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ABSTRACT Impulsive control systems have shown strong potential to represent and address challenging
problems, especially in the biomedical field. In recent research, these problems have been tackled with
advances in linear impulsive control systems. However, many biomedical applications are better described
by nonlinear impulsive models, and therefore, it is necessary to develop analysis tools and control strategies
in this context. In the literature, the main properties of nonlinear impulsive control systems have been fully
understood, but there is no major development of control strategies. Particularly, there is no substantiation of
model predictive control (MPC) strategies maintaining convexity of the optimization problem and closed-
loop stability, and there is no control strategy to reduce the offset problem when there are parameter
variations, which is a common situation in biological processes. Therefore, the main novelties of this paper
are: (i) an MPC formulation extended to nonlinear impulsive systems that addresses non-zero tracking, (ii)
the sufficient and necessary conditions to guarantee the stability of the closed-loop system at an equilibrium
target, (iii) a comprehensive description of an offset-free MPC to handle low to moderate plant-model
mismatches, (iv) the conditions to guarantee offset-free control. Finally, the MPC and offset-free MPC are
tested to address the drug administration problem in two biomedical applications: oncolytic virus therapy,
to regulate tumor dynamics using doses of oncolytic, and type 1 diabetes treatment, to regulate glycemia
using insulin injections. Satisfactory results were obtained in simulation scenarios including parameter
variations in nonlinear models that represent the corresponding dynamics.

INDEX TERMS Impulsive control systems, non-linear model predictive control, offset-free control, control
for biomedical processes.

I. INTRODUCTION
Impulsive Control Systems (ICSs) are a class of systems in
which the input action has a short duration in comparison
with the sampling time and the dynamics of the system itself.
ICSs are characterized by two responses, a free response
corresponding to the evolution of the state when the input
is zero, and a forced response observed as instantaneous
jumps when the control action is applied [1], [2]. ICSs
have received increasing attention in the context of industrial
process control, biomedical research, and other applications.
In biomedical research, ICSs have been useful to represent
some therapies for human immunodeficiency virus (HIV)
infection [1], [3], type 1 diabetes mellitus [4], [5], and
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oncolytic virus therapy [6], showing that this approach offers
ways to improve the dosage and schedule of therapies based
on control engineering strategies.

Significant progress has been made in formulating ICSs
with model predictive control (MPC). MPC is a control
strategy that uses a model to predict the system’s evolution,
and based on that information, MPC computes an optimal
control sequence to force the evolution of the system to
fulfill some predefined constraints while minimizing a cost
function. The first instance of MPC applied to ICSs was
developed in [7], where the state is steered to a target
zone that does not include the origin. In [8] and [9] a new
formulation of zone MPC (ZMPC) was introduced to ensure
feasibility in the case of a change of the target by using
virtual/intermediary equilibrium variables to steer the state to
an equilibrium target. Additionally, some adaptive impulsive
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MPC formulations were proposed for type 1 diabetes in [5]
and [10]. Regarding an MPC formulation for nonlinear ICSs,
a first approach was presented in [11] with application to
oncolytic virus therapy. This strategy is based on the standard
MPC, where the output is steered to a fixed target point. This
MPC strategy was not substantiated in terms of feasibility and
stability.

A common problem in control systems is the inherent
mismatch between the prediction model and the actual
plant given parameter or model uncertainty. When there is
a mismatch, the model used for the predictions does not
describe the plant behavior with sufficient accuracy, and thus,
the objective is not reached when applying the control action
generated by the MPC, but instead, a steady-state offset is
produced [12]. To counteract this situation, a more elaborated
control strategy is required. In [13]–[16], approaches focused
to achieve offset-free tracking for MPC were developed for
discrete-time systems. These formulations mainly consist of
augmenting the state with a disturbance, and by means of a
state estimator obtain information of both the state and the
disturbance to correct the prediction model and the target
in the MPC formulation. The linear results were extended
to discrete-time nonlinear plants in [17] and [18] where
the nonlinear model was used as prediction model in the
MPC problem, and in [19] where online linearizations of
the nonlinear plant were used for prediction and control
of wiener systems. In [20], it was demonstrated that the
velocity form and state disturbance observer approaches for
offset-free MPC are equivalent to particular cases of the
disturbance model and observer. A comparison of different
offset-free approaches including the disturbance modeling
and the analysis of state estimation algorithms coupled with
the MPC was presented in [21].

Additional improvements of the offset-free strategy for
discrete-time systems can be found in the literature. For
instance, in [22] a two-tiered control structure including
the linear offset-free MPC strategy was developed to
explicitly incorporate the desired closed-loop behavior in the
control design. In [23] an adaptive approach for estimating
a time-varying disturbance was proposed, and in [24],
the authors proposed a semi-infinite program to generate
disturbance models for offset-free nonlinear MPC applicable
to small to medium scale models. Also, economic MPC
formulations including the offset-free feature to account for
model uncertainties can be found in [25]–[27]. A different
approach for discrete-time systems was developed in [28]
using a multiple linear MPC that can handle some amount
of plant-model uncertainty, and it was improved with an
adaptive integral action to guarantee offset-free tracking
while avoiding the use of an observer.

Regarding impulsive systems, the linear offset-free MPC
was developed in [29], where observability conditions
for the augmented system with a disturbance are estab-
lished, and a straightforward way to select the disturbance
model matrices is introduced based on the properties of
ICS. To the best of the authors’ knowledge, offset-free

MPC formulations for nonlinear ICS have not yet been
presented.

In summary, the aspects that are worthy of being developed
or further improved are:

1) Biomedical processes are highly nonlinear, and their
treatments are better modeled when considering impul-
sive inputs. Thus, nonlinear impulsive strategies are
required.

2) From the literature review, MPC formulations for
linear impulsive systems have been proposed to steer
the system to nonzero set points or target sets. For
nonlinear impulsive systems, there is no substantiation
of anMPC strategy. Also, the theoretical substantiation
of different nonlinear MPC strategies for discrete-time
systems can be found, but these strategies usually use
the nonlinear model as a prediction model producing a
non-convex optimization problem that is hard to solve.

3) From the literature review, offset-free MPC strategies
for linear and nonlinear discrete-time systems have
been found. These cover different approaches with
and without a state estimator, robust and adaptable
formulations. However, only the linear version of the
offset-free strategy for impulsive systems has been
developed. There are no MPC strategies for nonlinear
impulsive systems that address the offset problem
caused by a plant-model mismatch.

To contribute to the solution of the previous problems,
this paper develops two MPC strategies for nonlinear ICSs
and provides the conditions to guarantee the stability of the
closed-loop system and then for offset-free control. The main
merits of this work are listed as follows:

1) An MPC formulation for nonlinear ICS is developed
based on the ZMPC that uses (i) an equilibrium
artificial reference as a new decision variable, (ii) a
dynamic cost function that penalizes the deviation to
the artificial equilibrium, and (iii) a final cost function
to steer the artificial variable to the actual target
set. This strategy has the advantage of allowing the
inclusion of a target set instead of a set-point, and it
ensures feasibility under any change of the target.

2) For this nonlinear strategy, conditions to stabilize the
system at the defined target are presented. This is done
by proving that the stability of the continuous trajectory
of the ICS follows from the stability of the discrete
points of an underlying subsystem using an affine linear
approximation at each time state, which guarantees that
the optimization problem remains convex.

3) An offset-free MPC strategy is substantiated for
nonlinear ICS. This is done by following the general
approach of augmenting the system with a disturbance
model that represents the plant-model mismatch and
ensuring that this new extended impulsive system is
observable. Then, the information of the plant-model
mismatch is used to correct the prediction model and
target of the MPC to achieve zero offset tracking.
An additional advantage of the proposed offset-free
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formulation is the merge of the target calculation
problem and the MPC problem in a single one by using
the artificial equilibrium variables.

4) To show the effectiveness of both schemes, the MPC
and the offset-free MPC (MPC-OF) are applied to
the design of candidate protocols for the treatment of
two relevant biomedical applications: oncolytic virus
therapy (OVT) and Type 1 diabetes (T1D) treatment.

OVT is a promising approach to treat cancer using
genetic engineering of viruses to destroy tumor cells without
infecting or damaging healthy cells [30]–[34]. Improve-
ments in oncolytic viruses delivered promising experimental
findings, which motivated clinical trials for the treatment
of cancers such as breast cancer [30], [32], [33], and the
development of mathematical models to represent the virus
and tumor dynamics [6], [30], [35], [36]. However, the
antitumor efficacy of oncolytic viruses tends to decrease
in animal and human trials due to several challenges
such as dose-limiting toxicity, intratumoral viral infection,
antiviral immune responses, and the risk of failure to achieve
robustness due to the heterogeneous nature of tumors and
virus dynamics [30]–[33], [35]. Thus, delivering robust
and efficient therapies motivate interdisciplinary research
to resolve challenges impairing clinical outcomes. Unlike
former protocols in literature, therapies using the offset-free
scheme here presented exhibit some robustness to variations
in biological rates, and modeling uncertainty such as the
impact of stromal cells.

On the other hand, closed-loop control systems for insulin
management in subjects with T1D have seen tremendous
progress, leading to the development of the artificial pancreas
system [37]. The artificial pancreas consists of 3 main
components: a continuous glucose monitor sensor, an insulin
infusion pump, and a control algorithm to compute the insulin
doses required by the patient [5], [38]. Regarding the control
strategy, MPC strategies have shown efficiency in simulation
and clinical trials [38]–[40], and recent works have also
developed formulations under the scope of ICS [4], [10].
Nevertheless, challenges as intra- and inter-subject variations
are still to be overcome. In this work, the nonlinear minimal
model developed in [41] is used to assess the performance
of the MPC strategies here presented under intra-subject
variations in insulin sensitivity and insulin degradation rate.

The outline of this paper is as follows: The Materials and
methods Section is introduced with the notation and some
preliminaries about impulsive systems. Next, the ZMPC and
offset-free schemes are developed for nonlinear ICS. In the
Results Section the control strategy is applied to propose
oncolytic adenovirus dosage for tumor regulation, and insulin
dosage for diabetes treatment. Lastly, the conclusions and
further work are exposed.

II. MATERIALS AND METHODS
A. NOTATION
The sets of nonnegative integers, reals, n-dimension column
vectors, and matrices of dimension n×m are denoted asN,R,

Rn and Rn×m, respectively. In denotes the identity matrix of
dimension n×n. The transpose of a matrix A is represented as
A′. The convex hull of a collection of sets Vk , k = 1, · · · , k is
denoted as ch{V1, V2, · · · ,Vk}. distV (x) , miny∈V ‖y− x‖,
is the distance from a point x to a nonempty closed set V .
Given x ∈ Rn and a matrix Q ≥ 0 ∈ Rn×n, ‖x‖2Q = x ′Qx.

B. NONLINEAR IMPULSIVE CONTROL SYSTEMS
The class of dynamic systems of interest in this paper consists
of a set of nonlinear impulsive control systems (NICSs) with
the following representation:

ξ̇ (t) = f (ξ (t)), ξ (0) = ξ0, t 6= τk ,

ξ (τ+k ) = ξ (τk )+ Bu(τk ), t = τk k ∈ N,
z(τk ) = Cξ (τk ), t = τk k ∈ N, (1)

where ξ ∈ X ⊆ Rn and u ∈ U ⊆ Rm denote the system’s
constrained state and control inputs. These sets are supposed
to contain the origin and to be convex, compact sets. Function
f : Rn

→ Rn denotes the autonomous response of the
nonlinear system in absence of a control input. B ∈ Rn×m

is a matrix that represents the effects of the control input in
the instants τk , k = 1, 2, . . . over the state ξ . z ∈ Y ⊆ Rp

represents the system’s measurable variables, and C ∈ Rp×n

is the constant matrix of the output equation.
By considering a fixed sampling time Ts defined as

Ts = τk+1 − τk in which the impulses are applied, the
following discrete counterpart of the NICS can be associated
to system (1):

ξ•(k + 1) = fd (ξ•(k), u(k)) = φ(ξ•(k)+ Bu(k),Ts),

ξ•(0) = ξ (τ0),

ξ◦(k + 1) = φ(ξ◦(k),Ts)+ Bu(k + 1), (2)

where ξ• represents the state ξ (τ−k ) before the impulsive
input, and it is also the state available for measurements. ξ◦ is
the state ξ (τ+k ) after applying the impulsive input at times τk ,
with k = 0, 1, 2, · · · . fd (·) represents the discretized function
of f (·), and φ(ξ, t − τk ) is the solution of the autonomous
part of (1) during the time interval t ∈ [τk , τk+1[, with initial
condition ξ . This solution denotes the orbit of ξ defined as
oξ = φ(ξ, t − τk ), which starts after the impulse at ξ◦ and
finishes at ξ•. It should be noted that each discrete nonlinear
difference equation in (2) depends only on its respective state
(i.e., only on ξ• or ξ◦, respectively) and the input.

Consider the discrete NICS given by (2). A state (ξ•s , ξ
◦
s )

is a control equilibrium point of system (2), if there exists an
input us ∈ U such that

ξ•s = fd (ξ•s , us), ξ◦s = φ(ξ
◦
s ,Ts)+ Bus. (3)

The discrete control equilibrium setsX •sNL andX
◦
sNL are the

sets generated by every feasible control equilibrium

X •sNL = {ξ
•
∈ X : ∃u ∈ U , ξ• = fd (ξ•, u)},

X ◦sNL = {ξ
◦
∈ X : ∃u ∈ U , ξ◦ = φ(ξ◦,Ts)+ Bu}. (4)

The orbit os = φ(ξ◦s , t), t ∈ [τk , τk+1] is called a control
equilibrium orbit of the NICS, and the set of all orbits
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associated to the discrete equilibriums sets (X •sNL ,X
◦
sNL ) is the

set Os = ∪{os : ξ•s ∈ X •sNL }.
One important property for control systems is the stability

of the equilibrium points. In ICSs, the stability property is
related to the orbit. Therefore, it is necessary to define this
property as an extension of the well-know stability definition
for dynamical systems:
Definition 1: An equilibrium orbit of system (2) is stable,

if for all ε > 0 there exists δ > 0 such that if distξ◦s (ξ (0)) < δ

then distOs (oξ ) < ε for all t ≥ 0. Besides, the equilibrium
orbit is asymptotically stable if distOs (oξ ) tends to zero when
t tends to infinity.

Following this definition, the next result establishes
sufficient conditions for the asymptotic stability of the
equilibrium orbit based on the asymptotic stability of the
equilibriums of the underlying discrete systems. It reads as:
Proposition 1: If a discrete control equilibrium ξs of

system (2) is asymptotically stable (under the standard
definition for discrete systems), then the equilibrium orbit os
related to the NICS is asymptotically stable.

The proof of this result is detailed in the Appendix and
in [42], but it relies on the assumption that f (ξ ) is Lipschitz,
and hence, for a finite sampling time Ts, the autonomous
response is bounded.

For the implementation of the control strategy, first,
consider an approximation of the nonlinear system (1)
obtained by using the linear terms of the Taylor series of the
system’s dynamics f (ξ ) around the current state value ξop
at each time step. Note that point ξop is not necessarily an
equilibrium of f (ξ ), and thus, ξ̇ ≈ ẋ = f (ξop) + A(x − ξop).
Therefore, the linearized system reads as:

ẋ(t) = Ax(t)+ E, x(0) = x0, t 6= τk ,

x(τ+k ) = x(τk )+ Bu(τk ), t = τk k ∈ N,
y(τk ) = Cx(τk ), t = τk k ∈ N, (5)

where matrix A = df (ξ )
dt |ξop is the Jacobian of f evaluated

at the current operation point, and matrix E = f (ξop) −
Aξop is the remainder of the first-order Taylor expansion.
The linearized system (5) can be discretized to describe its
behavior at times τk and τ

+

k , obtaining a linear discrete-time
subsystem of the form:

x•(k + 1) = A•(k)x•(k)+ B•(k)u(k)+ E•(k),

x•(0) = x(τ0),

x◦(k) = x•(k)+ B(k)u(k), (6)

with A• = eATs , B• = eATsB, E• =
∫ Ts
0 eAsdsE , x(0) =

x(τ0). Note that matrices A• and E• must be updated at each
time τk since their continuous counterparts A and E depend
on the current state ξ (t). It is also to remark that x•(k) =
x(τk ) describes the ICS before the input is applied, while
x◦ = x(τ+k ) is the state when the control input has already
been applied. For this reason, despite both subsystems are
necessary to characterize the ICS, the first subsystem x• is
the one used in the control strategy to generate the control
action [29]. In addition, as defined for the nonlinear case,

the state x•s represents a control equilibrium of system (6)
when satisfying x•s = A•x•s + B•us. All equilibrium points
that satisfy the previous expression are associated to an
equilibrium control set X •s .

Finally, to represent the objective region where it is
desired to steer the state ξ , the target set X Tar

⊆ X is
defined. To accomplish the control goal, it is necessary to
define a target counterpart of the equilibrium sets. In this
regard, X •TarsNL represents the maximal equilibrium set of
subsystem (2) such that the equilibrium orbit set associated
with all points in X •TarsNL satisfy OTar

s ⊆ X Tar . For the
discrete counterpart of the linearized system x•, a maximal
equilibrium set X •Tars associated with the target set X Tar is
also defined.

C. CONTROL STRATEGIES FOR NICS
1) NONLINEAR MODEL PREDICTIVE CONTROL
In this Section, the ZMPC formulation to steer the state of
a NICS to a target equilibrium set X •TarsNL is described. The
strategy is an extension of the linear impulsive case developed
in [8] to the nonlinear case. The main characteristics of this
strategy are (i) the capability of using a whole set as a target,
(ii) the introduction of new decision variables xa, ua that are
forced to be equilibriums of the system, and (iii) the update
at each time step of matrices A and E used in the prediction
model around the current operation state ξop.

Given the current state ξ•(k), the optimization problem
PMPC to be solved at each time step k is:

min
U ,xa,ua

VN =
Hp∑
j=1

‖x•(k + j)− xa‖2Q

+

Hu−1∑
j=0

‖u(k + j)− ua‖2R

+P(distX •Tars
xa + distUsua)

s.t. x•(k) = ξ•(k),

x•(k + j+ 1) = A•(k)x•(k + j)+ B•u(k + j)

+E•(k),

x•(k + Hp) = xa,

x•(k + j) ∈ X , u(k + j) ∈ U ,
xa = A•(k)xa + B•ua + E•(k), (7)

where the first two terms of the cost function aim to steer the
state and input to the artificial variables over the prediction
horizon, and the last term of the cost function minimizes the
distance between the artificial variables and the equilibrium
target. In the prediction model, matrices A• and E• must
be updated at each time k with the current operation state
ξop = ξ (k), i.e.,A•(k) = A•(ξop(k)), andE•(k) = E•(ξop(k)),
but they remain constant during the prediction horizon. The
terminal constraint x•(k + Hp) = xa forces the state to
reach the equilibrium at the end of the horizon, and the last
constraint xa = A•(k)xa + B•ua + E•(k) forces the artificial
variables to be equilibriums of the linearized system.
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TABLE 1. Description of sets, parameters, and variables.

The solution of this problem is the optimal sequenceU∗ =
{u∗(k), . . . , u∗(k + Hp − 1)} from which the first element
u∗(k) corresponds to the control law kMPC derived from the
application of the receding horizon control policy, and it is
applied to the NICS (1). A description of all parameters and
variables introduced for the control strategy can be found in
Table 1.

The following assumptions are established for the control
strategy [8], [43]:
1) The NICS (1) is accessible, then the linearized model

given by the pair (A,B) is controllable at each time step.
2) The function f (ξ (t)) is Lipschitz continue, i.e., there

exists a constant L such that ‖f (ξ1) − f (ξ2)‖ <

L‖ξ1 − ξ2‖.
3) MatricesQ andR are positive definite, andP is a positive

constant.
4) The target equilibrium set X •TarsNL is such that it satisfies

X •TarsNL = X •sNL ∩ X
Tar
6= ∅.

Theorem 1 (Asymptotic Stability): Suppose that Assump-
tions 1) - 4) are satisfied. Then, for any feasible initial
state, the optimization problem (7) is recursively feasible
for all time steps k and the control equilibrium set X •TarsNL is
asymptotically stable for system (1).

Proof: It has to be proven that the state ξ of the NICS (1)
is steered and maintained in the target equilibrium set X •TarsNL
by means of the control law derived from the PMPC problem
that uses the linear approximation of the system updated

at each time step k . First, consider the change of variables
1x• = x• − ξop and1u = u− uop (where, for the impulsive
case, uop = 0). Thus, the discrete linear system (6) used as
prediction model can be rewritten as:

1x•(k + 1)+ ξop = A•(1x•(k)+ ξop)+ B•1u(k)+ E•.

In the definition of E• = (
∫ Ts
0 eAsds)E , the value E =

f (ξop − Aξop) is replaced to obtain E• = (
∫ Ts
0 eAsds)f (ξop)−

(
∫ Ts
0 eAsAds)ξop = (

∫ Ts
0 eAsds)f (ξop) − (eATs − I )ξop,

and, as A• = eATs , then E• = (
∫ Ts
0 eAsds)f (ξop) −

A•ξop + ξop. Therefore, the discrete linear system results to
be

1x•(k + 1) = A•1x•(k)+ B•1u(k)+
(∫ Ts

0
eAsds

)
f (ξop).

From this expression, the discrete system can be seen as a
linear system with a deviation (

∫ Ts
0 eAsds)f (ξop), where the

integral is a constant and f (ξop) is also known and bounded
according to Assumption 2). Next, it is to consider that, when
Assumptions 1) - 4) hold, the optimization problem (7) has
already been proven to be recursively feasible for linear and
nonlinear systems in [8] and [43], respectively. Also, the
set X Tar

s (X •Tars ) has also been proven to be an attractive
generalized equilibrium set for the linear system (5) in [8].
Therefore, at each time step k , the ZMPC problem computes
a control law KMPC that brings the state x closer to the
target (due to the terminal cost and terminal constraint in
PMPC ); hence, distX •Tar (x(k)) → 0. By Assumption 3)
and 4), distX •Tar (x(k)) → 0 leads to f (ξop(k)) → 0,
then distX •TarsNL

(ξ•(k)) → 0, and thus distX Tar (ξ•(k)) → 0.
Finally, since the discrete controlled system is asymptotically
stable on X •TarsNL , then, the NICS is asymptotically stable on
X •TarsNL , due to the asymptotic stability of the set of orbits Os
associated to X •TarsNL as stated in Proposition 1.

2) OFFSET-FREE NONLINEAR CONTROL FOR IMPULSIVE
SYSTEMS
To improve the performance of the scheme in presence of
parameter and modeling uncertainty, an offset-free feature
is added to the ZMPC formulation. The offset-free strategy
is based on the idea of correcting the prediction model
and the target with a disturbance model that represents the
plant-model mismatch such that z(k) → zt , when k → ∞,
where zt is associated to a point ξt ∈ X Tar . To this end,
the system (1) is augmented with a model of a constant
disturbance over time in the form:

ξ̇ (t) = f (ξ (t)), ξ (0) = ξ0, t 6= τk ,

ḋ(t) = 0, d(0) = d0,

ξ (τ+k ) = ξ (τk )+ Bu(τk )+ Bdd(τk ), t = τk , k ∈ N,
z(τk ) = Cξ (τk )+ Cdd(τk ), t = τk , k ∈ N, (8)

where d is a constant disturbance, and its corresponding
matrices Bd and Cd represent the effect of the disturbance
in the state and the output, respectively. These matrices are
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selected to guarantee the observability of the augmented
impulsive system according to Corollary 2 in [29] and
the observability of nonlinear impulsive systems in [44].
Afterwards, the linearized discrete-time subsystem in (6) and
output equation are rewritten as:

x̃•(k + 1) = Ã•x̃•(k)+ B̃•u(k)+ Ẽ•, x̃•(0) = x̃(τ0),

ỹ•(k) = C̃•x̃•(k), (9)

with x̃• =
[
x•

d•

]
representing the augmented state, and the

augmentedmatrices are given by Ã• =
[
A• B•d
0 Id

]
, B̃• =

[
B•

0

]
,

Ẽ• =
[
E•

0

]
,C̃• =

[
C Cd

]
, and B•d =

∫ Ts
0 eAsdsBd .

Since the augmented model (9) is also observable, the aim
is to estimate both the state and the disturbance to correct
the model in the control law. To that end, a state estimator
(regardless of the strategy) is used and designed such that
it is stable. Based on the characteristic of the systems here
considered, in which there is a continuous nonlinear plant
with measurements obtained at discrete points, it is decided,
especially for applications, to use the hybrid Extended
Kalman Filter (hEKF) [45]. The complete equations of the
estimator can be seen in Appendix A, where the augmented
model (8) is used to compute the a priori estimated state,
and the augmented matrices Ã•, C̃• are used to calculate the
covariance of the estimated error and the filter gain. This
estimator has been previously shown to converge to the state
of nonlinear systems [45], [46].

It is to remark that, despite the constant dynamics of
disturbance d , its value is updated each time k through the
correction factor of the estimator, where the measurement
information is introduced.

Next, given the current estimate of the augmented state,
the optimization problem that solves the impulsive offset-free
ZMPC (ZMPC-OF) scheme every time instant k is:

min
U ,xa,ua

VN =
Hp∑
j=1

‖x•(k + j)− xa‖2Q

+

Hu−1∑
j=0

‖u(k + j)− ua‖2R

+P(distX •Tars
xa + distUsua)

s.t. x•(k) = ξ̂•(k), d•(k) = d̂•(k)

x̃•(k + j+ 1) = Ã•(k)x̃•(k + j)+ B̃•u(k + j)

+Ẽ•(k),

ỹ•(k + j) = C̃•x̃•(k + j),

x•(k + Hp) = xa,

x•(k + j) ∈ X , u(k + j) ∈ U ,
xa = A•(k)xa + B•ua + B•dd

•(k)+ E•(k), (10)

where the dynamic constraint includes the correction of
the prediction model using the augmented model, and
the artificial reference is also corrected by including the

estimated mismatch in the equilibrium constraint. Note
that, by using this ZMPC formulation, both the prediction
and the target are corrected in a single step, while when
using standard MPC formulations, as the one presented for
discrete-time systems in [12], it is required to solve two
different optimization problems, one for the computation of
the target, and then the MPC to compute the control action.
Theorem 2 (Offset-Free Control): Suppose that the MPC

problem (10) is feasible for all k ∈ N, and the closed-loop
system reaches an equilibrium ξ∞, d∞, z∞. In addition,
consider the output target zt associated to ξt ∈ X •Tarsnl . Then,
z∞→ zt when k →∞.

Proof: As it is assumed that the closed-loop reaches
a steady state, the stability of the observer implies that the
estimated state also reaches a steady state (ξ̂∞, d̂∞), which is
associated to the pair (x̂∞, d̂∞) that satisfies (A• − Inx )x̂∞ +
B•u∞ = −E• − B•d d̂∞. Also, consider the target linear
variables xt and yt = Cxt associated to the nonlinear
counterparts ξt and zt , respectively. Then, following the same
approach as in [29], by defining δx∞ = x̂∞ − xt ∈ X ,
δu∞ = u∞ − ut ∈ U , and the offset ε = y∞ − yt , from
the equilibrium conditions of the estimator and the target it
follows that (A• − Inx )δx∞ + B•δu∞ = 0 and Cδx∞ = ε.
In addition, by considering the change of variables δx(j) =
x(j)− xt , δu(j) = u(j)− ut , δxa = xa− xt , and δua = ua− ut ,
the optimization problem (10) can be rewritten to have the
same form of (7) (see the complete development in [29]).
As the MPC problem in (7) computes a stabilizing control
law kMPC then, the only solution to the closed-loop system at
steady state (A• − I + B•kMPC )δx∞ = 0 is δx∞ = 0, and
hence, ε = 0, i.e., y reaches the target. Finally, as the state
x is obtained at each time step around ξ , ε = 0 also implies
that in the equilibrium z∞ reaches zt .

THE ONCOLYTIC VIRUS THERAPY
This first application is conducted in the context of the
experimental studies in [30], which investigated the antitumor
efficacy of the genetically engineered oncolytic adenovirus
ADPEDGHER against EG7 breast cancer cells in nude mice
during 60 days. The mathematical model that describes the
dynamics of OVT in [30] was developed in [35] and [36] and
has the form:

dS(t)
dt
= rlog

(
L
S(t)

)
S(t)− β

S(t)V (t)
S(t)+ I (t)+ ε

,

dI (t)
dt
= β

S(t)V (t)
S(t)+ I (t)+ ε

− dI I (t),

dV (t)
dt
= u(t)− dVV (t)+ αdI I (t), (11)

where S(t) is the number of susceptible tumor cells (106 cells),
I (t) is the number of tumor infected cells (×106 cells), and
V (t) is the number of virus particles (VP) (×109 virus) at the
tumor site relative to the number of cells. These state variables
are non-negative by definition. Model parameters have
physiological meaning whose descriptions can be found in
Table 2. The model (11) does not include immune responses
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TABLE 2. Description and values of the parameters of the model (11).

because it represents experiments conducted in athymic
nude mice exhibiting negligible immune responses [30]. The
parameter ε = 0.001 is used to avoid singularity due to
S(t) + I (t) = 0 whilst solving the system of ordinary
differential equations.

The input u(t) of the model represents the injection of VP
on predefined days τk given by u(t) = u(τk )δ(t − τk ), where
u(τk ) is the amplitude of the control action, and δ denotes the
Dirac function. The output of the model is the total number
of tumor cells T = S + I , and is estimated from the tumor
volume calculated using the relation 0.523 LeW 2, where the
length (Le) and width (W ) are measured using a caliper [30].
The density of the tumor is assumed to be 106 cells per
mm3 [35], [47].

To identify the model parameters and initial conditions,
the burst rate of infected tumor cells was set as α =
3.5 to be consistent with previous data [35], [48], so the
model (11) is globally identifiable. Afterwards, the parameter
set (r,L, β, dI , dV ) was identified by fitting the model (11)
to measurements of the tumor volume from 2 nude mice
(denoted as subject 1 and 2) collected in [30]. The best-
fitting parameters and initial conditions are given in Table 2.
The goodness of fit statistics for each subject are R-squared
(Subject 1: 0.95, Subject 2: 0.97) and Pearson correlation
coefficient ρ (Subject 1: 0.97, Subject 2: 0.98) with p-value
<0.001.

The accessibility of this system was analyzed in [6], where
it was shown that the model (11) is accessible (and the linear
counterparts are controllable) if the conditions S 6= 0 and
di − r + rlog(L/S) 6= 0 hold.
The control objective of the OVT is to reduce (or eliminate)

the total number of tumor cells T in less than 60 days
with the lowest possible viral dose since toxicity is a
major concern. However, in practical situations, physicians
consider a successful oncolytic virus therapy if tumor cells
are below 50 since, after this point, the tumor can be safely
extirpated. To achieve the control objective, the oncolytic
virus therapy is conducted using the proposed nonlinear
schemes of estimation and control.

Fig. 1 shows the state space evolution of ξ = [S, I , V ]
under the nonlinear ZMPC scheme. From the state evolution
(blue line), the characteristic behavior of an ICS can be
visualized, where on predefined days a forced-response is

produced, caused by the application of the viral doses, and
then the free-response follows, where the tumor cells tend
to grow given the absence of the control input. In addition,
the state constraint set and target set are visualized along
with the equilibrium sets of the nonlinear system and the
approximated linear system every time step, i.e., each red line
corresponds to the equilibrium of the linear system obtained
at each time k . It can be seen how the linear equilibriums
approach to the nonlinear equilibrium as the system evolves.
This occurs thanks to the application of a control action
computed to minimize the distance to the equilibrium inside
the target at each time step. Thus, a point inside the nonlinear
equilibrium X •TarsNL is reached at the end of the simulation.

Next, the tumor regression is compared under the linear
ZMPC scheme for impulsive systems developed in [8], the
nonlinear ZMPC in (7), and the ZMPC-OF in (10). For the
linear formulation, a linearization of model (11) around a
single operation point is required to be used as prediction
model. The equilibrium point representing the healthy state
(S = I = V = 0) would be desired, but as it is
not controllable, a point close to it has been selected. For
visualization purposes, S = 1.5 is selected, and the model
equations are solved to find the equilibrium. As observed in
Fig. 2, the linear ZMPC does not achieve the control objective
for Subject 2, as the tumor does not reach the target zone.
In contrast, when the nonlinear strategies are used, viral doses
are increased at the beginning of the therapy, and the tumor
decreases below 50×106 cells in less than 10 days, see Fig. 2.
For subject 3, it is observed that both linear and nonlinear
ZMPC strategies achieve the control objective. However, it is
observed that with the linear ZMPC, the total number of
tumor cells enters the target area a few days after it does
with the nonlinear schemes. Therefore, the nonlinear ZMPC
and ZMPC-OF allow oncolytic virus therapy to improve the
control performance.

Since variations in biological rates may occur within
a subject or between subjects, a sensitivity analysis was
performed to determine the parameters that more affect the
tumor cells’ evolution and the direction in which they affect
it (if they are positive or negative correlated) [49]. It resulted
that the sensitivity of T tends to be larger for changes
in r , β, dV , and α for subject 1, whereas the sensitivity
of T tends to be larger for changes in r , β, dI , and dV
for subject 2. The parameters r , dv, and L are positively
correlated with variations in the total number of tumor cells,
and the parameters β, dI , and α are negatively correlated
with variations in the total number of tumor cells. The results
support the need of personalized oncolytic virus therapy since
subjects are affected differently by parameter variations.

Next, the results of the sensitivity analysis are used to
assess the ZMPC strategy (7) in presence of parameter
uncertainty to test the robustness of oncolytic virus therapy
with that scheme. For each subject, the 4 parameters whose
variations have the greatest impact on tumor cells were
selected (i.e., those with the highest magnitude of sensitivity
function), and varied by 10% and 20% from their nominal
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FIGURE 1. State space evolution (blue line) when applying the ZMPC scheme to Subject 1. The black line represents the
equilibrium of the nonlinear system, and the red lines represent the equilibrium of the linearized discrete impulsive
systems at each time step. It can be visualized how the linear equilibriums are driven to the nonlinear equilibrium in the
target set (green zone).

FIGURE 2. Comparison of the outcomes of OVT performed using the
impulsive linear ZMPC (blue line), the impulsive nonlinear ZMPC strategy
(7) (red line), and the nonlinear ZMPC-OF (10) (yellow line). The green
area corresponds to the target zone.

values in the direction in which parameter variations increase
tumor growth to simulate detrimental discrepancy. For
instance, variations of+10% were considered for parameters
r , dv, and L, while variations of −10% were set for β, dI ,
and α.
Even though it can be seen efforts made by the ZMPC

strategy to achieve the objective, this strategy fails to enforce
enough tumor regression in presence of given parametric
variations, see Fig. 3. This occurs because the mismatches in
biological rates are not taken into account in the prediction
model nor the computation of the required dose for each
injection, and thus, the ZMPC fails to adjust viral doses

FIGURE 3. The control schemes allow OVT to exhibit some robustness to
variations in biological rates. Comparison of the outcomes under the
closed-loop protocol with the nonlinear ZMPC strategy (7) or ZMPC-OF
(10), in presence of simultaneous variations in parameters r , β, dV , dI ,
and α.

appropriately. These results motivate the design of strategies
that compensate parameter uncertainty.

To overcome variations in biological rates, the formulation
in (10) is applied to achieve zero offset. To this end, the
matrices Cd and Bd of the augmented model are chosen
such that the augmented system is observable. Then, the
estimator (17) with the augmented matrices is designed to
estimate the state variables S, I , V , and the disturbance d ,
and this information is provided to the ZMPC-OF to correct
the mismatch between the dynamics in vivo and in silico.

Subsequently, the ZMPC-OF (10) was tested in presence
of parameter variations. When parameter variations increase,
the amount of virus administered tends to increase to
compensate for the effect of the variations, see Fig. 3. Unlike
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FIGURE 4. Robustness of OVT with the ZMPC strategy (7) or ZMPC-OF (10),
in presence of mismatch in tumor growth dynamics. The real system has
an exponential tumor growth and the prediction model has a Gompterz
growth.

the ZMPC strategy, the offset-free strategy enforces tumor
regression in both subjects in presence of the simultaneous
variations in the four most influential parameters. For
subject 1, it is observed that the ZMPC-OF manages to
steer the tumor cells into the target zone around days 9 and
12 when there are variations of 10% and 20%, respectively.
For subject 3, it is possible to steer the tumor cells into the
target around the fifth day in both variation scenarios.

The offset-free strategy adjusts viral doses dynamically
to overcome variations in biological rates, see Fig. 3. These
results suggest that oncolytic virus therapy benefits from the
offset-free strategy to exhibit some robustness to uncertainty
in biological rates.

Additionally, both control schemes (ZMPC andZMPC-OF)
were evaluated in the presence of modeling uncertainty
in tumor dynamics. This is first tested by replacing
the Gompertz growth function (logarithmic term) in the
model (11) by rS(t), to consider that the tumor grows
exponentially without treatment, as in [30] and [50]. The
therapy guided by the schemes achieves tumor regression and
the control objectives for all subjects in presence of the given
mismatch in tumor growth dynamics, see Fig. 4. Although
the ZMPC and ZMPC-OF reduce the tumor quickly with this
mismatch, the ZMPC-OF delivered viral doses lower than
those of the ZMPC, see Fig. 4. Since the ZMPC does not take
into account the mismatch, the ZMPC output unnecessary
high doses. In summary, the offset-free strategy is also
advantageous for this mismatch in tumor growth dynamics
since the ZMPC-OF reduces the doses while maintaining
tumor regression, see Fig. 4. These results suggest that the
ZMPC and ZMPC-OF allow oncolytic virus therapy to be
robust to this mismatch in tumor growth dynamics.

The control schemes are also evaluated in the presence of
stromal cells. Since stromal cells are few in tumor-bearing

FIGURE 5. Robustness of OVT with the ZMPC strategy (7) or ZMPC-OF (10),
in presence of modeling uncertainty due to stromal cells in the subject.
Case 1: M(0) = 0.05S(0), case 2: M(0) = 0.25S(0).

mice, stromal cells tend to be ignored in experimental or
mathematical modeling studies in the literature. Stromal cells
are a major challenge of clinical trials on oncolytic virus
therapy due to their high numbers in human cancers [50].
To emulate this situation, an uncertain model was constructed
by augmenting themodel (11) with dM (t)

dt = 0, T = S+I+M ,
and the term −dmM (t)V (t) is added to the virus dynamics
to model the uptake of free viral particles by stromal cells.
The robustness of the control schemes was assessed in two
cases: Case 1: dm = β/10 and M (0) = S(0) ∗ 0.05 to model
the minor impact of stromal cells in tumor-bearing mice; and
Case 2: dm = β/10, and a higher initial number of stromal
cells is chosen (M (0) = S(0) ∗ 0.15) to model human cases.
In Fig. 5, an offset is observed for subject 1 when

controlling with the ZMPC in case 1, and a failure to
reduce the tumor can be seen for case 2. In contrast, the
ZMPC-OF achieved the control objective in both cases. It is
also visualized that the ZMPC is more robust to model
uncertainty in Subject 2 since the total number of tumor cells
are steered to the target in both cases. Nevertheless, there
is a risk of presenting an offset for higher variations in the
model, as for case 2, tumor cells stabilize near the target
boundary. On the other hand, when using the ZMPC-OF
strategy, tumor cells are adequately reduced within the target
zone, and this reduction is achieved even faster. These results
suggest that the offset-free strategy is suitable for oncolytic
virus therapy to exhibit some robustness to the detrimental
impacts of stromal cells.

THE TYPE 1 DIABETES TREATMENT
In this second application, both control schemes are used
to compute the insulin doses required to regulate the blood
glucose (BG) concentration in subjects with T1D into the
normoglycemia range defined as 70 ≤ BG ≤ 180.
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To that end, the nonlinear model developed in [41] is
used as prediction model and in-silico platform to perform
the controllers. The model was modified from the original
version to include the meal disturbance dynamics [51]. Thus,
the state-space representation is:

ẋ1 = −p1(x1 − Gb)− x1x2 + x4,

ẋ2 = −p2x2 + p3(x3 − Ib),

ẋ3 = −p4(x3 − Ib)+ u(t),

ẋ4 = −p5x4 + r(t) (12)

where x1 represents the BG concentration (mg/dl), x2 is the
interstitial insulin (min−1), x3 stands for insulin concentration
in blood plasma (mU/l), and x4 is the glycemia due to meal
disturbances (mg/dl/min). The control input of the system
u(t) corresponds to the insulin administered to the subject
(mU/l/min). This input can be delivered as multiple daily
injections or short duration pulses using an insulin infusion
pump. In both cases, the input is more realistically modeled
as an impulse, given the comparison with the sampling time.
Thus, it is given by u(t) = u(τk )δ(t − τk ) where u(τk ) is the
magnitude of the insulin dose at time τk . The second input of
the model, r(t), accounts for food intake (mg/dl/min). The
description of the parameters and the values used in this work
can be seen in Table 3 [51], [52].

Regarding the accessibility of the system, it is to clarify
that, as state x4 only depends on the disturbance r , it is not
accessible (there is no way to influence x4 by moving u).
Hence, the accessibility of model (12) is evaluated without
considering this state. Next, it is to verify that the output
h(ξ ) is not an autonomous element, and thus, that at least
three doses are required to control the system. This is done
by calculating the relative degree of the system, applying the
condition (ii) of Proposition 2 in [1]:

〈dh(ξ ), g(ξ )〉 = (1, 0, 0) (0, 0, 1)T = 0

〈dLf h(ξ ), g(ξ )〉 = (−p1 − x2, −x1, 0) (0, 0, 1)T = 0

〈dL2f h(ξ ), g(ξ )〉 = −p3x1 (13)

Based on this, it can be concluded that the impulse relative
degree of model (12) is d0(y) = 3 and dL2f h(ξ ), g(ξ ) 6=
0 when x1 6= 0. Afterwards, based on Theorem 2 in [1], the
accessible space can be determined as:

adf g =
∂g
∂ξ
f −

∂f
∂ξ
g =

 0
−p3
p4


ad2f g =

∂adf g
∂ξ

f −
∂f
∂ξ
adf g =

 −p3x1
−p2p3 − p3p4

p24

 (14)

whose determinant is:

det(g, adf g, ad2f g) = −p
2
3x1. (15)

Therefore, the subsystem (x1, x2, x3) is accessible if
−p23x1 6= 0, and thus, x1 and p3 have to be different to
zero. To show that the same condition holds to guarantee

TABLE 3. Parameters of the model (12).

controllability of the linear system at each time step, the
controllability matrix is calculated:

C =

0 0 −p3x1
0 p3 −p2p3 − p3p4
1 −p4 p24

 , (16)

whose determinant is p23x1, and hence, the same conditions
as the accessibility are obtained. In the context of this
application, these values are not zero, and therefore, the
accessibility of the NICS and the controllability of (A,B) is
guaranteed at all times.

The performance of the control strategies is assessed in a
simulation scenario of 36 hours, where 3 meals of 6, 10, and
8 mg/dl/min are provided to the subject at 7:00h, 12:00h, and
19:00h, respectively. After the first 24h, no more meals are
introduced to see the response of the system at steady-state
(fasting condition). The target zone has been established as
90 ≤ BG ≤ 110, to steer the system into the normoglycemia
zone without increasing the risk of hypoglycemia (BG <

70mg/dl). The sampling time has been set as Ts = 5min,
considering the treatment with an insulin infusion pump [38].

First, the evolution of glycemia and the insulin delivered
is compared under the linear and nonlinear ZMPC scheme.
For the linear ZMPC, the prediction model is obtained by
linearizing in a single equilibrium point inside the target
zone, while for the nonlinear ZMPC, the prediction model
is updated at each time step as in Eq. (7). As observed in
Fig. 6, the nonlinear ZMPC achieves a better performance as
it manages to reduce glycemia levels at meal times faster than
the linear ZMPC, and thus, a lower time in hyperglycemia is
obtained. This shows the advantages of updating the model,
since the prediction model is closer in each step to the actual
behavior of the plant, and thus, a more accurate insulin dose
can be delivered.

In Fig. 6, it can be visualized how the nonlinear ZMPC
achieves to regulate the glycemia into the target zone when
parametric uncertainty is not considered. But, in addition
to the inherent errors in model identification, there are
factors such as physical activity, the dawn phenomenon,
and others, that alter glycemia behavior and thus alter the
insulin requirements [10]. Therefore, the next step consists
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FIGURE 6. Comparison of the linear ZMPC in [8] and nonlinear ZMPC in
(7) performance in T1D treatment.

FIGURE 7. Comparison of the ZMPC (7) and ZMPC-OF (10) performance in
T1D treatment in presence of parameter uncertainty.

of assessing the control strategy with parametric uncertainty.
Here, parametric uncertainty of 30% is considered in the
parameters related to insulin sensitivity (p2, p3) and insulin
degradation rate (p4) to generate a plant-model mismatch.
Each parameter is varied in the direction in which it provokes
hypoglycemia. Then, it can be seen how the ZMPC fails to
steer the BG levels into the target (there is a steady-state
offset), and also, there is an episode of hypoglycemia after the
postprandial time. This behavior is obtained since the ZMPC
has no information regarding the mismatch in the prediction
model, and despite it reduces the insulin doses with respect to
the nominal case (given the feedback), it still cannot compute
adequate doses to avoid the offset error. In contrast, from the
same Figure, it is visualized how the ZMPC-OF reduces the

insulin doses delivered to the subject to correct the differences
detected with respect to the plant, and therefore, it achieves
to drive BG levels into the target. Additionally, it is observed
that the system has a better response during transient periods
with the ZMPC-OF. This is visualized during meal times,
when the strategy reduces the delivery of unnecessary high
insulin doses and thus hypoglycemia is avoided.

III. CONCLUSION
This study presents a first approach to control schemes for
nonlinear impulsive systems with application to relevant
biomedical applications. The proposed control schemes have
been formulated using an underlying discrete-time linear
subsystem with matrices that approximate the nonlinear
behavior at each time step. The first developed scheme is
a ZMPC with artificial reference variables, with which it
is ensured that at each time step the controller computes a
control action that brings the state to an equilibrium inside
the target. Next, the scheme was improved by adding an
offset-free feature to better handle plant-model mismatches.
This was achieved by augmenting the system with a
disturbance model, then the extended state was estimated and
this information was provided to the ZMPC to correct the
prediction model and the target artificial variables.

In addition, this study shows how control engineering
techniques bring sensible benefits to resolve clinical chal-
lenges in biomedical applications, where the administration
of the drug can be seen as an impulsive input to the plant.
In particular for oncolytic virus therapy,MPC has been shown
to calculate personalized viral injections to achieve tumor
regression in a therapeutic target zone. As expected, the
robust performance of the ZMPC-OF is better than the one
of the ZMPC. When variations in biological parameters or
processes improve or impair tumor regression, the ZMPC-OF
decreases or increases the control action consistently. This
robust performance highlights trade-offs between viral doses
and toxicity, which limit antitumor efficacy and robustness
of therapies. As future work in oncolytic viral therapy,
experimental tests with animals are envisioned, such as those
carried out in [30], where tumor cells should be induced in
mice and then treated with the virus doses calculated by the
ZMPC or ZMPC-OF.

The benefits of the ZMPC-OF have also been shown in
the context of T1D treatment, where the insulin doses are
computed by taking into account the estimated mismatch
between the model and the plant with the aim of steering
glycemia to the desired zone. In addition, despite the
objective of the ZMPC-OF is to deal with the steady-
state offset, the control strategy has shown benefits to
correct transitory responses, resulting in the avoidance of
hypoglycemic events when the physiological variations in
the patient tend towards this state. In the context of this
application, the next steps of research are directed to clinical
trials in subjects with type 1 diabetes, given that there are
more technological advances for the implementation of a
closed-loop system, where a continuous blood glucose sensor
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is used, and the dose calculated by the control strategy is
administered through a continuous insulin infusion pump.

For further work in the development of more robust
strategies to handle a plant-model mismatch that is constantly
changing, it is possible to couple additional strategies to
improve performance in the transients. For instance, both
control formulations (ZMPC and ZMPC-OF) could be
coupled with different adaptation methods: (i) direct adaptive
methods to change control parameters such as the penalty
matrices Q and R, or (ii) indirect adaptive methods to update
the prediction model used in the MPC. For both methods,
the changes could be based on the detection of variations
in measurable variables, or historical data to detect patterns,
in order to improve the performance indices appropriate to
each application. In addition, with the offset-free MPC, there
is an additional advantage consisting of the estimation of the
plant-model mismatch, which represents an extra auxiliary
variable that could be used to generate other adaptation
laws or be coupled with fuzzy methods. Some works in
literature that developed methods that could be coupled with
the nonlinear ZMPC and ZMPC-OF are an adaptive fuzzy
control in [53] and a sliding mode safety layer in [10].

APPENDIX A
HYBRID EXTENDED KALMAN FILTER
The hEKF is expressed by:
˙̂
ξ−(t) = f (ξ̂ (t)), ξ̂ (t0) = ξ̂+(k − 1)

Ṗ−e (t) = AP−e (t)+ P
−
e (t)A+ Qe, Pe(t0) = P̂+e (k − 1)

Ke(k) = P−e (k)C
′(CP−e (k)C

′
+ Re)−1

ξ̂+(k) = ξ̂−(k)+ Ke(k)[z(k)− C ξ̂−(k)]

P+e (k) = (I − KeC)P−e (k)(I − K (k)C)′

+K (k)ReK ′(k). (17)

where Pe is the covariance of the estimation error, Ke is
the Kalman filter gain, and Qe, Re are the covariances of
the process error and measurement error, respectively. Note
that, the estimated state and its covariance Pe are propagated
between samples using the nonlinear dynamics of the system,
and then, the estimation is corrected using the measured
information at times k .

APPENDIX B
PROOF OF PROPOSITION 1
This appendix shows the demonstration carried out in [42],
on the stability of the orbits of a NICS when the discrete
equilibrium points are stable.

First, let us note that, if ξs is an asymptotically attractive
equilibrium of the system (2), then trajectories with initial
conditions in a neighborhood of ξs get closer as time
advances. Based on this, it can be seen that in a neighborhood
of ξs, φ is a contractor, therefore:

‖φ(ξ1, t)− φ(ξ2, t)‖ < C‖ξ1 − ξ2‖ ∀t ∈ [0,Ts] (18)

where the smallest constant C, known as Lipschitz constant
is denoted as Cφ .

To prove stability of the equilibrium orbit os, let ε > 0.
Since ξs in a subset of the control equilibrium set X ∗ is
asymptotically stable for the system (2), given ε1 = ε/Cφ ,
there exist δ > 0 such that:

If distX ∗ (ξ
◦

0 ) < δ then distX ∗ (ξ
◦(k)) < ε/Cφ ∀k ∈ N

(19)

Hence, ∀k ∈ N, there is a ξ ks ∈ X ∗ such that
dist(ξ◦(k), ξ ks ) < ε/Cφ , obtaining:

‖φ(ξ◦(k), t)− φ(ξ ks , t)‖<Cφ‖ξ
◦(k)− ξ ks ‖<ε ∀t ∈ [0,Ts]

(20)

Thus, distOs (oξ◦(k)) < disto
ξks
(oξ◦(k)) < ε ∀k ∈ N.

Therefore, os is stable for the impulsive system.
After that, it is necessary to prove attractivity. Let ε > 0,

as X ∗ is attractive for the discrete system (2), then there
exist � ∈ X such that for every ξ◦0 ∈ � there exist K =
K (ξ◦0 , ε) ∈ N such that distX ◦s (ξ

◦(k)) < Cφ ∀k ≥ K .
Following the same argument shown before, it is possible to
get that distos (oξ◦(k)) < ε ∀k ≥ K . Therefore os is attractive
for the impulsive system (2).
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