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ABSTRACT This study makes use ofWi-Fi connectivity data to understand how physical spaces are utilized
and how it can be segmented, from which the insight gained can facilitate spatial planning and design.
To carry out this study, we used a Wi-Fi connectivity data collected from a university network of 291,124
devices from 2,980 access points located across three campuses. For space segmentation, we’ve defined
three features that characterize space utilization: crowdedness, mobility, and connectivity entropy. We’ve
developed a new method called Xplaces that employs PCA to reduce high dimensionality of the features,
eigendecomposition to extract behavioral signatures of the access points, and X-means to cluster access
points without predefined number of clusters. Silhouette value was used to measure how well clusters were
formed for our evaluation. Our method outperforms the state-of-the-art model i.e., eigenplaces. Our further
investigation on the impact of area usage temporality on space segmentation shows that the Xplaces performs
better with specific features for different temporal observation windows. For example, Xplaces works well
with the crowdedness feature for the weekend’s space segmentation. A set of recommended features for
different temporal windows is thus also part of our study’s contributions in addition to the development of
the Xplaces.

INDEX TERMS Urban informatics, space segmentation, opportunistic sensing, Wi-Fi data analysis.

I. INTRODUCTION
Today, cities are growing at unprecedented rates [1]. Their
forms, functions, and structures are being vastly transformed
more rapidly than ever before. Urbanization brings with it
other challenges as well.Many urban environments have been
devastated by urbanization with increasing issues in pollution
and transportation [2]. As urbanization accelerates across
the globe, many cities have been preparing to be a smart
city – urban area that is information and communication
technologies (ICT)-driven to become ‘smart’ in servicing
citizens in a sustainable way with better informed decisions
and mechanisms. Several urban areas have started their smart
city journeys by instrumenting their areas with sensing tech-
nologies such as CCTV, motion sensors, GPS units, and wire-
less sensing network to ‘actively’ sense information about
their citizen behaviors, because one of the keys for making
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informed decision is data. Therefore, to become a smart city
environment, data concerning citizens must be collected upon
which the right innovations and insightful decisions as well
as policies can be made.

Besides the aforementioned active sensing mechanism,
another approach is called opportunistic sensing by which the
data is collected for one purpose by it creates ‘opportunity’
for another purpose. For example, Wi-Fi connectivity data is
originally collected for network activity monitoring, perfor-
mance evaluation, and billing purposes, but it can be oppor-
tunistically analyzed to understand area crowdedness [3] and
mobility [4], [5]. The opportunistic sensing has the edge over
its counterpart approach as the data can be collected in a large
scale with no or minimal user awareness or interaction with
sensing activity. In addition, for the most part, it does not
violate user privacy as most of the opportunistic sensed data
is anonymized and hence identifying the individuals is not
possible. Unlike location-aware sensors such as GPS track-
ing units that can track and collect a fine-grained trajectory
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data [6], however the privacy issues and regulations, e.g.,
EU GDPR (general data protection regulation), have largely
limited this type of detailed mobility data to be available for
a large-scale analysis. Recent attempts have produced data
that are limited to specific type of tracked individuals, such as
university students [7] and customers of a particular service
provider where the data was obtained in exchange of some
incentives [8], and urban cyclists [9].

Wi-Fi is a family of wireless network protocol IEEE 802.11
[10], which allows electronic devices such as smartphones,
desktop computers, laptops, and tablets to ex-change data
or connect to the internet using a wireless network, which
are widely used in both public and private places. As sev-
eral places provide Wi-Fi connection for free, people use
it to connect to the internet. Collectively, these connectiv-
ity logs constitute a large-scale behavioral data which can
be used to better understand human behavior in various
perspectives.

Wi-Fi data has been used to analyze interesting aspects
of its user behavior that are useful for built-environment
design and planning as well as location-based services. For
example, Calabrese et al. [11] examined Wi-Fi connectiv-
ity pattern on a campus to show its correlation to physical
environment which was then used to cluster space according
to their usage. Sevtsuk et al. [12] analyzed logs of Wi-Fi
usage to understand how people use space, which reflected on
occupancy and movements of its users. Occupancy detected
from the Wi-Fi connectivity was shown as an advantageous
alternative with a higher level of accuracy and a much lower
cost compared to the use of CO2 sensors in the study done
by Ouf et al. [13]. An analysis of campus Wi-Fi logs by Kim
and Kotz [14] shows that influx and outflux of users between
access points (APs) had a periodic pattern, which was then be
used tomodel movements in terms of arrival rate and distribu-
tion that was closely related to the non-homogeneous Poisson
processes. Although the AP usage was shown to be periodic,
this behavior seemed to be independent of their geographical
locations but may depend on the relative locations of nearby
APs as observed in another study by Kim and Kotz [15].
At the individual level, Kang et al. [16] developed a method
to detect the user’s significant places fromWi-Fi traces based
on their time-based clustering approach and discussed that
the detected places information could be useful for location-
aware services.

Motivated by the work of Calabrese et al. [11], this study
aims at utilizing the Wi-Fi connectivity data to understand
people’s behaviors and how physical spaces are used as
reflected by theWi-Fi traces, so that more informed decisions
can be made upon insights gained from the analysis, espe-
cially concerning spatial planning and design. As places and
buildings are built for different purposes, the Wi-Fi connec-
tivity of different places can reflect on how places are utilized
and how behaviors of people are shaped by the physical
environment.

II. METHODOLOGY
To carry out this study, we used a Wi-Fi connectivity data
collected from the users of a campusWi-Fi network provided
by Chiang Mai University (CMU). There was a total of 2,980
access points (APs) across three campuses; Suan Sak, Suan
Dok and Mae Hia, covering a combined area of 6.88 km2,
as shown in Fig. 1. Suan Sak is the main campus occupying
2.93 km2 site that includes the university’s administrative
center, the science, engineering, humanities, and social sci-
ence faculties, political science and public administration,
law, the graduate school, all of the campus resource facilities
and services and major sports facilities. Suan Dok campus
is the health science complex occupying 0.45 km2 site that
includes faculties of medicine, associated medical sciences,
nursing, dentistry, pharmacy, and university hospital, known
locally as Suan Dok, the largest teaching hospital in northern
Thailand. Mae Hia campus is about 5 km south of the main
campus that occupies 3.50 km2 site, which houses the facul-
ties of veterinary medicine and agro-industry.

TABLE 1. Distribution of APs across six categories.

Each data record consisted of the Wi-Fi network con-
nectivity information including the connected device ID
(hashed media access control (MAC) address), received
signal strength indicator (RSSI) between the AP and the
connected device, MAC address of the corresponding AP,
and timestamp. Data sampling rate was 5 minutes. Logs
were collected from January 9th – February 3rd, 2020, which
included 133,754,260 records of connectivity by 291,124
unique device IDs. Geolocation of each AP was given in
a separate lookup table based on the AP’s ID (i.e., MAC
address). Geographic coordinates (latitude and longitude)
were provided with seven decimal points or about 1-cm pre-
cision level. APs were labeled into six categories according to
their locations; residence, academic building, administrative
building, service center, research institute, and other. The APs
classified as ‘other’ were those located in areas that did not
belong to any other five categories, such as museum, hall,
and convention center. Distribution of APs in each of the
six categories is shown in Table 1. Academic building has
largest number of APs followed by the residence e.g., student
dormitory, faculty and staff apartment, and university guest
house, while the research institute has the fewest APs. This
distribution is very much in line with the built environment
of the university.
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Our goal was to understand how physical spaces on cam-
pus were used differently through digital traces i.e., Wi-Fi
connectivity, so that it can be used to segment the space
from which the insight gained will facilitate spatial planning
and design. To do so, we explored potential features, which
could be extracted from the Wi-Fi connectivity data that
contribute to characterization of space utilization profile. The
overview of our methodology namely Xplaces is shown in
Fig. 2, which includes data preprocessing, feature extraction,
principal component analysis (PCA), eigendecomposion, and
X-means clustering, to produce a set of clustered APs from
the raw Wi-Fi connectivity data (i.e., AP usage logs).

Data preprocessing step mainly dealt with noise removal
and AP labeling. Data with incorrect or missing AP locations
were considered a noise and removed from the preprocessed
dataset. Incorrect locations were those geographically posi-
tioned outside the campuses. We developed a simple tool
for this specific preprocessing task with which AP locations
were plotted on a map and those located off campus were
removed. Since the raw data did not contain a complete
information about the AP’s belonging buildings or faculties,
so we needed to geographically plot them on the map with
our developed tool and labelled each AP according to their
location to six categories (as listed in Table 1) for future
reference. Therefore, a set of the preprocessed data of each
ith AP, denoted by Di, for our further analysis can be defined
as follow.

Di =
{
id, lat, lon, {dj

(
timestamp,

{
Devij

})
× |j = 1, 2, 3, . . . , zi}

}
, (1)

where id is the AP’s ID, lat and lon are the latitude and
longitude coordinates of the AP, dj is the connectivity log of
jth timestamp, Devij is the set of device IDs connected to the
ith AP at jth timestamp, and zi is the total number of unique
timestamps.

According to the literature, utilization of physical space
can be characterized by the density of people spending time
engaged in activities within the space that produces some
degrees of crowdedness [17], [18], and the movement of peo-
ple within the space that creates dynamism and forms some
levels of mobility [19], [20]. With our Wi-Fi data, we defined
the degree of crowdedness for each AP as the maximum num-
ber of unique device IDs connected simultaneously during a
time period T . Suppose that Ci is a set of crowdedness values
of ith AP over multiple time periods, Ci can be defined as
follows.

Ci = {c1, c2, c3, . . . , ct , . . . , cN }, (2)

where ct is the crowdedness of t th time period and N is
the total number of periods. In our analysis, with T set to
15 minutes, an average value of crowdedness was calculated
for each quarter of the hour, for each hour of the day, and for
each day of the week. Let C ′i denote a set of these average
values that characterizes the crowdedness characteristics of

FIGURE 1. Locations of 2,987 Wi-Fi access points across the Chiang Mai
University’s three campuses of considered in this study; Suan Sak, Suan
Dok, and Mae Hia. Geographic coordinates of this map’s upper right and
lower left corners are 18.811077, 98.978503 and 18.751595, 98.920256,
respectively.

FIGURE 2. Overview of our proposed methodology, Xplaces.

the AP, as follows.

C ′i={c′(q, h, d)|q∈Quarters, h∈Hours, d ∈Days}, (3)

where c′(q, h, d) is the average crowdedness during
quarter q of hour h of day d , where Quarters =

{1, 2, 3, 4}, Hours = {0, 1, 2, 3, . . . , 23}, and Days =
{Monday,Tuesday,Wednesday, . . . ,Sunday}. Thus, there
are 4 × 7 × 24 = 672 members of set C ′i from
c′(1, 0,Monday) to c′(4, 23, Sunday). In the other words, the
considered crowdedness feature has 672 dimensions.

Along the same lines, the mobility level was defined for
each AP as the total number of connections and disconnec-
tions of device IDs during a time period T , as occurrences of
AP connection and disconnection were considered a proxy
for people moving in and out from the AP, hence it indicates
mobility. Given that Mi is a set of mobility values of ith AP
over multiple time periods,Mi can be defined as follows.

Mi = {m1,m2,m3, . . . ,mt , . . . ,mN }, (4)

where mt is the mobility of t th period and N is the total
number of periods. Similar to the crowdedness feature, with T
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set to 15 minutes, the mobility feature was a set of the average
mobility values over each quarter of the hour, each hour of the
day, and each day of the week, as follows.

M ′i = {m′(q, h, d)|q ∈ Quarters, h ∈ Hours, d ∈ Days},

(5)

where m′(q, h, d) is the average mobility during the
quarter q of hour h of day d , where Quarters =

{1, 2, 3, 4}, Hours = {0, 1, 2, 3, . . . , 23}, and Days =
{Monday,Tuesday,Wednesday, . . . ,Sunday}. Thus, there
are 4 × 7 × 24 = 672 members of set M ′i from
m′(1, 0,Monday) to m′(4, 23, Sunday). So, the mobility fea-
ture of each AP has 672 dimensions.

Yet individual human behavior can appear almost random,
typically there are repeating and easily identifiable routines.
Collectively, these patterns become more apparent when con-
textualized temporally, and there are degrees of randomness
associated with them. Shannon’s entropy has been used to
measure these degrees of uncertainty or randomness in human
behavioral patterns [21], which is applicable in our case of
Wi-Fi connectivity behavior. So, in addition to crowdedness
and mobility, connectivity entropy was also extracted from
the data and considered as another feature that characterizes
physical space. Entropy was calculated to measure the degree
of randomness associated with connectivity during each quar-
ter of the hour of each hour of the day, and each day of the
week. So, a set of connectivity entropy values (H ′i) of ith AP
can be defined as follows.

H ′i={Hi(X (q, h, d))|q∈Quarters, h∈Hours, d ∈Days},

(6)

where Hi(X (q, h)) can be calculated based on the Shannon’s
entropy [22] as following.

Hi(X (q, h, d)) = −
∑M

k=1
P (xk (q, h, d))

× log2 P (xk (q, h, d)), (7)

where M is the total number of connections occurred in the
data during the quarter q (where q = 1, 2, 3, 4) of hour
h (where h = 0, 1, 2, 3, . . . , 23) of day d (where d =
Monday,Tuesday,Wednesday, . . . ,Sunday), P (xk (q, h, d))
is the probability of the connectivity k or xk (q, h, d), which
is calculated as xk (q, h, d)/

∑M
k=1 xk (q, h, d). For each AP,

its connectivity was measured by the total number of con-
nections made by any device IDs. Hence, the connectivity
entropy feature has 4× 7× 24 = 672 dimensions.

Examples of crowdedness, mobility, and connectivity
entropy values of APs that were located in a female dorm,
the University’s main lecture building, and the University’s
main library, which were labelled as residence, academic
building, and service center, respectively, are shown in Fig. 3.
Intuitively, the crowdedness values are low during daytime
but high at night at the dorm, while very low on Wednesdays
as there were a very few lectures held on Wednesday at the
lecture building and nearly no crowd at all on weekend when

there was no lecture. Library, on the other hand, draws quite
a consistent crowd throughout the week except for Sunday.
Mobility values are naturally relative to the crowdedness and
offers some insight on how much those crowds in motion.
Connectivity entropy values at the dorm tend to be lower or
in the other words there were more consistent connectivity on
Tuesdays andWednesdays, whichmay be due to the no-class-
on-Wednesday schedule of most students who lived in the
dorm. On other days of the week at the dorm, the connectivity
is rather more random.

With the crowdedness, mobility, and connectivity entropy
used as the features into the next process of the Xplaces, the
PCA [23] was applied to reduce their high dimensionality by
projecting the original high-dimensional feature vector onto
the principal axes from which a lower dimensional feature
vector called principal components are retained. Scree plot
was used in deciding the number of principal components
to retain based on the elbow criterion [24], which suggests
to retain the principal components whose variance explained
seem to level off from the point of the elbow of the graph.
Each feature as well as their combination (i.e., 672 × 3 =
2,016 dimensions) were processed by the PCA from which
their scree plots are shown in Fig. 4. There were 2, 2, 2, and 3
principal components retained for the crowdedness, mobility,
connectivity entropy, and combined features, respectively.
Figure 5 shows the principal components that capture the
features’ most significant aspects. Daily cycle is observed for
each of the feature’s principal components. For crowdedness
and mobility, their first principal components show a daily
cycle that peaks around the middle of the day, while the
second principal components depict a cycle that rises later
in the day (late afternoon into evening hours). On the other
way, the entropy’s second principal component shows the
earlier peak around morning to noon, while the first principal
component shows a daily cycle that rises in the afternoon.

Adapting a technique used in linear algebra, we applied
eigendecomposition [25] to extract a behavioral signature
of each AP based on its connectivity features as a time
series whose dimensions were reduced by minimizing its
information loss while maximizing its variance in forms of
the principal components. We then represented these feature
components of an AP over time as a vector and assem-
bled the feature components from all APs into a covariance
matrix. By applying the eigendecomposition, we factorized
the matrix as a sum of the matrix’s eigenvectors (vk) by a
coefficient (ui,k) particular to that AP, which makes up its
signature (Si) i.e.,

Si = ui,1v1 + ui,2v2 + · · · + ui,wvw (8)

Hence, the signature Sj of AP j would be described by the
same set of eigenvectors (vk’s) but with different coefficients
(ui,k’s). These derived AP signatures can then be exploited to
understand how physical spaces are used as reflected by the
Wi-Fi traces.

Since all AP signatures are derived with the same prin-
cipal, characterized by behavioral vector set, and so they’re
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FIGURE 3. Crowdedness, mobility, and connectivity entropy values of APs located in (a) a female dorm (residence), (b) a main lecture building
(academic), and (c) the main library (service center).

FIGURE 4. Scree plots of (a) crowdedness, (b) mobility, (c) entropy, and
(d) their combination from which 2, 2, 2, and 3 principal components
were retained based on the elbow criterion, respectively.

quantitatively comparable. We can cluster APs based solely
on their coefficients, which are simple scalar, and then

examine their grouping across the campuses. A simple
clustering algorithm like k-means [26] cannot be utilized in
our case here as the number of clusters, or k, must be known
beforehand for the clustering to begin. In our scenario, the
clusters should emerge inherently according to the similari-
ties and differences in space utilization characterized by AP
connectivity patterns in the vicinity. To address the k-means’
shortcoming, we applied a technique called X-means cluster-
ing [27], which is an approach that can cluster data points
without a predefined number of clusters by estimating the
value k by making local decisions about which subset of
the current centroids should be split to properly fit the data.
Its splitting decision is based on the Bayesian Information
Criteria (BIC) [28], so the key is an optimization the BIC
value.

The X-means approach sets k to two (to initially create
two clusters). The cluster centers are updated based on the
renewed cluster mean, and each data point is repeatedly
assigned to the nearest centroid. After then, the data points are
redistributed and the cluster centers are updated once again.
This procedure keeps repeating itself. Each centroid is split
into two children for each value of k, who are then trans-
ported in opposing directions along a randomly determined
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FIGURE 5. The primary principal components that capture the (a) crowdedness, (b) mobility, and (c) connectivity entropy features’ most
significant aspects.

vector for a distance proportional to the region’s size. For
each pair of children, a k-means algorithm is run locally in
each parent region with k = 2. Within the parent region,
data points are grouped to the children. The split decision is
then made on the basis of the BIC value at the local level.
Iteratively, the method continues until the global BIC value is
optimized.

III. RESULTS
We implemented our Xplaces method using crowdedness,
mobility, connectivity entropy, and their combination as four
different sets of features in our experiment, as well as bench-
marked our result against Calabrese et al.’s eigenplaces
method [11], which is based on the number of connections
over 15-minute interval as its feature, as well as eigendecom-
position and k-means for its clustering process. For evalua-
tion, the Silhouette value [29] was used to measure how well
clusters were formed. Technically, it measures how similar a
data point is to its own cluster compared to other clusters. The
Silhouette value ranges from -1 to 1, where a greater value
implies higher degree of similarity of data points to their own
clusters than other ones.

As a result, silhouette plots of Xplaces based on
crowdedness (C), mobility (M), connectivity entropy (E), and
their combination (CME), as well as eigenplaces are shown in
Fig. 6, where the overall average silhouette values are listed
on Table 2. The Xplaces with E as its feature has the highest
average silhouette value of 0.65, followed by M (0.64), CME
(0.63), C (0.53), and lastly the eigenplaces method (0.33).
This suggests that in general our Xplaces method performs
better than the eigenplaces, which is the state of the art.
Moreover, the Xplaces performs best with using connectivity
entropy as its feature.

With the approach of Xplaces and the connectivity entropy
employed as its feature, Figs. 7 – 9 show geolocations of
the clustered APs as well as their corresponding building
types across the three campuses. Interestingly, these results
show that without seeking any reference data, our approach
can accentuate important information that characterizes space
utilization across the areas. At a glance, we can clearly see
that most APs used in the residential areas are well clustered

TABLE 2. Overall average silhouette values.

together, while the APs located in academic buildings tend to
be also clustered together.

As spaces on the campuses were already designated
to serve different purposes, the behavioral characteristics
observed from the data do indeed reflect their real-word
functionalities. Despite the difference in building types, some
spaces in various buildings may be used similarly. For exam-
ple, cafeterias that are located in academic buildings, dor-
mitories, service center, and research institutes can draw
comparable space usage patterns in those areas due to our
regular food eating routines. Therefore, there is also amixture
of different clustered APs types within the same buildings.

Nonetheless, it is still intriguing to see how these user-
generated maps reasonably resemble the real-word space
utilization. As we observed that most residential APs were
seemingly clustered well together, and likewise for the aca-
demic buildings, it is probably due to the fact that activities
carried out in these two building types are relatively distinc-
tive, as oppose to academic building versus research institute,
for instance.

To further investigate how the APs were clustered from the
perspective of building type and vice versa, Figs. 10 and 11
illustrate the cluster distribution and composition in terms of
percentages of clustered APs based on the labelled building
types, respectively. The precise numerical values of results
depicted in Figs. 10 and 11 are listed on Table 3 and IV,
respectively. APs labelled as residence were mostly clustered
well within its own labelled building type with 72.43 percent
or 628 APs of the cluster 4’s members. A combine of clus-
ters 3 and 4 accounts from over 93% of the residence APs.
Intuitively, this is likely due to the nature of how people use
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FIGURE 6. Silhouette plots of clustered APs based on the Xplaces with
(a) crowdedness, (b) mobility, (c) connectivity entropy, (d) combined
features, and (e) eigenplaces.

residential area, which is highly distinct from other build-
ing types. There were slightly over half of the academic

TABLE 3. Percentages and amount of clustered APs for each labelled
building type.

TABLE 4. Percentages and amount of labelled building type APs for each
cluster.

building APs clustered together. Similarly, over 50 percent
of administrative building APs were clustered together. Like-
wise, there were over 60 percent of the research institute APs
clustered together. Overall, there were three large groups:
residence that was made up of clusters 3 and 4 (93.65 percent,
812 APs); academic building that was composed of clusters 1
and 2 (77.33 percent, 934 APs); and administrative building
that consisted of clusters 2 and 4 (84.48 percent, 98 APs).
When considered each cluster based on their building types
(Fig. 11), the clusters 1 and 2 were dominated by academic
building APs, while the clusters 3 and 4 were dominated
residence.

As space usage pattern varies with time due to our regular
working/studying schedules, which creates diurnal variations
of population or rhythms [30], there might be a temporal
variation in space utilization that affects its pattern and hence
segmentation. To investigate the impact of this temporality of
area usage on our space segmentation, we reran our exper-
iment on data selected from particular times of observation
window. Three different observation window schemes were
considered, which includes 3-hour period, 6-hour period,
and day of the week. Five different approaches for space
segmentation were implemented, including Xplaces with C,
M, E, CME, and eigenplaces for which an average silhouette
value was calculated as its evaluation.

For the 3-hour period scheme, we intuitively chose the
first time period to start from midnight (00:00) and hence
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FIGURE 7. Xplaces resulting clustered APs and their corresponding building types on the Suan Sak campus (main campus).

TABLE 5. Silhouette values for 3-hour temporal window scheme in space usage segmentation.

TABLE 6. Silhouette values for 6-hour temporal window scheme in space usage segmentation.

the period series were 00:00 – 03:00, 03:00 – 06:00, . . . ,
21:00 – 00:00, which accounted for eight periods in total.
For each time period, the five approaches were implemented
and silhouette values were calculated. The result is shown
in Table 5, where the highest silhouette values for each time
period are in bold for visibility. Xplaces-CME has the highest
silhouette values for the first four periods (i.e., from 00:00 to
12:00), especially for the first three periods that cover the last
night until morning hours where the silhouette values were
very high (above 0.7). This is presumably due to the typical
resting period of students. Xplaces-C performs better than

other approaches for the 12:00 – 15:00 period, during which
the crowdedness seems to be the key factor.

There appears to be some degrees of randomness in
space usage between 15:00 and 18:00, which makes it
difficult to characterize and distinguish among clusters as
reflected by relatively low silhouette values where three
approaches were tied for the highest segmentation perfor-
mance, i.e., Xplaces-E, Xplaces-CME, and eigenplaces at
silhouette value of 0.44. This observation is in line with
the study by Horanont et al. [30] which also discovered
that people’s activity patterns are highly random during
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FIGURE 8. Xplaces’ resulting clustered APs and their corresponding building types on the Suan Dok campus (health science
complex).

TABLE 7. Silhouette values when day of the week is used as temporal window in space usage segmentation.

15:00 – 18:00 period. For the period 18:00 – 21:00, when
most academics and university staff are leaving the campuses
while most students return to their dorms or go out for a
dinner, Xplaces-CME performs better than other approaches
with silhouette value of 0.67. Lastly, the Xplaces-C outper-
forms other methods for the period 21:00 – 00:00 with a
high silhouette value of 0.77, during which most students are
flowing back to their dorms or going to bed.

The 6-hour scheme also started from midnight, hence the
period series were 00:00 - 6:00, 6:00 - 12:00, 12:00 - 18:00,
and 18:00 - 00:00. As listed on Table 6, the result shows
that the Xplaces-CME is the best performing method for
space segmentation based on the usage happening late at night
and toward morning (00:00 – 6:00) with a high silhouette
value of 0.84, while the Xplaces-M is the top performer for
space usage taking place in the morning and toward noon
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FIGURE 9. Xplaces’ resulting clustered APs and their corresponding building types on the Mae Hia campus (veterinary
medicine and agro-industry faculties).

FIGURE 10. Cluster distribution based on building types.

(6:00 – 12:00) with a silhouette value of 0.66. Then, the
space utilization becomes more difficult to characterize from
12:00 – 18:00, as also observed previous in the 3-hour tem-
poral window scheme, the Xplaces-M andXplaces-E perform
equally well as the best performing methods sharing the same
silhouette value of 0.49. For the evening hours toward the
midnight (18:00 – 00:00), the Xplaces-C outperforms other
methods with a silhouette value of 0.72. The crowdedness
is once again a decisive feature for late evening space uti-
lization when most campus populations are returning to their
residence, which subsequently triggers crowd shifting.

As most people go about their everyday activities around
work/study schedules, so each day of the week thus affects
how people utilize space differently. So, we continued to
examine the impact of the area usage temporality on our space
segmentation on a daily scale by looking at segmentation per-
formance from the perspective of day of the week. As shown
in Table 7, different models perform better than others for
different days of the week. For Monday, the Xplaces-E and

FIGURE 11. Cluster composition based on building types.

Xplaces-CME both are the best performing approaches shar-
ing a silhouette value of 0.65. The Xplaces-CME is the best
model for Tuesday with its silhouette value of 0.67, while
Xplaces-E outperforms other methods forWednesdaywith its
highest silhouette value of 0.69. For Thursday, the Xplaces-M
is the best model with a silhouette value of 0.67. Three
models including Xplaces-M, Xplaces-E, and Xplaces-CME
perform equally well with the best silhouette value of 0.65.
Interestingly, the Xplaces-C does not perform well through-
out the weekdays, however it becomes the best performing
method for the weekend (Saturday and Sunday) with highest
silhouette values of 0.70 and 0.72, respectively, which is
intuitive due to a clear variation in the level of crowdedness on
campuses during the weekend compared to the weekdays. So,
the crowdedness subsequently emerges as a decisive feature
for the weekend.

Overall, the Xplaces performs better than the state-of-
the-art technique, i.e., eigenplaces, in all temporal window
schemes. As reflected by the findings, the choice of
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considered features of the Xplaces depends on the temporal
window of consideration. For example, if it is desired that
the space is segmented according to its spatial utilization
during the weekend, then the Xplaces-C is the most suitable
option. However, if the segmentation is to be done based on
the characteristics of its spatial utilization during the time
period 6:00 – 12:00, then the Xplaces-M is the recommended
method.

IV. CONCLUSION
As we’re narrowing the digital divide, the coverage of
wireless networks such as Wi-Fi for the internet access
increasingly expends. Especially during the pandemic, access
to the internet has been even more essential. While peo-
ple are connected to a Wi-Fi network, their connectivity
is recorded for network monitoring. Collectively, over sev-
eral access point locations, these connectivity logs can be
analyzed opportunistically to reveal how people interact and
utilize built environment and physical space. This paper
presents a development of new method called Xplaces that
segments physical space based on area utilization reflected
by Wi-Fi connectivity, which can be useful for spatial design
and planning. As a case study, we used a Wi-Fi data col-
lected from a university network of 2,980 access points
that serve 291,124 unique devices located across three cam-
puses for our analysis. We’ve defined three features that
characterize space utilization, i.e., crowdedness, mobility,
and connectivity entropy, for space segmentation. Xplaces
consists of three main procedures. It firstly reduces the fea-
ture’s high dimensionality by employing the PCA. It then
extracts a behavioral signature of each access point by
applying eigendecomposition, a technique used in linear
algebra. It finally uses these signatures for its segmenta-
tion by applying X-means clustering technique that does not
require a predefined number of clusters. Such that, the result-
ing segmentation emerges from the actual characteristics of
space utilization. For evaluation, silhouette value was used
to measure how well clusters were formed. Our Xplaces
outperforms the state-of-the-art model, i.e., eigenplaces with
the silhouette value deficit of 0.31. We further investigated
the impact of the temporality of area usage on our space
segmentation by examining the area segmentation from three
different temporal window schemes: 3-hour period, 6-hour
period, and day of the week. This investigation shows that
Xplaces performs well with particular features for different
schemes, and thus yields a set of recommended features for
area segmentation based on its utilization within a chosen
temporal window of observation. For instance, we found
that the Xplaces method works well with the crowdedness
employed as its feature for the space segmentation that is
based on weekend usage of the area.

Therefore, the main contributions of this work are the
development of Xplaces and a set of recommended fea-
tures for different temporal windows of observation of space
utilization, which enable more informed spatial design and
planning. Nonetheless, there are some limitations of our

study. To begin with, we only introduced and examined
three different features in this study. Clearly, there are other
potential features that can potentially be extracted from the
Wi-Fi data, which characterize area usage. Exploring other
influential features is thus worth future research. Second,
network connection issues may have caused some connecting
and disconnecting events in the logs, and hence it may have
affected our analysis, particularly for the mobility feature
calculation. Since, these connection issues were marginal, the
negative effect was thus believed to be minor. Nevertheless,
future investigation may take this issue into consideration.
Lastly, there was a lack of ground truth confirmation of our
resulting area segmentations. There is still an open question
of how to properly measure area usage. Approaches and
methods for sensing and assessing how space is utilized are
thus among those of potential future work.
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