2015.07.385
http://dx.doi.org/10.1016/j.procs.2015.07.385
http://dx.doi.org/10.1109/ACCESS.2019.2942067
http://dx.doi.org/10.1007/s10586-018-2414-6
http://dx.doi.org/10.1016/j.protcy.2012.05.128
http://dx.doi.org/10.1007/s13369-017-2739-0
http://dx.doi.org/10.1016/j.jksuci.2017.12.001
http://dx.doi.org/10.1109/JSYST.2013.2256731
http://dx.doi.org/10.1016/j.eij.2015.07.001
http://dx.doi.org/10.1007/s11280-015-0335-3
http://dx.doi.org/10.1109/ACCESS.2015.2508940
http://dx.doi.org/10.1109/CEC.2015.7256960
http://dx.doi.org/10.2991/ijndc.2018.6.1.4
http://dx.doi.org/10.1186/s13677-018-0111-x
http://dx.doi.org/10.1186/s13677-018-0111-x
http://dx.doi.org/10.3966/160792642019092005013
http://dx.doi.org/10.1007/s10586-019-03022-z
http://dx.doi.org/10.2991/ijcis.d.200410.002
http://dx.doi.org/10.1109/ACCESS.2021.3077901

B. Kruekaew, W. Kimpan: Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment

[46] H. He, G. Xu, S. Pang, and Z. Zhao, ‘‘AMTS: Adaptive multi-objective
task scheduling strategy in cloud computing,’’ China Commun., vol. 13,
no. 4, pp. 162–171, Apr. 2016, doi: 10.1109/CC.2016.7464133.

[47] R. Jena, ‘‘Task scheduling in cloud environment: A multi-objective
ABC framework,’’ J. Inf. Optim. Sci., vol. 38, pp. 1–19, Jan. 2017, doi:
02522667.2016.1250460.

[48] A. Kumar and M. Venkatesan, ‘‘Multi-objective task scheduling using
hybrid genetic-ant colony optimization algorithm in cloud environ-
ment,’’ Wireless Pers. Commun., vol. 107, pp. 1835–1848, 2019, doi:
10.1007/s11277-019-06360-8.

[49] G. N. Reddy and S. P. Kumar, ‘‘Multi objective task scheduling algo-
rithm for cloud computing using whale optimization technique,’’ in Proc.
Int. Conf. Next Gener. Comput., Technol. Singapore: Springer, 2017,
pp. 286–297.

[50] S. H. H. Madni, M. S. A. Latiff, J. Ali, and S. M. Abdulhamid, ‘‘Multi-
objective-oriented cuckoo search optimization-based resource scheduling
algorithm for clouds,’’ Arabian J. Sci. Eng., vol. 44, no. 4, pp. 3585–3602,
2019, doi: 10.1007/s13369-018-3602-7.

[51] S. Pang, W. Li, H. He, Z. Shan, and X. Wang, ‘‘An EDA-GA
hybrid algorithm for multi-objective task scheduling in cloud com-
puting,’’ in IEEE Access, vol. 7, pp. 146379–146389, 2019, doi:
10.1109/ACCESS.2019.2946216.

[52] P. Neelima and A. R. M. Reddy, ‘‘An efficient load balancing system
using adaptive dragonfly algorithm in cloud computing,’’Cluster Comput.,
vol. 23, pp. 2891–2899, 2020, doi: 10.1007/s10586-020-03054-w.

[53] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi, ‘‘Osmotic bio-inspired
load balancing algorithm in cloud computing,’’ IEEE Access, vol. 7,
pp. 42735–42744, 2019, doi: 10.1109/ACCESS.2019.2907615.

[54] U. A. Butt, M. Mehmood, S. B. H. Shah, R. Amin, M. W. Shaukat,
S. M. Raza, D. Y. Suh, and M. J. Piran, ‘‘A review of machine learn-
ing algorithms for cloud computing security,’’ Electronics, vol. 9, no. 9,
p. 1379, Aug. 2020, doi: 10.3390/electronics9091379.

[55] L. Caviglione, M. Gaggero, M. Paolucci, and R. Ronco, ‘‘Deep reinforce-
ment learning for multi-objective placement of virtual machines in cloud
datacenters,’’ Soft. Comput., vol. 25, pp. 12569–12588, Oct. 2021, doi:
10.1007/s00500-020-05462-x.

[56] U. K. Jena, P. K. Das, and M. R. Kabat, ‘‘Hybridization of meta-
heuristic algorithm for load balancing in cloud computing environment,’’
J. King Saud Univ.-Comput. Inf. Sci., early access. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1319157819309267,
doi: 10.1016/j.jksuci.2020.01.012.

[57] T. Thein, M. M. Myo, S. Parvin, and A. Gawanmeh, ‘‘Reinforcement
learning based methodology for energy-efficient resource allocation in
cloud data centers,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 32, no. 10,
pp. 1127–1139, Dec. 2020, doi: 10.1016/j.jksuci.2018.11.005.

[58] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, ‘‘Analysis and lessons
from a publicly available Google cluster trace,’’ EECS Dep., RAD Lab,
Univ. California Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-
2010-95, Jun. 2010.

[59] R. T. Marler and J. S. Arora, ‘‘The weighted sum method for multi-
objective optimization: New insights,’’ Struct. Multidisciplinary Optim.,
vol. 41, no. 6, pp. 853–862, Jun. 2010, doi: 10.1007/s00158-009-0460-7.

[60] I. Y. Kim and O. L. de Weck, ‘‘Adaptive weighted-sum method for bi-
objective optimization: Pareto front generation,’’ Struct. Multidisciplinary
Optim., vol. 29, no. 2, pp. 149–158, 2005, doi: 10.1007/s00158-004-
0465-1.

[61] A. Abdelsamea, A. A. El-Moursy, E. E. Hemayed, and H. Eldeeb, ‘‘Vir-
tual machine consolidation enhancement using hybrid regression algo-
rithms,’’ Egyptian Inform. J., vol. 18, no. 3, pp. 161–170, Nov. 2017, doi:
10.1016/j.eij.2016.12.002.

[62] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[63] S. Fairee, S. Prom-On, and B. Sirinaovakul, ‘‘Reinforcement learning for
solution updating in artificial bee colony,’’ PLoS ONE, vol. 13, no. 7,
Jul. 2018, Art. no. e0200738, doi: 10.1371/journal.pone.0200738.

[64] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, pp. 459–471, Nov. 2007, doi: 10.1007/s10898-
007-9149-x.

[65] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011, doi: 10.1002/spe.995.

[66] A. Hussain and M. Aleem, ‘‘GoCJ: Google cloud jobs dataset for dis-
tributed and cloud computing infrastructures,’’ Data, vol. 3, no. 4, p. 38,
2018, doi: 10.3390/data3040038.

[67] H. Saleh, H. Nashaat, W. Saber, and H. M. Harb, ‘‘IPSO task scheduling
algorithm for large scale data in cloud computing environment,’’ IEEE
Access, vol. 7, pp. 5412–5420, 2018.

BOONHATAI KRUEKAEW received the B.Sc.
degree in computer science from the Prince of
Songkla University, Hat Yai, Songkhla, Thailand,
and the M.Sc. degree in computer science from
the King Mongkut’s Institute of Technology
Ladkrabang, Bangkok, Thailand, where she is cur-
rently pursuing the Ph.D. degree. Her research
interests include cloud computing, algorithm,
artificial intelligence, and swarm intelligence.

WARANGKHANA KIMPAN (Member, IEEE)
received the Ph.D. degree in system information
engineering from Kagoshima University, Japan.
She is currently an Assistant Professor with
the Department of Computer Science, School of
Science, King Mongkut’s Institute of Technol-
ogy Ladkrabang, Bangkok, Thailand. Her main
research interests include swarm intelligence,
biomedical engineering, big data, data science and
analytics, cloud computing, and the Internet of
Things.

17818 VOLUME 10, 2022

http://dx.doi.org/10.1109/CC.2016.7464133
http://dx.doi.org/02522667.2016.1250460
http://dx.doi.org/10.1007/s11277-019-06360-8
http://dx.doi.org/10.1007/s13369-018-3602-7
http://dx.doi.org/10.1109/ACCESS.2019.2946216
http://dx.doi.org/10.1007/s10586-020-03054-w
http://dx.doi.org/10.1109/ACCESS.2019.2907615
http://dx.doi.org/10.3390/electronics9091379
http://dx.doi.org/10.1007/s00500-020-05462-x
http://dx.doi.org/10.1016/j.jksuci.2020.01.012
http://dx.doi.org/10.1016/j.jksuci.2018.11.005
http://dx.doi.org/10.1007/s00158-009-0460-7
http://dx.doi.org/10.1007/s00158-004-0465-1
http://dx.doi.org/10.1007/s00158-004-0465-1
http://dx.doi.org/10.1016/j.eij.2016.12.002
http://dx.doi.org/10.1371/journal.pone.0200738
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.3390/data3040038

