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ABSTRACT The fault diagnosis of rotating machinery is generally performed using methods that employ
vibration and sound. These methods are simple and accurate. However, all of these methods measure
vibration data on the basis of the sampling theorem. Thus, they require a high measurement frequency,
resulting in a large data volume and expensive measurement equipment. In recent years, a method that uses
compressed sensing has been proposed to solve this problem, but it requires dedicated hardware to realize
random sampling. To overcome this drawback, we developed a random start uniform sampling method
(RSUSM) and combined it with compressed sensing (CS). RSUSM is a method of measuring data at a fixed
frequency with a random start time. Numerical experiments demonstrate how the specific constant changes
for each RSUSM parameter. This allows us to know the limit of how many measurement points are required
for the number of non-zero components. We also applied CS by RSUSM to the sound pressure measurement
results of the failed propeller, and found that the signal could be recovered less than 25% error even in a noisy
real environment within the aforementioned limit. In this case, we found that the measurement frequency
could be compressed to 1/80th of the frequency required by the sampling theorem, and the measurement data
size to 1%. This approach is expected to diagnose faults in more rotating machines by significantly reducing
the costs associated with data collection and storage.

INDEX TERMS Compressed sensing, data compression, fault diagnosis, Fourier transforms, signal
processing.

I. INTRODUCTION
Failures inevitably occur in rotating machinery owing to
defects in materials, fatigue, and aging. Failures lead to
equipment downtime, resulting in economic loss. Therefore,
it is important to diagnose the failures of rotating machinery
and maintain it in a working condition. Sound-based and
vibration-based methods have been widely used to detect the
failures of bearings [1], [2] gearboxes [3] propellers [4], [5]
etc. because they are robust and failures can be detected
at an early stage. Heng and Nor [1] compared the perfor-
mance of various classical statistical parameters in bearing
fault diagnosis using acoustic pressure and vibration signals.
Hoang and Kang [2] showed that convolutional neural net-
works could diagnose bearing faults with high accuracy and
robustness even in noisy environments. Randall et al. [3] con-
ducted experimental and theoretical investigations to develop
a method for diagnosing gearbox faults from the frequency
spectrum of vibration signals. Ghalamchi and Mueller [4]
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showed that the failure of multicopter propellers and motors
can be detected by analyzing the vibration spectrum.
Santos et al. [5] studied fault diagnosis techniques for wind
power systems and demonstrated that SVM-basedmodels can
identify common faults, such asmisalignment and imbalance.
In addition, Liu et al. [6] summarized AI-based diagnosis
methods for various rotating machines. These methods
include the use of time waveforms, frequency spectra
[1], [3], [4] and artificial intelligence [2], [5], [6]. However,
all of these methods measure vibration data on the basis of the
sampling theorem. Thus, high-speed sampling is necessary,
and a large amount of data must be transferred and stored.
This requires expensive measurement equipment.

In recent years, a method that uses compressed sens-
ing (CS) has been proposed to solve this problem. CS is
an alternative to the sampling theorem, and it can accu-
rately recover images and signals using a considerably lower
amount of measurement data than that typically required,
provided that the measurement data are sparse to a certain
basis that is incoherent. CS has been applied to fault diag-
nosis and monitoring and has been successfully used for data
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compression. Bao et al. [7] applied CS using the Fourier basis
and wavelet basis to monitor the condition of a bridge using
vibration signals and showed that the signal compression ratio
was higher when the wavelet basis was used. This showed
that the data required for monitoring could be compressed
by using CS, but not significantly because the acceleration
signal was not very sparse. Zhang et al. [8] showed that in
the diagnosis of bearing faults from vibration signals, the
amount of measurement data could be significantly reduced
by applying sparse coding (a type of CS), in which the
basis was obtained via dictionary learning. Dang et al. [9]
compressed the amount of data required for monitoring to
1/8 while maintaining an error of 0.06 % using dictionary
learning. Therefore, as described above, the data compres-
sion ratio can be increased by using dictionary learning,
and the data storage cost can be reduced. However, these
methods require a high-speed logger because the data must
be measured at high speed and then randomly thinned out.
In contrast to these studies that apply CS to data compression,
some studies have made attempts to reduce the sampling rate.
Connor et al. [10] reduced the amount of data required for
monitoring by implementing random sampling in the hard-
ware (Narada wireless sensor) developed at the University
of Michigan specifically for structural monitoring. However,
this method requires dedicated hardware capable of random
sampling, which increases the development cost. In this study,
we developed a method for measuring data at a constant
frequency with a random measurement start time (random
start uniform sampling method, RSUSM) and combined it
with CS. Although the performance of this method may
deteriorate due to the coherence in the observation matrix,
the measurement cost can be reduced because RSUSM can
be realized with existing low-speed loggers. Wemeasured the
sound pressure for a failed propeller and evaluated the signal
compression ratio and diagnostic accuracy of fault diagnosis
using the RSUSM and CS.

The rest of the paper is organized as follows. Section 2
introduces the existing theory of compressive sensing.
Section 3 describes the random sampling method imple-
mented in this study and the newly developed RSUSM.
In Section 4, the evaluation of the performance of the com-
bination of RSUSM and CS by numerical experiments is
presented. Section 5 presents the results of the application of
the proposed method to diagnose a failed propeller. Finally,
in section 6, a summary of this study is presented.

II. COMPRESSED SENSING
Compressed sensing is a method of estimating unknown
vectors on the basis of linear observations. A measure-
ment vector, y∈Rm, is obtained by the linear projection of a
discrete-time signal, s∈Rn (n > m).

y = 8s (1)

If we represent s by an n × n orthogonal basis matrix, 9,
with basis vectors {ψ i} as columns, the problem becomes

y = 89x = Ax (2)

where A = 89 is an m× n matrix referred to as the sensing
matrix, and x is the coefficient of 9, which is used as an
unknown variable in CS. Typical orthogonal bases include
the wavelet basis [11], discrete Fourier basis, and curvelet
basis [12].

Dictionary learning can be used to simultaneously obtain
the basis and coefficients [13]–[15]. As Eq. (2) is an under-
determined linear equation, the solution is not determined.
However, it has been proven that x can be accurately recon-
structed under the following conditions [16], [17]:

• x is s-sparse, where a vector is defined to be s-sparse if
it has at most s nonzero entries

• sensing matrix A has the restricted isometry
property (RIP)

The RIP is restricted to sparse vectors. Matrix A is said to
have the RIP if, for any x with s nonzero components, there
exists a constant δ ∈(0, 1) that satisfies

1− δ ≤
xT
(
ATA

)
x

xT x
≤ 1+ δ (3)

The minimum value of δ, i.e., δs, is referred to as the RIP
constant of the sth order. The smaller this constant, the better
the reconstruction. The l0-norm minimization given by

x̂ = argmin ‖x‖0 subject to y = Ax (4)

can be used to find the sparsest solution of Eq. (2) when
δ2s < 1 [18]. However, as this is a combinatorial optimiza-
tion problem, the required computational complexity is O
(nCm−1), which is quite large and difficult to solve. Therefore,
to obtain a relatively sparse solution, we consider a method
of minimizing the l1 norm as follows:

x̂ = argmin ‖x‖1 subject to y = Ax (5)

In this case, it is known that the reconstruction is successful
if the condition δ2s <

√
2 − 1 is satisfied. As this problem

can be solved using linear programming, it can be solved
with a computational complexity of O (n3). We consider the
conditions under which the restoration succeeds for such a
computer-operable l1 minimization. When 9 has a Wavelet
or Fourier basis, Candes [19], Candes and Tao [17], and
Baraniuk [20] have shown that if a Gaussian or Bernoulli
random matrix is used for 8, then A has the RIP under the
following condition:

m > cs log (n/s) (6)

where c is a specific constant [21]. In addition, Candes et al.
have shown that8 can be constructed by randomly selecting
m rows from an n × n orthogonal matrix [19]. As a specific
value of c, Donoho et al. have shown that reconstruction is
successful at c= 2 whenA is a randommatrix [22]. However,
if the measurements contain noise or A is not a completely
random matrix, a larger value of m may be required. In this
work, we determine the values of m and the error for which
reconstruction is possible.
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It is well known that even if compressed measurements
contain noise, sparse solutions can be obtained by solving the
l1 regularization using LASSO, as shown below [23].

x̂ = argmin
(
1
2
‖y− Ax‖22 + λ ‖x‖1

)
(7)

where λ is a nonnegative regularization parameter. The solu-
tion becomes sparser as λ increases. In this study, λ was
determined by cross-validation. In the cross-validation, the
mean squared error (MSE) was obtained by dividing the data
into ten parts, and the largest λ within one standard error of
the difference from the minimum MSE was adopted. If the
solution of Eq. (7) is x∗, then the error is∥∥x∗ − x∥∥2 ≤ C0

∥∥x∗ − xs∥∥1 /√s (8)∥∥x∗ − x∥∥1 ≤ C0
∥∥x∗ − xs∥∥1 (9)

where xs is a vector with s elements in the increasing order
of x, where s elements are unchanged and the rest are set as
0 [18]. The following equation provides constant C0:

C0 = 2
1+

(√
2− 1

)
δ2s

1−
(√

2+ 1
)
δ2s

(10)

This theorem shows that even when x is not s-sparse, the
restoration error can be suppressed by a constant multiple
of residuals, indicating the robustness of the l1 restoration.
However, as it is difficult to directly calculate δ2s, it is neces-
sary to test and determine the error for various problems.

III. COMPRESSED SENSING METHOD FOR
FAULT DIAGNOSIS
A. EXPERIMENTAL SETUP
The proposed fault diagnosis method with CS was verified
using the experimental setup shown in Fig. 1. This appa-
ratus was an open-loop system, in which room temperature
(25 ◦C) air was blown by a propeller and discharged into the
atmosphere by an exhaust pipe. A microphone installed at the
pipe outlet was used to measure the change in the fluid noise
caused by propeller failure. The measurements were obtained
using a data logger, and the sampling rate was set as fs =
1000 Hz. The measurement time was 300 s; thus, the number
of measurement data points was n = 300000.
Fig. 2 shows the propeller used in the test. A fault was

generated by changing the fin chipping length of one of the
seven blades to 0, 8, 12, or 16 mm. The rotational frequency
was set as fp ≈ 64 Hz, and thus, the blade passing frequency
was fpp = fp× 7≈ 450 Hz. As both frequencies were smaller
than the Nyquist frequency ( fs/2= 500Hz), it was possible to
evaluate the effect of the failure using the frequency spectrum.

B. COMPRESSED SENSING BY RANDOM SAMPLING
Random sampling was realized by constructing 8r by ran-
domly thinning out the original signal, s. Then, swas restored
by identifying the Fourier coefficients, xr, using LASSO and
performing reconstruction, as shown in the flow in Fig. 3(b).

FIGURE 1. Experimental setup.

FIGURE 2. Normal propeller (left) and a failed propeller (right).

The reconstruction error, rr , was evaluated using the follow-
ing equation:

rr = ‖x− xr‖22 / ‖x‖
2
2 × 100% (11)

The performance of data compression was evaluated on the
basis of signal compression ratio α.

a = m/n (12)

C. COMPRESSED SENSING BY RSUSM
The RSUSM was applied by repeating the measurement of
original signal s at a constant frequency (frsu). Coherence was
reduced by randomly executing themeasurement start timing.
8rsu is given by

8rsu= [8ij]n (13)

8ij=



1 if i = j and i =
fs
frsu

p+
fs
frsu

Mpq+
q∑

k=1

βk(
p = 0, 1 . . .Mp

)
,
(
q = 0, 1 . . .Mq

)
,

(βk = rand[1, 200])
0 otherwise

(14)

whereMq is the number of times the random measurement is
performed, β is a function that randomly takes values from
1 to 200, Mp indicates the number of data points in one
fixed frequency measurement, frsu is a sampling frequency.
frsu does not affect the performance of CS. However, devia-
tions from the original data occur if the measurement points
are unevenly distributed. Thus, we used frsu = MpMqN /
(N − 10Mq) settings to cover the entire measurement section
without deviation.Mp andMq were also operated by defining
the ratios γ in the following equation:

γ = Mp/Mq (15)
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FIGURE 3. Schematic of compressed sensing with random sampling and
RSUSM.

FIGURE 4. Comparison of sampling methods.

A comparison of each sampling method is shown in Fig. 4.
The vertical dotted lines are drawn in 0.32 Hz increments
from the first starting point of the RSUSM. Random sam-
pling showed that the measurement was performed randomly.
The RSUSM plot showed that the sampling frequency was
constant for the first 20 points, but the measurement at the
21th point started randomly. In the RSUSM, this randomness
made sensing matrix A close to incoherent, and thus, CS was
achieved.

After the measurement, the Fourier coefficients, xrsu, were
identified using LASSO (Fig. 3 (c)) in the same manner as
random sampling, and s was reconstructed. In this case, the
reconstruction error, rrsu, was set according to the following
equation:

rrsu = ‖x− xrsu‖22 / ‖x‖
2
2 × 100% (16)

IV. NUMERICAL EXPERIMENT RESULTS
As the RSUSM developed in this study is a random start
rather than a random sampling, A has constant coherency.

Therefore, we cannot use c = 2 in Eq. (6). Therefore,
we conducted a new numerical experiment to find the spe-
cific constant in this method. A reconstruction experiment
using CS with random sampling was conducted for the one-
dimensional signal shown in the equation below. The results
are shown in Fig. 5.

s =
s∑

fi=1

D sin (2π fit) (17)

where n = 1000 and amplitude D is a random value that
can take values from 1∼8. CS was performed by applying
Eq. (5) with a Fourier basis for 9. In the regions where
s < 10 and m < 10, the reconstruction experiments were
conducted in increments of 1. In the other regions, experi-
ments were conducted with s and m increments of 10 and
50, respectively. The graph shows that the boundary between
the successful and unsuccessful restoration regions is clearly
separated, as in the results of Donoho et al [22], and this
can be delimited by setting c = 2 in Eq. (6). In contrast,
Fig. 6 shows the results of CS after sampling by RSUSMwith
γ = 1 using Eq. (14). From the figure, it can be seen that the
performance is significantly lower than that of the boundary
with c = 2. This is thought to be because A is not incoherent
since it is sampled at a constant frequency. For the boundary
between the successful and unsuccessful restoration regions,
c in Eq. (6) was calculated by the least-squares method
(c = 9.84). Fig. 7 shows the results of the numerical experi-
ments using the same procedure with γ varying from 0.1 to
50. c is increasing logarithmically to γ . The coefficients of
the logarithmic function were obtained by the least-squares
method, and the following equation was found.

c = 1.73 ln (γ )+ 9.7 (18)

When performing CS using RSUSM, operation is recom-
mended to be within the above limitations. In actual prob-
lems, when c is too large, α exceeds 1, and CS often does not
work. Therefore, we need to determine γ by considering the
trade-off between the desired compression performance and
the number of random sampling points. In this study, CS was
conducted with γ = 5.

V. EXPERIMENTAL RESULTS
Fig. 8 shows the sound pressure waveforms in the normal and
abnormal conditions. The sound pressure waveforms oscil-
late at high and low frequencies in the normal and abnormal
conditions, respectively. Fig. 9 shows the frequency spectrum
obtained using the discrete Fourier transform (DFT) for the
sound pressure waveforms. There is a peak only at the blade
passing frequency (fpp ≈ 450 Hz) in the normal condition and
at the rotational frequency (fp ≈ 64 Hz) and its harmonics in
the abnormal condition. This may be because the lack of a
propeller causes the flow driven by the propeller to weaken
once per revolution.

Thus, the changes in the rotational frequency compo-
nent (fp ≈ 64 Hz) can be used to diagnose a failure.
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FIGURE 5. Recovery experiment by Random sampling. (The white line
represents Eq.(6) at c = 2.)

FIGURE 6. Recovery experiment by RSUSM. (γ = 1, the white line
represents Eq.(6) at c = 9.84.)

FIGURE 7. Relationship between γ and c in recovery experiments using
RSUSM.

However, a measurement frequency of 128 Hz or higher is
required to detect these changes. In addition, if the rota-
tional frequency is unknown, it must be determined from
the relationship between the rotational frequency and blade
passing frequency, which requires a measurement frequency

FIGURE 8. Measured sound pressure waveforms (fs = 1000 Hz).

of 900 Hz or higher. Therefore, expensive measurement
equipment and a large amount of data storage are required.
In this study, we used CS to solve this problem. Fig. 9 shows
that the Fourier coefficients become sparse when the Fourier
basis is used. In the Fourier coefficients of the failure data,
the amplitude of noise (components other than the rotational
frequency and harmonics) is less than 0.005. Moreover, the
number of components that are larger than 0.005 is s = 27.
Assuming that all other components can be regarded as zero,
Eq.(6) shows that the reconstruction is successful if there
are more than m = 504 (≈18.7s) measurement points. How-
ever, in reality, the amplitudes of the other 27 points are not
zero. In addition, the RSUSM does not entirely follow Eq.
(6) because sensing observation matrix A is not incoherent.
Therefore, in this study, CS was performed for m ≈ 0.2 s −
460 s, and its performance was evaluated.

Figs.10(a) and 10(b) show the spectrum obtained by apply-
ing CS to the data obtained using random sampling and the
RSUSM with m = 3125 (≈ 116 s), respectively. The dotted
lines in the figure represent the frequencies of 1st and 7th

orders of rotation. Random sampling and the RSUSM can
reconstruct the peaks of the rotational frequency and blade
passing frequency. Random sampling reconstructs the blade
passing frequency and rotational frequency amplitude more
accurately compared to the RSUSM. In addition, there are
fewer false estimates of peaks, and the overall error is small.
This is because observation matrix A is incoherent in random
sampling.

Next, to evaluate the influence of the measurement param-
eters on the RSUSM, sampling and CS were conducted
by changing Mp, Mq, and frsu (measurement frequency).
Table 1 shows the parameters used in RSUSM. We used
frsu = MpMq/250 settings to cover the entire measure-
ment section without deviation. In actual equipment, the
data volume and measurement frequency decrease with frsu.
However, when frsu is small, stable operation for a long time
is required to increase the number of measurement points.
Therefore, the trade-off between these two aspects must be
determined.

Fig. 11 shows the relationship between the number of
measurement points and reconstruction error for random
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FIGURE 9. Frequency spectrum of sound pressure.

FIGURE 10. CS result of sound pressure data for a fin chipping length of
12 mm: (a) Random sampling (m ≈ 3125), (b) RSUSM (Mp = 125, Mq = 25,
frsu = 12.5 Hz).

sampling and the RSUSM. In the case of random sampling,
the error is almost 100% atm= 5-80, and it decreases rapidly
as m increases to 500. However, the error does not decrease
to zero even when m exceeds 504; this satisfies Eq.(6) at
c = 2. This may be because the measurement data is not
exactly s-sparse (s= 27) owing to noise. Therefore, to reduce
m as much as possible while allowing for a certain error, it is
recommended thatm should be slightly larger than 504 rather
than an extremely large value.

In the case of RSUSM, the error is 100 % at m = 5–125,
and it decreases rapidly as m increases to 2000. However, the
error does not decrease to zero even when m exceeds 2475;
this satisfies Eq.(6) at c = 9.84. The reason for this may be

TABLE 1. Parameter settings in RSUSM.

FIGURE 11. Relationship between reconstruction error and number of
measurements.

the same as for random sampling. Therefore, to reduce m as
much as possible while allowing for a certain error, it is rec-
ommended that m should be slightly larger than 2475 rather
than an extremely large value.

At the same value of m, the error in random sampling is
smaller than that in the RSUSM. However, at the almost same
number of random samplings, the error in random sampling
is 100 % for m = 80, whereas it is 17 % for the RSUSM
when Mq = 50. Hence, the performance of the RSUSM is
better. Therefore, the RSUSM is suitable when the number of
random samplings cannot be increased.

Finally, to evaluate the possibility of fault diagnosis using
CS, random sampling and the RSUSM with CS were applied
to the data obtained for different fin chipping lengths. The
trends of the rotational frequency components are plotted in
Fig. 12 for each method. The results of the DFT show that
the rotational frequency component increases with the pro-
peller chipping length; this trend is also observed for random
sampling and the RSUSM with CS. However, both methods
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TABLE 2. Performance evaluation of CS.

FIGURE 12. Detection results of rotational frequency components by
each method.

tend to underestimate the amplitude. This is probably because
the l1-norm is smaller when the amplitude is underestimated
compared to when it is overestimated. Therefore, when CS is
used for fault diagnosis, it is recommended to set the failure
threshold to be smaller than the assumed error.

Table 2 shows the performance of each method in detect-
ing the rotational frequency components using CS. For both
methods, the amount of measured data is 1 % at m =
3125, which is significantly low. The detection error for
the rotational frequency component increases m decreases
from 3125 to 270. Therefore, it is necessary to consider
the trade-off between data reduction and the error to deter-
mine the signal compression ratio in actual equipment. For
the same number of measurement points, the performance
of random sampling is better than that of the RSUSM.

However, the performance of the RSUSM with 25 random
sampling points is better than that of random sampling with
270 points. Therefore, the RSUSM is suitable when random
sampling points cannot be increased. The RSUSM can detect
fault signals with a measurement frequency of approximately
12.5 Hz, which is 1/80 of the original data measurement
frequency (1000 Hz).
Mq must be increased to further improve the performance

of the RSUSM. However, the number of random samplings
must be increased to increase Mq; this requires a long mea-
surement time. The measurement time can be decreased by
increasing frsu. However, a data logger with a high mea-
surement frequency is required, which increases the cost.
Therefore, it is necessary to consider the trade-off between
Mq and frsu when setting their values.

VI. CONCLUSION
To reduce the cost of measurement and data storage in fault
diagnosis, a sampling method called RSUSM was developed
and combined with CS. Numerical experiments demonstrated
how the specific constant varies with respect to γ , which
is defined as the ratio of the number of random sampling
points Mq to the number of sampling points Mp at a fixed
interval (Eq. (18)). This allowed us to understand the limit of
how many measurement points are required for the number
of non-zero components. This CS by RSUSM was validated
using the sound pressure measurement data of the failed
propeller. As a result, it was found that the signal could
be recovered within the aforementioned limit less than 25%
error even in a real environment with noise. In this case, the
measurement frequency was found to be reduced to 1/80 of
the frequency required by the sampling theorem. This made
it possible to realize CS with an inexpensive data logger by
using RSUSM. It was also found that the measurement data
size could be compressed to 1%. This made it possible to
reduce the data storage cost. As a result of applying the CS
by RSUSM to the experimental results with different blade
chipping lengths, the rotational frequency component, which
is a diagnostic indicator, was identified with an average error
of 16%. These results indicate that fault diagnosis can be
realized with a small error and low data storage and measure-
ment costs. Recommendations for applying CS by RSUSM
for fault diagnosis include setting the threshold value low
because it tends to underestimate the amplitude, and setting
the values ofMq and frsu considering the trade-off between the
required compression performance and measurement time.
Furthermore, this method cannot be applied to signals that
are non-sparse with respect to the Fourier basis because of
noise or rotational speed fluctuations.

As described above, we developed a new samplingmethod,
RSUSM, which is feasible with existing low speed loggers,
and showed its performance limits by numerical experiments.
The method was validated using an experimental setup with
a failed propeller, and recommendations were provided for
applying the method to fault diagnosis. The RSUSM is an
innovative method for fault diagnosis of rotating machinery
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that can simultaneously reduce the cost of measurement and
data storage. This new method is expected to diagnose faults
in more rotating machines.

In the future, we plan to implement the RSUSM using
a microcomputer and investigate the issues by performing
measurements in an actual environment. We would also like
to discuss methods to reduce the number of computing cost.

ACKNOWLEDGMENT
The author thanks to the Saba from Editage Group
(www.editage.com) for editing a draft of this manuscript.
This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

REFERENCES
[1] R. B. W. Heng and M. J. M. Nor, ‘‘Statistical analysis of sound and

vibration signals for monitoring rolling element bearing condition,’’ (in
English), Appl. Acoust., vol. 53, nos. 1–3, pp. 211–226, Jan./Mar. 1998,
doi: 10.1016/S0003-682X(97)00018-2.

[2] D. T. Hoang and H. J. Kang, ‘‘Rolling element bearing fault diagnosis
using convolutional neural network and vibration image,’’Cogn. Syst. Res.,
vol. 53, pp. 42–50, Jan. 2019, doi: 10.1016/j.cogsys.2018.03.002.

[3] R. B. Randall, ‘‘A new method of modeling gear faults,’’ J. Mech. Design,
vol. 104, no. 2, pp. 259–267, Apr. 1982, doi: 10.1115/1.3256334.

[4] B. Ghalamchi and M. Mueller, ‘‘Vibration-based propeller fault diagnosis
for multicopters,’’ in Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS),
2018, pp. 1041–1047, doi: 10.1109/ICUAS.2018.8453400.

[5] P. Santos, L. F. Villa, A. Reñones, A. Bustillo, and J. Maudes, ‘‘An SVM-
based solution for fault detection in wind turbines,’’ Sensors, vol. 15, no. 3,
pp. 5627–5648, Mar. 2015, doi: 10.3390/s150305627.

[6] R. Liu, B. Yang, E. Zio, and X. Chen, ‘‘Artificial intelligence for fault
diagnosis of rotating machinery: A review,’’ Mech. Syst. Signal Process.,
vol. 108, pp. 33–47, Aug. 2018, doi: 10.1016/j.ymssp.2018.02.016.

[7] Y. Bao, J. L. Beck, and H. Li, ‘‘Compressive sampling for accelerometer
signals in structural health monitoring,’’ Struct. Health Monit., vol. 10,
no. 3, pp. 235–246, May 2011, doi: 10.1177/1475921710373287.

[8] X. Zhang, N. Hu, L. Hu, L. Chen, and Z. Cheng, ‘‘A bearing fault diagnosis
method based on the low-dimensional compressed vibration signal,’’ Adv.
Mech. Eng., vol. 7, no. 7, Jul. 2015, Art. no. 168781401559344, doi:
10.1177/1687814015593442.

[9] X. J. Dang, F. H.Wang, andD. X. Zhou, ‘‘Compressive sensing of vibration
signals of power transformer,’’ in Proc. IEEE Int. Conf. High Voltage Eng.
Appl. (ICHVE), Beijing, China, Sep. 2020, pp. 1–4.

[10] S. M. O’Connor, J. P. Lynch, and A. C. Gilbert, ‘‘Compressed sensing
embedded in an operational wireless sensor network to achieve energy effi-
ciency in long-termmonitoring applications,’’ SmartMater. Struct., vol. 23,
no. 8, Jul. 2014, Art. no. 085014, doi: 10.1088/0964-1726/23/8/085014.

[11] S. Mallat, A Wavelet Tour of Signal Processing. New York, NY, USA:
Academic, 1999.

[12] E. Candes and D. L. Donoho, ‘‘Curvelets: A surprisingly effective non-
adaptive representation of objects with edges,’’ Curves Surf. Fitting,
vol. C., no. 2, pp. 1–10, Apr. 2000.

[13] M. Aharon, M. Elad, and A. Bruckstein, ‘‘K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,’’ IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006, doi:
10.1109/TSP.2006.881199.

[14] H. Rauhut, K. Schnass, and P. Vandergheynst, ‘‘Compressed sensing
and redundant dictionaries,’’ IEEE Trans. Inf. Theory, vol. 54, no. 5,
pp. 2210–2219, May 2008, doi: 10.1109/TIT.2008.920190.

[15] E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, ‘‘Compressed sensing
with coherent and redundant dictionaries,’’ Appl. Comput. Harmon. Anal.,
vol. 31, no. 1, pp. 59–73, Jul. 2011, doi: 10.1016/j.acha.2010.10.002.

[16] E. J. Candes and T. Tao, ‘‘Decoding by linear programming,’’ IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005, doi:
10.1109/TIT.2005.858979.

[17] E. J. Candès and T. Tao, ‘‘Near-optimal signal recovery from random
projections: Universal encoding strategies?’’ IEEE Trans. Inf. Theory,
vol. 52, no. 12, pp. 5406–5425, Dec. 2006, doi: 10.1109/TIT.2006.885507.

[18] E. J. Candès, ‘‘The restricted isometry property and its implications
for compressed sensing,’’ Comp. Rendus Math., vol. 346, nos. 9–10,
pp. 589–592, May 2008, doi: 10.1016/j.crma.2008.03.014.

[19] E. J. Candes, ‘‘Compressive sampling,’’ Proc. Int. Congr. Math. Madrid,
Spain, vol. 2006, pp. 22–30, Aug. 2006.

[20] R. G. Baraniuk, ‘‘Compressive sensing [lecture notes],’’ IEEE Sig-
nal Process. Mag., vol. 24, no. 4, pp. 118–121, Jul. 2007, doi:
10.1109/MSP.2007.4286571.

[21] E. J. Candes, J. Romberg, and T. Tao, ‘‘Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,’’ IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006,
doi: 10.1109/TIT.2005.862083.

[22] D. L. Donoho and J. Tanner, ‘‘Exponential bounds implying construction
of compressed sensing matrices, error-correcting codes, and neighborly
polytopes by random sampling,’’ IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 2002–2016, Apr. 2010, doi: 10.1109/TIT.2010.2040892.

[23] R. Tibshirani, ‘‘Regression shrinkage and selection via the lasso,’’ J. Roy.
Statist. Soc., B Methodol., vol. 58, no. 1, pp. 267–288, 1996, doi:
10.1111/j.2517-6161.1996.tb02080.x.

YUKI KATO received the M.E. degree in fluid
dynamics from Tsukuba University, Tsukuba,
Japan, in 2016. He is currently an Assistant Pro-
fessor with the National Institute of Technology,
Hiroshima College. His research interests include
the fault diagnosis of rotational machines, heat
transfer analysis for pulsating flow, and imaging
of oscillation phenomena.

16976 VOLUME 10, 2022

http://dx.doi.org/10.1016/S0003-682X(97)00018-2
http://dx.doi.org/10.1016/j.cogsys.2018.03.002
http://dx.doi.org/10.1115/1.3256334
http://dx.doi.org/10.1109/ICUAS.2018.8453400
http://dx.doi.org/10.3390/s150305627
http://dx.doi.org/10.1016/j.ymssp.2018.02.016
http://dx.doi.org/10.1177/1475921710373287
http://dx.doi.org/10.1177/1687814015593442
http://dx.doi.org/10.1088/0964-1726/23/8/085014
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1109/TIT.2008.920190
http://dx.doi.org/10.1016/j.acha.2010.10.002
http://dx.doi.org/10.1109/TIT.2005.858979
http://dx.doi.org/10.1109/TIT.2006.885507
http://dx.doi.org/10.1016/j.crma.2008.03.014
http://dx.doi.org/10.1109/MSP.2007.4286571
http://dx.doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1109/TIT.2010.2040892
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x

