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ABSTRACT Local path planning considering static and dynamic obstacles for a mobile robot is one of
challenging research topics. Conventional local path planningmethods generate path candidates by assuming
constant velocities for a certain period time. Therefore, path candidates consist of straight line and arc
paths. These path candidates are not suitable for dynamic environments and narrow spaces. This paper
proposes a novel local path planning method based on dynamic window approach with virtual manipulators
(DWV). DWV consists of dynamic window approach (DWA) and virtual manipulator (VM). DWA is the
local path planning method that performs obstacle avoidance for static obstacles under robot constraints.
DWA also generates straight line and arc path candidates by assuming constant velocities. VM generates
velocities of reflective motion by using virtual manipulators and environmental information. DWV generates
path candidates by variable velocities modified by VM and predicted positions of static and dynamic
obstacles. Therefore, in an environment with dynamic obstacles, the obstacle-avoidable paths which include
non-straight line and non-arc paths are generated. The effectiveness of the proposed method was confirmed
from simulation and experimental results.

INDEX TERMS Path planning, motion planning, collision avoidance, mobile robot, dynamic window
approach.

I. INTRODUCTION
In recent years, research on service robots have been active
due to infectious diseases and aging population. Service
robots will be used more and more in the future to create a
labor force instead of people [1]–[3]. These service robots
are required to move around in dynamic environments and
narrow spaces where robots can coexist with people [4].

Autonomous mobile robot systems are generally com-
posed of localization [5], mapping [6], perception [7] and
path planning [8]. Path planning has to consider static and
dynamic obstacles. Path planning is roughly classified into
two types; global path planning and local path planning.
Global path planning generates a path that does not collide
with obstacles based on a prior map [9]–[11]. However,
global path planning cannot consider obstacles that do not
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exist in the prior map. Therefore, local path planning gen-
erates paths from sensors information in real-time. Local
path planning deals with obstacles that are not on the prior
map [12], [13].

This paper focuses on local path planning methods. Many
local path planning methods were reported for the collision
avoidance against static and dynamic obstacles [14], [15].
Fiorini and Shiller proposed a local path planning method
for multi-robots called Velocity Obstacle (VO) [16]. VO con-
siders dynamic obstacle avoidance by using velocity spaces.
Berg et al. expanded VO for smooth and vibration-free path
planning [17]. Xu et al. reported VO considering obstacles
velocities that are larger than the maximum speed of the
robot [18]. There are useful local path planning methods
based on VO for multi-robot systems [16]–[19]. However,
when VO methods generate velocity of obstacle-avoidable
path candidates by using velocity space, robots velocities
are assumed as constant. Thus, the path candidates of robots
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are a straight line and arc paths under the non-holonomic
constraint. Therefore, the path candidates of robots decrease
in narrow and dynamic environments because the robot col-
lides with obstacles. These VO methods also do not consider
dynamics constraints.

There are local path planning methods considering kine-
matics and dynamics constraints. Fox et al. reported dynamic
window approach (DWA) [20]. DWA generates path candi-
dates by using the velocity space with dynamics constraints
(VSD). VSD is the velocity space that the robot can gen-
erate from current velocities. DWA selects the optimal path
from path candidates. Dobrevski et al. reported local path
planning based on DWA and deep reinforcement learning
to improve path optimization [21]. Liu et al. developed
the global dynamic path planning fusion algorithm combin-
ing jump-A* algorithm and DWA [22]. In addition, several
useful local path planning methods based on DWA were
reported [20]–[22]. However, DWAgenerates path candidates
by assuming constant velocities for a certain period time.
Therefore, path candidates are straight line and arc paths.
These path candidates are not suitable in dynamic environ-
ments and narrow spaces, since these path candidates do not
consider obstacles. In other words, many path candidates with
collisions are generated in dynamic environments and narrow
spaces.

There are local path planning methods to generate
the path candidates including non-straight and non-arc
paths. Howard et al. proposed State Lattice Planner (SLP)
[23], [24]. SLP generates the path candidates by using data
sets of robot states and robot constraints. However, SLP may
not generate path candidates if there are obstacles near the
robot. We reported the local path planning method based
on virtual manipulators (VM) and DWA [25]. VM was
reported by Yamazaki and Inaba [26]. In narrow spaces with
static obstacles, our method achieved better results com-
pared with DWA. However, our method did not consider
dynamic obstacles and guarantee path candidates at velocities
within VSD.

In order to consider static and dynamic obstacles and guar-
antee path candidates at velocities within VSD, this paper
proposes dynamic window approach with virtual manipu-
lators (DWV). DWV is a novel generation method of path
candidates including non-straight and non-arc paths. DWV
generates path candidates by variable velocities modified by
VM and predicted positions of static and dynamic obstacles.
Therefore, in an environment with static and dynamic obsta-
cles, the obstacle-avoidable paths which include non-straight
line and non-arc paths are generated. Extensive simulations
and experiments were conducted to verify the effectiveness
of DWV.

This paper consists of seven sections including this one.
Section II shows the modeling of the robot. Section III
explains DWA as the conventional method. Section IV pro-
poses DWV. In Sections V andVI, simulation and experimen-
tal results are shown to confirm the usefulness of the proposed
method. Section VII concludes this paper.

FIGURE 1. Coordinate system of mobile robot.

II. MODELING OF WHEELED MOBILE ROBOT
Fig. 1 shows the coordinate system of the robot. This paper
defines the local coordinate system 6LC and the global coor-
dinate system6GB. The value in the global coordinate system
is expressed as the superscript GB©. The variable of the local
coordinate system does not have the superscript. The origin of
the global coordinate system is set as an initial robot position.
The origin of the local coordinate system is set as the center
point of both wheels. As shown in Fig. 1, (GBx, GBy) and
the angle GBθ refer to the position and angle of the robot
in the global coordinate system. The velocities of the global
coordinate system GBẋ, GBẏ, and GBθ̇ are derived as follows.

GBθ̇ = ω (1)
GBẋ = v cos GBθ (2)
GBẏ = v sin GBθ (3)

where v and ω are translational and angular velocities. GBθ
and (GBx,GB y) after t seconds are calculated as follows.

GBθ =

∫ t

0
ω dt (4)

GBx =
∫ t

0
υ · cos GBθ dt (5)

GBy =
∫ t

0
υ · sin GBθ dt (6)

III. DYNAMIC WINDOW APPROACH (DWA)
A. OVERVIEW OF DWA
DWA is one of the practical local path planning methods
[20]. Fig. 2 shows the overview of DWA. Fig. 2(a) shows the
flowchart of DWA. In this paper, DWA is implemented by
3 steps.

• Velocity Space with Dynamics Constraint (Step 1)
As shopwn in Fig. 2(b), the velocity space with dynam-
ics constraint (VSD) is generated from current robot
velocities and robot specifications.

• Path Candidates (Step 2)
As shown in Fig. 2(c), DWA generates path candidates
by assuming constant velocities within VSD. The color
of path candidates is pink.

• Optimal Path (Step 3)
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FIGURE 2. Overview of DWA.

As shown in Fig. 2(d), DWA selects the optimal path
from path candidates by the cost function. The color of
the optimal path, collision paths, and no collision paths
are red, green, and yellow. By using the velocity of the
optimal path, the robot moves while avoiding obstacles.

The detail of each step is expressed in
subsections III.B to III.D.

B. VELOCITY SPACE WITH DYNAMICS
CONSTRAINT (STEP 1)
Fig. 2(b) shows the image diagram of VSD. In this paper,
DWA generates VSD by three steps.

1) STEP 1-1: ALL VELOCITIES SPACE Sall

All of the velocity space Sall , which is determined from the
robot specification, is described as follows.

Sall = {(v, ω)|v ∈ [Vmin,Vmax] ∧ ω ∈ [�min, �max]} (7)

where Vmin, Vmax , �min and �max are the minimum and
maximum translational and angular velocities.

2) STEP 1-2: VELOCITIES SPACE OF DYNAMIC WINDOW Sdw

The velocities space of dynamic window Sdw, which is the
velocities the robot can generate velocities until the next time
step, is expressed as follows.

Sdw = {(v, ω)|v ∈ [vres − Amax1T , vres + Amax1T ]

∧ω ∈ [ωres −Πmax1T , ωres +Πmax1T ]} (8)

where vres and ωres are translational and angular velocity
responses as the current velocities. Amax and Πmax are max-
imum translational and angular acceleration. 1T represents
time step.

3) STEP 1-3: VELOCITY SPACE WITH DYNAMICS
CONSTRAINT Svsd

As shown in Fig. 2(b), Svsd is as follows.

Svsd = Sall ∩ Sdw (9)

= {(v, ω) | v ∈ [vini, vend ]

wedge ω ∈ [ωini, ωend ]} (10)

where vini and ωini are minimum translational and angular
velocities in Svsd . vend and ωend are maximum translational
and angular velocities in Svsd .

C. GENERATION OF PATH CANDIDATES (STEP 2)
Algorithm 1 shows the pseudo code of path candidates by
DWA (Step 2). N tlv, N agv, and N all mean the maximum
number for translational velocity, angular velocity, and path
candidates. DWA divides the velocity space Svsd into N tlv

for translational velocity axis and N agv for angular velocity
axis. N all constant velocity pairs are generated from (N tlv

·

N agv). Thus, N all constant velocity pairs generates N all path
candidates of the robotOrob. Path candidates of the robotOrob

Algorithm 1 Path Candidates by DWA
1: // Initialization
2: g← 1, i← 1
3: // HStep 2-1a
4: while N tlv > g do
5: h← 1
6: vdwa← vini +∆v(g− 1)
7: // HStep 2-2a
8: while N agv > h do
9: ωdwa← ωini +∆ω(h− 1)

10: // HStep 2-3a
11: while f max > f do
12: < xrobf , yrobf , θ robf >← onePath(vdwa, ωdwa)
13: < X rob

i ,Y robi ,2rob
i >←< xrobf , yrobf , θ robf >

14: f ← f + 1
15: end while
16: Probi ←< X rob

i ,Y robi ,2rob
i >

17: Orob← Probi
18: i← i+ 1
19: h← h+ 1
20: end while
21: g← g+ 1
22: end while
23: return Orob
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are expressed as follows.

Orob = [Prob1 · · ·P
rob
i · · ·P

rob
N all ]

T (11)

Probi = [X rob
i Y robi 2rob

i ]T (12)

where Probi represents the i-th path candidate of the robot.
X rob
i , Y robi , and 2rob

i represent position and attitude of the
robot. The detail of Algorithm 1 is explained as follows.

1) STEP 2-1A (ALGORITHM 1 LINES 3–6)
DWA divides the velocity space Svsd into N tlv for the transla-
tional velocity axis. The translational velocity vdwa is selected
as follows.

vdwa = vini +∆v(g− 1) (13)

where∆v means step translational velocity. g (1 ≤ g ≤ N tlv)
represents number for translational velocity.

2) STEP 2-2A (ALGORITHM 1 LINES 7–9)
DWA divides the velocity space Svsd into N agv for angular
velocity axis. The angular velocity ωdwa is selected as fol-
lows.

ωdwa = ωini +∆ω(h− 1) (14)

where ∆ω means step angular velocity. h (1 ≤ h ≤ N agv)
represents number for angular velocity.

3) STEP 2-3A (ALGORITHM 1 LINES 10–14)
The i-th path candidate Probi is calculated from (vdwa, ωdwa).
In Algorithm 1 (line 12), onePath(vdwa, ωdwa) is expressed as
follows.

X rob
i = [xrob1 · · · x

rob
f · · · x

rob
f max ]

T (15)

Y robi = [yrob1 · · · y
rob
f · · · y

rob
f max ]

T (16)

2rob
i = [θ rob1 · · · θ

rob
f · · · θ

rob
f max ]

T (17)

θ robf =

f∑
k=1

∫ tk

tk−1
ωdwa dt (18)

xrobf =

f∑
k=1

∫ tk

tk−1
υdwa · cos θk dt (19)

yrobf =
f∑

k=1

∫ tk

tk−1
υdwa · sin θk dt (20)

where f (1 ≤ f ≤ f max) means number for time step. fmax =
Tmax
1T is calculated from the predicted time Tmax and time step
1T .
By repeating these processesN all times, path candidates of

the robot Orob are generated.

D. OPTIMAL PATH (STEP 3)
Path candidates of the robot Orob are evaluated by the cost
function. The cost function is derived as follows.

cdwa = W ang
· cang +W vel

· cvel +W obs
· cobs (21)

FIGURE 3. Concept of virtual manipulators method.

where W ang, W vel and W obs are weight coefficients. cang

represents the cost of the direction to the goal. cvel means
the cost of the current velocity. cobs is the distance from the
robot and the obstacle. The optimal path is chosen from path
candidates by DWA to maximize the cost function (21).

Finally, velocities of the optimal path define optimal trans-
lational and angular velocities vopt and ωopt . Velocity com-
mands of DWA are expressed as follows.

vcmd = vopt (22)

ωcmd = ωopt (23)

where vcmd and ωcmd are translational and angular velocity
commands. By using velocity commands of DWA, the robot
reaches the goal position during avoiding obstacles.

IV. VIRTUAL MANIPULATORS (VM)
A. CONECEPT OF VIRTUAL MANIPULATORS
The reflective motion using VM was reported by Yamazaki
and Inaba [26]. VM consists of two types of manipulators; the
virtual leader manipulator and virtual assistant manipulators.
The virtual leadermanipulator is used for path-following. Vir-
tual assistant manipulators are used for obstacle avoidance.
Fig. 3 shows the concept of VM.

1) The robot follows the desired path using the virtual
leader manipulator (Fig. 3(a)).

2) The robot detects obstacles from the distance sensor
(Fig. 3(b)).

3) Virtual assistant manipulators generate obstacle avoid-
ancemovement when the distance between the obstacle
and roots of virtual assistant manipulators is less than
the threshold value Dmax (Fig. 3(c)).

4) Virtual assistant manipulators are deleted when the dis-
tance between the obstacle and roots of virtual assistant
manipulators is larger than the threshold value Dmax

(Fig. 3(d)).
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FIGURE 4. Overview of DWV.

B. GENERATION OF VIRTUAL MANIPULATORS
The reflexible motion using virtual 2 link manipulator is
calculated as follows.

q̇ = J#ẋ+3(I − J#J)(2ref
nj − θ

res
nj ) (24)

where q̇ is the state vector. This state vector is written as
q̇ =

[
vvm, ωvm, θ̇01, θ̇02, θ̇11, θ̇12, · · · , θ̇n1, θ̇n2

]T . vvm and
ωvm mean the translational and the angular velocities com-
mand of the robot with virtual manipulators. θ̇n1 and θ̇n2
are angle velocities of n-th virtual manipulators. J# and 3
represent the pseudo-inverse Jacobian matrix and the weight
coefficients of the null-space. 2ref

nj and θ resnj represent the
reference and response angle of virtual manipulators. j repre-
sents 1st or 2nd joint number (j = 1, 2). The detail of the vir-
tual manipulators method is described in the references [26].

V. DYNAMIC WINDOW APPROACH WITH VIRTUAL
MANIPULATORS (DWV)
A. OVERVIEW OF DWV
As shown in Figs. 2 and 4(a), the framework of the flowchart
for DWV is the same as DWA. Moreover, DWV has made
two changes from DWA, such as path candidates (Step 2) and
optimal path (Step 3).

• Velocity Space with Dynamics Constraint (Step 1)
As shown in Fig. 4(b), VSD is generated from robot
velocities and specifications. VSD is expressed by (10).

• Path Candidates (Step 2)
As shown in Fig. 4(c), DWV generates the path can-
didates by using DWA with VM. The color of path
candidates is pink. By using VM and predicted obstacle
position, DWV generates path candidates considering
static and dynamic obstacles.

• Optimal Path (Step 3)
As shown in Fig. 4(d), DWV selects the optimal path
from path candidates. The color of the optimal path and
no collision paths is red and yellow. DWV designed the
cost function to consider dynamic obstacles. By using
the velocity of the optimal path, the robot moves while
avoiding obstacles.

The detail of each step is expressed in subsections V.B to V.C.

FIGURE 5. Concept of DWV.

B. GENERATION OF PATH CANDIDATES (STEP 2)
Fig. 5 shows the concept of path candidates by DWV.

1) Firstly, DWV selects velocities from VSD. DWA also
uses these velocities. In DWA, the velocities of the
robot are assumed as constant. Thus, the path candi-
dates of DWA are arc paths (Fig. 5(a)).

2) DWV uses VM for each step f to generate obstacle-
avoidable paths. VM generates velocities of obsta-
cle avoidance by using next position of obstacles
(Fig. 5(b)).
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3) Velocities of DWV (f = 1) are generated from veloci-
ties of DWA and VM (Fig. 5(c)).

4) VMgenerates velocities of obstacle avoidance by using
next position of obstacles (Fig. 5(d)).

5) Velocities of DWV(f = 2) are generated from previous
velocities of DWV(f = 1) and current velocities of VM
(Fig. 5(e)).

6) By repeating these process f max times, one of path
candidates by DWV Probi are generated.(Fig. 5(f)).

Algorithm 2 shows the pseudo code of path candidates by
DWV (Step 2). The generation of path candidates by DWV
is explained as follows.

Algorithm 2 Path Candidates by DWV
1: // Initialization
2: g← 1, i← 1
3: // HStep 2-1b
4: while N tlv > g do
5: vdwa← vini +∆v(g− 1)
6: h← 1
7: // HStep 2-2b
8: while N agv > h do
9: ωdwa← ωini +∆ω(h− 1)

10: f ← 1
11: while f max > f do
12: // HStep 2-3b
13: ωvmf ← calcVM (Oobs)
14: // HStep 2-4b
15: vdwv← vdwa

16: if f = 1 then
17: ωdwvf ← ωdwa + ωvmf
18: else
19: ωdwvf ← ωdwvf−1 + ω

vm
f

20: end if
21: // HStep 2-5b
22: < vdwv, ωdwvf >← checkVelocity(vdwv, ωdwvf )
23: // HStep 2-6b
24: < xrobf , yrobf , θ robf >← onePath(vdwv, ωdwvf )
25: < X rob

i ,Y robi ,2rob
i >←< xrobf , yrobf , θ robf >

26: f ← f + 1
27: end while
28: Probi ←< X rob

i ,Y robi ,2rob
i >

29: // HStep 2-7b
30: if collision(Oobs, Probi ) then
31: delete(Probi )
32: else
33: Orob← Probi
34: i← i+ 1
35: end if
36: h← h+ 1
37: end while
38: g← g+ 1
39: end while
40: return Orob

1) STEP 2-1B (ALGORITHM 2 LINES 3–5)
The translational velocity vdwa is selected from VSD.

vdwa = vini +∆v(g− 1) (25)

2) STEP 2-2B (ALGORITHM 2 LINES 7–9)
The angular velocity ωdwa is selected from VSD.

ωdwa = ωini +∆ω(h− 1) (26)

3) STEP 2-3B (ALGORITHM 2 LINES 12–13)
In DWV, velocities considering static and dynamic obsta-
cles are generated by predicted positions of obstacles Oobs

and VM. Predicted positions of obstacles Oobs are shown as
follows.

Oobs = [Pobs1 · · ·P
obs
s · · ·P

obs
smax ]

T (27)

Pobss = [Xobs
s Yobss ]T (28)

Xobs
s = [xobss,1 · · · x

obs
s,f · · · x

obs
s,f max ]

T (29)

Yobss = [yobss,1 · · · y
obs
s,f · · · y

obs
s,f max ]

T (30)

where s (1 ≤ s ≤ smax) means the number for obstacles.
In this paper, VM consisted only virtual assistant manipula-
tors. By using minimum distance d robf between f -th positions
of obstacles and roots of VM, angular velocity ωvm is calcu-
lated from (24). The f -th angular velocity ωvmf are calculated
as follows.

ωvmf =

{
ωvm, if d robf ≤ D

max

0, otherwise
(31)

4) STEP 2-4B (ALGORITHM 2 LINES 14–20)
The f -th velocities of DWV are calculated as follows.

vdwv = vdwa (32)

ωdwvf =

{
ωdwa + ωvmf , if f = 1

ωdwvf−1 + ω
vm
f , otherwise

(33)

where vdwv and ωdwvf mean translational and the angular
velocities of DWV.

5) STEP 2-5B (ALGORITHM 2 LINES 21–22)
The f -th velocities of DWV vdwv andωdwvf are checked within
the f -th velocity space of DWV Sdwvf . The f -th velocity space
of DWV Sdwvf consists of f -th velocity space of dynamic

window Spdwf and Sall . The f -th velocity space of DWV Sdwvf
are expressed as follows.

Spdwf = {(v, ω)|v ∈ [vdwv − Amax1T , vdwv + Amax1T ]

∧ ω ∈ [ωdwvf−1 −Π
max1T , ωdwvf−1 +Π

max1T ]} (34)

Sdwvf =

{
Sall ∩ Sdw, if (f = 1)

Sall ∩ Spdwf , otherwise
(35)

= {(v, ω) | v ∈ [vinif , v
end
f ]

∧ ω ∈ [ωinif , ω
end
f ]} (36)
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where vinif and ωinif are minimum translational and angular
velocities in Sdwvf . vendf and ωendf are maximum translational
and angular velocities in Sdwvf . When vdwv or ωdwvf are not
within Sdwvf , vdwv and ωdwvf are expressed as follows.

vdwv =


vinif , if vdwv < vinif
vendf , if vdwv > vendf

vdwv, otherwise

(37)

ωdwvf =


ωinif , if ωdwvf < ωinif

ωendf , if ωdwvf > ωendf

ωdwvf , otherwise

(38)

6) STEP 2-6B (ALGORITHM 2 LINES 23–25)
The predicted robot position is calculated from vdwv andωdwvf .
The i-th path candidate Pi is calculated as follows.

X rob
i = [xrob1 · · · x

rob
f · · · x

rob
f max ]

T (39)

Y robi = [yrob1 · · · y
rob
f · · · y

rob
f max ]

T (40)

2rob
i = [θ rob1 · · · θ

rob
f · · · θ

rob
f max ]

T (41)

θ robf =

f∑
k=1

∫ tk

tk−1
ωdwvk dt (42)

xrobf =

f∑
k=1

∫ tk

tk−1
υdwv · cos θk dt (43)

yrobf =
f∑

k=1

∫ tk

tk−1
υdwv · sin θk dt (44)

By using vdwv and ωdwvf , path candidates by DWV include
non-straight line and non-arc paths as shown in Fig. 4(c),
since DWV modifies angular velocities ωdwvf for each time
step.

7) STEP 2-7B (ALGORITHM 2 LINE 29–35)
The collision between the robot and obstacles is checked.
If the robot collides with obstacles, this path candidate is not
used for the optimal path.

By repeating these processesN all times, path candidates of
the robot Orob are generated.

C. OPTIMAL PATH (STEP 3)
Path candidates of the robot Orob are evaluated by the cost
function. DWV has adopted the distance to the goal position
as a cost function to reduce the restrictions on avoiding robot
obstacles. The cost function is derived as follows.

cdwv = W pos
· cpos +W vel

· cvel +W sdo
· csdo (45)

where W pos and W sdo are the weight coefficients of position
and obstacles. cpos is the distance from the goal position
and the predicted position of the robot at f max . csdo is the
shortest distance calculated from the predicted positions of
the robot and obstacles. csdo is calculated for each step f .
DWV considers static and dynamic obstacles in the phase of

TABLE 1. Control parameters.

FIGURE 6. Overview of SLP.

selecting an optimal path. The optimal path is selected from
path candidates by DWV to maximize the cost function.

Finally, velocities of the optimal path define optimal trans-
lational and angular velocity vopt and ωoptf . Velocity com-
mands of DWV are expressed as follows.

vcmd = vopt (46)

ωcmd = ω
opt
1 (47)

where vopt and ωopt1 are optimal velocities of 1st time step.
By using velocity commands of DWV, the robot reaches the
goal position during avoiding obstacles.

VI. SIMULATION
A. LOCAL PATH PLANNIG METHODS
‘‘SLP’’, ‘‘DWA’’, and ‘‘DWV’’ are used as the local path
planning in simulations. SLP and DWA are treated as the
conventional methods. DWV is implemented as the proposed
method. Table 1 shows control parameters. Robot Operat-
ing System (ROS) was used [27]–[30]. Fig. 6 shows the

17024 VOLUME 10, 2022



M. Kobayashi, N. Motoi: Local Path Planning: DWA With Virtual Manipulators Considering Dynamic Obstacles

FIGURE 7. Simulation environments.

FIGURE 8. Simulation results of SLP.

FIGURE 9. Simulation results of DWA.

FIGURE 10. Simulation results of DWV.

path candidates and optimal path of SLP. Parameters of SLP
path candidates are shown as follows. N pos, N hea and Lpat

represent the number of samples in terminal state position
and heading, and the terminal position horizon. ϒmin, ϒmax ,
8min and 8max represent the angular range of the termi-
nal position sampling and the angular range of the terminal
heading angle offsets. The detail of the SLP is described
in the references [23], [24]. In this simulation, DWV was

equipped with two VM. The root position of 1st and 2nd VM
in robot coordinate system were (xvam1 , yvam1 ) = (0.0,−0.1)
and (xvam2 , yvam2 ) = (0.0, 0.1).

B. SIMULATION SETUP
As shown in Table 2, there are four simulation cases.
Fig. 7 shows the simulation environment in Cases S1-S4.
In Fig. 7, the gray and blue circles are the robot and
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TABLE 2. Simulation setup.

obstacles. In Figs. 7(c)-(d), the pink lines show the mov-
ing direction. The start and goal position of all cases are
(GBxstart ,GB ystart ) = (0.0, 0.0) and (GBxgoal,GB ygoal) =
(5.0, 0.0). When the distance between the robot and the goal
position is less than 0.3 [m], it is judged as a goal. The
simulation cases are defined as follows.

• Case S1: Static Obstacles
As shown in Fig. 7(a), there are 10 static obstacles in the
simulation environment.

• Case S2: Dynamic Obstacles
As shown in Fig. 7(b), there are 10 dynamic obstacles
in the simulation environment. These obstacles moves
at 0.3 [m/s] (green) and 0.25[m/s] (pink).

• Case S3: Static / Dynamic Obstacles (Low Velocities)
As shown in Fig. 7(c), there are 30 static and dynamic
obstacles in the simulation environment. These obsta-
cles are placed in random positions and given random
velocities that are lower than maximum velocities of the
robot. The velocities of obstacles were set randomly in
the range of 0.0 [m/s] to 0.2 [m/s].

• Case S4: Static / Dynamic Obstacles (High Velocities)
As shown in Fig. 7(d), there are 30 static and dynamic
obstacles in the simulation environment. These obsta-
cles are placed in random positions and given random
velocities that are higher thanmaximum velocities of the
robot. The velocities of obstacles were set randomly in
the range of 0.0 [m/s] to 0.6 [m/s].

Case S1 and Case S2 were simulated 1 times. Case S3 and
Case S4 were simulated 100 times.

C. SIMULATION RESULTS
Figs. 8-10 show trajectory results of SLP, DWA and DWV in
Case S1-Case S4. Figs. 8-10(a)(b) show trajectories results
of robot and obstacles in Case S1-Case S2. Figs. 8-10(c)(d)
show only trajectories of the robot for 100 simulation times
in Case S3-Case S4. Table 3 shows simulation results of
all cases. Table 3 contains the success rate in reaching the
goal without the collision, the average travel time only in
reaching the goal, the trajectory length (TL) only in reaching
the goal, and the movement posture displacement (PD) only
in reaching the goal.

In Case S1, all methods reached the goal position as shown
in Figs. 8-10(a). SLP reached the goal position earlier than
DWA and DWV. This is because the SLP moved at maximum
translational velocity on the optimal path. From Table 3 and
Fig. 8(a), the best result in Case S1 was obtained by SLP.

In Case S2, DWV reached the goal position as shown in
Figs. 8-10(b). From Figs. 8-9(b), SLP and DWA did not reach

TABLE 3. Simulation results.

FIGURE 11. Experiment setup.

the goal position. SLP and DWA generated path candidates
not considering dynamic obstacles. SLP andDWAconsidered
dynamic obstacles when the optimal path was selected from
path candidates. However, there were no path candidates
without collision. Therefore, SLP and DWA collided with
dynamic obstacles. On the other hand, DWV generated path
candidates considering dynamic obstacles. DWValso consid-
ered dynamic obstacles when the optimal path was selected
from path candidates. Thus, DWV reached the goal position.
From Table 3 and Fig. 10(b), the best results in Case S2 was
obtained by DWV.

In Case S3, all method reached the goal position as shown
in Figs. 8-10(c). As shown in Fig. 8(c), the goal trajectories
of SLP were close to straight lines. The position and velocity
of obstacles were given randomly for 100 simulation times.
There were a few easy situations for SLP, such as obstacles
did not move towards the robot. Fig. 9(c) shows the goal
trajectories of DWA. When DWA reached the goal position
with avoiding moving obstacles, DWA sometimes generated
back movements. The goal time of DWA was longer than
other methods. From Table 3 and Fig. 10(c), DWV had the
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FIGURE 12. Experimental results (Case E1).

highest success rate of reaching the goal at 85%. The best
result in Case S3 was obtained by DWV.

In Case S4, all method reached the goal position as shown
in Figs. 8-10(d). As shown in Figs. 8-9(d), the goal trajec-
tories of SLP and DWA were close to straight lines. The
position and velocity of obstacles were given randomly for
100 simulation times. There were a few easy situations for
SLP and DWA, such as obstacles did not move towards the
robot. Moreover, DWV sometimes collided with obstacles
in Case S4. However, DWV had the highest success rate of
reaching the goal at 70% as shown in Table 3 and Fig. 10(d).
The best result in Case S4 was obtained by DWV.

The effectiveness of the proposed method was confirmed
from the simulation results.

VII. EXPERIMENT
A. EXPERIMENT SYSTEM
As shown in Fig. 11(a), Turtlebot2 [31] and ROS Melodic
were used in these experiments. Turtlebot2 was equipped
with the laser range finder (LRF) that was URG-04LX-
UG01 [32]. The Range of LRF was shown in Fig. 11(b).
Fig. 11(c) shows the system configuration. Firstly, envi-
ronmental information was obtained by LRF. Secondly,
the obstacle position and velocities were generated by
obstacle_detector [33]. In these experiments, obasta-
cle_detector got only static and dynamic obstacles that

radius was less than 0.25 [m]. Finally, DWV generated the
velocity command considering static and dynamic obstacles
from obastacle_detector and LRF information. As shown in
Table 1, the same parameters as in the simulation were set for
these experiments.

B. EXPERIMENT SETUP
There were two experiment cases. The start and goal position
was (GBxstart ,GB ystart ) = (0.0, 0.0) and (GBxgoal,GB ygoal) =
(4.5, 0.0) as shown in Figs. 12-13.

• Case E1: Straight Walking
As shown in Figs. 12(a)(b), there were 2 static obstacles,
the 1 pedestrian (P-1) and walls in the experiment envi-
ronment. P-1 walked in the straight line in the narrow
space.

• Case E2: Random Walking
As shown in Figs. 13(a)(b), there were 4 pedestrians
(P-2A∼ 2D) and walls in the experiment environment.
4 pedestrians walked randomly in the narrow space.

C. EXPERIMENT RESULTS
Figs. 12-13 show experiments results in
Cases E1-E2. Figs. 12-13 (c) show trajectory results in
Cases E1-E2. Figs. 12-13 (d)-(g) show the experimental
environment, path candidates and optimal path at a certain
time in Cases E1-E2. The black and blue circles are the
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FIGURE 13. Experimental results (Case E2).

robot and obstacles. The black and green lines from the
robot are VM. The yellow and red lines are path candidates
and the optimal path of DWV. The pink lines show the
predicted position of pedestrians. The orange points are LRF
information.

In Case E1, there were 2 static obstacles, 1 pedestrian, and
walls in the narrow space. As shown in Figs. 12(c)-(g), the
robot reached the goal without collision. From Fig. 12(d),
DWV generated path candidates considering Obstacle 1 and
walls. From Fig. 12(e), the robot avoided Obstacles 1.
DWV generated path candidates considering P-1, Obstacle 2,
and the walls. From Fig. 12(f), DWV generated the path
candidates avoiding P-1, Obstacle 2, and the walls. From
Fig. 12(g), the robot avoided P-1. DWV generated path can-
didates considering Obstacle 2. Finally, the robot reached the
goal position without collision.

In Case E2, there were 4 pedestrians and walls in the
narrow space. As shown in Figs. 13(c)-(g), the robot reached
the goal without collision. From Fig. 13(d), DWV gener-
ated path candidates considering P-2A, so the robot moved
backward. From Fig. 13(e), the robot avoided P-2A. DWV
generated path candidates considering P-2A∼ 2D and walls.
From Fig. 13(f), the robot avoided P-2A and P-2C. DWV
generated the path candidates considering P-2A, P-2B, and
P-2D. From Fig. 13(g), the robot avoided P-2A, P-2B,
and P-2D. DWV generated path candidates considering P-2B
and walls. Finally, the robot reached the goal position without
collision.

The effectiveness of the proposed method was confirmed
from the experiment results.

VIII. CONCLUSION
This paper proposed the novel local path planning method
called DWV. DWV was composed of DWA and VM
for static and dynamic obstacle avoidance. DWV gen-
erated obstacle-avoidable path candidates which include
non-straight line and non-arc paths. These path candidates
were generated by variable velocities considering predicted
positions of static and dynamic obstacles. DWV considered
kinematics and dynamics constraints. The effectiveness of
the proposed method was demonstrated by simulations and
experiments.

In future works, we will work to evaluate DWV as follows.

• Parameter Design of DWV
The number of parameters was increased by consider-
ing virtual manipulators. The parameter design method
should be clarified.

• DWV with Global Path Planning
We evaluated DWV using only the local path planning
method. We will apply both DWV and global path plan-
ning.

• Various Environments, Robots and Sensors
We evaluated DWV with the robot and environments.
Wewill evaluate DWV for various robots, environments,
and sensors.
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